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Executive Summary 
The SPHINX Data Inspection Component includes the Sandbox (SB) and enables a solution for creating a safe 

and isolated environment for security testing and continuous component validation. Using existing 

technologies such as containerization and virtualization, this component aspires to provide the important 

infrastructure and deployment services which will be executed in an isolated and safe environment. These 

technologies include for example: the exploitation of Docker containers and Kernel Virtual Machine (KVM), 

among others. 

This document presents the detailed design for the SPHINX SB component, following the component’s 

introduction in the SPHINX architecture deliverable (D2.6 - SPHINX Architecture v2). It extends the details 

providing information related to the virtualization and deployment of third-party components in an isolated 

environment for conducting the data inspection. 

The next iteration of this deliverable D4.2: Data Inspection Component (R&DEM, PU&CO, M20 & M32), will 

incorporate refinements and updates of the SB component, integration efforts and case examples for 

demonstrating the process of the component. 
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1 Introduction 

1.1 Purpose & Scope 

This document reports on the data inspection component and the sandbox developments for having a service 

which handles the deployment of multiple services and external components in a sandboxed mode for 

conducting the data inspection. This approach is important for deploying easy and flexible external services in 

order to continue with the security testing or data inspection. Some of the technologies used by this solution 

include Docker containers, virtual machines and micro-VMs. The purpose of this component is to provide an 

efficient, flexible and low-overhead solution for executing the digital environment. Nowadays, the security 

aspects are mostly focused on the cloud perspective, meaning that the cybersecurity aspects advance to the 

topics of network security, network services and cloud infrastructure in general. Therefore, we deploy and 

analyze most of the modern components in terms of micro-services. 

1.2 Structure of the deliverable 

This document is structured as follows. Section 1 and its subsections present the purpose and scope of the 

SPHINX Data Inspection Component, as well as its relation to other tasks. In Section 2, it is introduced an 

overview of the SPHINX Data Inspection Component, emphasizing on design principles relevant to the aspects 

of virtualization, hypervisor technologies, integration and network isolation. In Section 3, virtualization 

technologies are further analyzed and described. In Section 4, the integration capabilities are investigated. In 

Section 5, the aspects regarding the network infrastructure, topology are addressed. Finally, Section 6 

concludes this document, presenting the outcomes of this component’s developments and future steps. 

1.3 Relation to other WPs & Tasks 

This document is tightly related to the tasks that partake in the deployment of the required services for 

extracting descriptful data from the sandbox or for deploying SPHINX components inside the sandbox for 

extending further the research impact and demonstrate or extend further their capabilities. Within the scope 

of the SPHINX project the tasks which relate to this task are T3.5 – D3.5: SPHINX Automated Cybersecurity 

Certification, T3.3 - D3.3: Vulnerability Assessment as a Service, T4.4 – D4.4 :SPHINX AI Honeypot integration 

to T4.5 – D4.5: SPHINX Embedded SIEM, T5.3 – D5.3: Security Incident/Attack Simulator. The component of 

sandbox and data inspection component was introduced to the SPHINX architecture (T2.3 - D2.3: Use Cases 

definition and requirements document). 
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2 Overview of Data Inspection Component 

2.1 Scope of Data Inspection Component 

The main goal for the SPHINX sandbox and of the data inspection component is to provide a shared sandbox 

environment for conducting security testing. Therefore, a digital environment would be provided for separating 

running programs and services which might include vulnerabilities. Finally, the sandbox provides a restricted 

and tightly controlled set of resources for guest programs or services to run.  

2.2 Design Principles 
Taking into consideration the design and software development lifecycle (SDLC) principles narrated in 

deliverable D6.1 the sandbox is being developed having in mind the research scope of the project to identify 

the applicability and the deployment options for the sandbox. 

 

Figure 1. Existing sandbox approaches 

In Figure 1, an example of the existing approaches is presented. Most of these approaches reply on submission 

of specific files or software, which are then exploited using software, which as a result provide evidence as to 

if the tested component is secure and safe to work on. Therefore, not only the signatures from the submitted 

files are matched to the existing taxonomies (e.g. VirusTotal1) but it includes various processing modules for 

extracting reports [1]. Consequently, such approaches are a combination of sandboxing and security testing for 

discovering for example zero-day attacks and suspicious software components or digital assets that might hide 

malicious payload. Some popular examples include Cuckoo Sandbox2, Sandboxie3 or commercial solutions such 

as FortiSandbox4 [2, 3, 4]. 

According to deliverable D2.6 - SPHINX Architecture v2 (WP2 – Conceptualization, Use Cases and System 

Architecture), the sandbox and data inspection component was described the main component for conducting 

 
1 https://www.virustotal.com 

2 https://cuckoosandbox.org/ 

3 https://www.sandboxie.com/ 

4 https://www.fortinet.com/products/sandbox 
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security tests and to host the cybersecurity certification. There are Nine (9) basic functional requirements SB-

F-010 to SB-F-060, SB-F-090, SB-F-120 and SB-F-140 (D2.6 - SPHINX Architecture v2). The table below illustrates 

the functional requirements identified for the Sandbox by the stakeholders (Table 1). 

