

D4.1 - SPHINX Cross-layer
anomaly detection framework v1
WP4 – SPHINX Toolkits
Version: 1.00

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 2 of 35

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2019

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or

both. Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals

and care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1stJanuary 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator National Technical University of Athens - NTUA

Deliverable D4.1 SPHINX Cross-layer anomaly detection framework v1

Work Package WP4 – SPHINX Toolkits

Date of Delivery Contractual M20 Actual M20

Nature R - Report Dissemination Level P - Public

Lead Beneficiary SIMAVI

Responsible Authors Radu Popescu, Dana Oniga Email radu.popescu@siveco.ro,

dana.oniga@siveco.ro

 Phone

Reviewer(s): PDMFC, ICOM

Keywords Anomaly Detection, Data Traffic Monitoring

http://sphinx-project.eu/

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 3 of 35

Document History

Version Issue Date Stage Changes Contributor

0.10 10/02/2020 Draft ToC Mircea Vasile (SIMAVI)

0.20 27/07/2020 Draft Content Daniela Condrache (SIMAVI)

0.30 27/07/2020 Draft Content Catalin Danila (SIMAVI)

0.40 7/08/2020 Draft Content Radu Popescu (SIMAVI)

0.50 26/08/2020 Draft Internal Review
Stylianos Karagiannis (PDMFC),

Ilias Lamprinos (ICOM)

0.60 27/08/2020 Draft Address Reviewers’ Comments Radu Popescu (SIMAVI)

0.70 28/08/2020
Pre-

Final
Address Reviewers’ Comments Dana Oniga (SIMAVI)

0.80 28/08/2020
Pre -

Final
Quality Control

George Doukas (NTUA) ,

Michael Kontoulis (NTUA)

1.00 28/08/2020 Final Final Christos Ntanos (NTUA)

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 4 of 35

Executive Summary
The document D4.1 Cross-Layer Anomaly Detection Framework v1 presents the research and development

activities that were made to design and build the first version of two of the SPHINX Toolkit components: Data

Traffic Monitoring (DTM) and Anomaly Detection (AD).

These components are included in the Automated Cyber Security Risk Assessment block, one of the main

high-level SPHINX Architecture building blocks, which deals with advanced and automated tools to assess the

level of cyber security of a given environment (e.g., healthcare information technology operational

environment)

This deliverable contributes toward reaching SPHINX project milestone MS5: First set of SPHINX services &

modules prototype completed - First Integrate approach at the end of M20. The development of both

components (DTM and AD) is at the end of their first iteration (M13-M20). Both components underwent a

systematic research, design and development work. The components are continuously growing and maturing.

This report presents the overall development achievements in the first iteration.

First chapter is the introduction to this report, giving more details about its purpose, structure and showing its

relations to others WPs and Tasks.

Chapter 2 General Overview explains the investigation of concepts on which Data Traffic Monitoring (DTM)
and Anomaly Detection (AD) components are based on

Chapter 3 describes DTM Component, starting with its scope, functionalities and design principles. More
details are given on DTM’s background, technical construction and relations with other SPHINX Toolkit
Components.

Chapter 4 is dedicated to the AD Component, explaining its functionalities, architecture, background,
technical construction and relations with other SPHINX Toolkit Components.

The last Chapter concludes that the two components are complementary, DTM detecting known threats
based on signatures, while AD is designed to detect unknown threats by creating profiles of normal behaviour
and searching for network traffic events that are considered anomalous because they do not fit the profiles.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 5 of 35

