

D4.6 Homomorphic encryption
embedded engine v1

WP4 - SPHINX Toolkits

Version: 1.00

D4.6 Homomorphic Encryption Embedded Engine v1

 2 of 29

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or both.

Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals

and care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1stJanuary 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator National Technical University of Athens - NTUA

Deliverable D4.6 Homomorphic encryption embedded engine v1

Work Package WP4 – SPHINX Toolkits

Date of Delivery Contractual M20 Actual M20

Nature R - Report Dissemination Level P - Public

Lead Beneficiary TechInspire

Responsible Author Waqar Asif Email w.asif@techinspire.co.uk

 Phone

Reviewer(s): Alberto López Martín (INCM), Ilias Trochidis (VILABS)

Keywords Homomorphic encryption , privacy , anonymisation

http://sphinx-project.eu/

D4.6 Homomorphic Encryption Embedded Engine v1

 3 of 29

Document History

Version Issue Date Stage Changes Contributor

0.1 15/06/2020 Draft ToC Waqar Asif (TEC)

0.2 24/08/2020 Draft Content Waqar Asif (TEC)

0.3 26/08/2020 Draft Internal Review 1 Alberto López Martín (INCM)

0.4 26/08/2020 Draft Internal Review 2 Ilias Trochidis (VILABS)

0.5 27/08/2020 Pre-

final

Comments Addressed Waqar Asif (TEC)

0.6 31/08/2020 Pre -

final

Quality Control George Doukas (NTUA),

Michael Kontoulis (NTUA)

1.00 31/08/2020 Final Final Version Christos Ntanos (NTUA)

D4.6 Homomorphic Encryption Embedded Engine v1

 4 of 29

Executive Summary
This deliverable is a report on the development progress of the Homomorphic Encryption Embedded Engine

(HE). The HE tool provides both security and privacy to the SPHINX solution. The tool makes use of partial

homomorphic encryption techniques to allow user to search in the encrypted domain. This eliminates the need

for downloading and decrypting all stored data and thus ensures security of the data. With the help of this tool,

healthcare professionals can store data in central repositories with increased security. The tool also provides

the feature for searching in each other’s database, given that prior permission is already granted. Alongside

this, the tool provides network traffic anonymization capability, which adds privacy to the network traffic data.

A pseudo-anonymized version of the network traffic is returned to the user, with added capability of de-

anonymizing the data for latter use. This report elaborates on these functionalities and helps explain with the

help of screenshots the different interfaces that it provides. This report is a versioned document, and this is the

first version (v1).

D4.6 Homomorphic Encryption Embedded Engine v1

 5 of 29

Contents

Executive Summary (TEC) .. 4

1 Introduction (TEC) .. 9

1.1 Purpose & Scope .. 9

1.2 Structure of the deliverable .. 9

1.3 Relation to other WPs & Tasks .. 9

1.4 List of Abbreviations ..Error! Bookmark not defined.

2 Homomorphic Encryption.. 10

2.1 Literature review ... 10

2.2 Searchable Encryption ... 12

3 Homomorphic Encryption Embedded Engine ... 13

3.1.1 Search in the Encrypted Domain ... 13

3.1.2 Double-Sided blinded process ... 14

3.1.3 Data Anonymization .. 14

3.1.4 Architecture and Design .. 15

4 Design & Development.. 18

4.1.1 Interfaces and integration ... 18

4.1.2 Swagger definitions ... 20

4.1.3 Test cases .. 20

5 Conclusion .. 28

6 References .. 29

D4.6 Homomorphic Encryption Embedded Engine v1

 6 of 29

Table of Figures

Figure 1 : HE-based searchable encryption ... 13

Figure 2: Data Anonymization ... 15

Figure 3: SPHINX HE Component Diagram .. 15

Figure 4:HE module division .. 19

Figure 5: Swagger-Api definition for the HE tool ... 20

Figure 6: Front end .. 21

Figure 7: Front end for local search ... 21

Figure 8: File Encryption and Download option .. 22

Figure 9: File selection dialog box ... 22

Figure 10: Sample, alphanumeric plain text file .. 22

Figure 11: Searchable Cipher created after HE encryption ... 23

Figure 12: AES encrypted file ... 23

Figure 13: Encryption successful message .. 23

Figure 14: Search query input ... 24

Figure 15: Search response ... 24

Figure 16: File Decryption .. 24

Figure 17: Search in External Databases ... 25

Figure 18: Search in external databases .. 25

Figure 19: File Decryption for external databases .. 25

Figure 20: Data anonymization interface .. 26

Figure 21: Data Anonymization response ... 26

Figure 22: Network IP encrypted search ... 27

Figure 23: Network IP de-anonymization .. 27

D4.6 Homomorphic Encryption Embedded Engine v1

 7 of 29

Table of Tables

Table 1:List of abbreviation ...Error! Bookmark not defined.