Technical 
Specification ID 

Stakeholder 
Requirement ID 

Observations 

SB-F-010 STA-F-160 

STA-F-570 

Verification toolkit easy to integrate 

Isolated sandboxed environment 

SB-F-020 STA-F-150 

STA-F-180 

Automated zero touch device and service verification 

Automated certification (including API) 

SB-F-030 STA-F-570 Isolated sandboxed environment (replication of IT infrastructure 

for tests) 

SB-F-040 

 

STA-F-160 

STA-F-570 

Verification toolkit easy to integrate 

Isolated sandboxed environment 

SB-F-050 STA-F-200 Monitoring network traffic and suspicious network packets 

SB-F-090 STA-F-220 Data analysis and visualisation 

SB-F-120 STA-F-200 Monitoring discovered unsupervised processes 

Table 1 Functional requirement traceability (SPHINX Project. D2.6 - SPHINX Architecture v2) 

Malware analysis usually includes an API to upload potential malicious files that are sent for malware analysis 

to a sandbox which initiates a virtual machine to exexute or open the file. After the execution of the file from 

the sandbox, screenshots are generated accordingly, and the system shuts down in case of a malware infection. 

While the procedure is dynamic, the results and reports are static, only focusing on the potential infected file. 

Therefore, such approaches do not include vulnerability assessments in cases where a vulnerable service is 

deployed that might not be malicious, even so the deployed service could intentionally open specific 

vulnerabilities in the system (e.g. deploying an outdated apache server). Our intention is to further broaden the 

potential of dynamic analysis, using sandboxing to conduct security and auditing tests, including procedures 

such as file integrity monitoring, vulnerability detection, regulatory compliance, among others. 

 

Figure 2. Dynamic and continuous system auditing using sandboxing 

As presented in Figure 2, the goal for us is to deploy systems and services in a way we can monitor and conduct 

security tests. For enabling such aspects we use virtualization technologies which are more secure than 

containerization technologies such as Docker containers. The main concern that enforced us to include strictly 

virtualization technologies include the strong isolation capabilities that virtualization provides in comparison to 

containerization. 
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2.3 Swagger Specification 
The API endpoints include the submission of system(s) providing a qcow2 or virtual machine image and of 

Docker images to be deployed inside the sandbox. The items could be either defined or chosen using a list of 

assets to be deployed. Further actions include the cloning of a sandbox or the deletion of a sandbox (Figure 3). 

 

Figure 3. Swagger API for Sandbox and Data Inspection Component 

The Swagger API might be extended as other processes might be seem important for the SPHINX. Furthermore, 

we intend to upgrade our approach and provide automation options for the end user to deploy easier 

sandboxes and to interact better with the deployed systems. 

2.4 Untrusted Sources 
The developed sandbox is an important asset/toolbox for actually executing unknown and untrusted sources 

to understand their behaviour and highlight any potential impacts in security. Using the sandbox it is possible 

to extract information regarding the total behaviour of such components and to execute test cases to 

understand the total impact and potential issues that such components might trigger. For example, it is 

common to download, install and execute various applications or to open/execute files which could include 

malicious or unwanted payload (e.g. ransomware, trojans). More importantly specifically deployed services 

might not contain malicious payloads; however, such services could open applications which include 

vulnerabilities or could malfunction or negatively affect other network components/systems. 
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2.5 Security Tests 
For defining the above issues, it is important to include security tests when a sandbox is deployed. Not only 

strictly security tests are important, but to understand the total behavior of the component as well. This means 

that it is important to collect information regarding the network behavior, registry changes, filesystem changes 

and authorization processes, among others. By monitoring such information, we are able to retrieve data from 

the sandbox and upgrade the sandboxing process to not only deploy components in an isolated environment 

but to retrieve insightful data as well. 

Furthermore, security testing is an interactive process meaning that in order to retrieve and collect auditing 

results and discover security flaws it is important to deploy a realistic environment. For example, security 

testing nowadays is strongly matched with red team assessments and to understand the actions of blue teams 

that use defensive techniques to mitigate threats and to execute incident response actively. Finally, blue teams 

could test their tools and rulesets in a realistic environment, using the sandbox to train their models further or 

to include existing adversaries and software components to extend further the existing approaches. 

2.6 Background 

The background of the work described in this deliverable report to deliverable D3.2 where it is addressed the 

Situational Awareness (SA) in the healthcare cybersecurity domain. The SA is based on three main sequential 

phases: “Perception,” “Comprehension,” and “Projection.” The Projection phase is the last one and, during this 

phase, the system and its interventions must demonstrate the capabilities. However, in our case the sandbox 

could include the whole lifecycle of the sequential phases, meaning a recursive process that includes perception 

and comprehension in order to improve further. In a healthcare environment, it is during the Perception phase 

that the elements of an IT department collects the information from all the electronic equipment connected to 

the network; however it is necessary to test the tools and the electronic equipment in a realistic environments, 

provided by the sandbox. During the Comprehension phase, it is important to understand the potential 

weaknesses of the network equipment regarding cybersecurity aspects. It is at this stage that a cybersecurity 

toolkit can play an important role, helping to identify potential cybersecurity gaps. 