Contents

Executive Summary ... 4

List of Abbreviations ... 8

1 Introduction .. 9

1.1 Purpose & Scope .. 9

1.2 Structure of the deliverable .. 9

1.3 Relation to other WPs & Tasks .. 9

2 General Overview ... 10

3 Overview of Data Traffic Monitoring ... 12

3.1 Scope of Data Traffic Monitoring .. 12

3.2 Design Principles .. 12

3.3 Human factor ... 13

3.4 Technical Details .. 14

3.4.1 DTM Manager ... 15

3.4.2 DTM Agents ... 17

3.4.3 Tshark ..Error! Bookmark not defined.

3.4.4 Suricata ... 17

3.4.5 Asset discovery.. 18

3.4.6 Database ... 18

3.4.7 API ..19

3.4.8 Kafka .. 21

3.5 Background .. 22

3.6 Data Traffic Monitoring in Sphinx .. 22

4 Overview of Anomaly Detection .. 24

4.1 Scope of Anomaly Detection ... 24

4.2 Design Principles .. 24

4.3 Human Factor .. 26

4.4 Technical Details .. 26

4.4.1 Hadoop .. 26

4.4.2 Hbase .. 27

4.4.3 Spark ... 27

4.4.4 Anomaly detection engine .. 27

4.4.5 AD backend & frontend .. 28

4.4.6 API 30

4.5 Background .. 32

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 6 of 35

4.6 Anomaly Detection in Sphinx .. 32

4.6.1 Data collection .. 33

4.6.2 Data aggregation and analysis .. 33

4.6.3 Visualization, alerting and real-time information ... 33

5 Summary and Conclusions .. 34

6 References .. 35

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 7 of 35

Table of Figures

Figure 3.1 SPHINX DTM Architecture .. 13

Figure 3.2 SPHINX DTM Deployment scenario .. 14

Figure 3.3 SPHINX DTM Agents list .. 15

Figure 3.4 SPHINX DTM Add Agent page ... 15

Figure 3.5 SPHINX DTM Instance details screen .. 16

Figure 3.6 SPHINX DTM Statistics .. 16

Figure 3.8 SPHINX DTM asset discovery ... 18

Figure 3.10 SPHINX DTM API ... 21

Figure 3.11 SPHINX DTM Topics in Kafka .. 22

Figure 3.12 SPHINX DTM Collaboration Diagram .. 23

Figure 4.13 SPHINX AD High Level Logical Architecture .. 25

Figure 4.14 SPHINX AD Internal Logical Architecture .. 25

Figure 4.15 AD back-end & front-end tools... 26

Figure 4.16 AD back-end & front-end tools... 28

Figure 4.17 SPHINX AD screen ... 29

Figure 4.18 SPHINX AD detection tasks ... 29

Figure 4.19 SPHINX AD configuration page ... 30

Figure 4.20 SPHINX AD API .. 31

Figure 4.21 SPHINX AD Collaboration Diagram ... 32

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 8 of 35

List of Abbreviations

ABD - Anomaly-based Detection

AD - Anomaly Detection

API - Application Programming Interface

DTM - Data Traffic Monitoring

FDCE - Forensic Data Collection Engine

HP - Honeypot

ID - Interactive Dashboards

IDS -Intrusion Detection System

IPS - Intrusion Prevention System

ML - Machine Learning

NIDS - Network Intrusion Detection System

NSM - Network Security Monitoring

PCAP - Packet Capture

REST - REpresentational State Transfer

RCRA - Real-time Cyber Risk Assessment

SB - Sandbox

SBD - Signature-based Detection

SIEM - Security Information and Event Management

SPA - Stateful Protocol Analysis

WP - Work Package

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 9 of 35

1 Introduction

1.1 Purpose & Scope

The purpose of this document is to present the systematic work done under the task T4.1 SPHINX Anomaly

Detection and User Profiling (WP4: SPHINX Toolkits) between months M13 to M20 of SPHINX project. This

deliverable will cover the activities of research, design and development performed during the first iteration

of development for two of the SPHINX Components: Data Traffic Monitoring (DTM) and Anomaly Detection

(AD). The two components will work together in order to provide a framework for anomaly detection.

1.2 Structure of the deliverable

This deliverable is structured in four chapters. Chapter 1 is the introduction and presents the rationale for

writing this document and its relations with other WPs & Tasks. Chapter 2 contains a general overview of the

subject of anomaly detection in network traffic; Chapter 3 and Chapter 4 describe Data Traffic Monitoring and

Anomaly Detection Components, covering their role in the SPHINX Ecosystem, technical and architectural

details and integrations with other SPHINX components. Chapter 4 presents a short summary and general

conclusion of this document.

1.3 Relation to other WPs & Tasks

The development effort described by this report is based on deliverables from WP2 Conceptualisation, Use

Cases and System Architecture: D2.4 Use Cases Definition and Requirements Document v1, D2.5

Requirements and Guidelines v1, D2.6: SPHINX Architecture v2. Design, development and implementation

principles were used based on recommendations from WP6: SPHINX Common Integration Platform &

Incremental Strategy.

The output of DTM and AD components will be made available to other components from WP4 SPHINX

Toolkits and WP5 Analysis and Decision Making.

AD and DTM will be integrated, validated and tested in the context of WP6: SPHINX Common Integration

Platform & Incremental Strategy, during tasks T6.4 System integration execution that will address the actual

integration of outcomes from WP4 and WP5 and T6.5 Testing of Integrated SPHINX platform.

