

D4.2 Data Inspection
Component v1
WP4 – Sphinx Toolkits
Version: 1.00

 D4.2: Data Inspection Component v1

 2 of 35

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or both.

Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals and

care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1stJanuary 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator National Technical University of Athens - NTUA

Deliverable D4.2 Data Inspection Component v1

Work Package WP4 – Sphinx Toolkits

Date of Delivery Contractual M20 Actual M20

Nature R - Report Dissemination Level P - Public

Lead Beneficiary PDMFC

Responsible Author Stylianos Karagiannis Email stylianos.karagiannis@pdmfc.com

 Phone

Reviewer(s): TECNALIA, TEC

Keywords Sandboxing, security testing, untrusted components

http://sphinx-project.eu/

 D4.2: Data Inspection Component v1

 3 of 35

Document History

Version Issue Date Stage Changes Contributor

0.10 21/05/2020 Draft ToC Stylianos Karagiannis (PDMFC)

0.20 21/06/2020 Draft Initial Steps Stylianos Karagiannis (PDMFC)

0.30 21/07/2020 Draft
Discussion of ToC and

content

Stylianos Karagiannis (PDMFC),

Luis Laneiro (PDMFC)

0.40 25/08/2020 Draft Main content added Stylianos Karagiannis (PDMFC)

0.50 26/08/2020 Draft Internal Review 1 Santiago de Diego (TECNALIA),

0.60 26/08/2020 Draft Internal Review 2 Waqar Asif (TEC)

0.70 28/08/2020
Pre –

Final
Applied corrections Stylianos Karagiannis (PDMFC)

0.80 28/08/2020
Pre -

Final
Quality Control

George Doukas (NTUA) ,

Michael Kontoulis (NTUA)

1.00 28/08/2020 Final Final Christos Ntanos (NTUA)

 D4.2: Data Inspection Component v1

 4 of 35

Executive Summary
The SPHINX Data Inspection Component includes the Sandbox (SB) and enables a solution for creating a safe

and isolated environment for security testing and continuous component validation. Using existing

technologies such as containerization and virtualization, this component aspires to provide the important

infrastructure and deployment services which will be executed in an isolated and safe environment. These

technologies include for example: the exploitation of Docker containers and Kernel Virtual Machine (KVM),

among others.

This document presents the detailed design for the SPHINX SB component, following the component’s

introduction in the SPHINX architecture deliverable (D2.6 - SPHINX Architecture v2). It extends the details

providing information related to the virtualization and deployment of third-party components in an isolated

environment for conducting the data inspection.

The next iteration of this deliverable D4.2: Data Inspection Component (R&DEM, PU&CO, M20 & M32), will

incorporate refinements and updates of the SB component, integration efforts and case examples for

demonstrating the process of the component.

 D4.2: Data Inspection Component v1

 5 of 35

Contents

1 Introduction .. 10

1.1 Purpose & Scope .. 10

1.2 Structure of the deliverable .. 10

1.3 Relation to other WPs & Tasks .. 10

2 Overview of Data Inspection Component .. 11

2.1 Scope of Data Inspection Component ... 11

2.2 Design Principles .. 11

2.3 Swagger Specification .. 13

2.4 Untrusted Sources ... 13

2.5 Security Tests ... 14

2.6 Background .. 14

2.7 Data Inspection Model in Sphinx ... 14

2.7.1 Virtualization Technologies ... 14

2.7.2 Integration Capabilities ... 15

2.7.3 Networking, subnetworks and System Isolation .. 15

3 Virtualization Technologies ... 16

3.1 Overview .. 16

3.2 Virtualization vs Containerization ... 17

3.2.1 Security Aspects .. 20

3.3 Operating systems in a Docker Container ... 20

3.4 MicroVMs .. 21

3.5 Networking Capabilities ... 23

4 Integration Capabilities ... 26

4.1 Running VMs in a Docker Container .. 26

4.2 Running Virtual Machines in a VM .. 27

4.3 Testing Untrusted Sources .. 27

4.4 Management and Reports ... 27

5 Network and System Isolation ... 30

5.1 Overview .. 30

5.2 Networking .. 30

5.3 System Behavior .. 31

5.3.1 Malware Analysis .. 32

5.4 Sandbox Isolation Capabilities ... 33

6 Summary and Conclusions .. 34

 D4.2: Data Inspection Component v1

 6 of 35

7 References .. 35

 D4.2: Data Inspection Component v1

 7 of 35

Table of Tables

Table 1 Functional requirement traceability (SPHINX Project. D2.6 - SPHINX Architecture v2)...................... 12

Table 2. Comparison between standard and lightweight virtualization ... 20

 D4.2: Data Inspection Component v1

 8 of 35

Table of Figures

Figure 1. Existing sandbox approaches.. 11

Figure 2. Dynamic and continuous system auditing using sandboxing ... 12

Figure 3. Swagger API for Sandbox and Data Inspection Component .. 13

Figure 4. Virtualization - Type 1 and Type 2 hypervisors .. 16

Figure 5. Differences between virtualization approaches and containers .. 17

Figure 6. Virtualization approaches and containers .. 17

Figure 7. Difference between Virtual Machines and Containers on the usage of system resources 18

Figure. 8. KVM running in two different Docker containers .. 18

Figure. 9. The running Docker container that include KVM and Docker in a Docker capabilities

 ... 19

Figure 10. Sandboxing running KVM and provided by separate Docker containers ... 19

Figure 11. Virtualization of multiple systems running in a Docker container and using KVM 20

Figure 12. Execution of Kali-linux and Alpine as Docker container ... 21

Figure 13. Ignite Firecracker and deployment of a MicroVM ... 22

Figure 14. Comparison of the performance between the approaches ... 22

Figure 15. Docker containers running KVM ... 23

Figure 16. Network interfaces inside the container .. 24

Figure 17. Creation and editing of Virtual Networks ... 24

Figure 18. Network settings for each Virtual Machine .. 25

Figure 19. Running Win10 and other VMs using KVM inside a Docker container .. 26

Figure 20. Management and status of the Host .. 27

Figure 21. Configuration options of the Virtual Machines .. 28

Figure 22. Setting up the resources (CPU) ... 28

Figure 23. Sandboxing using KVM and Docker containers .. 29

Figure 24. Network confirmation for creating Virtual LAN ... 30

Figure 25. Automated updates for the Docker container which manages the KVM .. 31

