

D4.5 SPHINX Embedded SIEM v1
WP4 – SPHINX Toolkits
Version: 1.00

 D4.5: SPHINX Embedded SIEM v1

 2 of 42

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or both.

Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals

and care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1stJanuary 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator National Technical University of Athens - NTUA

Deliverable D4.5 SPHINX Embedded SIEM v1

Work Package WP4 – SPHINX Toolkits

Date of Delivery Contractual M20 Actual M20

Nature R - Report Dissemination Level P - Public

Lead Beneficiary PDMFC

Responsible Author Eli de Lima Email eli.lima@pdmfc.com

 Phone

Reviewer(s):

Keywords SIEM, logs, event management

http://sphinx-project.eu/

 D4.5: SPHINX Embedded SIEM v1

 3 of 42

Document History

Version Issue Date Stage Changes Contributor

0.10 09/06/2020 Draft ToC Eli de Lima (PDMFC)

0.20 20/08/2020 Draft Content Eli de Lima (PDMFC)

0.30 24/08/2020 Draft Content Bianca Nóbrega (PDMFC)

0.40 27/08/2020 Draft Internal Review 1 Acarali Dilara (TEC)

0.40 27/08/2020 Draft Internal Review 1 Waqar Asif (TEC)

0.50 27/08/2020
Pre -

Final

Adjustments suggested by

internal reviewers (TEC)
Eli de Lima (PDMFC)

0.50 28/08/2020
Pre -

Final
Quality Control

George Doukas (NTUA),

Michael Kontoulis (NTUA)

1.00 28/08/2020 Final Final Christos Ntanos (NTUA)

 D4.5: SPHINX Embedded SIEM v1

 4 of 42

Executive Summary
This document reports the development status for the SPHINX System Information and Event Management

(SIEM) component. Moreover, it presents the design, architecture and implementation of the SIEM component

and its subcomponents, by providing technical details and explaining the level of interaction performed by the

subcomponents within the SIEM system and demonstrating how users and external components can interact

with the SIEM platform.

This deliverable shows the results accomplished on the first iteration (M13-M20) of the associated task (T4.5).

However, the SIEM component is continuously growing and evolving, thus in the next iteration this document

will incorporate refinements and updates of the SIEM component, integration efforts and use cases, for

demonstrating all the functionalities encompassed by the system.

 D4.5: SPHINX Embedded SIEM v1

 5 of 42

Contents

1 Introduction .. 9

1.1 Purpose & Scope .. 9

1.2 Structure of the deliverable .. 9

1.3 Relation to other WPs & Tasks .. 9

1.4 List of Abbreviations ..Error! Bookmark not defined.

2 Overview of SIEM.. 10

2.1 Scope of SIEM .. 10

2.1.1 Design Principles ... 11

2.2 Background .. 12

2.3 SIEM in Sphinx ... 12

2.3.1 Document Manager .. 12

2.3.2 Event Manager .. 25

2.3.3 MQL – Metano Query Language ... 29

3 SIEM Web – User Interface .. 30

3.1 Data Collection .. 30

3.1.1 File Upload .. 30

3.1.2 Path Monitoring .. 31

3.1.3 Listeners .. 33

3.2 Search .. 34

3.3 Scheduling ... 35

3.4 Alerts .. 37

3.5 Playground ... 38

4 Use Cases .. 39

4.1 Brute Force Attack ... 39

4.2 Port Scan Detection ... 39

5 Summary and Conclusions .. 42

 D4.5: SPHINX Embedded SIEM v1

 6 of 42

Table of Tables

Table 1 – Functional requirements traceability (SPHINX Project. D2.6 – SPHINX Architecture v2) 11