The second iteration of development of AD and DTM components will include feedback received after

integration testing and feedback received from end users during the pilots within WP7- Technology Validation

Pilots and Privacy assessment. Task T7.2 System functional testing and validation is aimed to verify that the

deployed pilots and the components meet the functional, operational and technical requirements as

described in other WPs and will gather the evaluation results of the validation pilot release (M25-M27) and

the second validation pilot release (M32-M34).

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 10 of 35

2 General Overview
The Cross-Layer Anomaly Detection Framework is a system responsible with the detection of malicious

activities by monitoring and analysing network traffic. These types of systems are called Intrusion Detection

Systems (IDS). It is designed to be modular, configurable, and extensible in order to be easily adaptable to

hospitals with various types of network infrastructures. The framework must support networks with different

types of topologies, sizes and volume traffic.

In order to respond to these requirements a systematic investigation was done into specific literature,

sources and materials, as described below.

The literature on the subject of network monitoring and intrusion detection classifies the detection

methodologies as follows [1]:

• Signature-based Detection (SBD) - A signature is a pattern or string that corresponds to a known attack or

threat. SBD is the process to compare patterns against captured network traffic for recognizing possible

intrusions. Because of using the knowledge accumulated by specific attacks and system vulnerabilities, SBD

is also known as Knowledge-based Detection or Misuse Detection.

• Anomaly-based Detection (ABD) - An anomaly is a deviation from a profile. A profile represents the normal

or expected behaviours derived from monitoring regular activities, network connections, hosts or users

over a period of time. Profiles can be either static or dynamic and developed for many attributes, e.g.,

failed login attempts, processor usage, the count of e-mails sent, etc. Then, ABD compares normal profiles

with observed events to recognize significant attacks. ABD is also called Behaviour-based Detection in some

articles. Some ABD examples are attempted break-in, masquerading, penetration by legitimate user,

Denial-of-Service (DOS), Trojan horse, etc. SBD and ABD are complementary methods, because the former

concerns certain attacks/threats and the latter focuses on unknown attacks.

• Stateful Protocol Analysis (SPA) - The stateful in SPA indicates that the Intrusion Detection System (IDS)

could know and trace the protocol states (e.g., pairing requests with replies). Thought SPA process looks

like ABDs, they are essentially different. ABD adopts preloaded network or host-specific profiles, whereas

SPA depends on vendor-developed generic profiles to specific protocols. Generally, the network protocol

models in SPA are based originally on protocol standards from international standard organizations, e.g.,

IETF. SPA is also known as Specification-based Detection.

The methodologies studied and presented above are implemented in various tools. The Cross-Layer Anomaly

Detection Framework of SPHINX is based on open source tools, libraries in order to obtain a solution easily

adaptable and extendable based on the specific requirements of the clients.

We focused mainly on Signature-based and Anomaly-based detection methodologies. By using multiple

methodologies we have created a hybrid IDS [2] to provide more extensive and accurate detection. We have

developed two components responsible with the implementation of these methodologies:

• Data Traffic Monitoring (DTM) – implements the signature-based detection approach

• Anomaly Detection (AD) – implements the anomaly-based detection approach

The main functions of these components are:

• Detection of intrusions in the monitored network by using signature-based detection and anomaly-based

detection that complement each other.

• Reporting of the detected threats and alerting.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 11 of 35

• The users responsible for the IT security have access to the detected threats and alerts through the

Interactive Dashboard, another component of the SPHINX Toolkit.

• AD and DTM publish alerts to a Kafka broker in order to make them available to other components of

the SPHINX Ecosystem.

• Exposing API endpoints that enable access to data and functionalities. Other SPHINX components or

third-party applications can request access to detailed traffic data following an alert.

The AD and DTM components will be described in the following sections of the document.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 12 of 35

3 Overview of Data Traffic Monitoring

3.1 Scope of Data Traffic Monitoring

Data Traffic Monitoring is a SPHINX component responsible with threat identification by monitoring the

network traffic and applying signature-based detection analysis. It monitors all the packets traversing the

network and compares them against a database of attack signatures or attributes of known malicious threats.

DTM is a Network Intrusion Detection System (NIDS) optimized to work in the SPHINX Ecosystem by

communicating with other SPHINX components and exposing alerts and relevant statistics to the users.

The main functionalities of the Data Traffic Monitoring (DTM) component are:

• capturing traffic from multiple protocols;

• analysing packets and files in different formats;

• identifying traffic information for every user and source;

• highlighting unusual communication/activity according to the rules and filters defined

• identifying new assets on the network.