Figure 26. Interface for managing the Docker images and Docker containers ... 31

Figure 27. Adversary emulation using Caldera .. 32

Figure 28. Cuckoo Sandbox analyzing a Trojan listed in 57 AntiVirus engines .. 32

 D4.2: Data Inspection Component v1

 9 of 35

Table of Abbreviations

OS - Operating System

API - Application Programming Interface

VM - Virtual Machine

KVM - Kernel Virtual Machine

SDLC - Software Development Lifecycle

SB - Sandbox

DOC - Document

EXE - Executable

PDF - Portable Document Format

SCSI - Small Computer System Interface

IDS - Intrusion Detection Systems

RAM - Random Access Memory

CPU - Control Process Unit

SSH - Secure Shell

CLI - Command Line Interface

SA - Situational Awareness

ACC - Automated Cybersecurity Certification

 D4.2: Data Inspection Component v1

 10 of 35

1 Introduction

1.1 Purpose & Scope

This document reports on the data inspection component and the sandbox developments for having a service

which handles the deployment of multiple services and external components in a sandboxed mode for

conducting the data inspection. This approach is important for deploying easy and flexible external services in

order to continue with the security testing or data inspection. Some of the technologies used by this solution

include Docker containers, virtual machines and micro-VMs. The purpose of this component is to provide an

efficient, flexible and low-overhead solution for executing the digital environment. Nowadays, the security

aspects are mostly focused on the cloud perspective, meaning that the cybersecurity aspects advance to the

topics of network security, network services and cloud infrastructure in general. Therefore, we deploy and

analyze most of the modern components in terms of micro-services.

1.2 Structure of the deliverable

This document is structured as follows. Section 1 and its subsections present the purpose and scope of the

SPHINX Data Inspection Component, as well as its relation to other tasks. In Section 2, it is introduced an

overview of the SPHINX Data Inspection Component, emphasizing on design principles relevant to the aspects

of virtualization, hypervisor technologies, integration and network isolation. In Section 3, virtualization

technologies are further analyzed and described. In Section 4, the integration capabilities are investigated. In

Section 5, the aspects regarding the network infrastructure, topology are addressed. Finally, Section 6

concludes this document, presenting the outcomes of this component’s developments and future steps.

1.3 Relation to other WPs & Tasks

This document is tightly related to the tasks that partake in the deployment of the required services for

extracting descriptful data from the sandbox or for deploying SPHINX components inside the sandbox for

extending further the research impact and demonstrate or extend further their capabilities. Within the scope

of the SPHINX project the tasks which relate to this task are T3.5 – D3.5: SPHINX Automated Cybersecurity

Certification, T3.3 - D3.3: Vulnerability Assessment as a Service, T4.4 – D4.4 :SPHINX AI Honeypot integration

to T4.5 – D4.5: SPHINX Embedded SIEM, T5.3 – D5.3: Security Incident/Attack Simulator. The component of

sandbox and data inspection component was introduced to the SPHINX architecture (T2.3 - D2.3: Use Cases

definition and requirements document).

 D4.2: Data Inspection Component v1

 11 of 35

2 Overview of Data Inspection Component

2.1 Scope of Data Inspection Component

The main goal for the SPHINX sandbox and of the data inspection component is to provide a shared sandbox

environment for conducting security testing. Therefore, a digital environment would be provided for separating

running programs and services which might include vulnerabilities. Finally, the sandbox provides a restricted

and tightly controlled set of resources for guest programs or services to run.

2.2 Design Principles
Taking into consideration the design and software development lifecycle (SDLC) principles narrated in

deliverable D6.1 the sandbox is being developed having in mind the research scope of the project to identify

the applicability and the deployment options for the sandbox.

Figure 1. Existing sandbox approaches

In Figure 1, an example of the existing approaches is presented. Most of these approaches reply on submission

of specific files or software, which are then exploited using software, which as a result provide evidence as to

if the tested component is secure and safe to work on. Therefore, not only the signatures from the submitted

files are matched to the existing taxonomies (e.g. VirusTotal1) but it includes various processing modules for

extracting reports [1]. Consequently, such approaches are a combination of sandboxing and security testing for

discovering for example zero-day attacks and suspicious software components or digital assets that might hide

malicious payload. Some popular examples include Cuckoo Sandbox2, Sandboxie3 or commercial solutions such

as FortiSandbox4 [2, 3, 4].

According to deliverable D2.6 - SPHINX Architecture v2 (WP2 – Conceptualization, Use Cases and System

Architecture), the sandbox and data inspection component was described the main component for conducting

1 https://www.virustotal.com

2 https://cuckoosandbox.org/

3 https://www.sandboxie.com/

4 https://www.fortinet.com/products/sandbox

 D4.2: Data Inspection Component v1

 12 of 35

security tests and to host the cybersecurity certification. There are Nine (9) basic functional requirements SB-

F-010 to SB-F-060, SB-F-090, SB-F-120 and SB-F-140 (D2.6 - SPHINX Architecture v2). The table below illustrates

the functional requirements identified for the Sandbox by the stakeholders (Table 1).

Technical
Specification ID

Stakeholder
Requirement ID

Observations

SB-F-010 STA-F-160

STA-F-570

Verification toolkit easy to integrate

Isolated sandboxed environment

SB-F-020 STA-F-150

STA-F-180

Automated zero touch device and service verification

Automated certification (including API)

SB-F-030 STA-F-570 Isolated sandboxed environment (replication of IT infrastructure

for tests)

SB-F-040

STA-F-160

STA-F-570

Verification toolkit easy to integrate

Isolated sandboxed environment

SB-F-050 STA-F-200 Monitoring network traffic and suspicious network packets

SB-F-090 STA-F-220 Data analysis and visualisation

SB-F-120 STA-F-200 Monitoring discovered unsupervised processes

Table 1 Functional requirement traceability (SPHINX Project. D2.6 - SPHINX Architecture v2)

Malware analysis usually includes an API to upload potential malicious files that are sent for malware analysis

to a sandbox which initiates a virtual machine to exexute or open the file. After the execution of the file from

the sandbox, screenshots are generated accordingly, and the system shuts down in case of a malware infection.