Table 2: SPHINX HE Interface Specifications ... 17

D4.6 Homomorphic Encryption Embedded Engine v1

 8 of 29

Table of Abbreviations

HE - Homomorphic Encryption

RSA - Rivest, Shamir, Adleman

SE - Searchable Encryption

GDPR - General Data Protection Regulation

AES - Advanced Encryption Standard

D4.6 Homomorphic Encryption Embedded Engine v1

 9 of 29

1 Introduction

1.1 Purpose & Scope
This deliverable is being submitted as a partial requirement for D4.6 Homomorphic Encryption Embedded

Engine. This is part of Work Package 4 - SPHINX Toolkits. This embedded engine deals with providing a data

anonymization service to all incoming network traffic and also provides an interface to different SPHINX end

users to search in each other’s databases using a double-sided blinded process. This deliverable highlights the

current state of the embedded engine at month 20. At the moment, the core functionalities are complete, with

testing in progress. The document contains detailed descriptions of all modules in place and highlights the

different functionalities with the help of screenshots.

1.2 Structure of the deliverable
The rest of the deliverable is structured as follows. Section 2 provides a brief overview of Homomorphic

Encryption, details about various partial homomorphic encryption techniques and elaborates on the

background of searchable encryption. Section 3 explains in detail the three different components of the

Homomorphic Encryption Embedded Engine and it elaborates on the architecture and design that were

adopted. Section 4 highlights the different interfaces that the tool presents, it presents the API definitions and

elaborates with the help of screenshots on the used test cases. Section 5 concludes the document.

1.3 Relation to other WPs & Tasks
This report is closely related to WP2 and more specifically to D2.3 Use Case Definition and requirement

document, D2.4 SPHINX requirements and guidelines and D2.5 SPHINX architecture. The work presented in this

document has been tailored to fulfil the integration requirements of T6.1 Definition and specification of the

system integration.

D4.6 Homomorphic Encryption Embedded Engine v1

 10 of 29

2 Homomorphic Encryption
Homomorphisms are maps between algebraic structures that allow the development of cryptographic

techniques that, in turn, permit computations to be performed on encrypted data. This as a result helps

maintain data confidentiality while it is being processed, thus enabling tasks to be performed when data is

residing in untrusted environments. In the current age of heterogeneous networking, this is a highly valuable

capability [1].

A homomorphic encryption system emanates from conventional public key cryptographic systems, which

means that it uses a public-private key pair to execute the cryptographic functions. The public key is thus used

to encrypt data, whereas a private key is used to decrypt the ciphertext. What makes it different from most

cryptographic solutions is that it allows one to perform arithmetic operations on the encrypted data.

Mathematically, a homomorphism refers to the transformation of one dataset into another while preserving

relationships between elements in both sets [1]. As homomorphic encryption maintains the same structure,

identical mathematical operations produce similar results irrespective of what they are exercised on. An

arithmetic operation performed on ciphertext would give similar results to an arithmetic operation performed

on plain text.

2.1 Literature review
The search for a solution that allows computing on the encrypted data has been a long set goal since 1978,

when it was initially proposed by Rivest, Shamir, Adleman (RSA). The key reason for interest in this topic is the

large set of applications that it can help execute. The development of a fully homomorphic encryption model

is a revolutionary advance and thus relies on huge computational resources. A fully homomorphic encryption

model assumes the capability of performing all arithmetic operations in the encrypted domain. As resources

can be a big limitation, researchers have resorted to slight variations of this model. There are three different

types of homomorphic encryption models depending on the frequency of mathematical operations that can be

performed on the cipher [1][2]:

- Fully homomorphic encryption,

- Partial homomorphic encryption,

- Somewhat homomorphic encryption.

While fully homomorphic encryption gives one the freedom to perform all arithmetic operations without any

limitations in operation of frequency, its computational complexity limits the usability of such approaches. To

circumvent this issue, researchers typically resort to partial homomorphic encryption approaches, which only

allow selected arithmetic operations to be performed. These include either multiplication or addition. The

development of most partial homomorphic encryption models supports multiple iterations of such arithmetic

operations. In environments where resources are hugely constrained, the use of somewhat homomorphic

encryption is preferred, allowing only for single arithmetic operations to be executed only a limited number of

times.