3.2 Design Principles

The Data Traffic Monitoring component has to capture relevant network traffic in order for its analysis

techniques to be successful. If the network is organized in subnets, DTM must be able to do its analyses on

the local traffic from the subnets in order to detect potential threats that don’t generate external traffic (for

example, a malware on a compromised device that does a port scan attack in its subnet). DTM is designed to

support agents that will be deployed at strategic points within the network. The agents are controlled from a

central management DTM instance.

Another consideration in designing the DTM component is the ability to easily modify and extend its

capabilities in order to adapt to specific details of the infrastructures where it is deployed. That is why DTM is

designed to make it simple to integrate new tools in the solution.

DTM integrates the following tools:

• Tshark – this is a network protocol analyser. Tshark offers the ability to capture packet data from a

live network or allows reading packets from a previously saved capture file. It has a powerful package

filtering support and protocol dissection capabilities. DTM and Tshark can be used together for

investigations after threat detection or to develop complex custom detection analyses procedures. [2]

• Suricata – this is an open source, mature, fast and robust network threat detection engine [3]. It has

powerful and extensive rules and signature language for network traffic inspection. There are many

prebuilt rules available that cover known attacks and vulnerabilities.

Persistent data, like alerts, statistics, agent configuration data and operation data is stored in a PostgreSQL

database.

Alerts and statistic information are made available to other application in two ways:

• by publishing messages to Kafka

• by exposing the data as REST services

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 13 of 35

The figure 3.1 describes the DTM component with the details presented above.

Figure 3.1 SPHINX DTM Architecture

The elements represented in figure 3.1 are:

• DTM Manager – this is the component that contains features like the agent administration and

control, statistics.

• DTM Agent – the agents are deployed on the network in order to capture the relevant traffic. Each

agent can control tools for network traffic capture and analysis like Tshark and Suricata. The

communication between the manager and the agents is based on REST webservices.

• Kafka – the message broker used for internal and external communication

• PostgreSql – is used for storing configurations and statistics.

3.3 Human factor

DTM can be configured to search for a vast number of possible threats. For example, Suricata has many

predefined rules and signatures regarding protocols at various layers in OSI model (like protocols TCP, UPD

that correspond to transport layer in OSI model or HTTP, FTP that are application layer in OSI model). The

evaluation of the rules consumes processing power, so it is important to deactivate the rules that are not

relevant in the environment that is monitored. It is the user that must decide which are the rules that must be

active.

DTM raises alerts when it detects threats. It is the responsibility of the user to analyse the alerts and fix the

root cause for the problem. For example, following an alert the user can take actions like:

• update the software in order to close vulnerabilities

• educate the operators in order to prevent email scam campaign

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 14 of 35

• update the rules used to evaluate the traffic if they are no longer correct due to changes in the

network traffic characteristics

3.4 Technical Details

DTM component is based on Tshark and Suricata IDS as proven open source tools used in network

monitoring, network security investigations and threat detection and prevention. DTM Manager and Agents

are created with Spring Boot framework and Java version 14. DTM Manager also contains a web front-end

that is created with React JavaScript library for UI components and is running on Node.js runtime.

DTM deployment scenarios depend on the infrastructure of the network DTM will monitor. A possible

deployment is represented in the following figure.

Figure 3.2 SPHINX DTM Deployment scenario

In this deployment scenario, DTM agents are deployed at various points in the infrastructure:

• DTM agent 1 – this agent is deployed behind the external firewall. It will analyse external in / out traffic.

• DTM agent 2 – it is also possible to deploy an agent in front of the external firewall. The network traffic

that this agent analyses has more noise because it will see traffic that is not blocked by the firewall. But

the alerts raised by this agent can be useful to configure the firewall in order by block suspicious traffic

as early as possible.

• DTM agents 3, 4 – these agents monitor subnets. Monitoring the internal traffic of the subnets is

important in order to detect threats that escape the agents deployed around the external firewall. For

example, it is possible to infect a computer in a subnet with a malware using an external drive. DTM will

detect the malware’s network activity.

The logical components of DTM are described in the following sections.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 15 of 35

3.4.1 DTM Manager
The DTM Manager is the component responsible with the administration and control of the DTM agents. It

allows defining new agents, choosing between integration with Tshark and Suricata and configuring specific

information for Tshark or Suricata.

Figure 3.3 SPHINX DTM Agents list

In figure 3.3 is visible the list of configured agents. New agents can be added using the “Add instance” button.

Existing agents can be deleted or modified with the buttons in the “actions” column.

Figure 3.4 SPHINX DTM Add Agent page

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 16 of 35

In figure 3.4 is the page for configuring an agent. This page opens after using the “Add instance” button

above. Here it is possible to configure details like the url where the agent is accessible, a name and a key.

