D4.6 Homomorphic encryption

embedded engine v1
WP4 - SPHINX Toolkits

Version: 1.00

SPHINX

~ AUniversal | Cyber Security Toolkit For
lth-Care Industry

D4.6 Homomorphic Encryption Embedded Engine v1 @

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of
previously published material and of the work of others has been made through appropriate citation, quotation or both.
Reproduction is authorised provided the source is acknowledged.

Document information
Grant Agreement Number 826183 Acronym SPHINX
Full Title A Universal Cyber Security Toolkit for Health-Care Industry
Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals
and care centres to protect privacy/data/infrastructures
Funding scheme RIA - Research and Innovation action
Start Date 1%Yanuary 2019 Duration 36 months
Project URL http://sphinx-project.eu/
EU Project Officer Reza RAZAVI (CNECT/H/03)
Project Coordinator National Technical University of Athens - NTUA
Deliverable D4.6 Homomorphic encryption embedded engine v1
Work Package WP4 — SPHINX Toolkits
Date of Delivery Contractual M20 Actual M20
Nature R - Report Dissemination Level P - Public
Lead Beneficiary TechlInspire
Responsible Author Wagar Asif Email w.asif@techinspire.co.uk
Phone
Reviewer(s): Alberto Lopez Martin (INCM), llias Trochidis (VILABS)
Keywords Homomorphic encryption, privacy , anonymisation

2 0f 29

http://sphinx-project.eu/

D4.6 Homomorphic Encryption Embedded Engine v1 @

Document History
Version Issue Date Stage Changes Contributor

0.1 15/06/2020 Draft ToC Wagar Asif (TEC)

0.2 24/08/2020 Draft Content Wagar Asif (TEC)

0.3 26/08/2020 Draft Internal Review 1 Alberto Lopez Martin (INCM)

0.4 26/08/2020 Draft Internal Review 2 llias Trochidis (VILABS)

0.5 27/08/2020 Pre- Comments Addressed Wagqar Asif (TEC)
final

0.6 31/08/2020 Pre - Quality Control George Doukas (NTUA),
final Michael Kontoulis (NTUA)

1.00 31/08/2020 Final Final Version Christos Ntanos (NTUA)

30f29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Executive Summary

This deliverable is a report on the development progress of the Homomorphic Encryption Embedded Engine
(HE). The HE tool provides both security and privacy to the SPHINX solution. The tool makes use of partial
homomorphic encryption techniques to allow user to search in the encrypted domain. This eliminates the need
for downloading and decrypting all stored data and thus ensures security of the data. With the help of this tool,
healthcare professionals can store data in central repositories with increased security. The tool also provides
the feature for searching in each other’s database, given that prior permission is already granted. Alongside
this, the tool provides network traffic anonymization capability, which adds privacy to the network traffic data.
A pseudo-anonymized version of the network traffic is returned to the user, with added capability of de-
anonymizing the data for latter use. This report elaborates on these functionalities and helps explain with the
help of screenshots the different interfaces that it provides. This report is a versioned document, and this is the
first version (v1).

4 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Contents
EXecutive SUMMAIY (TEC)ciiiiiiiiieeiiiiiiiiineernenssesessseseesnsnssssessssssesnnssssssssssssssssnssssssssssesssnnsssssssssssssnnnnsssanes 4
1 INEFOAUCEION (TEC) cuuiieuniieuiieenerennirienieeennerensereaseressseresseeesserssssssnsesenssssssssssnsessnssssssssenssssnnsssensesannsssns 9
1.1 U o Yo YT <Y olo T o L= PP 9
1.2 Structure of the deliVErableoo oottt et et 9
13 Relation t0 Other WPS & TaSKSccuiiuieiieiieiierte ettt sttt sb e s s 9
1.4 List of ADDreviations.......ccoceeriiiiiiii e e Error! Bookmark not defined.
2 HomomMOrphic ENCIYPLION.ccceeuecieeiecceteieeereeeeeseennseseenneseseennssssennssssnennsssssennssssnennssssnennssssnennns 10
2.1 LItEratUure FEVIEW ...ciiiiiiiiiiiii et a e s ba e s ba e e e s eaae e s 10
2.2 Y E 1ol aF=1 o] L3 = g 1ol ¥/ o1 o T ISR 12
3 Homomorphic Encryption Embedded ENGINEccccivveiiiieiiieniiiieiiiieiiieiiieencieniinnenseessresssssessenssnes 13
3.1.1 Searchin the ENCrypted DOMaAiN......cueiiiiciiiiiiiiiieeccieee ettt e e et e e e stte e e s sbte e e s sbaaeessseaeessnsraeaesnns 13
30 07 0 T 18] o] SRR To [=Te [o 115 Ve [=To I o T o Yol 11PN 14
3.1.3 Data ANONYMIZATION ...uuuiiii e anan 14
3.1.4 ArchiteCture and DESIEN.....ucii i ciiieiiiiiiee ettt e ettt e e ettt e e st e e e s bte e e e ssbteeeesbtaeessbteeeseseaeesenstaeessnsseeessnns 15
4 Design & DeVelOPMENT......ccviiiieiiiiiiiiiieiitetreirrnesreeerenssrensessnssssnsssssessssnssssnssssnssssnnssssnsssansasen 18
0 O R [0 =T o 7= Tl o= 1 g Yo Mg N =T =0 1 4 o o VU 18
o VY - Y o= T e 1Y T Vi o T PP 20
Lt S T I 1y of= 1YL T PP PP OTPROP 20
5 000 T Vol 11T T o N 28
6 32T = =T 4T T 29