In this work, we focus on the use of partial homomorphic encryption due to the nature of the task. Partial

homomorphic encryption can be exercised based on a number of asymmetric encryption schemes. These

include RSA, ElGamal and Paillier:

D4.6 Homomorphic Encryption Embedded Engine v1

 11 of 29

- RSA

RSA is known to exhibit multiplicative homomorphism [3]. This means that any content that is

encrypted using the well-known RSA algorithm, if multiplied in the encrypted domain, would produce

the same outcome as if it was multiplied in plain text. For instance, consider an RSA key pair (𝑑, 𝑒) and

modulus 𝑛. Then the encryption procedure for message 𝑚 is:

𝑐 ≡ 𝑚𝑒𝑚𝑜𝑑 𝑛

And decryption procedure is:

𝑚 ≡ 𝑐𝑑𝑚𝑜𝑑 𝑛

If we encrypt two plain text messages 𝑝1and 𝑝2 using RSA, then the corresponding ciphertext would be

𝑝1
𝑒 and 𝑝2

𝑒 . Multiplying these cipher texts results in (𝑝1𝑝2)𝑒 . When decrypted, this would result in

((𝑝1𝑝2)𝑒)𝑑 ≡ 𝑝1𝑝2𝑚𝑜𝑑 𝑛.

- ElGamal

The ElGamal encryption scheme also exhibits multiplicative homomorphism [4]. This means that the

multiplication of two or more cipher texts that was created using the ElGamal scheme would result in

a decrypted plain text that is same as multiplication in plain text. For instance, consider an example

with an ElGamal public key (𝛼, 𝛽, 𝜌) and private key 𝑎. Then the encryption of a plaintext 𝑥 with nonce

𝑘 would be 𝜀(𝑥, 𝑘) = (𝑦1, 𝑦2). Here:

𝑦1 ≡ 𝛼𝑘𝑚𝑜𝑑 𝑝

𝑦2 ≡ 𝑥𝛽𝑘𝑚𝑜𝑑 𝑝

In case, there are two plaintext messages 𝑥1and 𝑥2with nonces 𝑘1and 𝑘2, then the ciphertexts are:

𝜀(𝑥1, 𝑘1) = (𝑦1, 𝑦2) = (𝛼𝑘1𝑚𝑜𝑑 𝑝, 𝑥𝛽𝑘1𝑚𝑜𝑑 𝑝)

𝜀(𝑥2, 𝑘2) = (𝑦3, 𝑦4) = (𝛼𝑘2𝑚𝑜𝑑 𝑝, 𝑥𝛽𝑘2𝑚𝑜𝑑 𝑝)

Multiplying the two ciphers would result in:

(𝑦1. 𝑦2). (𝑦3. 𝑦4) = (𝑦1. 𝑦2. 𝑦3. 𝑦4) = (𝛼𝑘1 . 𝛼𝑘2 . 𝑥1𝛽𝑘1 . 𝑥2𝛽𝑘2)

= (𝛼𝑘1+𝑘2 . 𝑥1𝑥2𝛽𝑘1+𝑘2)

 Decrypting the cipher text would result in:

𝑑(𝛼𝑘1+𝑘2 . 𝑥1𝑥2𝛽𝑘1+𝑘2) = 𝑥1𝑥2

- Paillier

The Paillier encryption scheme is different from both the RSA and the ElGamal approach as it exhibits

additive homomorphism [4]. Under the Paillier encryption scheme, multiplication performed in the

encrypted domain produces a similar result as if the relevant plain text components were added

together. For instance, consider two plain text messages 𝑥1and 𝑥2, the resultant cipher text under the

Paillier encryption scheme would then be:

𝜀(𝑥1, 𝑟1) = 𝑔 𝑥1𝑟1
𝑛 𝑚𝑜𝑑 𝑛2

𝜀(𝑥2, 𝑟2) = 𝑔 𝑥2𝑟2
𝑛 𝑚𝑜𝑑 𝑛2

Multiplication of these two cipher texts would result in:

𝜀(𝑥1, 𝑟1). 𝜀(𝑥2, 𝑟2) = 𝑔 𝑥1𝑟1
𝑛. 𝑔 𝑥2𝑟2

𝑛 𝑚𝑜𝑑 𝑛2 = 𝑔 𝑥1+𝑥2(𝑟1𝑟2)𝑛 𝑚𝑜𝑑 𝑛2

Decryption of the cipher text would result in:

D4.6 Homomorphic Encryption Embedded Engine v1

 12 of 29

𝑑(𝜀(𝑔 𝑥1+𝑥2(𝑟1𝑟2)𝑛)) = (𝑥1 + 𝑥2)𝑚𝑜𝑑 𝑛

2.2 Searchable Encryption
Searchable Encryption (SE) is not a new topic. It has been around for quite some time now. The key purpose of

having SE was to provide users the flexibility of searching in the encrypted domain. In a conventional approach,

security-conscious users encrypt data before storing it on a third-party cloud resource [5]. This enables them

to ensure the right level of security. When in need of a specific content, researchers download all the content,

decrypt it and then search in the decrypted text. Once the file is found, the rest of the files are then encrypted

and stored back onto the cloud. This is a tedious approach and that makes it infeasible for large datasets [6].