There can be only one agent with the property Master set. This agent plays the role of DTM Manager. In the

Tools section, it is possible to select the tools deployed with the agent (Tshark, Suricata).

Figure 3.5 SPHINX DTM Instance details screen

In figure 3.5 is the administration page for an agent working with Tshark. It is possible to configure on what

interfaces the agent will capture traffic and what filter is used for filtering traffic.

The DTM manager also contains various statistics about the network environment as represented in figure

3.6.

Figure 3.6 SPHINX DTM Statistics

As examples of statistics that are created by DTM:

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 17 of 35

• Data traffic per instance and protocols

• Alerts

• List of connected devices

• Bandwidth used per device

For example, accessing “Data traffic per instance and protocols” brings the page in figure 3.7:

Figure 3.7 SPHINX DTM per instances and protocols

3.4.2 DTM Agents
DTM Agents are deployed in strategic points of the network infrastructure in order to see the relevant

network traffic. For example, the agents will be installed on proxy servers or on computers that have access

to monitoring port of routers or switches.

The agents are controlled by the DTM Manager.

3.4.3 Tshark
Tshark is a network protocol analyser. It captures packet data from a live network, or reads packets from a

previously saved capture file, either printing a decoded form of those packets to the standard output or

writing the packets to a file. Tshark's native capture file format is pcapng format, which is also the format

used by wireshark and various other tools.

Packet capturing is performed with the pcap library. That library supports specifying a filter expression;

packets that do not match that filter are discarded. The syntax of a capture filter is defined by the pcap

library.

Tshark also supports read filters, which allow selecting which packets are to be decoded or written to a file.

Read filters are very powerful; more fields are filterable in Tshark than in other protocol analyser, and the

syntax used to create filters is richer.

3.4.4 Suricata
Suricata is a free and open source, mature, fast and robust network threat detection engine. The Suricata

engine is capable of real time intrusion detection (IDS), inline intrusion prevention (IPS), network security

monitoring (NSM) and offline pcap processing. Suricata inspects the network traffic using a powerful and

extensive rules and signature language and has powerful Lua scripting support for detection of complex

threats. With standard input and output formats like YAML and JSON, integrations with tools like existing

SIEMs, Splunk, Logstash/Elasticsearch, Kibana and databases become effortless.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 18 of 35

3.4.5 Asset discovery
DTM monitors the network traffic in order to identify new devices. Unknown devices are a potential security

threat. DTM raises alerts regarding the new devices identified. The list of unknown and known devices is

accessible in the component’s web application (figure 3.8).

Figure 3.7 SPHINX DTM asset discovery

The alerts are visible in the Interactive Dashboard component and are also published to Kafka in order to

be used by other SPHINX Components, for example Vulnerability Assessment as a Service (VAaaS)

component.

3.4.6 Database
DTM component uses for data persistence a PostgreSQL database.

Figure 3.9 SPHINX DTM database diagram

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 19 of 35

A short description of the tables:

• dtm_instance – the list of agents.

• Tshark_process – the list of Tshark processes configured on agents. An agent can be integrated with

Tshark, Suricata or both.

• Tshark_filter – the filters used by Tshark processes for network monitoring.

• suricata_process – the list of suricata processes configured on agents.

• assets – the list of devices discovered in the network

• asset_details – information about the discovered devices

3.4.7 API
DTM component uses REST services both for internal usage and for integration with external components.

Internally, the web front-end reads and writes data to the java backend. Also, the DTM agents expose REST

services used by the DTM Manager.

The following figures present the API used by DTM as generated by swagger.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 20 of 35

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 21 of 35

Figure 3.8 SPHINX DTM API

3.4.8 Kafka
DTM uses Kafka to asynchronously send information. In the figure 3.11 there are examples of Kafka topics

where DTM publishes messages. The topic dtm-metric contains statistics; dtm-package contains summaries of

the captured packages. The number of topics will increase as the component is further developed.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 22 of 35

Figure 3.9 SPHINX DTM Topics in Kafka

3.5 Background

Data Traffic Monitoring component, part of the SPHINX Universal Cyber Security Toolkit, is targeted to for

Healthcare institutions of different sizes, with network infrastructures of different complexities, covering one

or more locations, in one or more towns. This leads to a variety of deployment scenarios and has the

potential to be a complex solution that needs a large team of security experts to install, configure and

administer the component.

In order to keep the complexity under control our approach is to create a tool that uses agents that are

centrally managed and that transmit the data collected in a central location for visualisation and processing.