5 0f 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Table of Figures

Figure 1 : HE-based searchable @NCryplionoooeiiii e et e et e e e rr e e e e e aaeeeeeans 13
Figure 2: Data ANONYMIZatioN ...cccco i, 15
Figure 3: SPHINX HE Component DIagramccce i, 15
T U gl o g g Yo Yo 1] (o AV T Lo o U SERR 19
Figure 5: Swagger-Api definition for the HE t001...........uuiiiiii i e 20
T U gl SR oY o | =Y o Vo ISP SURR 21
Figure 7: Front @nd for [0Cal SEAICN......cco e e e e et e e e e e e e e bbb ae e e e e e e e e aaeaaees 21
Figure 8: File Encryption and DoWNIoad OPtioNuuiiiiiiiie ettt e e e e e e rae e e e e e e e e arraaees 22
Figure 9: File selection didlog DOXii e e e e e e et e e e e e e e s et bbb e e e e e e e e e nnnraaees 22
Figure 10: Sample, alphanumeric plain teXt fill@ ... e e 22
Figure 11: Searchable Cipher created after HE @nCryplioncc.ueeeieciiiie ittt 23
Figure 12: AES @NCIYPLE FilE....uueiii it e e et e e s e bte e e e sataeeeenteeeeenaeaeesans 23
Figure 13: ENncryption SUCCESSTUI MESSAZE ..eeeiiuviiiiieiiiie ettt ettt e e ettt e e e tbe e e e ebae e e e ebreeesenaeeaenans 23
Figure 14: SEArch qUEIY INPULeii ittt ettt e e et e e e e bt e e e e ebt e e e s eareeeeensaeeesensbeseeessaeeesasseeeesasseeeeanns 24
FIUIE 15: SEAICH FESPONSE .o etiee ettt e et e e e et e e e e et e e e e etaeeeeebaeeeeebbaeeeanssaeesansteseesastaeaesasseeeesnsseeaeanns 24
FIBUIE 16: FIle DECIYPIION . ..eiiiiiieiee ettt ettt e e ettt e e e et e e e e ett e e e e sbaeeeeeareeeesnsaaeeeanssesaeansaseeeasseeeeasaneenanns 24
Figure 17: Search in EXtErnal DAtabasesccccuiiiieiuiiee ettt ete e e ettt e e e e tte e e e eate e e e eateeeesbbeeeesnsaeaeeans 25
Figure 18: Search in external databases.........cccuiiiiiciiiii it e et e e et e e e st e e e e streeeeenaeeeeaans 25
Figure 19: File Decryption for external databasescccueiiiiiiiiiiciiiee et e e et enaeee e 25
Figure 20: Data anonymMization iINTEITACEccccuiiii et e et e e e abe e e e e ate e e e sbbeeeeenaeeaeeans 26
Figure 21: Data ANONYMIzZation FESPONSE .oiiii i 26
Figure 22: Network [P @nCrypted SEACIuuiiiiiec e e e e e e e e s aae e e e e e e e e nreaneees 27
Figure 23: Network [P de-anonymization..... ...t e s e e e e e e e s b aae e e e e e e e ennnnaneees 27

J

This project has received fundin

on progranime

-~ tha B irmnean | ing 'o HAarizom 20 reacanrch and ir
from the turopean Unions Horizon 2020 researcn ana i
-

6 of 29

4
Aar nrma Arearn) Qe TQ Hatl | QA \/ ot Y r Q ity E-1 [t \Aall-F and Araing
under grant agreement No 826183 - Digital Society, Trust & Cyber Security E-Health, Well-being and Ageing

D4.6 Homomorphic Encryption Embedded Engine v1 @

Table of Tables

Table 1:List of abbreviation ... Error! Bookmark not defined.
Table 2: SPHINX HE Interface SPeCifiCatioNscicccciiiiiiee ettt e e e e e e e e raa e e e e e e e e e annraae e 17

: r
ngl

has recelved fund)

7 0f 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Table of Abbreviations

HE - Homomorphic Encryption

RSA - Rivest, Shamir, Adleman

SE - Searchable Encryption

GDPR - General Data Protection Regulation

AES - Advanced Encryption Standard

8 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

1 Introduction
1.1 Purpose & Scope

This deliverable is being submitted as a partial requirement for D4.6 Homomorphic Encryption Embedded
Engine. This is part of Work Package 4 - SPHINX Toolkits. This embedded engine deals with providing a data
anonymization service to all incoming network traffic and also provides an interface to different SPHINX end
users to search in each other’s databases using a double-sided blinded process. This deliverable highlights the
current state of the embedded engine at month 20. At the moment, the core functionalities are complete, with
testing in progress. The document contains detailed descriptions of all modules in place and highlights the
different functionalities with the help of screenshots.

1.2 Structure of the deliverable

The rest of the deliverable is structured as follows. Section 2 provides a brief overview of Homomorphic
Encryption, details about various partial homomorphic encryption techniques and elaborates on the
background of searchable encryption. Section 3 explains in detail the three different components of the
Homomorphic Encryption Embedded Engine and it elaborates on the architecture and design that were
adopted. Section 4 highlights the different interfaces that the tool presents, it presents the API definitions and
elaborates with the help of screenshots on the used test cases. Section 5 concludes the document.

1.3 Relation to other WPs & Tasks

This report is closely related to WP2 and more specifically to D2.3 Use Case Definition and requirement
document, D2.4 SPHINX requirements and guidelines and D2.5 SPHINX architecture. The work presented in this
document has been tailored to fulfil the integration requirements of T6.1 Definition and specification of the
system integration.

9 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

2 Homomorphic Encryption

Homomorphisms are maps between algebraic structures that allow the development of cryptographic
techniques that, in turn, permit computations to be performed on encrypted data. This as a result helps
maintain data confidentiality while it is being processed, thus enabling tasks to be performed when data is
residing in untrusted environments. In the current age of heterogeneous networking, this is a highly valuable
capability [1].