In order to facilitate security conscious users, SE is used to provide the feature of being able to search in the

encrypted domain. This minimizes the overhead of downloading all encrypted files. Conventional SE approaches

rely on generation of an index table [7]. The index table keeps a track of keywords and their existence in the

dataset. This index table then facilitates in performing the search in the encrypted domain. These approaches

work well in reducing the overhead of downloading and decrypting all encrypted content, but they bring along

their own complexities. The index table limits the keywords that can be searched. In case a new keyword needs

to be added, the index table generation needs to be repeated, which means re-encrypting all content that

needs to be sent to the cloud. This procedure increases computational costs whenever a new keyword needs

to be added to the list. In this project, we overcome these limitations by using a Partial Homomorphic

Encryption-based searchable encryption scheme. This eliminates the need of an index table and increases the

usability of the solution. We make use of the multiplicative homomorphism nature of the RSA algorithm to

produce ciphertext that facilitates the possibility of search in the encrypted domain.

D4.6 Homomorphic Encryption Embedded Engine v1

 13 of 29

3 Homomorphic Encryption Embedded Engine
The Homomorphic Encryption (HE) based searchable encryption developed for the SPHINX toolkit is based on

a partial homomorphic encryption scheme. The RSA-based partial homomorphic encryption scheme allows one

to create a searchable cipher thus eliminating the need for any index generation. The tool built using this

scheme provides a multitude of features for the SPHINX solution. These include searching in the encrypted

domain, allowing a double-sided blinded search capability and providing data anonymity.

3.1.1 Search in the Encrypted Domain
The search in the encrypted domain capability allows one to search in the database that they have encrypted

themselves. The encryption process makes use of two schemes, which include an AES encryption and an HE-

based searchable cipher creation. This duo helps reduce computational complexity and increases performance

efficiency. The HE-based searchable cipher is a one-way cipher, which means that it cannot be decrypted. On

the other hand, the AES encryption-based cipher is created to ensure that, when needed, decryption can be

exercised. The use of this duo is seamless. The user selects the set of files that need to be stored in the

healthcare database, these files are encrypted by the tool and forwarded for storage. When a search needs to

be performed, the tool uses the private key of the user and creates a trapdoor from the search query. This

trapdoor is sent to the healthcare database, where it is executed. The trapdoor looks for the searched keyword

and responds with the name of the file that contains that content, thus allowing users to search in the encrypted

domain among multiple encrypted files. Throughout this process, no plain text files are shared between the

client module and the healthcare repository, thus making it security compliant.

Figure 1 : HE-based searchable encryption

User A User B

Hospital 1 Hospital 2

Encrypt Decrypt Search Encrypt Decrypt Search

Search

Decrypt

D4.6 Homomorphic Encryption Embedded Engine v1

 14 of 29

3.1.2 Double-Sided blinded process
In current times, it is eminent to have a secure way of sharing healthcare information among geographically

distant entities. The double-sided blinded process of the HE solution provides entities with this feature. When

using this feature, each entity encrypts their own datasets and then allows different entities to perform search

operations on their data. For instance, in Fig 1, User A encrypts data and stores it on its repository, User B also

stores its encrypted data on the repository. Both users allow each other to perform a search. User B creates a

trapdoor using the public key of User A and the search query. This trapdoor is then sent to be processed at the

data repository of User A. Upon execution of the search request, User B gets a binary response, which is true if

the search query exists in the database and false when the search query does not exist. Once a true response

is received, User B can then request the content from User A. Throughout this process, User A does not know

who requested the search and, due to the nature of the trapdoor, is not able to identify what the search query

was. In the meantime, User B only gets a binary response, which means that it is not able to identify what else

is present in the database. This tool provides a controlled environment which, as a result, ensures the security

of the data.

3.1.3 Data Anonymization
The data anonymization module of the HE tool provides the SPHINX toolkit with the desired level of data

anonymization. Data anonymization is key for ensuring data privacy. This is necessary to ensure compliance

with the EU General Data Protection Regulation (GDPR) [8].

When performing data anonymization, one needs to take into account the different data features that exist in

a data string. Any dataset can be divided into three broad categories: identifiers, quasi-identifiers and data [9].