Table 2 – Technologies uses in SIEM components. ... 12

 D4.5: SPHINX Embedded SIEM v1

 7 of 42

Table of Figures

Figure 1. SIEM Architecture Overview... 10

Figure 2. Document Manager Architecture ... 13

Figure 3. API method for File Upload .. 14

Figure 4. Parse method ... 15

Figure 5. Search method ... 16

Figure 6. Method for listing all listeners. ... 17

Figure 7. Method to add listeners ... 18

Figure 8. Method for updating listener ... 19

Figure 9. Method for removing a listener ... 20

Figure 10. Method for listing all monitored paths .. 21

Figure 11. Method to add monitored path ... 22

Figure 12. Method for updating a monitored path ... 23

Figure 13. Method for removing a monitored path .. 24

Figure 14. Event Manager Architecture .. 25

Figure 15. Add Schedule POST method ... 26

Figure 16. REST method for listing all scheduled queries ... 27

Figure 17. API method for listing all Executions Logs .. 28

Figure 18. API method for removing a scheduled query ... 29

Figure 19. File Upload .. 30

Figure 20. Log file normalization preview ... 30

Figure 21. File Upload Summary - last step prior to submission ... 31

Figure 22. Path and file sample selection .. 31

Figure 23. Log file normalization preview ... 32

Figure 24. Path monitoring – summary and submission ... 32

Figure 25. Path Monitoring List ... 33

Figure 26. New Listener Form ... 33

Figure 27. Listeners List ... 34

Figure 28. Search Page: MQL form .. 34

Figure 29. MQL query example ... 35

Figure 30. Query with time range definition ... 35

Figure 31. Query Schedule settings ... 36

Figure 32. All Scheduled Queries ... 36

Figure 33. Query Executions Logs .. 37

Figure 34. Scheduled query executions that raised Alerts .. 38

Figure 35. MQL query for detecting Port Scans attempts in the last minute ... 39

Figure 36. Schedule Query configuration .. 40

Figure 37. Alerts raised for Port Scan Detection ... 40

Figure 38. E-mail received from the SIEM platform, alerting about a new threat .. 41

 D4.5: SPHINX Embedded SIEM v1

 8 of 42

Table of Abbreviations

SIEM - Security Information and Event Management

API - Application Programming Interface

REST - Representational state transfer

UI - User Interface

MQL - Metano Query Language

 D4.5: SPHINX Embedded SIEM v1

 9 of 42

1 Introduction

1.1 Purpose & Scope

This document reports the development of the Security Information and Event Management component, which

is responsible for implementing a query interface where other components or users can distinguish between

normal and abnormal operations. In order to accomplishing that, the SIEM component collects data from some

key components present in the SPHINX ecosystem, normalizing all this information into a data repository,

where it can be queried and monitored, triggering actions when specific events occur.

1.2 Structure of the Deliverable

This document is structured as follows: Section 2 provides an overview of the SIEM component from a technical

perspective, where we introduce the SIEM scope and architecture, with all of its subcomponents and what role

they play in the SPHINX ecosystem. Section 3 presents the SIEM Web user interface component that provides

a friendlier interaction with SIEM’s main functionalities. In Section 4 we illustrate some uses cases covered by

the SIEM component. Section 5 is reserved to show the conclusions of this deliverable and future steps.

1.3 Relation to Other WPs & Tasks

This document is within WP4 - SPHINX Toolkits, namely as task T4.5 SPHINX Security Information and Event

Management. Within the scope of the SPHINX project, the tasks which relate to this task are T3.5 – D3.5: SPHINX

Automated Cybersecurity Certification, T3.3 - D3.3: Vulnerability Assessment as a Service, T4.1 - D4.1: Anomaly

Detection, T4.2 - D4.2: Sandbox, T4.3 - D4.3: BBTR – Blockchain Based Threats Registry, T4.4 - D4.4: Honeypot

and T5.3 – D5.3: Security Incident/Attack Simulator.

 D4.5: SPHINX Embedded SIEM v1

 10 of 42

2 Overview of SIEM

2.1 Scope of SIEM

The main objective behind the SPHINX Security Information and Event Management component is to provide

a solid log management tool for security-related events that the security centre administrators can rely on for

responding to security incidents as early as possible. Thus, the SIEM ecosystem will encompass log collection

and normalization, data correlation, alert management and reporting, in order to guarantee near real-time

analysis of security alerts, which have been generated by network hardware and applications.