2.7 Data Inspection Model in Sphinx 

Most of the current approaches for sandbox are focused in malware analysis providing a way to analyze files 

automatically and to provide the interactions between the files that are under analysis and the system [5, 6]. 

An important aspect is that sandboxing must be realistic in order for the malwares to have their normal 

behavior. Towards this direction, current approaches have been developed to extract and monitor suspicious 

and malicious files (e.g. Cuckoo Sandbox). However, there are cases when a specific software component or 

service do not include a direct malfunction or security issue to the system. Therefore, the interaction between 

systems, components or services must be carefully monitored and tested. The data inspection model in SPHINX 

provides this opportunity, meaning the deployment of services or software components in a way to interact 

each other and to extract data regarding their behavior accordingly. 

2.7.1 Virtualization Technologies 
Virtualization technologies are important to use for deploying a sandbox. Docker containers are also frequently 

used as a similar technology for virtualization; however, we must declare the key-differences between them. 

By design, containerization technologies such as that of Docker are designed to execute micro-services and not 

operating systems. Not only this, but the services running on a Docker container are kernelless meaning that 
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all of them share the same Operating System kernel. Virtualization technologies provide numerous capabilities 

including the following [8]: 

1. Server consolidation: To distribute the workloads from complex systems to multiple micro-services or 

VMs in order to consolidate the workload effort and to manage better in terms of administration and 

scale better in terms of performance and system resources. 

2. Application consolidation: Meet the application’s requirements in terms of hardware or software by 

virtualizing the hardware or by meeting any of the software requirements independently. 

3. Sandboxing: Provide secure and isolated environments for executing unknown sources and conducting 

security tests and malware analysis. 

4. Multiple execution environments: Create multiple execution environments, increasing the scope for 

including quality tests. 

5. Virtual hardware: Virtualize hardware resources such as SCSI drives and network interfaces, among 

others. 

6. Multiple simultaneously OS: Execute multiple operating systems that interact with each other. 

7. Debugging: Execute software in their full potential by letting the user interact with the software. 

8. Software migration and Appliances: Provides flexibility, compatibility and enhance portability 

providing the capabilities to package a whole digital environment into an appliance. 

9. Test scenarios: Helps produce test scenarios that are hard to reproduce in reality and therefore 

enhances the capabilities for conducting security test scenarios. 

Popular virtualization and hypervisor technologies include Oracle Virtualbox, VMware, KVM, Hyper-V, Xen and 

OpenVZ among others. Micro Virtual Machines (Micro VMs) are also a modern approach and popular 

approaches include AWS (Amazon Web Services) Firecracker (using KVM or Ignite Firecracker) and RancherVM. 

Other popular approaches for maintaining virtualization technologies is Vagrant for building and managing 

virtual machine environments included in a single workflow. Each of the mentioned technologies include 

benefits and drawbacks and the analysis and outcomes are also provided in this deliverable. 

2.7.2 Integration Capabilities 
Integration capabilities are important to include the sandbox component to easily interact and integrate with 

other software components. Not only the automated deployment, but the integration with the other SPHINX 

components is important. Towards this direction, we implement the APIs and the automated processes for 

initiating systems-on-a-test and to provide an easy way for the end user to interact with the sandbox and to 

collect insights for running an executable digital environment. The integration is processed using WEB APIs and 

Web interface for controlling the components inside the sandbox. 

2.7.3 Networking, subnetworks and System Isolation 
Nowadays, it is important to consider the network communication as one of the most important aspects in the 

modern digital infrastructures and systems. This means that every component currently includes network 

connection and continuously interacts with other network components. In the developed sandbox there are 3 

different aspects of networking. The first one is the physical network interfaces/adapters, secondly are the 

virtualized network adapters created by the hypervisor and third are virtualized network interfaces created for 

the Docker containers. As a result, it is possible to combine or revise any of the above options to meet our own 

goals, accordingly. 
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3 Virtualization Technologies 
Virtualization technologies include a lot of different implementations and existing deployments. We purpose 

to identify the key-benefits from such technologies and to include them in our development. The benefits of 

each one are described and the differences from using Docker containers are addressed. Therefore, the 

capabilities and the drawbacks or restrictions for each of the existing approaches have been tested and 

analyzed. 

3.1 Overview 

There are two types of virtualization methods and techniques including native or hosted virtualization. These 

two types are called native-bear metal and hosted approach (Type 1 and Type 2) [7, 8]. Using a type 1 hypervisor 

means that the operating system and the services which are executed are directly relevant to the hypervisor 

technology avoiding any extra overhead (Figure 4). Managing a type 1 hypervisor includes performance 

benefits; however, extra services are not included. 