Identifiers are all parameters in the data that can be directly linked to an individual. These are the key metrics

and they need to be removed from the data to ensure complete data anonymization, this includes but is not

limited to name, e-mail address, IP address, etc. Quasi-identifiers are parameters that do not hold much value

when used independently but, when used with other quasi-identifiers, can be linked to an individual. Most data

anonymization approaches such as k-anonymity, l-diversity and t-closeness work on quasi-identifier values [10].

The remaining data are left untouched and it can be described as everything else that is independent from

individual users and could be generated from anyone. In the realm of network traffic, where the key idea is to

identify any potential threats to the system, true data anonymization is not feasible for all scenarios and for

this we resort to Pseudo-anonymization.

Pseudo-anonymization refers to a data anonymization approach where a key that can be used to de-anonymize

the dataset exists [9]. This means that the data are anonymized for everyone else but there still exists a key

that can de-anonymize the dataset. This is a viable solution when dealing with network traffic that is being

analyzed for threat analysis and intruder detection.

The data anonymization tool developed for the SPHINX tool takes as input network traffic information. It

processes all information and separates the identifiers from the rest of the dataset. These identifiers are then

sent to the HE-based data anonymization module which encrypts all data and stores it in a repository. The tool

creates some surrogate identifiers and replaces the original identifiers with these surrogate values. The data is

then compiled and sent back from the tool. The sole reason for the use of the surrogate values is to ensure

symmetry in the dataset. This keeps the data useable for the rest of the modules in the SPHINX solution. As

shown in Fig 2, the data anonymization tool provides two extra interfaces, IP search and data de-anonymization.

The IP search tool allows users to search in the database while knowing the original IP address that they want

to search for. The data de-anonymization interface takes as input the surrogate value and returns the original

value that was anonymized against that surrogate value.

D4.6 Homomorphic Encryption Embedded Engine v1

 15 of 29

Figure 2: Data Anonymization

3.1.4 Architecture and Design
The Homomorphic Encryption embedded engine plays a vital role in the SPHINX solution for providing both

security and privacy. It provides security in the form of encryption and allows entities to search in the encrypted

domain. Moreover, it provides privacy with the aid of the data anonymization tool that anonymizes all network

traffic information and ensures that user personal data is not revealed. Both these tasks are achieved in a

seamless manner as data is shared with the HE tool from the Anonymization and Privacy tool as shown in the

next section.

3.1.4.1 External Interfaces of the HE tool

This section is an excerpt from D2.3 where the interfaces are specified for the HE tool. These are added here to

better illustrate how different components interact with the HE tool. This facilitates in explaining how the tool

operates.

Figure 3: SPHINX HE Component Diagram

Data Anonymization IP Search
Deanonymization

Data

Segregation

Src/Dest IP

Address
Remaining

meta-data

HE based Data

Anonymization

module

Encrypted IP to

Surrogate IP map

Rest API Interfaces

D4.6 Homomorphic Encryption Embedded Engine v1

 16 of 29

Detailed Technical Specifications

Based on the VOLERE methodology as adapted by the SPHINX Action, the technical requirements/specifications

for the HE component are as follows.

HE shall enable storing sensitive data in encrypted format.

Requirement ID HE-F-010

Requirement Type Functional Specifications

Use Cases -

Dependencies -

Customer Value 5

Description and
Rationale

Information to be stored in SPHINX may contain sensitive and personal data. To
protect this data from unauthorised or unnecessary access, sensitive information is be
stored in encrypted format using homomorphic encryption.

HE shall provide a secure mechanism to perform searches in and retrieve results from sensitive

repositories.

Requirement ID HE-F-020

Requirement Type Functional Specifications

Use Cases -

Dependencies -

Customer Value 5

Description and
Rationale

Instead of granting unnecessary access to whole data repositories, HE allows that a
search is performed on the encrypted stored data and only the data/files containing
the desired content are downloaded for further processing.

Table 1: HE Specifications

Interface Specifications

The interfaces applicable to the SPHINX HE component are:

• HE.I.01: HE Anonymisation Interface

This interface is provided by the HE in order to allow homomorphic encryption operations on sensitive data.

o Input: Sensitive Data;

o Output: Encrypted data.

Related Interfaces: DTM.I.04; AP.I.04.

• HE.I.02: HE Search Operations Interface

This interface is provided by the HE in order to allow homomorphic encryption searches on repositories

containing sensitive data.

o Input: Search query;

o Output: List of files (matching query).

Related Interface: DTM.I.04.

D4.6 Homomorphic Encryption Embedded Engine v1

 17 of 29

Component Interfaces

Interface ID Involved Components Components Relation Interface Content

HE.I.01 HE and DTM The HE provides an encryption
service that allows to encrypt
the sensitive traffic data of the
DTM component.

Sensitive traffic data.