While the procedure is dynamic, the results and reports are static, only focusing on the potential infected file.

Therefore, such approaches do not include vulnerability assessments in cases where a vulnerable service is

deployed that might not be malicious, even so the deployed service could intentionally open specific

vulnerabilities in the system (e.g. deploying an outdated apache server). Our intention is to further broaden the

potential of dynamic analysis, using sandboxing to conduct security and auditing tests, including procedures

such as file integrity monitoring, vulnerability detection, regulatory compliance, among others.

Figure 2. Dynamic and continuous system auditing using sandboxing

As presented in Figure 2, the goal for us is to deploy systems and services in a way we can monitor and conduct

security tests. For enabling such aspects we use virtualization technologies which are more secure than

containerization technologies such as Docker containers. The main concern that enforced us to include strictly

virtualization technologies include the strong isolation capabilities that virtualization provides in comparison to

containerization.

 D4.2: Data Inspection Component v1

 13 of 35

2.3 Swagger Specification
The API endpoints include the submission of system(s) providing a qcow2 or virtual machine image and of

Docker images to be deployed inside the sandbox. The items could be either defined or chosen using a list of

assets to be deployed. Further actions include the cloning of a sandbox or the deletion of a sandbox (Figure 3).

Figure 3. Swagger API for Sandbox and Data Inspection Component

The Swagger API might be extended as other processes might be seem important for the SPHINX. Furthermore,

we intend to upgrade our approach and provide automation options for the end user to deploy easier

sandboxes and to interact better with the deployed systems.

2.4 Untrusted Sources
The developed sandbox is an important asset/toolbox for actually executing unknown and untrusted sources

to understand their behaviour and highlight any potential impacts in security. Using the sandbox it is possible

to extract information regarding the total behaviour of such components and to execute test cases to

understand the total impact and potential issues that such components might trigger. For example, it is

common to download, install and execute various applications or to open/execute files which could include

malicious or unwanted payload (e.g. ransomware, trojans). More importantly specifically deployed services

might not contain malicious payloads; however, such services could open applications which include

vulnerabilities or could malfunction or negatively affect other network components/systems.

 D4.2: Data Inspection Component v1

 14 of 35

2.5 Security Tests
For defining the above issues, it is important to include security tests when a sandbox is deployed. Not only

strictly security tests are important, but to understand the total behavior of the component as well. This means

that it is important to collect information regarding the network behavior, registry changes, filesystem changes

and authorization processes, among others. By monitoring such information, we are able to retrieve data from

the sandbox and upgrade the sandboxing process to not only deploy components in an isolated environment

but to retrieve insightful data as well.

Furthermore, security testing is an interactive process meaning that in order to retrieve and collect auditing

results and discover security flaws it is important to deploy a realistic environment. For example, security

testing nowadays is strongly matched with red team assessments and to understand the actions of blue teams

that use defensive techniques to mitigate threats and to execute incident response actively. Finally, blue teams

could test their tools and rulesets in a realistic environment, using the sandbox to train their models further or

to include existing adversaries and software components to extend further the existing approaches.

2.6 Background

The background of the work described in this deliverable report to deliverable D3.2 where it is addressed the

Situational Awareness (SA) in the healthcare cybersecurity domain. The SA is based on three main sequential

phases: “Perception,” “Comprehension,” and “Projection.” The Projection phase is the last one and, during this

phase, the system and its interventions must demonstrate the capabilities. However, in our case the sandbox

could include the whole lifecycle of the sequential phases, meaning a recursive process that includes perception

and comprehension in order to improve further. In a healthcare environment, it is during the Perception phase

that the elements of an IT department collects the information from all the electronic equipment connected to

the network; however it is necessary to test the tools and the electronic equipment in a realistic environments,

provided by the sandbox. During the Comprehension phase, it is important to understand the potential

weaknesses of the network equipment regarding cybersecurity aspects. It is at this stage that a cybersecurity

toolkit can play an important role, helping to identify potential cybersecurity gaps.

2.7 Data Inspection Model in Sphinx

Most of the current approaches for sandbox are focused in malware analysis providing a way to analyze files

automatically and to provide the interactions between the files that are under analysis and the system [5, 6].

An important aspect is that sandboxing must be realistic in order for the malwares to have their normal

behavior. Towards this direction, current approaches have been developed to extract and monitor suspicious

and malicious files (e.g. Cuckoo Sandbox). However, there are cases when a specific software component or

service do not include a direct malfunction or security issue to the system. Therefore, the interaction between

systems, components or services must be carefully monitored and tested. The data inspection model in SPHINX

provides this opportunity, meaning the deployment of services or software components in a way to interact

each other and to extract data regarding their behavior accordingly.

2.7.1 Virtualization Technologies
Virtualization technologies are important to use for deploying a sandbox. Docker containers are also frequently

used as a similar technology for virtualization; however, we must declare the key-differences between them.

By design, containerization technologies such as that of Docker are designed to execute micro-services and not

operating systems. Not only this, but the services running on a Docker container are kernelless meaning that

 D4.2: Data Inspection Component v1

 15 of 35

all of them share the same Operating System kernel. Virtualization technologies provide numerous capabilities

including the following [8]:

1. Server consolidation: To distribute the workloads from complex systems to multiple micro-services or

VMs in order to consolidate the workload effort and to manage better in terms of administration and

scale better in terms of performance and system resources.

2. Application consolidation: Meet the application’s requirements in terms of hardware or software by

virtualizing the hardware or by meeting any of the software requirements independently.