 

Figure 4. Virtualization - Type 1 and Type 2 hypervisors 

Except these two types another relevant service and deployment approach is the containerization. Using 

containers, it is possible to run services or even operating systems; however, this approach is not strictly related 

to virtualization technologies, since the same operating system’s kernel is used. The difference between the 

technologies and deployment approaches are presented in Figure 5. All the mentioned approaches include 

benefits and drawbacks. For example, containerization might include security risks which have to be managed, 

while virtualization include higher overhead and higher demands related to the system resources. 

Type 1 virtualization approach (bare metal) is very good option when hosting multiple virtual systems and do 

not have any other services running, meaning that the resources are entirely dedicated to the virtual systems. 

Providing isolation and high system resources, type 1 is the recommended solution. Advantages of bare metal 

hypervisors are the following: 
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• Resources dedicated to a single customer 

• Greater processing power and input/output operations per second (IOPS) 

• More consistent disk and network I/O performance 

• Quality of Service (QoS) that guarantees elimination of the noisy neighbour problem in a multitenant 

environment. 

Type 2 and hosted hypervisors might be similar to the bare metal hypervisors, but they could maintain and 

manage more services as well.  

 

Figure 5. Differences between virtualization approaches and containers 

Therefore, in the case of type-2 hypervisors, the system resources might be shared with the managed services. 

Finally, containerization technologies maintain a lot of benefits; however, there are multiple security risks due 

to the lack of a  hypervisor and all of the deployed containers are executed in the same kernel, sharing the same 

filesystem and services of the hosting system. In that perspective an analysis of the benefits and drawbacks is 

important and it is provide in the section below. 

3.2 Virtualization vs Containerization 

As presented in the above section virtualization and containerization maintain some major differences. 

Containerization is a virtualization. One of the main aspects that require analysis when using containerization 

technologies from the security perspective (e.g. using Docker) includes properties and capabilities that 

containers do not include (process, filesystem, device, network isolation and the incapability for limiting the 

resources) [1]. Although mitigation actions exist (e.g. chroot jail creating an isolated directory for running 

processes) for enhancing the security posture of containers the attack surface is always bigger than virtual 

machines. 

 

Figure 6. Virtualization approaches and containers 
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In some cases, the sandbox could include both the virtualization and containerization technologies. Despite the 

limitations, containers have been deployed in a variety of use cases. They are popular for hyperscale 

deployments, lightweight sandboxing, and, despite concerns about their security, as process isolation 

environments. Significant benefits from using containers include the following: 

• Run stand-alone services and applications consistently across multiple environments 

• Create isolated instances to run tests 

• Build and test complex applications and architectures on a local host 

• Provide lightweight stand-alone sandbox environment for developing, testing, and teaching 

technologies 

• High performance 

Regarding containerization, performance research has been done which evaluates the response times from 

HTTP requests when using containerization in comparison to virtualization [2]. The differences between the 

deployment of virtual machines compared to containers are presented in Figure 7. 

 

Figure 7. Difference between Virtual Machines and Containers on the usage of system resources 

In our demo deployment we execute a sandbox using a Docker container which initiates multiple virtual 

machines which operate in the same subnet. As presented in Figure. 8 the container is using the IP address 

172.17.0.2 and the container includes virtual images (e.g. Linux, Windows 10). It is possible to easily destroy 

and create another sandbox (e.g. 172.17.0.3) which will initiate the virtual machines again in a different subnet 

and inside another Docker container. 

 

Figure. 8. KVM running in two different Docker containers 
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It is possible to include Docker containers as a virtualization system to conduct security tests on the deployed 

applications; however, this could not apply when the resources are unknown and could include security risks 

which include the Docker container take-over from potential malicious services. This is the main reason for not 

using containerization but virtualization technology when analyzing malwares for example. In Figure. 9 the 

different services are presented (e.g. webgoat vulnerable machines running as a Docker). Using containers 

instead of virtual systems is a more flexible solution and provides higher performance and lower total overhead, 

reducing the required system resources. Furthermore, the total deployment effort and required deployment 

time is reduced as well. 

 

Figure. 9. The running Docker container that include KVM and Docker in a Docker capabilities 

Similarly, it is possible to execute and maintain different docker containers which handle the hypervisor (KVM) 

accordingly and it is easy to rebuild Figure 10. Using this aspect, the potential malicious services are enclosed 

inside a virtual machine and have to escape the virtual machine which is difficult and then take-over tha Docker 

container in order to infect the main system. It is possible to include another border of isolation, executing the 

Docker containers inside a Virtual Machine.  

 

Figure 10. Sandboxing running KVM and provided by separate Docker containers 

In Figure 10, the execution of the Docker run command will create another sandbox with the same topology as 

the others, running as separate virtual machines in a different subnet requiring 1 second for the deployment. 

Therefore, it is easy to deploy multiple sandboxes easy and fast. A comparison between standard and 

lightweight virtualization-containerization (Table 2) [3]. 