Figure 1. SIEM Architecture Overview

Figure 1 illustrates the interactions between all subcomponents comprising in the SIEM main component. The

top-left corner shows the log files being sent through the network and then being collected by the component

responsible for gathering logs, normalizing, and saving the data into the SIEM database. The Core Engine in the

middle is responsible for managing the data correlations, monitoring security events, and applying the defined

actions whenever security alerts are raised. Finally, the Query Engine is the environment that executes MQL

queries, which is designed to be a high performing query language for log files.

 D4.5: SPHINX Embedded SIEM v1

 11 of 42

2.1.1 Design Principles
Considering the design and software development lifecycle (SLDC) principles described in deliverable D6.1, we

structured and started the development focusing on security, code maintainability, interoperability, scalability

and ease of deployment. The SIEM component is divided into four different sub-components, each one has its

own processes and project structures, which means they are all managed independently.

2.1.1.1 Stakeholders’ Requirements Fulfilment

According to deliverable D2.6 - SPHINX Architecture v2, the SIEM component has six (6) basic functional

requirements, as shown in Table 1, and they intend to fulfil some of the basic requirements raised by the

stakeholders.

Technical

Specification ID
Stakeholder

Requirement ID
Observations

SIEM-F-010 STA-F-250

STA-F-260

Categorisation of cyber events
 Patterns of incidents (including external sources)

SIEM-F-040 STA-F-100

STA-F-290

Concentrate data and performance
 Collection of evidence (logs, records, registries)

SIEM-F-050 STA-F-290 Collection of evidence (logs, records, registries)

SIEM-F-060 STA-F-220 Data analysis and visualisation

SIEM-F-070

STA-F-240

STA-F-290

Deal with known cyberattacks
 Collection of evidence (logs, records, registries)

SIEM-F-080 STA-F-560 Query features

Table 1 – Functional requirements traceability (SPHINX Project. D2.6 – SPHINX Architecture v2)

2.1.1.2 Technical Details

The SIEM was divided into several components, each having a specific objective. Because of this, we have

several technologies involved in development.

Table 2 shows the technologies that we use in the SIEM components.

Technology Where Why

Angular SIEM Web Angular is one of the most popular JavaScript frameworks for developing

single page applications. As it is based on components, it becomes highly

reusable, productive and easy to maintain.

Nest.JS Document

Manager and

Event Manager

NestJS is a progressive Node.js framework for building efficient, reliable and

scalable server-side applications.

With its defined architecture, it is clear and easy to transform into

microservices.

Flask MQL Flask is a micro-framework for Python. It has a simple and expansive core

which allows a project to have only the resources necessary for its execution.

 D4.5: SPHINX Embedded SIEM v1

 12 of 42

Elastic Search Document

Manager, Event

Manager and

MQL

Elasticsearch is a distributed, open source search and analytics engine for all

types of data.

It supports a large volume of data without losing the performance.

Redis

Event Manager Redis is a fast, open-source, in-memory key-value data store for use as a

database, cache, message broker, and queue.

Due to its speed and ease of use, Redis is in high demand for applications

that require the best performance in the market.

Swagger Document

Manager and

Event Manager

Swagger is a framework for description, consumption and visualization of

Rest API.

With Swagger, the documentation can evolve at the same pace as the

implementation.

Docker All Components Docker is an open-source platform that facilities the creation and

administration of isolated environments. It makes it possible to package an

application or environment inside a container, making it portable for any

other host that has Docker installed.

Docker Compose All Components Compose is a tool for defining and running multi-container Docker

applications. With it, we can set up the entire environment quickly.

Table 2 – Technologies uses in SIEM components.

2.2 Background

A SIEM system is a management security approach that provides a comprehensive view of an organization’s

security information system. Furthermore, these systems are an important component of company networks,

IT infrastructures and the cybersecurity domain. In fact, they allow to consolidate and to evaluate messages

and alerts of individual components of an IT system. At the same time messages of specialized security systems

(firewall-logs, VPN gateways etc.) can be considered. However, practice has shown that these SIEM systems are

extremely complex and only operable with large personnel effort. Many times, SIEM systems are installed but

neglected in continuing operation. The SIEM being developed for SPHINX aims to mitigate those flaws present

in other SIEM systems, providing a practical tool that seamlessly integrates with as many components as

necessary, and offers a user-friendly interface to manage technical and analytical aspects of the entire system.