3. Sandboxing: Provide secure and isolated environments for executing unknown sources and conducting

security tests and malware analysis.

4. Multiple execution environments: Create multiple execution environments, increasing the scope for

including quality tests.

5. Virtual hardware: Virtualize hardware resources such as SCSI drives and network interfaces, among

others.

6. Multiple simultaneously OS: Execute multiple operating systems that interact with each other.

7. Debugging: Execute software in their full potential by letting the user interact with the software.

8. Software migration and Appliances: Provides flexibility, compatibility and enhance portability

providing the capabilities to package a whole digital environment into an appliance.

9. Test scenarios: Helps produce test scenarios that are hard to reproduce in reality and therefore

enhances the capabilities for conducting security test scenarios.

Popular virtualization and hypervisor technologies include Oracle Virtualbox, VMware, KVM, Hyper-V, Xen and

OpenVZ among others. Micro Virtual Machines (Micro VMs) are also a modern approach and popular

approaches include AWS (Amazon Web Services) Firecracker (using KVM or Ignite Firecracker) and RancherVM.

Other popular approaches for maintaining virtualization technologies is Vagrant for building and managing

virtual machine environments included in a single workflow. Each of the mentioned technologies include

benefits and drawbacks and the analysis and outcomes are also provided in this deliverable.

2.7.2 Integration Capabilities
Integration capabilities are important to include the sandbox component to easily interact and integrate with

other software components. Not only the automated deployment, but the integration with the other SPHINX

components is important. Towards this direction, we implement the APIs and the automated processes for

initiating systems-on-a-test and to provide an easy way for the end user to interact with the sandbox and to

collect insights for running an executable digital environment. The integration is processed using WEB APIs and

Web interface for controlling the components inside the sandbox.

2.7.3 Networking, subnetworks and System Isolation
Nowadays, it is important to consider the network communication as one of the most important aspects in the

modern digital infrastructures and systems. This means that every component currently includes network

connection and continuously interacts with other network components. In the developed sandbox there are 3

different aspects of networking. The first one is the physical network interfaces/adapters, secondly are the

virtualized network adapters created by the hypervisor and third are virtualized network interfaces created for

the Docker containers. As a result, it is possible to combine or revise any of the above options to meet our own

goals, accordingly.

 D4.2: Data Inspection Component v1

 16 of 35

3 Virtualization Technologies
Virtualization technologies include a lot of different implementations and existing deployments. We purpose

to identify the key-benefits from such technologies and to include them in our development. The benefits of

each one are described and the differences from using Docker containers are addressed. Therefore, the

capabilities and the drawbacks or restrictions for each of the existing approaches have been tested and

analyzed.

3.1 Overview

There are two types of virtualization methods and techniques including native or hosted virtualization. These

two types are called native-bear metal and hosted approach (Type 1 and Type 2) [7, 8]. Using a type 1 hypervisor

means that the operating system and the services which are executed are directly relevant to the hypervisor

technology avoiding any extra overhead (Figure 4). Managing a type 1 hypervisor includes performance

benefits; however, extra services are not included.

Figure 4. Virtualization - Type 1 and Type 2 hypervisors

Except these two types another relevant service and deployment approach is the containerization. Using

containers, it is possible to run services or even operating systems; however, this approach is not strictly related

to virtualization technologies, since the same operating system’s kernel is used. The difference between the

technologies and deployment approaches are presented in Figure 5. All the mentioned approaches include

benefits and drawbacks. For example, containerization might include security risks which have to be managed,

while virtualization include higher overhead and higher demands related to the system resources.

Type 1 virtualization approach (bare metal) is very good option when hosting multiple virtual systems and do

not have any other services running, meaning that the resources are entirely dedicated to the virtual systems.

Providing isolation and high system resources, type 1 is the recommended solution. Advantages of bare metal

hypervisors are the following:

 D4.2: Data Inspection Component v1

 17 of 35

• Resources dedicated to a single customer

• Greater processing power and input/output operations per second (IOPS)

• More consistent disk and network I/O performance

• Quality of Service (QoS) that guarantees elimination of the noisy neighbour problem in a multitenant

environment.

Type 2 and hosted hypervisors might be similar to the bare metal hypervisors, but they could maintain and

manage more services as well.

Figure 5. Differences between virtualization approaches and containers

Therefore, in the case of type-2 hypervisors, the system resources might be shared with the managed services.

Finally, containerization technologies maintain a lot of benefits; however, there are multiple security risks due

to the lack of a hypervisor and all of the deployed containers are executed in the same kernel, sharing the same

filesystem and services of the hosting system. In that perspective an analysis of the benefits and drawbacks is

important and it is provide in the section below.

3.2 Virtualization vs Containerization

As presented in the above section virtualization and containerization maintain some major differences.

Containerization is a virtualization. One of the main aspects that require analysis when using containerization

technologies from the security perspective (e.g. using Docker) includes properties and capabilities that

containers do not include (process, filesystem, device, network isolation and the incapability for limiting the

resources) [1]. Although mitigation actions exist (e.g. chroot jail creating an isolated directory for running

processes) for enhancing the security posture of containers the attack surface is always bigger than virtual

machines.

Figure 6. Virtualization approaches and containers

 D4.2: Data Inspection Component v1

 18 of 35

In some cases, the sandbox could include both the virtualization and containerization technologies. Despite the

limitations, containers have been deployed in a variety of use cases. They are popular for hyperscale

deployments, lightweight sandboxing, and, despite concerns about their security, as process isolation

environments. Significant benefits from using containers include the following:

• Run stand-alone services and applications consistently across multiple environments

• Create isolated instances to run tests

• Build and test complex applications and architectures on a local host

• Provide lightweight stand-alone sandbox environment for developing, testing, and teaching

technologies

• High performance

Regarding containerization, performance research has been done which evaluates the response times from

HTTP requests when using containerization in comparison to virtualization [2]. The differences between the

deployment of virtual machines compared to containers are presented in Figure 7.