A homomorphic encryption system emanates from conventional public key cryptographic systems, which
means that it uses a public-private key pair to execute the cryptographic functions. The public key is thus used
to encrypt data, whereas a private key is used to decrypt the ciphertext. What makes it different from most
cryptographic solutions is that it allows one to perform arithmetic operations on the encrypted data.
Mathematically, a homomorphism refers to the transformation of one dataset into another while preserving
relationships between elements in both sets [1]. As homomorphic encryption maintains the same structure,
identical mathematical operations produce similar results irrespective of what they are exercised on. An
arithmetic operation performed on ciphertext would give similar results to an arithmetic operation performed
on plain text.

2.1 Literature review

The search for a solution that allows computing on the encrypted data has been a long set goal since 1978,
when it was initially proposed by Rivest, Shamir, Adleman (RSA). The key reason for interest in this topic is the
large set of applications that it can help execute. The development of a fully homomorphic encryption model
is a revolutionary advance and thus relies on huge computational resources. A fully homomorphic encryption
model assumes the capability of performing all arithmetic operations in the encrypted domain. As resources
can be a big limitation, researchers have resorted to slight variations of this model. There are three different
types of homomorphic encryption models depending on the frequency of mathematical operations that can be
performed on the cipher [1][2]:

- Fully homomorphic encryption,
- Partial homomorphic encryption,
- Somewhat homomorphic encryption.

While fully homomorphic encryption gives one the freedom to perform all arithmetic operations without any
limitations in operation of frequency, its computational complexity limits the usability of such approaches. To
circumvent this issue, researchers typically resort to partial homomorphic encryption approaches, which only
allow selected arithmetic operations to be performed. These include either multiplication or addition. The
development of most partial homomorphic encryption models supports multiple iterations of such arithmetic
operations. In environments where resources are hugely constrained, the use of somewhat homomorphic
encryption is preferred, allowing only for single arithmetic operations to be executed only a limited number of
times.

In this work, we focus on the use of partial homomorphic encryption due to the nature of the task. Partial
homomorphic encryption can be exercised based on a number of asymmetric encryption schemes. These
include RSA, ElGamal and Paillier:

10 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

- RSA

RSA is known to exhibit multiplicative homomorphism [3]. This means that any content that is
encrypted using the well-known RSA algorithm, if multiplied in the encrypted domain, would produce
the same outcome as if it was multiplied in plain text. For instance, consider an RSA key pair (d, e) and
modulus n. Then the encryption procedure for message m is:

c=mfmodn
And decryption procedure is:

m = c%mod n

If we encrypt two plain text messages p;and p, using RSA, then the corresponding ciphertext would be
pi and p5. Multiplying these cipher texts results in (p;p,)¢. When decrypted, this would result in

((Plpz)e)d = pyp,mod n.

- ElGamal

The ElGamal encryption scheme also exhibits multiplicative homomorphism [4]. This means that the
multiplication of two or more cipher texts that was created using the ElGamal scheme would result in
a decrypted plain text that is same as multiplication in plain text. For instance, consider an example
with an ElGamal public key (a, 8, p) and private key a. Then the encryption of a plaintext x with nonce
k would be e(x, k) = (y1,y2). Here:

y; = a¥mod p
y, = xf¥mod p
In case, there are two plaintext messages x;and x,with nonces k;and k,, then the ciphertexts are:
e(xy, k1) = (1,¥2) = (a**mod p, xp**mod p)
£(x2, k) = (¥3,¥s) = (a*2mod p, xp*2mod p)
Multiplying the two ciphers would result in:
01-¥2)- 73-98) = (V1 ¥2-¥3-¥a) = (@1 a2, B*1. x, B72)
= (aF1**2, x, x, fR1+k2)
Decrypting the cipher text would result in:

d(afitkz, x x,pritkz) = xx,

- Paillier

The Paillier encryption scheme is different from both the RSA and the ElGamal approach as it exhibits
additive homomorphism [4]. Under the Paillier encryption scheme, multiplication performed in the
encrypted domain produces a similar result as if the relevant plain text components were added
together. For instance, consider two plain text messages x;and x,, the resultant cipher text under the
Paillier encryption scheme would then be:

e(xq,1) = g*1r* mod n?
e(x5,13) = g*2r) mod n?
Multiplication of these two cipher texts would result in:
e(x1,1).8(x5, 1) = g1t g *2r) mod n? = g *1*¥2(ry1,)" mod n?

Decryption of the cipher text would result in:

11 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

d(e(g***2(rr)™)) = (% + xz)mod n

2.2 Searchable Encryption

Searchable Encryption (SE) is not a new topic. It has been around for quite some time now. The key purpose of
having SE was to provide users the flexibility of searching in the encrypted domain. In a conventional approach,
security-conscious users encrypt data before storing it on a third-party cloud resource [5]. This enables them
to ensure the right level of security. When in need of a specific content, researchers download all the content,
decrypt it and then search in the decrypted text. Once the file is found, the rest of the files are then encrypted
and stored back onto the cloud. This is a tedious approach and that makes it infeasible for large datasets [6].

In order to facilitate security conscious users, SE is used to provide the feature of being able to search in the
encrypted domain. This minimizes the overhead of downloading all encrypted files. Conventional SE approaches
rely on generation of an index table [7]. The index table keeps a track of keywords and their existence in the
dataset. This index table then facilitates in performing the search in the encrypted domain. These approaches
work well in reducing the overhead of downloading and decrypting all encrypted content, but they bring along
their own complexities. The index table limits the keywords that can be searched. In case a new keyword needs
to be added, the index table generation needs to be repeated, which means re-encrypting all content that
needs to be sent to the cloud. This procedure increases computational costs whenever a new keyword needs
to be added to the list. In this project, we overcome these limitations by using a Partial Homomorphic
Encryption-based searchable encryption scheme. This eliminates the need of an index table and increases the
usability of the solution. We make use of the multiplicative homomorphism nature of the RSA algorithm to
produce ciphertext that facilitates the possibility of search in the encrypted domain.