The agents are based on open source tools Tshark and Suricata. These are state of the art tools, well known

and respected. They complement each other in the endeavour of network threat detection, investigation and

exploratory testing of the network infrastructure.

Suricata is a IDS / IPS able to detect known threats, policy violations, malicious behaviour and anomalies. It is

a multi threaded application, highly scalable capable of inspecting multi-gigabit traffic. It supports automatic

protocol detection on any port.

Tshark, as a protocol analyser with powerful filtering support, is intended to be used as a investigatory tool

after Suricata signals suspect traffic in the network. Tshark also supports a wider range of protocols at

different layers in the OSI model.

3.6 Data Traffic Monitoring in Sphinx

Data Traffic Monitoring component is a support component for other components in the SPHINX ecosystem.

The relationships between DTM and the other SPHINX components are represented in the following image.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 23 of 35

Figure 3.10 SPHINX DTM Collaboration Diagram

The DTM supports the following interactions with the other components:

• DTM sends abnormal and suspicious traffic activity to the Anomaly Detection (AD), the Forensic Data

Collection Engine (FDCE), the Real-time Cyber Risk Assessment (RCRA) and the Security Information

and Event Management (SIEM) components, including packets and files on traffic data and unusual

activities concerning users and their connections.

• DTM sends abnormal and suspicious traffic data (data files and packets) to the Honeypot (HP)

component to further detect and analyse possible attacks.

• DTM sends statistical information concerning collected data traffic (e.g., number of connected

devices and connected users, data access type, bandwidth used per device and per user) to the

Interactive Dashboards (ID) component.

• DTM sends traffic information, including information about connected assets (devices), to the

Sandbox (SB) component, in order to support the complete mapping of the IT infrastructure. This

information is used specifically for intrusion detection and alerts on Denial of Service attacks.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 24 of 35

4 Overview of Anomaly Detection

4.1 Scope of Anomaly Detection

Anomaly Detection is a SPHINX component that uses a different approach than the DTM component to threat

discovery. It analyses network activity and classifies it as either normal or anomalous. Instead of using

signatures as a basis for classification, AD builds profiles for normal behaviours and uses data mining and

machine learning algorithms in order to identify outliers that are reported as alerts.

AD does not use the raw network data. AD uses as input the logs generated by Data Traffic Monitoring

component. These logs describe the network activity in high-level terms. For example, they can contain:

• TCP connections

• HTTP sessions with details like URIS, headers, MIME types, server responses

• DNS requests with replies

• SMTP sessions

DTM discovers only threats that are in its signature database. That means it can detect only known threats.

The AD component creates a baseline for normal network/device/user behaviour. This approach of AD

component allows it to detect new and unknown threats by monitoring the outlier activity that departs from

baseline.

The main functionalities of this component are:

• detection of ecosystem disturbances;

• implement a set of rules based on the characteristics of previous system events, user activities and

incidents;

• provide an alert engine to raise notifications.

4.2 Design Principles

The design of the AD component is based on the following considerations:

• SPHINX ecosystem is a complex system, with components built using different programming language

and technologies. As part of this ecosystem, AD must be able to interoperate with the other SPHINX

components. This is achieved in two ways:

o by using a messaging system. The information is published in topics. Other SPHINX components

subscribe to the topic of interest in order to get access to data.

o by exposing RESTful web services.

• AD should be scalable in order to be usable with networks with both low traffic and high traffic volume.

Because of this AD is based on big data tools and algorithms optimized for distributed execution.

• AD should be able to discover unknown threats, thus complementing the DTM component. In order to

be able to discover unknown threats, AD uses statistics and machine learning in order to analyse the

network activity, create profiles corresponding to normal activities and detect anomalous activities

reported to these profiles.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 25 of 35

• AD should be configurable and extensible. Depending on the network environment where the

component is deployed it is possible that not all the analyses implemented in AD are necessary. AD

should permit to enable or disable supported analyses. Also, AD should allow to easily adding new

analyses.

The following figure is a high-level representation of AD logical architecture and collaboration with other

SPHINX Components.