2.3 SIEM in SPHINX

The SIEM component in SPHINX is, so far, subdivided into 3 main components: Document Manager, Event

Manager and Metano Query Language (MQL), where each of them is responsible for crucial process feature of

a SIEM system, namely data normalization, event management and text search, respectively. They were

designed this way in order to segment the project structure and improve component development, scalability

and maintainability as a whole. The following subtopics present a more in-depth description of each one of

them.

2.3.1 Document Manager
The Document Manager subcomponent is responsible for controlling the entry and search of all logs, providing

input methods for file upload, file and/or directory monitoring, and TCP and HTTP connections.

 D4.5: SPHINX Embedded SIEM v1

 13 of 42

Figure 2. Document Manager Architecture

Figure 2 depicts the architecture designed for the Document Manager subcomponent, with its main activities
and possible interactions. The API area lists all the methods that are externally available for other components
to call. The Monitoring path process is used for watching for changes in files and/or directories. Furthermore,
whenever any new change is detected, the parser method is invoked for that specific file, and the normalized
data is saved to the SIEM database. Regarding the Listeners Process, it is responsible for starting up the listening
servers based on the saved settings. Once a listener is up and running, it will capture all incoming data sent by
the agents installed on the external components, parse the log files and save it to the SIEM database. The MQL
Engine is used exclusively by the search method for executing the MQL queries, and it is responsible for
accessing the SIEM common databases to retrieve information based on the specified query.
In the following section the API methods are presented in detail, covering their purpose, inputs and response.

2.3.1.1 Swagger API Methods

This section illustrates the API methods exposed in the Document Manager subcomponent, where the external

components can interact with its functionality, mostly for inserting and querying logs.

 D4.5: SPHINX Embedded SIEM v1

 14 of 42

Figure 3. API method for File Upload

Figure 3 shows the method for transforming and saving data from a file upload. This method will go through

the entire file, applying the informed normalizing rules. Once the parsing process is done, the extracted

document will be written into the SIEM database for future searches.

 D4.5: SPHINX Embedded SIEM v1

 15 of 42

Figure 4. Parse method

 D4.5: SPHINX Embedded SIEM v1

 16 of 42

Error! Reference source not found. shows the method for previewing how a set of field extraction rules affects

a document. This method executes the same rules as in Error! Reference source not found.. However, it will

not save the parsed document to the data source, since this is used only for previewing the normalizing process.

Figure 5. Search method

Figure 5 shows the query method. Based on the informed query, which is a mandatory parameter, this method

searches the information in the SIEM databases.

 D4.5: SPHINX Embedded SIEM v1

 17 of 42

Figure 6. Method for listing all listeners.

Figure 6 shows the method for listing all listeners. Furthermore, the query parameters allow the users to filter

the results, and the response sections illustrate the format in which the user should receive the results.

 D4.5: SPHINX Embedded SIEM v1

 18 of 42

Figure 7. Method to add listeners

Figure 7 shows the method for adding a new HTTP or TCP listener. This method is responsible for recording the

settings in the database and starting the listeners. Whenever the server is restarted, it obtains the

configurations on the database to restart the listeners again.

 D4.5: SPHINX Embedded SIEM v1

 19 of 42

Figure 8. Method for updating listener

Figure 8 shows the API method for updating a HTTP or TCP listener configuration. Upon update, the current

listener server is stopped, and immediately restarted, in order to be up-to-date with the recently changed

settings.

 D4.5: SPHINX Embedded SIEM v1

 20 of 42

Figure 9. Method for removing a listener

Figure 9 shows the method for deleting a listener. In addition to removing it from the database, this method is

also responsible for shutting down the running listener.

 D4.5: SPHINX Embedded SIEM v1

 21 of 42

Figure 10. Method for listing all monitored paths

Figure 10 shows the method for listing all monitored paths. Furthermore, the query parameters allow the users

to filter the results, and the response sections illustrate the format in which the user should receive the results.