Parameter Virtual Machines Containers 

Guest OS Each VM runs on a virtual hardware and the 
kernel is loaded into its own virtual memory 

All the guests share the same kernel loaded in the 
physical memory 

Isolation Libraries and files are completely isolated Directories can be mounted and can be shared 
between the containers and the physical machine 

Performance All instructions need to be translated 
between VMs and the physical machine, 
which incurs a performance decrease 

Near native performance as compared to the 
physical machine 

Communication Virtual Ethernet devices IPC mechanisms such as signals, sockets, etc 
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Storage Need a large amount of disk space as each 
VM needs to store the whole OS and 
associated applications 

 Monitoring network traffic and suspicious network 
packets 

Table 2. Comparison between standard and lightweight virtualization 

In terms of performance, containerization is more applicable than virtualization; however, security risks are 

included and are further discussed in the following section. 

3.2.1 Security Aspects 
The security aspects were previously described in summary and mostly include risks regarding the privileges 

and actions related to escaping a container. As for running KVM the deployed Docker containers require 

privileged mode, such security issues are increased. To mitigate such risks, we implement nested virtualization 

as proposed from other solutions (e.g. Cuckoo Sandbox). Therefore, any executed containers are running inside 

a VM. However, there are other modern approaches which are under development that require analysis and 

to be mentioned such as Kata containers5 and Firecracker MicroVMs6. Other significant approaches include 

Rancher Harvester7 (previously known as RancherVM) allowing to create VMs that run inside a Kubernetes 

cluster, called VM pods. However, such approaches are still under development, but for research purposes we 

deployed such solutions to test their impact and if appropriate for us to use them for the sandbox. 

3.3 Operating systems in a Docker Container 

In our approach we included the approach of running VMs inside the Docker containers. This approach gives us 

the possibility to easily deploy a sandbox environment that might include the required security hardness 

attributes (e.g. nested VMs, execution of operating systems inside a KVM). 

 

Figure 11. Virtualization of multiple systems running in a Docker container and using KVM 

 
5 https://katacontainers.io/ 

6 https://firecracker-microvm.github.io/ 

7 https://github.com/rancher/harvester 
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The virtual machines are by default deployed and starting the Docker container (running the Docker image) 

initiates the topology and the already deployed Virtual Machines. Therefore, it is easy to maintain complex 

topologies that include multiple Virtual Machines that could interact with each other Figure 11. Not only this 

but it is possible to maintain all the services provided from an operating system inside a Docker container. For 

example, there official Linux images exist as Docker images, published on Dockerhub8. 

 

Figure 12. Execution of Kali-linux and Alpine as Docker container 

Example cases of running Linux distributions are presented in Figure 12 and most of the common and well-

known distributions are official, maintaining continuous updates. For example, Fedora initiated version 23 in 

2017 and Ubuntu from 2015 with the distribution version 12.04 Precise Pangolin, while CentOS initiated official 

version of Centos5 in 2017. Therefore, Docker containers are more frequently used lately and it is consequently 

a technology which is currently advancing and is broadly used. Security issues still exist for the containers; 

however, research is currently being conducted in how to mitigate these issues. Some of the mitigation actions 

include the creation of namespaces and for managing the privileges accordingly. 

3.4 MicroVMs 

MicroVMs as a context applies mostly to our deployments. The goal of a micro VM is to provide an isolated 

environment increasing cybersecurity and enhancing resilience through virtualization. The main benefits except 

the enhanced isolation is that micro VMs prevent latency and bottlenecks because they have been designed to 

only access a minimal set of resources. A new promising virtualization technology for maintaining micro VMS is 

called Firecracker by Amazon Web Services and the main goal is to enable large deployment workloads to run 

in lightweight virtual machines, providing enhanced security and workload isolation. This technology uses KVM 

to create and manage the MicroVMs. 

Firecracker and more specifically Ignite Firecracker (an implementation that uses MicroVms), has been 

deployed for testing purposes (Figure 13). From the deployment it is concluded that even if currently only few 

Linux distributions are supported (e.g. Ubuntu) the deployment time is reduced and the performance is 

promising. Indeed, Ignite Firecracker combines the benefits of using containers but by initiating a kernel and all 

the isolation actions which a virtual machine might have. The total overhead is less and for analyzing the 

performance we evaluated the approaches of using MicroVMS instead of KVM and Docker containers. 

 
8 https://hub.docker.com/r/kalilinux/kali-rolling 
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Figure 13. Ignite Firecracker and deployment of a MicroVM 

Using Ignite we were able to deploy an Ubuntu Linux distribution as a virtual machine and by executing the 

command we are able to set the amount of CPUs, diskspace size and the reserved memory (RAM) that will be 

used for each of the MicroVms. An issue with Ignite Firecracker is the incapability for currently running Windows 

operating systems or other than the Linux distributions. However, similar technologies in the past (RancherVM) 

managed to run Windows 7 as Micro VM. We tested the solution of RancherVM; however, only Windows 7 

operating systems are supported. 

 

Figure 14. Comparison of the performance between the approaches 

In all our tests we ensured that all the other applications were closed, and no additional overhead was added 

except for the main system services. The evaluation metrics of course depend on the main system resources 

and our purpose was to compare the differences between the used technologies. The results from the 

performance evaluation and benchmarks are presented in Figure 14. 