Figure 7. Difference between Virtual Machines and Containers on the usage of system resources

In our demo deployment we execute a sandbox using a Docker container which initiates multiple virtual

machines which operate in the same subnet. As presented in Figure. 8 the container is using the IP address

172.17.0.2 and the container includes virtual images (e.g. Linux, Windows 10). It is possible to easily destroy

and create another sandbox (e.g. 172.17.0.3) which will initiate the virtual machines again in a different subnet

and inside another Docker container.

Figure. 8. KVM running in two different Docker containers

 D4.2: Data Inspection Component v1

 19 of 35

It is possible to include Docker containers as a virtualization system to conduct security tests on the deployed

applications; however, this could not apply when the resources are unknown and could include security risks

which include the Docker container take-over from potential malicious services. This is the main reason for not

using containerization but virtualization technology when analyzing malwares for example. In Figure. 9 the

different services are presented (e.g. webgoat vulnerable machines running as a Docker). Using containers

instead of virtual systems is a more flexible solution and provides higher performance and lower total overhead,

reducing the required system resources. Furthermore, the total deployment effort and required deployment

time is reduced as well.

Figure. 9. The running Docker container that include KVM and Docker in a Docker capabilities

Similarly, it is possible to execute and maintain different docker containers which handle the hypervisor (KVM)

accordingly and it is easy to rebuild Figure 10. Using this aspect, the potential malicious services are enclosed

inside a virtual machine and have to escape the virtual machine which is difficult and then take-over tha Docker

container in order to infect the main system. It is possible to include another border of isolation, executing the

Docker containers inside a Virtual Machine.

Figure 10. Sandboxing running KVM and provided by separate Docker containers

In Figure 10, the execution of the Docker run command will create another sandbox with the same topology as

the others, running as separate virtual machines in a different subnet requiring 1 second for the deployment.

Therefore, it is easy to deploy multiple sandboxes easy and fast. A comparison between standard and

lightweight virtualization-containerization (Table 2) [3].

Parameter Virtual Machines Containers

Guest OS Each VM runs on a virtual hardware and the
kernel is loaded into its own virtual memory

All the guests share the same kernel loaded in the
physical memory

Isolation Libraries and files are completely isolated Directories can be mounted and can be shared
between the containers and the physical machine

Performance All instructions need to be translated
between VMs and the physical machine,
which incurs a performance decrease

Near native performance as compared to the
physical machine

Communication Virtual Ethernet devices IPC mechanisms such as signals, sockets, etc

 D4.2: Data Inspection Component v1

 20 of 35

Storage Need a large amount of disk space as each
VM needs to store the whole OS and
associated applications

 Monitoring network traffic and suspicious network
packets

Table 2. Comparison between standard and lightweight virtualization

In terms of performance, containerization is more applicable than virtualization; however, security risks are

included and are further discussed in the following section.

3.2.1 Security Aspects
The security aspects were previously described in summary and mostly include risks regarding the privileges

and actions related to escaping a container. As for running KVM the deployed Docker containers require

privileged mode, such security issues are increased. To mitigate such risks, we implement nested virtualization

as proposed from other solutions (e.g. Cuckoo Sandbox). Therefore, any executed containers are running inside

a VM. However, there are other modern approaches which are under development that require analysis and

to be mentioned such as Kata containers5 and Firecracker MicroVMs6. Other significant approaches include

Rancher Harvester7 (previously known as RancherVM) allowing to create VMs that run inside a Kubernetes

cluster, called VM pods. However, such approaches are still under development, but for research purposes we

deployed such solutions to test their impact and if appropriate for us to use them for the sandbox.

3.3 Operating systems in a Docker Container

In our approach we included the approach of running VMs inside the Docker containers. This approach gives us

the possibility to easily deploy a sandbox environment that might include the required security hardness

attributes (e.g. nested VMs, execution of operating systems inside a KVM).

Figure 11. Virtualization of multiple systems running in a Docker container and using KVM

5 https://katacontainers.io/

6 https://firecracker-microvm.github.io/

7 https://github.com/rancher/harvester

 D4.2: Data Inspection Component v1

 21 of 35

The virtual machines are by default deployed and starting the Docker container (running the Docker image)

initiates the topology and the already deployed Virtual Machines. Therefore, it is easy to maintain complex

topologies that include multiple Virtual Machines that could interact with each other Figure 11. Not only this

but it is possible to maintain all the services provided from an operating system inside a Docker container. For

example, there official Linux images exist as Docker images, published on Dockerhub8.

Figure 12. Execution of Kali-linux and Alpine as Docker container

Example cases of running Linux distributions are presented in Figure 12 and most of the common and well-

known distributions are official, maintaining continuous updates. For example, Fedora initiated version 23 in

2017 and Ubuntu from 2015 with the distribution version 12.04 Precise Pangolin, while CentOS initiated official

version of Centos5 in 2017. Therefore, Docker containers are more frequently used lately and it is consequently

a technology which is currently advancing and is broadly used. Security issues still exist for the containers;

however, research is currently being conducted in how to mitigate these issues. Some of the mitigation actions

include the creation of namespaces and for managing the privileges accordingly.

3.4 MicroVMs

MicroVMs as a context applies mostly to our deployments. The goal of a micro VM is to provide an isolated

environment increasing cybersecurity and enhancing resilience through virtualization. The main benefits except

the enhanced isolation is that micro VMs prevent latency and bottlenecks because they have been designed to

only access a minimal set of resources. A new promising virtualization technology for maintaining micro VMS is

called Firecracker by Amazon Web Services and the main goal is to enable large deployment workloads to run

in lightweight virtual machines, providing enhanced security and workload isolation. This technology uses KVM

to create and manage the MicroVMs.

Firecracker and more specifically Ignite Firecracker (an implementation that uses MicroVms), has been

deployed for testing purposes (Figure 13). From the deployment it is concluded that even if currently only few

Linux distributions are supported (e.g. Ubuntu) the deployment time is reduced and the performance is

promising. Indeed, Ignite Firecracker combines the benefits of using containers but by initiating a kernel and all

the isolation actions which a virtual machine might have. The total overhead is less and for analyzing the

performance we evaluated the approaches of using MicroVMS instead of KVM and Docker containers.