HE.I.01 HE and AP The HE provides an encryption
service that allows to encrypt
the sensitive personal data of
the AP component.

Personal data.

HE.I.02 HE and DTM The HE provides a query service
that allows to search encrypted
traffic data of the DTM
component.

Encrypted traffic data.

Table 2: SPHINX HE Interface Specifications

Third-party APIs

The following third-party APIs will be made accessible:

• HE.API.01: HE Anonymisation Interface

This interface is provided by the HE in order to allow homomorphic encryption operations on sensitive data.

o Input: Sensitive Data;

o Output: Encrypted data.

Interface Relation: HE.I.01.

• HE.02: HE Search Operations Interface

This interface is provided by the HE in order to allow homomorphic encryption searches on repositories

containing sensitive data.

o Input: Search query;

o Output: List of files (matching query).

Interface Relation: HE.I.02.

D4.6 Homomorphic Encryption Embedded Engine v1

 18 of 29

4 Design & Development

4.1.1 Interfaces and integration
The Homomorphic Encryption Embedded Engine consists of three interfaces, the dashboard, the client-side

module and the healthcare database module. The healthcare database is also referred to as the cloud module

in the document. All these components are interlinked and have their own defined characteristics.

4.1.1.1 Dashboard

The dashboard acts as the control panel for the HE tool. SPHINX users interact with this dashboard for the
purpose of performing encryption, decryption, search and data anonymization tasks. The dashboard is running
off the client-side module and is a web-based tool. The web-based nature of the dashboard makes it operating
system and device independent, so that anyone having access to a web browser can use the tool. The
dashboard is accessible via the web.

4.1.1.2 Client

The Client module is the key component of the HE tool. This is where all the tasks are executed. The client

module itself has two major components: the searchable encryption module and the data anonymization

module.

- Searchable Encryption Module:

The searchable encryption module consists of a Springboot-based Java Servlet programming implementation

coupled with a C-based code using a Java Native Interface. This searchable encryption module is then

dockerized for ease of execution. This module consists of the different set of functions that are needed for

performing search in the encrypted domain and the double-sided blinded process. The functions performed at

the client module are shown in Fig 4 and a brief description of all these modules is as follows:

o Key Generation:

Whenever a new user registers with the HE tool, the key generation module is executed and it

generates a set of public and private keys. These keys are stored on the client hardware with the help

of key hashing. Whenever a registered user logs into the system, these keys are used for the purpose

of encryption, decryption and search execution.

o Searchable Cipher:

This module involves the creation of a searchable cipher. Whenever a user wants to encrypt a file, that

file is sent to this module where it exploits the homomorphic nature of the RSA algorithm and creates

a searchable cipher.

o AES Encryption:

In parallel to the searchable cipher creation, the HE tool uses AES encryption to encrypt all incoming

files. This ensures that when a search is performed there is content to be downloaded. This AES

encryption feature helps reduce the computational burden on the HE tool. Both the AES encrypted

content and the searchable cipher are sent to the healthcare database, where they are stored for later

use.

D4.6 Homomorphic Encryption Embedded Engine v1

 19 of 29

Figure 4:HE module division

o Trapdoor Generation

The trapdoor generation module is needed to perform encrypted searches. Whenever a user wants to

search for some content in the encrypted domain, the search query is shared with the Trapdoor

Generation module. This module then uses the private key of the user and the search query to create

an executable search query. This is shared with the cloud module where a search is performed on the

database.

o AES Decryption

When the search query is sent to the healthcare database, it returns the name of the file that contains

the desired content. Once the search query is received, the AES decryption module can be used to

decrypt the file. This decryption works seamlessly and is computationally less expensive.

o Trapdoor Generation 2

The second trapdoor generation module is there for creation of search queries for the double-sided

blinded process. When a user wants to search in a different repository, this module takes the public

key associated with the secondary repository and uses it to create a new trapdoor. Similarly to a local

search, this search also returns the name of the file which has the search content, thus informing the

user if the query exists or not.

- Data Anonymization module

The data anonymization module is a Java Maven based Rest-API implementation. This module is then

dockerized to ensure ease of deployment/use. The data anonymization module has three sub-components, and

all of these are executed on the client interface. When a user wants to anonymize any network traffic

information, they opt for the anonymization module. This module takes network information and then

anonymizes all personal information. The data anonymization module allows users to search the content using

the actual IP address and also allows one to search using the surrogate values.

D4.6 Homomorphic Encryption Embedded Engine v1

 20 of 29

4.1.1.3 Healthcare database

The healthcare database provides the right facility for the users to store information. Once data is encrypted

all data is stored on this database. This is later used for search execution. When a user searches for some

content, the trapdoor is sent to the database, where it is executed, and the response of the search is then

returned to the client interface. This is later shared with the user through the dashboard. This database also

executes the searches for the double-sided blinded process.