 D4.5: SPHINX Embedded SIEM v1

 22 of 42

Figure 11. Method to add monitored path

Figure 11 shows the method for monitoring a file and/or path. This method is responsible for adding the

file/path on the monitoring process and recording its configurations in the database. Whenever the monitoring

process is restarted, it obtains the configurations on the database to restart the processes again.

 D4.5: SPHINX Embedded SIEM v1

 23 of 42

Figure 12. Method for updating a monitored path

Figure 12 shows the method for deleting a monitored path. In addition to updating the database, this method

is also responsible for updating the path from the monitoring process that is running.

 D4.5: SPHINX Embedded SIEM v1

 24 of 42

Figure 13. Method for removing a monitored path

Figure 13 shows the method for deleting a monitored path. In addition to removing it from the database, this

method is also responsible for removing the path from the monitoring process that is running.

 D4.5: SPHINX Embedded SIEM v1

 25 of 42

2.3.2 Event Manager
The Event Manager subcomponent is responsible for gathering all the queries that are going to run periodically,

in order to monitor specific events described in the scheduled query, generate alerts and take actions when

abnormal operations are detected. Additionally, this subcomponent saves all query executions and alerts to a

database, and all saved data is available through the exposed API listing methods.

Figure 14. Event Manager Architecture

Figure 14 depicts the architecture designed for the Event Manager subcomponent, with its main activities and

possible interactions. The API methods expose all the actions that can be accessed by external components.

For instance, when the method Add Schedule is invoked, a new configuration is added to the database and also

to the scheduler process, meaning that the query job will be executed periodically based on what was specified

for that schedule. Each execution consists of a call to the MQL Engine for running the query and executing the

configured actions for the retrieved results, always following what is configured on the schedule definition.

Calling the method Remove Schedule will exclude the schedule execution workflow. In the following section,

the API methods are presented in detail.

 D4.5: SPHINX Embedded SIEM v1

 26 of 42

2.3.2.1 Swagger API Methods

This section illustrates the API methods exposed in the Event Manager subcomponent, where the external

components can interact with its functionality, mostly for scheduling queries and listing alerts and execution

logs.

Figure 15. Add Schedule POST method

 D4.5: SPHINX Embedded SIEM v1

 27 of 42

Figure 15 shows the method for scheduling a new query. Moreover, in the Request Body we can see all the

required parameters, alongside its description, for adding a new query definition into the Event Manager

scheduler process.

Figure 16. REST method for listing all scheduled queries

Figure 16 shows the REST method for listing all scheduled queries. Furthermore, the query parameters allow

the users to filter the results, and the response sections illustrate the format in which the user should receive

the results.

 D4.5: SPHINX Embedded SIEM v1

 28 of 42

Figure 17. API method for listing all Executions Logs

Figure 17 shows the API method for listing all execution logs. In the parameters section, the user can find all

the fields they can use to filter the results, and the response section describes the format of a successful

request.

 D4.5: SPHINX Embedded SIEM v1

 29 of 42

Figure 18. API method for removing a scheduled query

Figure 18 shows the REST method for deleting a scheduled query. In this case the only mandatory parameter is

the scheduled query id.

2.3.3 MQL – Metano Query Language
The MQL component is also the Search Engine of the SPHINX SIEM system. It shares its name with the language

used to build the search queries. Furthermore, MQL is inspired by CAL (internal PDM language), SPL (Splunk

search processing language) and KQL (Kusto Query Language) and aims to be a high-performing query language

for log files. This component has only one method, called Run, which is used to execute the query. This method

is divided into four (4) major steps, namely: Interpretation, used for interpreting the query, Get settings, used

for loading data sources settings and configurations, Fetch data, used for querying data in the selected data

source and finally, Transform data, used for parsing the data based on the criteria informed on the query. In

addition, the next lines will give a bit more detail on each of the steps.

Interpretation: In this step, MQL extracts from the query all the information necessary for performing the

search, such as data source settings, fields required in the response, filter conditions and even internal methods

necessary for filtering and/or transforming the data.

Get settings: From the previous stage, the workflow has the all of the information for connecting to the chosen

data source. If in the query the user did not provide the data source settings, MQL searches an internal table

with all previously registered data sources and if it is not found, a default database is used.