Taking the above into consideration, the results from the performance evaluation present that docker 

containers maintain low overhead, mainly in terms of I/O – disk cache writing and reading speeds. Furthermore, 

we have also investigated the total overhead in terms of both the used hard disk space and memory size for 

deploying the vulnerable systems or services. For the evaluation tests of the Linux hosts/services we used 

Sysbench for the memory tests and Stress-ng  for testing the Control Process Unit (CPU) and collecting disk 

cache input/output (I/O) benchmarks. For the Windows system hosts we used Novabench and the considered 

metrics are as follows: 
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1. CPU: CPU performance tests using the Stress-ng for each different technology. Rating is considered as 

the number of iterations of the CPU stressor run for 20 seconds. 

2. I/O – Hard disk: Performance test using Stress-ng related to the disk’s cache measuring the 

input/output operations per second. Rating is considered as the number of iterations of the disk cache 

stressor during the run for 20 seconds. 

3. RAM memory: Effective RAM performance by calculating the writing speed (Mega Bytes per second – 

MB/s). 

Summarizing, MicroVMs seem to be a very good option in terms of performance; however, incompatibilities 

exist. Therefore, MicroVMs is the best option if the services or systems which are on the test include services 

running exclusively on Linux (e.g. Docker Containers). 

3.5 Networking Capabilities 

Virtualization can virtualize hardware devices and this is a main benefit. Similarly, containerization simulates 

the network device creating a virtual ethernet connection for each container (Figure 15). Every container is 

running separately using the same hypervisor for the KVM and using different ethernet connections.  

 

Figure 15. Docker containers running KVM 

Every virtual machine is connected using the virtual network interface called virbr0. Every container has its own 

virbr0 isolated, meaning that VM1 for example cannot directly communicate to another VM from another 

container. Even the connection to the DHCP from virbr0 of each container do not accept any network traffic 

from other VM that is running on a different container. 
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Figure 16. Network interfaces inside the container 

As presented in Figure 16, eth0 is the main interface of the Docker container. Every Docker container has its 

own IP address using veht interfaces provided by Docker. Following, virbr0 is the virtual interface created by 

KVM inside the Docker container. Therefore, every VM which is inside the same container can send and receive 

network traffic from other VMs that are inside the container. More options are provided if we need to change 

the interface that KVM uses and the DHCP range, among other settings (Figure 17). 

 

Figure 17. Creation and editing of Virtual Networks 

Taking into consideration the above, we conclude that we might have options that we did not yet consider well 

and that we have to test more the approaches in order to analyze and discover the possibilities. For example, 

we can also create subnets using other virtual devices for the VMs to actually use other virtual network 

interfaces (e.g. virbr0, virbr1, virbr2 etc.).  Creating different virtual network interfaces, we can isolate the VMs 

more into subnets or create even much complex network topologies. For example, we can run various virtual 

machines using different MAC addres ses and a different virtual network interface (compatibility extensions 

include virtio, e1000e etc.). More comprehensive tests will be described in the next version of this deliverable 

as well as the evaluation results regarding the isolation properties of the sandbox. 
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Regarding Ignite Firecracker and the network capabilities, similar approach is followed by virtualizing the 

network interfaces. In this case every MicroVM has its own virtual ethernet (vethxxxx). 

 

Figure 18. Network settings for each Virtual Machine 

The DHCP range for these interface ranges from 10.61.0.2 – 10.61.254.254 by default; however, we can 

configure this setting at the time we are creating the MicroVMs. The restrictions and potential benefits of using 

the network virtualization have not been tested, but we assume that since Ignite Firecracker uses KVM, similar 

attributes to the other deployment will be present. 
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4 Integration Capabilities 
As presented in Section 3, it is possible to deploy different topologies using KVM and/or Docker containers. 

Initially our focus was in executing high-performance solutions requiring less system resources (e.g. RAM, hard 

disk). However, for successfully deploying other operating systems and services our goal was to discover 

compatible and flexible solutions. 

4.1 Running VMs in a Docker Container 

The first option which includes high compatibility is to deploy a KVM using Docker containers. This is our main 

approach which is already deployed as a demo and by including an existing topology that is also used for the 

Automated Cybersecurity Certification (Deliverable 3.5). In this approach we execute KVM and the virtual 

machines using Docker containers. The benefits of deploying KVM instead of Docker containers is that 

virtualization using KVM provides stronger isolation than Docker containers and therefore any unwanted or 

potential malicious processes are strictly restricted. An issue from our deployment is that KVM is initiated using 

Docker containers requiring for containers to access the root services (privileged mode). Therefore, we propose 

for this deployment to use another virtual machine which will execute the Docker containers. However, it is a 

secure solution if we assume that a malicious process is difficult to escape from KVM and proceed to the main 

host. 