12 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

3 Homomorphic Encryption Embedded Engine

The Homomorphic Encryption (HE) based searchable encryption developed for the SPHINX toolkit is based on
a partial homomorphic encryption scheme. The RSA-based partial homomorphic encryption scheme allows one
to create a searchable cipher thus eliminating the need for any index generation. The tool built using this
scheme provides a multitude of features for the SPHINX solution. These include searching in the encrypted
domain, allowing a double-sided blinded search capability and providing data anonymity.

3.1.1 Search in the Encrypted Domain

The search in the encrypted domain capability allows one to search in the database that they have encrypted
themselves. The encryption process makes use of two schemes, which include an AES encryption and an HE-
based searchable cipher creation. This duo helps reduce computational complexity and increases performance
efficiency. The HE-based searchable cipher is a one-way cipher, which means that it cannot be decrypted. On
the other hand, the AES encryption-based cipher is created to ensure that, when needed, decryption can be
exercised. The use of this duo is seamless. The user selects the set of files that need to be stored in the
healthcare database, these files are encrypted by the tool and forwarded for storage. When a search needs to
be performed, the tool uses the private key of the user and creates a trapdoor from the search query. This
trapdoor is sent to the healthcare database, where it is executed. The trapdoor looks for the searched keyword
and responds with the name of the file that contains that content, thus allowing users to search in the encrypted
domain among multiple encrypted files. Throughout this process, no plain text files are shared between the
client module and the healthcare repository, thus making it security compliant.

Hospital 1 Hospital 2

+ Decrypt
\

*

Encrypt 3€arch pecrypt : \ Encrypt $earch pecrypt

User B

Figure 1 : HE-based searchable encryption

13 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

3.1.2 Double-Sided blinded process

In current times, it is eminent to have a secure way of sharing healthcare information among geographically
distant entities. The double-sided blinded process of the HE solution provides entities with this feature. When
using this feature, each entity encrypts their own datasets and then allows different entities to perform search
operations on their data. For instance, in Fig 1, User A encrypts data and stores it on its repository, User B also
stores its encrypted data on the repository. Both users allow each other to perform a search. User B creates a
trapdoor using the public key of User A and the search query. This trapdoor is then sent to be processed at the
data repository of User A. Upon execution of the search request, User B gets a binary response, which is true if
the search query exists in the database and false when the search query does not exist. Once a true response
is received, User B can then request the content from User A. Throughout this process, User A does not know
who requested the search and, due to the nature of the trapdoor, is not able to identify what the search query
was. In the meantime, User B only gets a binary response, which means that it is not able to identify what else
is present in the database. This tool provides a controlled environment which, as a result, ensures the security
of the data.

3.1.3 Data Anonymization

The data anonymization module of the HE tool provides the SPHINX toolkit with the desired level of data
anonymization. Data anonymization is key for ensuring data privacy. This is necessary to ensure compliance
with the EU General Data Protection Regulation (GDPR) [8].

When performing data anonymization, one needs to take into account the different data features that exist in
a data string. Any dataset can be divided into three broad categories: identifiers, quasi-identifiers and data [9].
Identifiers are all parameters in the data that can be directly linked to an individual. These are the key metrics
and they need to be removed from the data to ensure complete data anonymization, this includes but is not
limited to name, e-mail address, IP address, etc. Quasi-identifiers are parameters that do not hold much value
when used independently but, when used with other quasi-identifiers, can be linked to an individual. Most data
anonymization approaches such as k-anonymity, I-diversity and t-closeness work on quasi-identifier values [10].
The remaining data are left untouched and it can be described as everything else that is independent from
individual users and could be generated from anyone. In the realm of network traffic, where the key idea is to
identify any potential threats to the system, true data anonymization is not feasible for all scenarios and for
this we resort to Pseudo-anonymization.

Pseudo-anonymization refers to a data anonymization approach where a key that can be used to de-anonymize
the dataset exists [9]. This means that the data are anonymized for everyone else but there still exists a key
that can de-anonymize the dataset. This is a viable solution when dealing with network traffic that is being
analyzed for threat analysis and intruder detection.

The data anonymization tool developed for the SPHINX tool takes as input network traffic information. It
processes all information and separates the identifiers from the rest of the dataset. These identifiers are then
sent to the HE-based data anonymization module which encrypts all data and stores it in a repository. The tool
creates some surrogate identifiers and replaces the original identifiers with these surrogate values. The data is
then compiled and sent back from the tool. The sole reason for the use of the surrogate values is to ensure
symmetry in the dataset. This keeps the data useable for the rest of the modules in the SPHINX solution. As
shown in Fig 2, the data anonymization tool provides two extra interfaces, IP search and data de-anonymization.
The IP search tool allows users to search in the database while knowing the original IP address that they want
to search for. The data de-anonymization interface takes as input the surrogate value and returns the original
value that was anonymized against that surrogate value.

14 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

HE based Data Encrypted IP to
Anonymization Surrogate IP map

Src/Dest IP Remaining

Address meta-data

Data
Segregation

K v_Rest APl ¥V Interfaces /

a a a

<

Deanonymizdtion

Data Anonymizatior] IP Searfch

Figure 2: Data Anonymization

3.1.4 Architecture and Design

The Homomorphic Encryption embedded engine plays a vital role in the SPHINX solution for providing both
security and privacy. It provides security in the form of encryption and allows entities to search in the encrypted
domain. Moreover, it provides privacy with the aid of the data anonymization tool that anonymizes all network
traffic information and ensures that user personal data is not revealed. Both these tasks are achieved in a
seamless manner as data is shared with the HE tool from the Anonymization and Privacy tool as shown in the
next section.