Figure 4.11 SPHINX AD High Level Logical Architecture

The internal logical architecture of the AD component is represented in the following figure:

Figure 4.12 SPHINX AD Internal Logical Architecture

AD ingests the data about network activity published by the DTM component. The data is stored internally in

a storage service capable of handling large data volumes. The anomaly detection engine applies statistical and

ML algorithms in order to create a baseline of normal activity and detect anomalies. The backend contains

application and persistence logic and exposes a REST API used both by the web subcomponent and other

SPHINX components.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 26 of 35

4.3 Human Factor

For the AD component similar considerations apply as for the DTM component. AD issues alerts when it finds

potential threats. It is the responsibility of the user to analyse the alerts and fix the root cause for the

problem. For example, following an alert the user can take actions like:

• update the software in order to close vulnerabilities

• educate the operators in order to prevent email scam campaign

• update the rules used to evaluate the traffic if they are no longer correct due to changes in the

network traffic characteristics

4.4 Technical Details

The tools used in the AD component are represented in the following figure:

Figure 4.13 AD back-end & front-end tools

In order to handle a potentially high volume of network traffic, a solution based on Hbase, Hadoop and Spark

was chosen. These tools are designed to support large datasets and to scale easily. Hadoop and Hbase offer

distributed storage capabilities. Hbase is used because it offers real-time read/write capabilities on top of

Hadoop. Spark supports performing parallel processing over distributed datasets and has a machine learning

library that supports a rich set of algorithms.

A short description of each tool follows.

4.4.1 Hadoop
Apache Hadoop is a framework that allows for the distributed processing of large data sets across clusters of

computers using simple programming models. It is designed to scale up from single servers to thousands of

machines, each offering local computation and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the application layer, so delivering a

highly-available service on top of a cluster of computers, each of which may be prone to failures [4].

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 27 of 35

The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed File System (HDFS), and a

processing part which is a MapReduce programming model. Hadoop splits files into large blocks and

distributes them across nodes in a cluster. It then transfers packaged code into nodes to process the data in

parallel. This approach takes advantage of data locality, where nodes manipulate the data they have access

to. This allows the dataset to be processed faster and more efficiently than it would be in a more

conventional supercomputer architecture that relies on a parallel file system where computation and data are

distributed via high-speed networking.

4.4.2 Hbase
HBase is an open-source non-relational distributed database, developed as part of Apache Software

Foundation's Apache Hadoop project and runs on top of HDFS (Hadoop Distributed File System) or Alluxio,

providing Bigtable-like capabilities for Hadoop. It provides a fault-tolerant way of storing large quantities of

sparse data [5].

HBase features compression, in-memory operation, and Bloom filters on a per-column basis. Tables in HBase

can serve as the input and output for MapReduce jobs run in Hadoop. HBase is a column-oriented key-value

data store and has been widely adopted because of its lineage with Hadoop and HDFS. HBase runs on top of

HDFS and is well-suited for faster read and write operations on large datasets with high throughput and low

input/output latency. HBase system is designed to scale linearly [5].

4.4.3 Spark
Apache Spark is an open-source distributed general-purpose cluster-computing framework. Spark provides an

interface for programming entire clusters with implicit data parallelism and fault tolerance [6].

Apache Spark has its architectural foundation in the resilient distributed dataset (RDD), a read-only multiset

of data items distributed over a cluster of machines that is maintained in a fault-tolerant way. The Dataframe

API was released as an abstraction on top of the RDD, followed by the Dataset API [6].

Spark facilitates the implementation of both iterative algorithms, which visit their data set multiple times in a

loop, and interactive/exploratory data analysis, i.e., the repeated database-style querying of data. The latency

of such applications may be reduced by several orders of magnitude compared to Apache Hadoop

MapReduce implementation. Among the class of iterative algorithms are the training algorithms for machine

learning systems, which formed the initial impetus for developing Apache Spark [6].

Spark contains MLlib, a scalable machine learning library. At a high level, it provides tools such as [7]:

• ML Algorithms: common learning algorithms such as classification, regression, clustering, and

collaborative filtering

• Featurization: feature extraction, transformation, dimensionality reduction, and selection

• Pipelines: tools for constructing, evaluating, and tuning ML Pipelines

• Persistence: saving and load algorithms, models, and Pipelines

• Utilities: linear algebra, statistics, data handling, etc.

4.4.4 Anomaly detection engine
The Anomaly Detection Engine consists of applications that run on Apache Spark. It uses MLlib from Apache

Spark to execute summarization and threat detection tasks on the data describing network activity received

from the DTM component.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 28 of 35

The results are saved in HBase database for future reference and are published in Kafka in order to be

available for interested subscribers.

The network traffic data generated by DTM + Suricata consists of events specific to supported protocols, like

DNS, HTTP, FTP, TLS etc. This information is used to create profiles with protocol specific information. Threat

detection tasks are run for each relevant protocol.

The main approach used in Anomaly Detection Engine is to use a clustering technique in order to partition the

network events in several cluster and to identify the outlier events. The features used are protocol specific.