8 https://hub.docker.com/r/kalilinux/kali-rolling

 D4.2: Data Inspection Component v1

 22 of 35

Figure 13. Ignite Firecracker and deployment of a MicroVM

Using Ignite we were able to deploy an Ubuntu Linux distribution as a virtual machine and by executing the

command we are able to set the amount of CPUs, diskspace size and the reserved memory (RAM) that will be

used for each of the MicroVms. An issue with Ignite Firecracker is the incapability for currently running Windows

operating systems or other than the Linux distributions. However, similar technologies in the past (RancherVM)

managed to run Windows 7 as Micro VM. We tested the solution of RancherVM; however, only Windows 7

operating systems are supported.

Figure 14. Comparison of the performance between the approaches

In all our tests we ensured that all the other applications were closed, and no additional overhead was added

except for the main system services. The evaluation metrics of course depend on the main system resources

and our purpose was to compare the differences between the used technologies. The results from the

performance evaluation and benchmarks are presented in Figure 14.

Taking the above into consideration, the results from the performance evaluation present that docker

containers maintain low overhead, mainly in terms of I/O – disk cache writing and reading speeds. Furthermore,

we have also investigated the total overhead in terms of both the used hard disk space and memory size for

deploying the vulnerable systems or services. For the evaluation tests of the Linux hosts/services we used

Sysbench for the memory tests and Stress-ng for testing the Control Process Unit (CPU) and collecting disk

cache input/output (I/O) benchmarks. For the Windows system hosts we used Novabench and the considered

metrics are as follows:

 D4.2: Data Inspection Component v1

 23 of 35

1. CPU: CPU performance tests using the Stress-ng for each different technology. Rating is considered as

the number of iterations of the CPU stressor run for 20 seconds.

2. I/O – Hard disk: Performance test using Stress-ng related to the disk’s cache measuring the

input/output operations per second. Rating is considered as the number of iterations of the disk cache

stressor during the run for 20 seconds.

3. RAM memory: Effective RAM performance by calculating the writing speed (Mega Bytes per second –

MB/s).

Summarizing, MicroVMs seem to be a very good option in terms of performance; however, incompatibilities

exist. Therefore, MicroVMs is the best option if the services or systems which are on the test include services

running exclusively on Linux (e.g. Docker Containers).

3.5 Networking Capabilities

Virtualization can virtualize hardware devices and this is a main benefit. Similarly, containerization simulates

the network device creating a virtual ethernet connection for each container (Figure 15). Every container is

running separately using the same hypervisor for the KVM and using different ethernet connections.

Figure 15. Docker containers running KVM

Every virtual machine is connected using the virtual network interface called virbr0. Every container has its own

virbr0 isolated, meaning that VM1 for example cannot directly communicate to another VM from another

container. Even the connection to the DHCP from virbr0 of each container do not accept any network traffic

from other VM that is running on a different container.

 D4.2: Data Inspection Component v1

 24 of 35

Figure 16. Network interfaces inside the container

As presented in Figure 16, eth0 is the main interface of the Docker container. Every Docker container has its

own IP address using veht interfaces provided by Docker. Following, virbr0 is the virtual interface created by

KVM inside the Docker container. Therefore, every VM which is inside the same container can send and receive

network traffic from other VMs that are inside the container. More options are provided if we need to change

the interface that KVM uses and the DHCP range, among other settings (Figure 17).

Figure 17. Creation and editing of Virtual Networks

Taking into consideration the above, we conclude that we might have options that we did not yet consider well

and that we have to test more the approaches in order to analyze and discover the possibilities. For example,

we can also create subnets using other virtual devices for the VMs to actually use other virtual network

interfaces (e.g. virbr0, virbr1, virbr2 etc.). Creating different virtual network interfaces, we can isolate the VMs

more into subnets or create even much complex network topologies. For example, we can run various virtual

machines using different MAC addres ses and a different virtual network interface (compatibility extensions

include virtio, e1000e etc.). More comprehensive tests will be described in the next version of this deliverable

as well as the evaluation results regarding the isolation properties of the sandbox.

 D4.2: Data Inspection Component v1

 25 of 35

Regarding Ignite Firecracker and the network capabilities, similar approach is followed by virtualizing the

network interfaces. In this case every MicroVM has its own virtual ethernet (vethxxxx).

Figure 18. Network settings for each Virtual Machine

The DHCP range for these interface ranges from 10.61.0.2 – 10.61.254.254 by default; however, we can

configure this setting at the time we are creating the MicroVMs. The restrictions and potential benefits of using

the network virtualization have not been tested, but we assume that since Ignite Firecracker uses KVM, similar

attributes to the other deployment will be present.

 D4.2: Data Inspection Component v1

 26 of 35

4 Integration Capabilities
As presented in Section 3, it is possible to deploy different topologies using KVM and/or Docker containers.

Initially our focus was in executing high-performance solutions requiring less system resources (e.g. RAM, hard

disk). However, for successfully deploying other operating systems and services our goal was to discover

compatible and flexible solutions.

4.1 Running VMs in a Docker Container

The first option which includes high compatibility is to deploy a KVM using Docker containers. This is our main

approach which is already deployed as a demo and by including an existing topology that is also used for the

Automated Cybersecurity Certification (Deliverable 3.5). In this approach we execute KVM and the virtual

machines using Docker containers. The benefits of deploying KVM instead of Docker containers is that

virtualization using KVM provides stronger isolation than Docker containers and therefore any unwanted or

potential malicious processes are strictly restricted. An issue from our deployment is that KVM is initiated using

Docker containers requiring for containers to access the root services (privileged mode). Therefore, we propose

for this deployment to use another virtual machine which will execute the Docker containers. However, it is a

secure solution if we assume that a malicious process is difficult to escape from KVM and proceed to the main

host.