3.1.4.1 External Interfaces of the HE tool

This section is an excerpt from D2.3 where the interfaces are specified for the HE tool. These are added here to
better illustrate how different components interact with the HE tool. This facilitates in explaining how the tool
operates.

HELOT—_

HE.I.O1
HEIUE

Figure 3: SPHINX HE Component Diagram

15 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Detailed Technical Specifications

Based on the VOLERE methodology as adapted by the SPHINX Action, the technical requirements/specifications
for the HE component are as follows.

HE shall enable storing sensitive data in encrypted format.
Requirement ID HE-F-010

Requirement Type | Functional Specifications

Use Cases -

Dependencies -

Customer Value 5
Description and | Information to be stored in SPHINX may contain sensitive and personal data. To
Rationale protect this data from unauthorised or unnecessary access, sensitive information is be

stored in encrypted format using homomorphic encryption.

HE shall provide a secure mechanism to perform searches in and retrieve results from sensitive

repositories.
Requirement ID HE-F-020
Requirement Type | Functional Specifications

Use Cases -

Dependencies -

Customer Value 5

Description and | Instead of granting unnecessary access to whole data repositories, HE allows that a
Rationale search is performed on the encrypted stored data and only the data/files containing
the desired content are downloaded for further processing.

Table 1: HE Specifications

Interface Specifications

The interfaces applicable to the SPHINX HE component are:

e HE.L.O1: HE Anonymisation Interface
This interface is provided by the HE in order to allow homomorphic encryption operations on sensitive data.
o Input: Sensitive Data;
o Output: Encrypted data.
Related Interfaces: DTM.I.04; AP.1.04.

e HE.L.02: HE Search Operations Interface
This interface is provided by the HE in order to allow homomorphic encryption searches on repositories
containing sensitive data.
o Input: Search query;
o Output: List of files (matching query).
Related Interface: DTM.I.04.

16 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

Component Interfaces
Interface ID Involved Components Components Relation Interface Content
HE and DTM The HE provides an encryption Sensitive traffic data.
service that allows to encrypt
the sensitive traffic data of the
DTM component.

HE.l.01 HE and AP The HE provides an encryption Personal data.
service that allows to encrypt

the sensitive personal data of

the AP component.

HE and DTM The HE provides a query service Encrypted traffic data.
that allows to search encrypted
traffic data of the DTM
component.
Table 2: SPHINX HE Interface Specifications

Third-party APIs
The following third-party APIs will be made accessible:

e HE.APL.01: HE Anonymisation Interface
This interface is provided by the HE in order to allow homomorphic encryption operations on sensitive data.
o Input: Sensitive Data;
o Output: Encrypted data.
Interface Relation: HE.I.O1.

HE.02: HE Search Operations Interface

This interface is provided by the HE in order to allow homomorphic encryption searches on repositories
containing sensitive data.

o Input: Search query;

o Output: List of files (matching query).

Interface Relation: HE.I.02.

17 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

4 Design & Development

4.1.1 Interfaces and integration

The Homomorphic Encryption Embedded Engine consists of three interfaces, the dashboard, the client-side
module and the healthcare database module. The healthcare database is also referred to as the cloud module
in the document. All these components are interlinked and have their own defined characteristics.

4.1.1.1 Dashboard

The dashboard acts as the control panel for the HE tool. SPHINX users interact with this dashboard for the
purpose of performing encryption, decryption, search and data anonymization tasks. The dashboard is running
off the client-side module and is a web-based tool. The web-based nature of the dashboard makes it operating
system and device independent, so that anyone having access to a web browser can use the tool. The
dashboard is accessible via the web.

4.1.1.2 Client

The Client module is the key component of the HE tool. This is where all the tasks are executed. The client
module itself has two major components: the searchable encryption module and the data anonymization
module.

- Searchable Encryption Module:

The searchable encryption module consists of a Springboot-based Java Servlet programming implementation
coupled with a C-based code using a Java Native Interface. This searchable encryption module is then
dockerized for ease of execution. This module consists of the different set of functions that are needed for
performing search in the encrypted domain and the double-sided blinded process. The functions performed at
the client module are shown in Fig 4 and a brief description of all these modules is as follows:

o Key Generation:

Whenever a new user registers with the HE tool, the key generation module is executed and it
generates a set of public and private keys. These keys are stored on the client hardware with the help
of key hashing. Whenever a registered user logs into the system, these keys are used for the purpose
of encryption, decryption and search execution.

o Searchable Cipher:

This module involves the creation of a searchable cipher. Whenever a user wants to encrypt a file, that
file is sent to this module where it exploits the homomorphic nature of the RSA algorithm and creates
a searchable cipher.

o AES Encryption:

In parallel to the searchable cipher creation, the HE tool uses AES encryption to encrypt all incoming
files. This ensures that when a search is performed there is content to be downloaded. This AES
encryption feature helps reduce the computational burden on the HE tool. Both the AES encrypted
content and the searchable cipher are sent to the healthcare database, where they are stored for later
use.

18 of 29

D4.6 Homomorphic Encryption Embedded Engine v1

Client

Healthcare Database

h

Key Generation

Search Execution

Yy

Dashboard

v

Searchable Cipher

.