Fetch data: After being ready to connect to the selected database, the next step is to execute the query search

on the selected database and retrieve the results.

Transform data: Finally, in this step, any needed transformation is applied to the retrieved results. It could be

a simple filter on the extracted data, as well as an extraction on read, which means extracting new fields from

the existing ones using regular expressions. In summary, it can transform the originally-retrieved data, based

on what was defined in the search query.

 D4.5: SPHINX Embedded SIEM v1

 30 of 42

3 SIEM Web – User Interface
The SIEM Web is a user-friendly graphical interface that was designed to be the SIEM central point, where

administrators and analysts can visually interact with the whole SIEM ecosystem. From this tool, the user will

be able to define rules for data collection, query the SIEM database, define rules for event correlation and

monitoring, watch and list alerts, manage incidents, generate graphs and advanced reports.

3.1 Data Collection

Data collection is a crucial functionality for the whole SIEM ecosystem, consisting of gathering and normalizing

data from log files and saving it to the SIEM database. The next sections are going to illustrate the three options

available for sending data to the SIEM platform: file upload, path monitoring and port listeners.

3.1.1 File Upload
This option consists of manually selecting a single file, adding the parsing rules and submitting it to the SIEM

database. The idea behind this option is to provide a simple and easy way to save log data to the platform, even

if the user has never used the system before.

Figure 19. File Upload

Figure 19 shows the first page of the File Upload workflow, where the user is expected to select a single file.

When a valid file is selected, the user is redirected to the Preview tab, to define one or more rules for parsing

the chosen file data.

Figure 20. Log file normalization preview

 D4.5: SPHINX Embedded SIEM v1

 31 of 42

The Preview page, illustrated in Figure 20, is where the user can configure rules, based on Grok expressions

and/or regular expressions, to extract fields from the file lines. After defining which rules they want to apply,

the system gives instant feedback for all matches found, including some statistics on the fields extracted, for

example, the number of occurrences for each field. Additionally, the user can add and customize as many

rules as they see fit.

Figure 21. File Upload Summary - last step prior to submission

Figure 21 shows the upload page, where the user can see a summary of the options and parsing rules selected

to be applied on the file. Also, on this page, it is mandatory to select an index on the database where the

parsed files will be saved to. This third step concludes the File Upload workflow.

3.1.2 Path Monitoring
The Path Monitoring method is an option where the user is presented with a directory, hosted on the server

side, from where they can pick a file, directory or subdirectory that they want to monitor. In the monitoring

definitions, the user can set up the parsing rules they wish to apply, and the index where the normalized data

will be saved to.

Figure 22. Path and file sample selection

 D4.5: SPHINX Embedded SIEM v1

 32 of 42

Figure 22 displays the first tab of the Path Monitoring workflow, where a directory is selected, and from that

directory, the user picks one file as sample to visualize the parsing rules and extra configuration they wish to

apply on those files.

Figure 23. Log file normalization preview

The Preview component works the same way for any data collection method. As shown in Figure 23, the user

can configure rules selected from a pre-set, or even add custom rules, based on Grok expressions and/or

regular expressions, to extract fields from the file lines. After defining which rules they want to apply, the

system gives instant feedback for all matches found, including some statistics on the fields extracted, for

example, the number of occurrences for each field. Additionally, the user can add and customize as many

rules as they see fit.

Figure 24. Path monitoring – summary and submission

 D4.5: SPHINX Embedded SIEM v1

 33 of 42

The Save tab, as shown in Figure 24, is the last step for configuring a new Path Monitoring process. At this

stage, the user can see a summary of the selected rules and extra details and must provide the index name

where the normalized data will be saved to.

Figure 25. Path Monitoring List

After submitting the new item, the Path Monitored List is updated with the recently added item, as can be

seen in Figure 25. From this list, the user can edit or delete the existing configurations. To sum up the options

presented in this section, whenever any change is detected on the monitored file or directory, the defined set

of rules are applied to the new lines, and the normalized new lines are saved to the selected index.