Figure 19. Running Win10 and other VMs using KVM inside a Docker container

As presented in Figure 19, a Docker container with the IP address of 172.17.0.2 is running KVM which hosts 4

different operating systems:

 D4.2: Data Inspection Component v1

 27 of 35

1. ACC – Linux distribution running 4 dockers with ELK stack

2. Kali Linux – For executing attacks and security tests

3. Ubuntu/Debian/Lnx01 – A Linux distribution for hosting the services which are for testing

4. Windows10 – Operating system for hosting services that require Windows OS

Of course the deployment could be different and include Windows Server and other Linux distributions that

will eventually result in a more complex topology.

4.2 Running Virtual Machines in a VM

In the approach presented in Section 4.1, the possibility to run nested virtualization was also presented in order

to isolate more the processes and reduce the attack surface of the host. Nested virtualization provides

increased security and isolation and most of the approaches (e.g. Cuckoo sandbox), uses this approach. The

drawbacks coming from this deployment is the increased overhead, high resource consumption resulting in

lower performance. However, we tested the execution of ELK stack and other services and it was possible for a

moderate machine to host the required systems. However, in terms of scaling this approach is difficult to

manage and the approach of using MicroVMs seems a better solution.

4.3 Testing Untrusted Sources

Our deployment and tool can be used for conducting security tests or to monitor the behaviour of the deployed

services and the interaction between them. Therefore, untrusted services can possibly be deployed and used

for extraction of reports that describe the interactions. For meeting this requirement, we can replicate the

systems-on-the-test using qcow2 images and by executing a KVM. Using Clonezilla for example we can clone

an entire operating system or pull/import and execute a Docker image of the service.

4.4 Management and Reports

Management and reporting is important to the sandbox component, since it is very useful to extract

information regarding the deployed services. Therefore, we can deploy test cases relevant to security incidents

and to include a testbed that will provide us information which can be used for other software components and

tools as well. For example, it is important for Intrusion Detection Systems (IDS) to have example datasets to

test with or for a SIEM to have test cases to validate with. Furthermore, management and reports are very

important to the end users to increase their situational awareness and to understand the topologies better.

Figure 20. Management and status of the Host

 D4.2: Data Inspection Component v1

 28 of 35

For the deployment, it is not considered an important approach to include by-default remote control tools such

as VNC and we can only have SSH connection to parse any required commands. However, by using VNC for

example it is possible for the end users or administrators to get to the debugging mode. Therefore, we can

reach end users which are not very familiar or experienced to CLI or more advanced options for managing the

deployed services/operating systems. Using Cockpit9 we can have such information and manage better our

systems. Not only Cockpit can provide information regarding the Virtual Machines but can also provide major

updates or other information regarding the status of the host. For example, in our deployment we execute a

Fedora distribution as a Docker Container and the management services provide information of potential

updates of that container. We also have the opportunity to manage Docker Containers and Docker images using

a graphical user interface (Figure 20).

Figure 21. Configuration options of the Virtual Machines

Using a graphical user interface the end users can easily configure the Virtual Machines and set the

minimum/maximum requirements (Figure 21, Figure 22).

Figure 22. Setting up the resources (CPU)

9 https://cockpit-project.org/

 D4.2: Data Inspection Component v1

 29 of 35

This way the end user can scale up or down the systems according to the requirements. We intend to set the

initial details for the services using an API (will be provided in a later deliverable). This way the end user will be

able to define the required service to be deployed (e.g. provide a qcow2 image, Docker image etc.) and the

minimum requirements for the deployed services, as well as the network topology.

Figure 23. Sandboxing using KVM and Docker containers

Summarizing, Figure 23 presents an instance of our deployment showing two deployed sandboxes (sphinx-

sandbox and sphinx-sandbox-2). Deploying the docker images is easy and in this figure the two Docker

containers have two different IP addresses (172.17.0.2 and 172.17.0.3). Inside each of them 3-4 VMs are

running separately providing the isolation which is already discussed and will be described in more details in

Section 5.

 D4.2: Data Inspection Component v1

 30 of 35

5 Network and System Isolation
This section is appointed to the actions that include testing of the system isolation and network interaction

between the deployed services or operating systems. Since it is important for the deployed services to be

running in a restricted and controllable environment, maintaining isolation while allowing them to interact with

each other is important. To meet this requirement, we deploy virtual machines using KVM and using the same

virtual interaface (e.g. virbr0) it is possible for the services to interact each other, keeping the Docker container

intact and so the main host. Escaping a docker container might be possible; however, escaping from virtual

machine is very difficult for a potential malicious service to succeed.

5.1 Overview

For being confident and to evaluate the isolation capabilities of the selected approaches we selected a list of

common ransomware and malicious software. For testing purposes, we deployed WannaCry retrieved from

theZoo10, a popular Github repository. Our initial purpose was to execute both common services (e.g. apache,

SQL server) and malicious software as well to test the approach. Towards this direction, we tried to have

interactions between the virtual systems and to examine the network traffic going beyond the strict boundaries

of the virtualization.

WannaCry itself is a ransomware worm, meaning that it can infect other windows computers; however, this

procedure was not produced any results and did not infect other operating systems. Therefore, we are currently

focused more on providing more malicious worms (e.g. SSH worms that extend to Linux distributions). The

results from this evaluation will be provided in a later and final version of this deliverable.

5.2 Networking

Using virbr0 from KVM and veth from Docker Containers it is possible to create subnetworks which are similar

to existing ones. Of course, services that are provided such as gateways, DHCP or other are provided using

virtualization; however, it is possible to even deploy some of these services as separate services in order to

apply more to the reality if required.

Figure 24. Network confirmation for creating Virtual LAN

Therefore, it is possible to deploy realistic network topologies accordingly. Using the graphical user interface

(or APIs) it possible for us to initiate such options (Figure 17). Being able to create our own network topologies

10 https://github.com/ytisf/theZoo

 D4.2: Data Inspection Component v1

 31 of 35

or replicate the existing ones we are able to execute security scenarios and retrieve/collect network traffic,

data, log files being able to understand the interactions between the deployed or replicated systems and

services.