) » Data Storage
’—> AES Encryption »
User Interface .
—»Trapdoor Generatl
Healthcare Database 2

h 4

AES decryption €

h

Search Execution

h 4

Data Anonymization

Y

Trapdoor Generation 2 <

Figure 4:HE module division
o Trapdoor Generation

The trapdoor generation module is needed to perform encrypted searches. Whenever a user wants to
search for some content in the encrypted domain, the search query is shared with the Trapdoor
Generation module. This module then uses the private key of the user and the search query to create
an executable search query. This is shared with the cloud module where a search is performed on the
database.

o AES Decryption

When the search query is sent to the healthcare database, it returns the name of the file that contains
the desired content. Once the search query is received, the AES decryption module can be used to
decrypt the file. This decryption works seamlessly and is computationally less expensive.

o Trapdoor Generation 2

The second trapdoor generation module is there for creation of search queries for the double-sided
blinded process. When a user wants to search in a different repository, this module takes the public
key associated with the secondary repository and uses it to create a new trapdoor. Similarly to a local
search, this search also returns the name of the file which has the search content, thus informing the
user if the query exists or not.

Data Anonymization module

The data anonymization module is a Java Maven based Rest-API implementation. This module is then
dockerized to ensure ease of deployment/use. The data anonymization module has three sub-components, and
all of these are executed on the client interface. When a user wants to anonymize any network traffic
information, they opt for the anonymization module. This module takes network information and then
anonymizes all personal information. The data anonymization module allows users to search the content using
the actual IP address and also allows one to search using the surrogate values.

19 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

4.1.1.3 Healthcare database

The healthcare database provides the right facility for the users to store information. Once data is encrypted
all data is stored on this database. This is later used for search execution. When a user searches for some
content, the trapdoor is sent to the database, where it is executed, and the response of the search is then
returned to the client interface. This is later shared with the user through the dashboard. This database also
executes the searches for the double-sided blinded process.

4.1.2 Swagger definitions

The Homomorphic Encryption tool is employed with the Swagger-API for consistence and ease of use. The
Swagger-API provides the right set of documentation that facilitates other modules of the SPHINX tool to
identify the inputs and outputs of the HE tool. The API’s responses are uniform and structured in Json format.
The Swagger-API definition for the HE tool is presented in Fig 5.

SMARTBEAR f
SwaggerHub wagar.asif +

Homomorphic Encryption tool

[Base URL: localhost:8989/HE]

This is the Api for the HE tool

Terms of service
Contact the developer
Apache 2.0

Find out more about Swagger

Schemes

HTTPS o Authorize g

EnCryptiOn Homomorphic Encryption tool N

POST /encryption Encrypts incoming data

DeCryptiOn Homemorphic Decryption tool -

[WE1M /decryption Decryptincoming data

Seal’ch Perform search in the encrypted domain v

POST /search Search in the Encrypted domain

Models Y%

Data v ¢
id integer(§int64)
username string
string

Figure 5: Swagger-Api definition for the HE tool

4.1.3 Test cases

In this section, we explain in detail how the component works. The demo in this demonstrator contains
screenshots of an example running in the SPHINX solution. The user can access the HE solution using a web
browser with the IP address of the client with an extension of SPHINX added to it. In our deployment, the HE
tool is accessed using 192.168.1.189:8888/sphinx/ as shown in Fig 6. The main page of the interface provides

20 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

the user with an introduction of the tool. It provides options to the user of accessing the different services,
reading blogs relevant to the HE tool, accessing the Twitter handle associated with the SPHINX project or going
to project website by clicking the SPHINX project icon. The main page also allows users to search for the relevant
content in the HE website.

SPHINX HE x +

@ Not Secure | 192.168.1.189:88

@ SPHlﬁ X HOME ~ SERVICE BLOG

Homomorphic Encryption Embedded
Engine

Enhanced Security

Across different platforms

Figure 6: Front end

4.1.3.1 Homomorphic Encryption and Local Database Search

The first service that the tool offers is to encrypt, decrypt and then search in the local repository. This service
is accessed using the 192.168.1.189:8888/sphinx/it_service_list.jsp as shown in Fig 7.

SPHINX HE x +

@ Not Secure | 192.168.1.189;

@ SPH'mX HOME SERVICE BLOG Q

Homomorphic Encryption Embedded
Engine

Homomrophic Encryption and Local Database.

> Homomrophic Encryption and Local Database Search

ENCRYPTION

Use this link to Encrypt all incoming files.

Figure 7: Front end for local search

21 0f 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

4.1.3.1.1 Encryption

The encryption module allows users to select a number of files and then encrypt them. The encryption module
also provides the feature for downloading the encrypted files for viewing purposes as shown in Fig 8.

ENCRYPTION

Use this link to Encrypt all incoming files

Choose Files

Download the Encrypted Data

Figure 8: File Encryption and Download option

The file selection option, as shown in Fig 9, allows users to select only .txt files, as the tool currently only
supports text files. The dialog box allows users to select multiple files, which are later sent for encryption.

SPHINX HE X
A Not Secure | 192.168.1.189

m Sphinx new interface

p
ecents
A, Applications
() Desktop
&' Documents
©) pownloads

OneDrive - Univer...

® Yellow
@ Green

Options Cancel

Figure 9: File selection dialog box

As mentioned earlier, the encryption tool produces an AES encrypted file and a searchable cipher. Both these
files are stored onto the cloud, which is latter used for search and decryption processes. Fig 10 shows a sample
plain text file which is alphanumeric in nature. Fig 11 and Fig 12 present the respective searchable cipher and

the AES encrypted files.