4.1.2 Swagger definitions
The Homomorphic Encryption tool is employed with the Swagger-API for consistence and ease of use. The

Swagger-API provides the right set of documentation that facilitates other modules of the SPHINX tool to

identify the inputs and outputs of the HE tool. The API’s responses are uniform and structured in Json format.

The Swagger-API definition for the HE tool is presented in Fig 5.

Figure 5: Swagger-Api definition for the HE tool

4.1.3 Test cases
In this section, we explain in detail how the component works. The demo in this demonstrator contains

screenshots of an example running in the SPHINX solution. The user can access the HE solution using a web

browser with the IP address of the client with an extension of SPHINX added to it. In our deployment, the HE

tool is accessed using 192.168.1.189:8888/sphinx/ as shown in Fig 6. The main page of the interface provides

D4.6 Homomorphic Encryption Embedded Engine v1

 21 of 29

the user with an introduction of the tool. It provides options to the user of accessing the different services,

reading blogs relevant to the HE tool, accessing the Twitter handle associated with the SPHINX project or going

to project website by clicking the SPHINX project icon. The main page also allows users to search for the relevant

content in the HE website.

Figure 6: Front end

4.1.3.1 Homomorphic Encryption and Local Database Search

The first service that the tool offers is to encrypt, decrypt and then search in the local repository. This service

is accessed using the 192.168.1.189:8888/sphinx/it_service_list.jsp as shown in Fig 7.

Figure 7: Front end for local search

D4.6 Homomorphic Encryption Embedded Engine v1

 22 of 29

4.1.3.1.1 Encryption

The encryption module allows users to select a number of files and then encrypt them. The encryption module

also provides the feature for downloading the encrypted files for viewing purposes as shown in Fig 8.

Figure 8: File Encryption and Download option

The file selection option, as shown in Fig 9, allows users to select only .txt files, as the tool currently only

supports text files. The dialog box allows users to select multiple files, which are later sent for encryption.

Figure 9: File selection dialog box

As mentioned earlier, the encryption tool produces an AES encrypted file and a searchable cipher. Both these

files are stored onto the cloud, which is latter used for search and decryption processes. Fig 10 shows a sample

plain text file which is alphanumeric in nature. Fig 11 and Fig 12 present the respective searchable cipher and

the AES encrypted files.

Figure 10: Sample, alphanumeric plain text file

D4.6 Homomorphic Encryption Embedded Engine v1

 23 of 29

Figure 11: Searchable Cipher created after HE encryption

Figure 12: AES encrypted file

Upon successful encryption, the user is shown a success message by the tool as shown in Fig 13.

Figure 13: Encryption successful message

4.1.3.1.2 Search

The search option, as shown in Fig 14, allows users to input a search query which is then transformed into a

trapdoor at the backend. The trapdoor is then shared with the healthcare database where the search query is

executed.

D4.6 Homomorphic Encryption Embedded Engine v1

 24 of 29

Figure 14: Search query input

Upon successful execution of a search, the search response is received in the form of a file name. This appears

in red along with a search completion message, as shown in Fig 15. In case the search query does not exist in

the database, the tool returns a null message stating that the search content does not exist.

Figure 15: Search response

4.1.3.1.3 Decrypt

The decrypt option allows the users to input the file name that needs to be decrypted. Upon successful search,

the search end point returns a file name. This filename, when plugged into the decrypt endpoint, would result

in the right file being decrypted. This file can then be downloaded using the “Download the Decrypted Data”

URL as shown in Fig 16.

Figure 16: File Decryption

4.1.3.2 Search in External Databases

The search in external databases end point allows users to use the double-sided blinded search capability. This

allows entities to search in each other database without revealing what else is present in the database. This

component can be accessed through the homepage of the tool or from the URL link

192.168.1.189:8888/sphinx/ExternalDatabase.jsp as shown in Fig 17.

D4.6 Homomorphic Encryption Embedded Engine v1

 25 of 29

Figure 17: Search in External Databases

4.1.3.2.1 Search

This interface allows users to perform search operations in external databases. In order for this to be executed,

the user needs to select what other repository they need to look into. A drop-down menu provides a list of all

the available repositories that one can search in. Once the repository is selected, the user can enter the search

query and the tool responds in the form of a file name that contains the search query as shown in Fig 18.

Figure 18: Search in external databases

4.1.3.2.2 Decrypt:

The Decrypt end point is conditional on the capability of decryption. If the external database provides the

capability of decryption, then this end point would allow the users to plug in the file name that they want to

decrypt. This end point decrypts the file and prints a “File successfully Decrypted” message as shown in Fig 19.