3.1.3 Listeners
Listeners are used to insert the logs collected on the SPHINX components into the SIEM database. So,

configuring a listener is basically defining a channel where the components will put through the data collected

on each component. Moreover, all data will be normalized according to the pre-defined rules, and then inserted

into the SIEM database.

Figure 26. New Listener Form

Figure 26 exemplifies what fields are mandatory to create a new listener that will work as a channel to ingest

data collected from external components into the SIEM platform.

 D4.5: SPHINX Embedded SIEM v1

 34 of 42

 Figure 27. Listeners List

From the Listeners List, as shown in Figure 27, the user can edit or remove the available listeners. Once a

new listener is created, and is up and running, the agents installed on the SPHINX components can use them to

send data through the network following the information configured on the listener settings.

3.2 Search

This functionality implements a query interface where users can run MQL (Metano Query Language) queries
on the SIEM database in order to distinguish between normal and abnormal operations. MQL is inspired by
CAL (internal PDM language), SPL (Splunk search processing language) and KQL (Kusto Query Language) and
aims to be a high performing query language for log files. This feature will be the entry point from where the
user will define which events they wish to find and monitor. Once they know the search query works and
brings the expected results, they can move on to the scheduling stage, which is going to be discussed in the
next section.

Figure 28. Search Page: MQL form

As can be seen in Figure 28, the user can use MQL to build queries, on a wide range of complexity, and search

through the available indexes. The histogram component is used to group the results in date buckets, from

where the user can filter the documents even more. The result table can have its columns arranged based on

the fields selected on the fields listed, placed to the left of the main result table.

 D4.5: SPHINX Embedded SIEM v1

 35 of 42

Figure 29. MQL query example

Figure 29 demonstrates an example of a more elaborate query, as it also shows how the user can hide some

components on the screen in order to gain more space, thus increasing the tool usability. This functionality is

still evolving, and the development of several new features are currently in progress, such as creating charts

from queries and listing the available indexes.

3.3 Scheduling

This functionality is the entry point for event monitoring and alerts generation. As discussed in the previous

section, the user can search for specific events that they wish to monitor using the query tool. Once they find

the exact query that matches their purpose, they are ready to move on to the schedule stage, that consists of

configuring a time frame for filtering the query results, and also the periodicity for running that query. Last but

not least, they define the actions they want to take whenever the query runs.

Figure 30. Query with time range definition

First, in Figure 30, we have an example where the user wishes to query for brute force attempts events. For

doing so, he has defined a query that searches for messages that contains the words ‘Failed Password’, and

those messages are going to be counted by user, and filtered where the number of attempts is equal to or

greater than five in the last one minute till now.

 D4.5: SPHINX Embedded SIEM v1

 36 of 42

Figure 31. Query Schedule settings

Secondly, after defining the query criteria and the time frame they wish to filter the data from, the user can

access the Schedule tab, as in Figure 31, and finish the schedule settings. At this stage, the user must provide a

name for the schedule, also a CRON expression, which is a string composed of five or six fields separated by white

space. This represents a set of times, normally as a schedule to execute some routine, thus indicating the periodicity

with which the query is going to run.

Finally, the user must inform the system of what actions they wish to take whenever the defined query has

returned results. For that matter, the system lists three (3) options, namely e-mail, API call and Shell script

execution. Additionally, the user can define as many actions as they see fit.

Figure 32. All Scheduled Queries

All the queries being monitored can be listed under the menu “Query > Scheduled”, as shown in Figure 32.

Moreover, from this page the user can see the last time the query ran, and if it presented any results. In the

future they will also be able to edit the schedule settings.

 D4.5: SPHINX Embedded SIEM v1

 37 of 42

Figure 33. Query Executions Logs

Every scheduled query execution generates log information, and they can be found in the menu “Query >

Executions”, as displayed in Figure 33, where the user can filter by name, query and/or datetime.

3.4 Alerts

Whenever a scheduled query runs and find results matching the criteria defined in the schedule settings, it is

going to raise alerts and execute the configured actions. For instance, it could send an e-mail, or call an external

API passing the results found as parameters. Additionally, the SIEM Web will be able to display all the logs

referring to executions that raised alerts in order to centralize a point in the application where the user can go

to list and filter all the alerts triggered in the system.