Okay ©.79 0.52 1.00
Uh 1.31 0.23 0.72
First 1.57 0.46 0.95
I'm 2.03 0.54 0.65
I2.71 0.12 0.98
Need 2.83 0.21 0.94
No 3.05 0.43 0.75

A 3.5 0.26 0.64

How 3.79 0.45 1.00
Do 4.24 0.11 1.00
You 4.35 0.2 1.00
Feel 4.58 0.31 1.00
About 4.89 0.48 1.00
A 5.39 0.38 0.72
About 5.8 0.34 1.00

Figure 10: Sample, alphanumeric plain text file

22 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

® B e2.xt
pfdbbalabfd38b8520dff@3499331fcf8edb073df5723c403441f71064524b6a487c92de5404c942
c7eec680ecb31d9e99898462054db37091a4c37248a3bff5
7405c5621fablb@cad4ed4207276ec4993feecl7475a0e647cd5fff831f15f442e5cef9aafd54a8a06
e6a53a3f6de88505f@8c6aff15a8cdb5eda688e94928a409
cecS5abeafc385cc673921f214c4106246590dcebddad9092896317c7eel319936c6011f5dcf27d7dc
3fbcf7ef9405ed206576cbef18bd56f46ebfd5ca81680b20
419ac84c1b89e2f17fba6a3041d74daf149fd9b6ad52b6fd669e878143499712df8d1e@6f15446bc
dcc836b53dd7838526b664bb377c66d69ad91da597310839c¢
703ddfad326183b4d11cbe23b@9de%e346ffa7b6f6ddfad047332231fdeae5da9340d9c5433809cf
5aad275b925a06ecc73333c83426ea54639b71e069592f4c
b6beaecaaelb72d4b@ab073c7835a000999bebe73a91c1927f0e93638caabf5ee28a510eed4abbcfbf
1815876aa70ff7c665f680c18680ebf4af25eae987a9b5f3
9fc87988807d19a%9ad474bd@af34b6259c9dalaP@93fe8932e53c274e293426525¢c9a78395¢c922bc
e50cb9be6692a7e00d2697b088d9f97fb21b24e85ff9d9f5
49fc8b81cb6097d0052bf9becc215¢f5f0329b28b7c875fdcfbdecbbb608639a7132034785c7aa33
7d1f66d86ald2e60501ffde213a10660c9cb9c7dae608272

Figure 11: Searchable Cipher created after HE encryption
L B e AES2.txt v

w46 +NUTthOr{°AS¥0\p"ob¢~090 fiITt0\221i"Emese " 509{0A\+02¢ ,#2D="£(" BOUG=VVF»xA}-
40_..«< h< BU t+t2E">+@50° 21>Vt
¢a§m">GVaU“$»0{E e_§4..00;é.R

2M|1e08=)& <!m[2lAs (Tu+; @0EE1VNa™] AA</H
p[60z07€«92A%,™M |QEDE, i ~idfiuNe
I)4 31“X>5aE0uE—(CA%
Ago 0" 1VE
-ne$BXr¥ﬂ€Aﬂd00 "y {RwB=™€ : =I$0AiWAE"BZiféZQaz€IuAg" "
011$WEyq5d5"»gtH"15y0 cre=20X/i==]
"o#°g(l | 841N} (..
y EhpE " "k>=Wt{'8~fn%idE="#0"6iE.. ¥ fifP8<B{85"d/

Figure 12: AES encrypted file

Upon successful encryption, the user is shown a success message by the tool as shown in Fig 13.

ENCRYPTION

Use this link to Encrypt all incoming files.

Select a file: | Choose Files | No file chosen Encrypt| File Successfully Encrypted

Download the Encrypted Data

Figure 13: Encryption successful message

4.1.3.1.2 Search

The search option, as shown in Fig 14, allows users to input a search query which is then transformed into a
trapdoor at the backend. The trapdoor is then shared with the healthcare database where the search query is
executed.

23 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

SEARCH

Enter the Keyword that you need to search.

Figure 14: Search query input

Upon successful execution of a search, the search response is received in the form of a file name. This appears
in red along with a search completion message, as shown in Fig 15. In case the search query does not exist in
the database, the tool returns a null message stating that the search content does not exist.

SEARCH

Enter the Keyword that you need to search.

Enter Keyword!

The Search was conducted Successfully and resulted in:
e_AES3txt,

Figure 15: Search response

4.1.3.1.3 Decrypt

The decrypt option allows the users to input the file name that needs to be decrypted. Upon successful search,
the search end point returns a file name. This filename, when plugged into the decrypt endpoint, would result

in the right file being decrypted. This file can then be downloaded using the “Download the Decrypted Data”
URL as shown in Fig 16.

DECRYPT

Select the files that you want to decrypt.

Download the Decrypted Data

Figure 16: File Decryption

4.1.3.2 Search in External Databases

The search in external databases end point allows users to use the double-sided blinded search capability. This
allows entities to search in each other database without revealing what else is present in the database. This
component can be accessed through the homepage of the tool or from the URL link
192.168.1.189:8888/sphinx/ExternalDatabase.jsp as shown in Fig 17.

24 0f 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

SPHINX HE x +

& C (@ Not Secure | 192.168.1.189

(&) sPHINX e e a

Homomorphic Encryption Embedded
Engine

Search in External Databases

> Search in External Databases

SEARCH

Enter the Keyword that you need to search

Select which database you want to search in

--SELECT--+

Figure 17: Search in External Databases
4.1.3.2.1 Search

This interface allows users to perform search operations in external databases. In order for this to be executed,
the user needs to select what other repository they need to look into. A drop-down menu provides a list of all
the available repositories that one can search in. Once the repository is selected, the user can enter the search
query and the tool responds in the form of a file name that contains the search query as shown in Fig 18.

SEARCH

Enter the Keyword that you need to search.

Select which database you want to search in
v --SELECT--

DYPE
—_— HESE

POLARIS
TECNALIA

Enter Keyword ISubmit]

Figure 18: Search in external databases
4.1.3.2.2 Decrypt:

The Decrypt end point is conditional on the capability of decryption. If the external database provides the
capability of decryption, then this end point would allow the users to plug in the file name that they want to
decrypt. This end point decrypts the file and prints a “File successfully Decrypted” message as shown in Fig 19.