5.3 System Behavior

Using internal services for managing the updates and being able to access the managers internal processes we

are able to understand more about the sandbox itself. The options we have maintain and increase the security

posture of the deployed services even more, without affecting the internal deployed services that were created

using KVM. Therefore, we maintain a security border between the host, the sandbox and the virtual machines.

Figure 25. Automated updates for the Docker container which manages the KVM

Figure 25, presents the potential updates and the importance (severity) addressing also the CVE (Common

Vulnerabilities and Exposures) numbering. Furthermore, using the graphical user interface (Figure 26) the

possibility to manage docker containers is presented in case we want to deploy the required services not in a

KVM but as Docker containers (by understanding the security risks that this approach provides).

Figure 26. Interface for managing the Docker images and Docker containers

 D4.2: Data Inspection Component v1

 32 of 35

It is possible as well to deploy services directly as Docker containers; however, this option is applicable and

secure if the host system that includes docker is running in a Virtual Machine. Using Docker containers could

include some elements of isolation; however, is not a secure option since a malicious process could escape the

containerization and access the host system resources and escalate privileges. For example, if malware analysis

is to be conducted, it is safer to execute in isolated inside a virtual machine and to have a separate kernel for

the main processes to be executed.

5.3.1 Malware Analysis
For testing the sandboxing we deployed Cuckoo sandbox and afterwards we deployed adversary emulation

using Caldera and tried to capture the triggered security events (Figure 26). Sandboxes are very popular for

conducting static and dynamic malware analysis.

Figure 27. Adversary emulation using Caldera

As presented in Figure 28, it is possible to analyze a file or executable file and discover if it a malicious process

or hidden payload inside the uploaded file.

Figure 28. Cuckoo Sandbox analyzing a Trojan listed in 57 AntiVirus engines

 D4.2: Data Inspection Component v1

 33 of 35

The Cuckoo Sandbox is possible to be executed inside our sandbox in order to extend our approach for

discovering malware and ransomware accordingly. More details and screenshots are extracted when executing

the scanning for the end user to understand better the behaviour of the potential malicious payload.

Summarizing, in our approach the sandbox is not deployed for extracting details regarding a potential malicious

file, but to create a safe and secure environment for conducting security tests. Therefore, we aspire to extend

this approach and to provide the offensive tactics for inspecting the elements inside the sandbox. This

inspection includes malware analysis but extends more to the vulnerability scanning and for understanding

better the internal interactions of the systems which are executed inside the sandbox.

5.4 Sandbox Isolation Capabilities

KVM or running systems using virtualization guarantees the isolation in terms of filesystem access and

processes and it is possible to isolate networks as well in order to not directly interact with other components.

Docker containers also include some of these options; however the security risks are increased. For evaluating

the isolation capabilities we intend to execute malicious worms or other offensive tactics which focus on

privilege escalation, escaping the Docker containers and to conduct research for the possibility to escape from

the virtualization.

 D4.2: Data Inspection Component v1

 34 of 35

6 Summary and Conclusions

The capabilities for the SPHINX to automatically conduct the processes that are related to security testing are

easy to demonstrate using the sandbox and data inspection component. Using the sandbox (SB) is is easy to

deploy services and systems and to conduct security analysis accordingly. Inside the sandbox it is possible to

deploy other SPHINX components or to interact with the deployed systems and services, extracting realistic

data from virtualized systems.

Our goal was to discover the best practices and to easily deploy complex topologies in order to create the digital

environment where SPHINX components will be tested, to extract data which will be used to enhance the

process of the other SPHINX components and to provide a safe and secure environment for conducting security

tests. Therefore, The Automated Cybersecurity Certification (ACC) sub-component is directly related to the

sandbox as it is important to include ACC and SB when we want to conduct security tests to untrusted or

unknown resources and services. Furthermore, using the SB it is possible to sandbox the behavior and monitor

the interactions between software components, either if are services or systems. The automation in terms of

deployment and other enhanced options are currently under development and we aspire to include processes

for the end user to be able to easily deploy services and systems using APIs. Such details will be included in a

later version of this deliverable.

 D4.2: Data Inspection Component v1

 35 of 35

7 References
[1] Canfora, G., Di Sorbo, A., Mercaldo, F., & Visaggio, C. A. (2015, May). Obfuscation techniques against

signature-based detection: a case study. In 2015 Mobile Systems Technologies Workshop (MST) (pp. 21-26).

IEEE.

[2] Jamalpur, S., Navya, Y. S., Raja, P., Tagore, G., & Rao, G. R. K. (2018, April). Dynamic malware analysis using

cuckoo sandbox. In 2018 Second international conference on inventive communication and computational

technologies (ICICCT) (pp. 1056-1060). IEEE.

[3] Gupta, D., & Mehte, B. M. (2013, August). Forensics analysis of sandboxie artifacts. In International

Symposium on Security in Computing and Communication (pp. 341-352). Springer, Berlin, Heidelberg.

[4] Kale, G., Bostanci, E., & Çelebi, F. (2018, October). Differences between Free Open Source and Commercial

Sandboxes. In Proceedings of the International Conference on Cyber Security and Computer Science,

Safranbolu, Turkey (pp. 18-20).

[5] Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y., & Nakao, K. (2009). Automated malware analysis system and

its sandbox for revealing malware's internal and external activities. IEICE transactions on information and

systems, 92(5), 945-954.

[6] Lindorfer, M., Kolbitsch, C., & Comparetti, P. M. (2011, September). Detecting environment-sensitive

malware. In International Workshop on Recent Advances in Intrusion Detection (pp. 338-357). Springer, Berlin,

Heidelberg.

[7] Gu, Z., & Zhao, Q. (2012). A state-of-the-art survey on real-time issues in embedded systems virtualization.

[8] Bui, T.: Analysis of Docker Security. (2015).

[9] Eiras, R.S.V., Couto, R.S., Rubinstein, M.G.: Performance evaluation of a virtualized HTTP proxy in KVM and

Docker. 2016 7th International Conference on the Network of the Future, NOF 2016. (2017).