 

Figure 19. Running Win10 and other VMs using KVM inside a Docker container 

As presented in Figure 19, a Docker container with the IP address of 172.17.0.2 is running KVM which hosts 4 

different operating systems: 
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1. ACC – Linux distribution running 4 dockers with ELK stack 

2. Kali Linux – For executing attacks and security tests 

3. Ubuntu/Debian/Lnx01 – A Linux distribution for hosting the services which are for testing 

4. Windows10 – Operating system for hosting services that require Windows OS 

Of course the deployment could be different and include Windows Server and other Linux distributions that 

will eventually result in a more complex topology. 

4.2 Running Virtual Machines in a VM 

In the approach presented in Section 4.1, the possibility to run nested virtualization was also presented in order 

to isolate more the processes and reduce the attack surface of the host. Nested virtualization provides 

increased security and isolation and most of the approaches (e.g. Cuckoo sandbox), uses this approach. The 

drawbacks coming from this deployment is the increased overhead, high resource consumption resulting in 

lower performance. However, we tested the execution of ELK stack and other services and it was possible for a 

moderate machine to host the required systems. However, in terms of scaling this approach is difficult to 

manage and the approach of using MicroVMs seems a better solution. 

4.3 Testing Untrusted Sources 

Our deployment and tool can be used for conducting security tests or to monitor the behaviour of the deployed 

services and the interaction between them. Therefore, untrusted services can possibly be deployed and used 

for extraction of reports that describe the interactions. For meeting this requirement, we can replicate the 

systems-on-the-test using qcow2 images and by executing a KVM. Using Clonezilla for example we can clone 

an entire operating system or pull/import and execute a Docker image of the service. 

4.4 Management and Reports 

Management and reporting is important to the sandbox component, since it is very useful to extract 

information regarding the deployed services. Therefore, we can deploy test cases relevant to security incidents 

and to include a testbed that will provide us information which can be used for other software components and 

tools as well. For example, it is important for Intrusion Detection Systems (IDS) to have example datasets to 

test with or for a SIEM to have test cases to validate with. Furthermore, management and reports are very 

important to the end users to increase their situational awareness and to understand the topologies better. 

 

Figure 20. Management and status of the Host 
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For the deployment, it is not considered an important approach to include by-default remote control tools such 

as VNC and we can only have SSH connection to parse any required commands. However, by using VNC for 

example it is possible for the end users or administrators to get to the debugging mode. Therefore, we can 

reach end users which are not very familiar or experienced to CLI or more advanced options for managing the 

deployed services/operating systems. Using Cockpit9 we can have such information and manage better our 

systems.  Not only Cockpit can provide information regarding the Virtual Machines but can also provide major 

updates or other information regarding the status of the host. For example, in our deployment we execute a 

Fedora distribution as a Docker Container and the management services provide information of potential 

updates of that container. We also have the opportunity to manage Docker Containers and Docker images using 

a graphical user interface (Figure 20). 

 

Figure 21. Configuration options of the Virtual Machines 

Using a graphical user interface the end users can easily configure the Virtual Machines and set the 

minimum/maximum requirements (Figure 21, Figure 22).  

 

Figure 22. Setting up the resources (CPU) 

 
9 https://cockpit-project.org/ 
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This way the end user can scale up or down the systems according to the requirements. We intend to set the 

initial details for the services using an API (will be provided in a later deliverable). This way the end user will be 

able to define the required service to be deployed (e.g. provide a qcow2 image, Docker image etc.) and the 

minimum requirements for the deployed services, as well as the network topology. 

 

Figure 23. Sandboxing using KVM and Docker containers 

Summarizing, Figure 23 presents an instance of our deployment showing two deployed sandboxes (sphinx-

sandbox and sphinx-sandbox-2). Deploying the docker images is easy and in this figure the two Docker 

containers have two different IP addresses (172.17.0.2 and 172.17.0.3). Inside each of them 3-4 VMs are 

running separately providing the isolation which is already discussed and will be described in more details in 

Section 5. 
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5 Network and System Isolation 
This section is appointed to the actions that include testing of the system isolation and network interaction 

between the deployed services or operating systems. Since it is important for the deployed services to be 

running in a restricted and controllable environment, maintaining isolation while allowing them to interact with 

each other is important. To meet this requirement, we deploy virtual machines using KVM and using the same 

virtual interaface (e.g. virbr0) it is possible for the services to interact each other, keeping the Docker container 

intact and so the main host. Escaping a docker container might be possible; however, escaping from virtual 

machine is very difficult for a potential malicious service to succeed. 

5.1 Overview 

For being confident and to evaluate the isolation capabilities of the selected approaches we selected a list of 

common ransomware and malicious software. For testing purposes, we deployed WannaCry retrieved from 

theZoo10, a popular Github repository. Our initial purpose was to execute both common services (e.g. apache, 

SQL server) and malicious software as well to test the approach. Towards this direction, we tried to have 

interactions between the virtual systems and to examine the network traffic going beyond the strict boundaries 

of the virtualization.  