 D4.5: SPHINX Embedded SIEM v1

 38 of 42

Figure 34. Scheduled query executions that raised Alerts

Figure 34 shows a list with executions that raised alerts. Upon clicking on the magnifying glass icon beside the

alerts count, the user will be redirected to the search page, where they will see the alerts information, based

on the query definition.

3.5 Playground

The Playground section has the purpose to enrich the platform, providing ways for the user to test some of the

systems functionalities in an isolated environment. For instance, the first candidate to be presented in the

playground area is the parsing tool, where it will be possible to use a file or a piece of text, and to apply Grok

rules or regular expressions in an experimental way, without having to use any of the workflows for data

collection. However, this feature is still under discussion, and all extra details on its development will be

provided in the next iteration.

 D4.5: SPHINX Embedded SIEM v1

 39 of 42

4 Use Cases
During the analysis stage, all partners working on the SPHINX project listed several use cases with real case

scenarios to be demonstrated by integrating the platform components. However, this section is going to

present two extra use cases that, despite not being in the official list, have the same potential to show how the

SPHINX SIEM system can integrate with other components to solve problems and detect real world security

threats.

4.1 Brute Force Attack
The main idea behind this use case is to monitor events where there are a certain number of failed login

attempts. When this specific event occurs, it should trigger an alert and send an email to the security team. In

this scenario we worked together with the SPHINX Sandbox component, which is responsible for providing all

logs gathered from the user authentication system.

The first step in the process is configuring the rules to normalize and save the log files to the SIEM common

database. Secondly, as shown in Figure 29??, it is necessary to set up the query for searching for Brute Force

attempts. The next step is to set up the timeframe we want to use to monitor new events. In this case, we want

to monitor log events from one minute ago till now, as in Figure 30. Finally, as shown in Figure 31, we need to

provide information for scheduling the new query and save it. As a result, whenever a new event matching the

configured criteria is found, an email is sent to the predefined address and the user can also list all the

executions that raised alerts from the SIEM Web application (see Figure 34).

4.2 Port Scan Detection
In this scenario, the Event Manager is going to be watching for access attempts on different ports from the

same source IP in a very short timeframe. This case also used logs provided by the SPHINX Sandbox component,

that is in charge of gathering all network monitoring logs and sending it to the SIEM system.

After defining the rules for collecting the log files, normalizing, and saving the data to the SIEM database, it is

necessary to setup the query find the events we want to monitor using one of the methods described in section

3.1.

Figure 35. MQL query for detecting Port Scans attempts in the last minute

In Figure 35, we define the query that searches for situations where twenty or more access attempts on

different ports from the same IP address were made in the past minute.

 D4.5: SPHINX Embedded SIEM v1

 40 of 42

Figure 36. Schedule Query configuration

Figure 36 shows the Schedule settings, meaning that this query will be executed every minute, and whenever

an alert is raised, the configured email box is going to receive a message with the alert’s details.

Figure 37. Alerts raised for Port Scan Detection

After configuring all the settings for the scheduled query, a port scan was simulated in the Sandbox in order to

test the event monitoring process. As can be seen in Figure 37, a new alert was raised after the port scan was

executed.

 D4.5: SPHINX Embedded SIEM v1

 41 of 42

Figure 38. E-mail received from the SIEM platform, alerting about a new threat

Figure 38 displays the message received from the SIEM platform via e-mail, alerting about a possible port scan

threat. Additionally, more actions could be taken from this point, such as executing a pre-defined shell script,

or calling an external API method. And with this last picture we conclude the use case for monitoring Port Scan

Threats.

 D4.5: SPHINX Embedded SIEM v1

 42 of 42

5 Summary and Conclusions
This deliverable presented the overall development status of the SIEM component. Considering this as a

versioned document, in its first version it covers all the progress made so far, explaining in depth the SIEM

system architecture and lifecycle, diving into its subcomponents and their interdependencies, and also

discussing potential future functionalities. In its next version, this document will aim to conclude and exemplify

all the predicted features that are still under development, thus providing a complete snapshot of the SPHINX

SIEM system as whole.