Figure 19: File Decryption for external databases

D4.6 Homomorphic Encryption Embedded Engine v1

 26 of 29

4.1.3.3 Data Anonymization:

The data anonymization end point allows users to anonymize network traffic information. This ensures data

privacy. The tool also provides pseudo-anonymization end points, which can be exploited to identify the true

identity of the source of the network traffic. This component can be accessed through the homepage of the

tool or from the URL link 192.168.1.189:8888/sphinx/anonymization.jsp as shown in Fig 20.

Figure 20: Data anonymization interface

4.1.3.3.1 Data Anonymization Interface

The data anonymization interface takes as input network traffic information and anonymizes all network

identifiers. These include source and destination IP addresses. These IP addresses are replaced with surrogate

values thus maintaining the structure of network traffic data. The surrogate values are mapped to the encrypted

version of the original IP addresses for latter decryption purposes. This tool works as a back-end tool and for

the purpose of this demo, the response is printed as a response to the anonymization request as shown in Fig

21.

Figure 21: Data Anonymization response

4.1.3.3.2 Search

The search interface in the data anonymization interface allows users to search for the identity of the

anonymized IP address. This includes searching from either the surrogate IP or searching using the original IP

address. When the user plugs in the original IP address, the tool converts this into an encrypted cipher using

Homomorphic Encryption and then maps it to the hashed map of the surrogate IP address. The tool returns the

D4.6 Homomorphic Encryption Embedded Engine v1

 27 of 29

surrogate IP address that is used to represent the original IP address. The user can search for this surrogate IP

address to identify all network traffic information relevant to this search. The response of the search is shown

in Fig 22.

Figure 22: Network IP encrypted search

The tool also allows users to de-anonymize the surrogate IP back to the original IP address. The user can then

plug in the surrogate IP address and the tool responds with the original IP as shown in Fig 23.

Figure 23: Network IP de-anonymization

D4.6 Homomorphic Encryption Embedded Engine v1

 28 of 29

5 Conclusion
The homomorphic encryption embedded engine provides both security and privacy. The security aspect is

provided with the help of a searchable encryption tool that allows users to search in their own encrypted data

or perform search in external databases upon getting the necessary privileges. The privacy aspect comes from

the data anonymization component which allows users to anonymize network traffic information. The tool itself

is rigorously tested and is ready for the next stage of integration. This deliverable covers the current state of

the tool and highlights all the features that it offers.

D4.6 Homomorphic Encryption Embedded Engine v1

 29 of 29

6 References
[1] Gentry, C. and Boneh, D., 2009. A fully homomorphic encryption scheme (Vol. 20, No. 9, pp. 1-209).

Stanford: Stanford university.

[2] Boneh, D., Gentry, C., Halevi, S., Wang, F. and Wu, D.J., 2013, June. Private database queries using

somewhat homomorphic encryption. In International Conference on Applied Cryptography and Network

Security (pp. 102-118). Springer, Berlin, Heidelberg.

[3] Sha, P. and Zhu, Z., 2016, August. The modification of RSA algorithm to adapt fully homomorphic

encryption algorithm in cloud computing. In 2016 4th International Conference on Cloud Computing and

Intelligence Systems (CCIS) (pp. 388-392). IEEE.

[4] Rani, B., 2016. A novice’s perception of partial homomorphic encryption schemes. Indian J. Sci.

Technol, 9(37), pp.10-18.

[5] Bösch, C., Hartel, P., Jonker, W. and Peter, A., 2014. A survey of provably secure searchable

encryption. ACM Computing Surveys (CSUR), 47(2), pp.1-51.

[6] Zhang, R., Xue, R. and Liu, L., 2017. Searchable encryption for healthcare clouds: a survey. IEEE

Transactions on Services Computing, 11(6), pp.978-996.

[7] Wang, B., Song, W., Lou, W. and Hou, Y.T., 2015, April. Inverted index based multi-keyword public-key

searchable encryption with strong privacy guarantee. In 2015 IEEE Conference on Computer Communications

(INFOCOM) (pp. 2092-2100). IEEE.

[8] General Data Protection Regulation (GDPR) [Online]: Available at: https://ico.org.uk/for-

organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/

[9] Asif, W., Ray, I.G., Tahir, S. and Rajarajan, M., 2018, June. Privacy-preserving Anonymization with

Restricted Search (PARS) on Social Network Data for Criminal Investigations. In 2018 19th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD) (pp. 329-334). IEEE.

[10] Machanavajjhala, A., Kifer, D., Gehrke, J. and Venkitasubramaniam, M., 2007. l-diversity: Privacy

beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), pp.3-es.