DECRYPT

Select the files that you want to decrypt

Enter Filename: submit| File Successfully Decrypted

Download the Decrypted Data

Figure 19: File Decryption for external databases

250f 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

4.1.3.3 Data Anonymization:

The data anonymization end point allows users to anonymize network traffic information. This ensures data
privacy. The tool also provides pseudo-anonymization end points, which can be exploited to identify the true
identity of the source of the network traffic. This component can be accessed through the homepage of the
tool or from the URL link 192.168.1.189:8888/sphinx/anonymization.jsp as shown in Fig 20.

SPHINX HE x +

& C (@ Not Secure | 192.168.1.189

SPI—”m X HOME SERVICE BLOG Q

Homomorphic Encryption Embedded
Engine

Data Anonymization

> Data Anonymization

DATA ANONYMIZATION INTERFACE

Use this link to Anonymize network traffic data

Figure 20: Data anonymization interface
4.1.3.3.1 Data Anonymization Interface

The data anonymization interface takes as input network traffic information and anonymizes all network
identifiers. These include source and destination IP addresses. These IP addresses are replaced with surrogate
values thus maintaining the structure of network traffic data. The surrogate values are mapped to the encrypted
version of the original IP addresses for latter decryption purposes. This tool works as a back-end tool and for
the purpose of this demo, the response is printed as a response to the anonymization request as shown in Fig
21.

DATA ANONYMIZATION INTERFACE

Use this link to Anonymize network traffic data

Select a file: | Choose Files | No file chosen Encrypt| File Successfully Encrypted

{'src_ip"'0.0.0.1"'src_port"53308,'pps 8058, 'bytes" 186 'proto” 17,;dst_port"584"time"1580601600.'dst_ip' '0.0.0.2°}

Figure 21: Data Anonymization response
4.1.3.3.2 Search

The search interface in the data anonymization interface allows users to search for the identity of the
anonymized IP address. This includes searching from either the surrogate IP or searching using the original IP
address. When the user plugs in the original IP address, the tool converts this into an encrypted cipher using
Homomorphic Encryption and then maps it to the hashed map of the surrogate IP address. The tool returns the

26 of 29

D4.6 Homomorphic Encryption Embedded Engine v1

surrogate IP address that is used to represent the original IP address. The user can search for this surrogate IP
address to identify all network traffic information relevant to this search. The response of the search is shown

in Fig 22.

SEARCH

You can search using either the surrogate value or the actual IP address.

Enter the P Addressthat youwant tosearchfor |

The Search was conducted Successfully and resulted in:
0.0.01

Enter the Surrogate IP Address: l:’

Figure 22: Network IP encrypted search

The tool also allows users to de-anonymize the surrogate IP back to the original IP address. The user can then
plug in the surrogate IP address and the tool responds with the original IP as shown in Fig 23.

SEARCH

You can search using either the surrogate value or the actual IP address

Enter the IP Address that you want to search for. :
Enter the Surrogate IP Address: :I

The Search was conducted Successfully and resulted in:
71012252

Figure 23: Network IP de-anonymization

27 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

5 Conclusion

The homomorphic encryption embedded engine provides both security and privacy. The security aspect is
provided with the help of a searchable encryption tool that allows users to search in their own encrypted data
or perform search in external databases upon getting the necessary privileges. The privacy aspect comes from
the data anonymization component which allows users to anonymize network traffic information. The tool itself
is rigorously tested and is ready for the next stage of integration. This deliverable covers the current state of
the tool and highlights all the features that it offers.

28 of 29

D4.6 Homomorphic Encryption Embedded Engine v1 @

6 References

[1] Gentry, C. and Boneh, D., 2009. A fully homomorphic encryption scheme (Vol. 20, No. 9, pp. 1-209).
Stanford: Stanford university.

[2] Boneh, D., Gentry, C., Halevi, S., Wang, F. and Wu, D.J,, 2013, June. Private database queries using
somewhat homomorphic encryption. In International Conference on Applied Cryptography and Network
Security (pp. 102-118). Springer, Berlin, Heidelberg.

[3] Sha, P. and Zhu, Z., 2016, August. The modification of RSA algorithm to adapt fully homomorphic
encryption algorithm in cloud computing. In 2016 4th International Conference on Cloud Computing and
Intelligence Systems (CCIS) (pp. 388-392). IEEE.

(4] Rani, B., 2016. A novice’s perception of partial homomorphic encryption schemes. Indian J. Sci.
Technol, 9(37), pp.10-18.

[5] Bosch, C., Hartel, P., Jonker, W. and Peter, A., 2014. A survey of provably secure searchable
encryption. ACM Computing Surveys (CSUR), 47(2), pp.1-51.

[6] Zhang, R., Xue, R. and Liu, L., 2017. Searchable encryption for healthcare clouds: a survey. IEEE
Transactions on Services Computing, 11(6), pp.978-996.

[7] Wang, B., Song, W., Lou, W. and Hou, Y.T., 2015, April. Inverted index based multi-keyword public-key
searchable encryption with strong privacy guarantee. In 2015 IEEE Conference on Computer Communications
(INFOCOM) (pp. 2092-2100). IEEE.

[8] General Data Protection Regulation (GDPR) [Online]: Available at: https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/

[9] Asif, W., Ray, I.G., Tahir, S. and Rajarajan, M., 2018, June. Privacy-preserving Anonymization with
Restricted Search (PARS) on Social Network Data for Criminal Investigations. In 2018 19th IEEE/ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD) (pp. 329-334). IEEE.

[10] Machanavajjhala, A., Kifer, D., Gehrke, J. and Venkitasubramaniam, M., 2007. |-diversity: Privacy
beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), pp.3-es.

29 of 29