WannaCry itself is a ransomware worm, meaning that it can infect other windows computers; however, this 

procedure was not produced any results and did not infect other operating systems. Therefore, we are currently 

focused more on providing more malicious worms (e.g. SSH worms that extend to Linux distributions). The 

results from this evaluation will be provided in a later and final version of this deliverable. 

5.2 Networking 

Using virbr0 from KVM and veth from Docker Containers it is possible to create subnetworks which are similar 

to existing ones. Of course, services that are provided such as gateways, DHCP or other are provided using 

virtualization; however, it is possible to even deploy some of these services as separate services in order to 

apply more to the reality if required. 

 

Figure 24. Network confirmation for creating Virtual LAN 

Therefore, it is possible to deploy realistic network topologies accordingly. Using the graphical user interface 

(or APIs) it possible for us to initiate such options (Figure 17). Being able to create our own network topologies 

 
10 https://github.com/ytisf/theZoo 
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or replicate the existing ones we are able to execute security scenarios and retrieve/collect network traffic, 

data, log files being able to understand the interactions between the deployed or replicated systems and 

services. 

5.3 System Behavior 

Using internal services for managing the updates and being able to access the managers internal processes we 

are able to understand more about the sandbox itself. The options we have maintain and increase the security 

posture of the deployed services even more, without affecting the internal deployed services that were created 

using KVM. Therefore, we maintain a security border between the host, the sandbox and the virtual machines. 

 

Figure 25. Automated updates for the Docker container which manages the KVM 

Figure 25, presents the potential updates and the importance (severity) addressing also the CVE (Common 

Vulnerabilities and Exposures) numbering. Furthermore, using the graphical user interface (Figure 26) the 

possibility to manage docker containers is presented in case we want to deploy the required services not in a 

KVM but as Docker containers (by understanding the security risks that this approach provides). 

 

Figure 26. Interface for managing the Docker images and Docker containers 
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It is possible as well to deploy services directly as Docker containers; however, this option is applicable and 

secure if the host system that includes docker is running in a Virtual Machine. Using Docker containers could 

include some elements of isolation; however, is not a secure option since a malicious process could escape the 

containerization and access the host system resources and escalate privileges. For example, if malware analysis 

is to be conducted, it is safer to execute in isolated inside a virtual machine and to have a separate kernel for 

the main processes to be executed. 

5.3.1 Malware Analysis 
For testing the sandboxing we deployed Cuckoo sandbox and afterwards we deployed adversary emulation 

using Caldera and tried to capture the triggered security events (Figure 26). Sandboxes are very popular for 

conducting static and dynamic malware analysis.  

 

Figure 27. Adversary emulation using Caldera 

As presented in Figure 28, it is possible to analyze a file or executable file and discover if it a malicious process 

or hidden payload inside the uploaded file.  

 

Figure 28. Cuckoo Sandbox analyzing a Trojan listed in 57 AntiVirus engines 
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The Cuckoo Sandbox is possible to be executed inside our sandbox in order to extend our approach for 

discovering malware and ransomware accordingly. More details and screenshots are extracted when executing 

the scanning for the end user to understand better the behaviour of the potential malicious payload. 

Summarizing, in our approach the sandbox is not deployed for extracting details regarding a potential malicious 

file, but to create a safe and secure environment for conducting security tests. Therefore, we aspire to extend 

this approach and to provide the offensive tactics for inspecting the elements inside the sandbox. This 

inspection includes malware analysis but extends more to the vulnerability scanning and for understanding 

better the internal interactions of the systems which are executed inside the sandbox. 

5.4 Sandbox Isolation Capabilities 

KVM or running systems using virtualization guarantees the isolation in terms of filesystem access and 

processes and it is possible to isolate networks as well in order to not directly interact with other components. 

Docker containers also include some of these options; however the security risks are increased. For evaluating 

the isolation capabilities we intend to execute malicious worms or other offensive tactics which focus on 

privilege escalation, escaping the Docker containers and to conduct research for the possibility to escape from 

the virtualization. 
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6 Summary and Conclusions  

The capabilities for the SPHINX to automatically conduct the processes that are related to security testing are 

easy to demonstrate using the sandbox and data inspection component. Using the sandbox (SB) is is easy to 

deploy services and systems and to conduct security analysis accordingly. Inside the sandbox it is possible to 

deploy other SPHINX components or to interact with the deployed systems and services, extracting realistic 

data from virtualized systems.  

Our goal was to discover the best practices and to easily deploy complex topologies in order to create the digital 

environment where SPHINX components will be tested, to extract data which will be used to enhance the 

process of the other SPHINX components and to provide a safe and secure environment for conducting security 

tests. Therefore, The Automated Cybersecurity Certification (ACC) sub-component is directly related to the 

sandbox as it is important to include ACC and SB when we want to conduct security tests to untrusted or 

unknown resources and services. Furthermore, using the SB it is possible to sandbox the behavior and monitor 

the interactions between software components, either if are services or systems. The automation in terms of 

deployment and other enhanced options are currently under development and we aspire to include processes 

for the end user to be able to easily deploy services and systems using APIs. Such details will be included in a 

later version of this deliverable. 
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