Spark ML library provides support for streaming k-means clustering that is useful when data arrive in a stream

like the network events from DTM component. This approach permits to estimate clusters dynamically,

updating them as new data arrive. This permits the update of profiles as the user behaviour changes in time.

4.4.5 AD backend & frontend
The AD back-end is created with Spring Boot framework and Java version 14. The front-end is created with

React JavaScript library for UI components and is running on Node.js runtime. Configuration data and various

statistics are stored in PostgreSQL database. This is represented in the following figure:

Figure 4.14 AD back-end & front-end tools

The Anomaly Detection (AD) front-end is divided into three subcomponents, namely: AD Components, Alert

and Statistics (Figure 4.17) as represented in the figure below:

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 29 of 35

Figure 4.15 SPHINX AD screen

AD Components subcomponent contains the supported anomaly detection tasks. The user has the possibility

to enable or disable them and to configure them. In the following image there is an example of detection

tasks. This list is not final, in the second iteration of the component this list can suffer modifications.

Figure 4.16 SPHINX AD detection tasks

For Massive Data Processing, the "config" button opens the configuration page where a certain threshold for

transfer volume can be set and if it is exceeded, an alert is generated. This can be seen in the following figure.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 30 of 35

Figure 4.17 SPHINX AD configuration page

4.4.6 API
AD component uses REST services both for internal usage and for integration with external components.

Internally, the web front-end reads and writes data to the java backend.

The following figures present the API used by AD as generated by swagger.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 31 of 35

Figure 4.18 SPHINX AD API

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 32 of 35

4.5 Background

Anomaly-based intrusion detection systems were primarily introduced to detect unknown attacks, in part due

to the rapid development of malware. The basic approach is to use machine learning to create a model of

trustworthy activity, and then compare new behaviour against this model. Since these models can be trained

according to the applications and hardware configurations, machine learning based method has a better

generalized property in comparison to traditional signature-based IDS. Although this approach enables the

detection of previously unknown attacks, it may suffer from false positives: previously unknown legitimate

activity may also be classified as malicious. Most of the existing IDSs suffer from the time-consuming during

detection process that degrades the performance of IDSs. Efficient feature selection algorithm makes the

classification process used in detection more reliable.

Network-based anomalous intrusion detection systems often provide a second line of defence to detect

anomalous traffic at the physical and network layers after it has passed through a firewall or other security

appliance on the border of a network. Host-based anomalous intrusion detection systems are one of the last

layers of defence and reside on computer end points. They allow for fine-tuned, granular protection of end

points at the application level.

4.6 Anomaly Detection in Sphinx

AD component complements DTM in the role of detecting threat detection. Therefore, it’s interaction with

the other SPHINX components is similar.

AD supports the following interactions with the other components (as seen in figure 4.21):

• AD sends information on anomalies detected in system events and user behaviour that comprise a

threat to the IT infrastructure to the following components: Forensic Data Collection Engine (FDCE),

Security Information and Event Management (SIEM), Real-time Cyber Risk Assessment (RCRA),

Knowledge Base (KB) and the Interactive Dashboards (ID).

Figure 4.19 SPHINX AD Collaboration Diagram

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 33 of 35

4.6.1 Data collection
Data collection is done using the Data Traffic Monitoring component, which collects the network traffic from

several protocols. The data that AD receives is a higher-level representation of the network activity. DTM +

Suricata generate events, based on the raw traffic data, for http connections, DNS requests, FTP commands

etc. The events contain relevant information for the type event so, for different types of events, the event

contains different data.

For example, for http events, the information received by AD looks like this:

 {

 "timestamp":"2020-07-02T12:11:15.362259+0300",

 "flow_id":831542229306266,

 "in_iface":"enp0s3",

 "event_type":"http",

 "src_ip":"10.0.2.15",

 "src_port":45976,

 "dest_ip":"172.0.19.99",

 "dest_port":80,

 "proto":"TCP",

 "tx_id":2,

 "http": {

 "hostname":"ocsp.pki.goog",

 "url":"\/gts1o1core",

 "http_user_agent":"Mozilla\/5.0 (X11; Ubuntu; Linux

x86_64; rv:79.0) Gecko\/20100101 Firefox\/79.0",

 "http_content_type":"application\/ocsp-response",

 "http_method":"POST",

 "protocol":"HTTP\/1.1",

 "status":200,

 "length":472

 }

 }

4.6.2 Data aggregation and analysis
In order for ML algorithm to have good results, the data must be prepared. The features values should be

normalized because some algorithms calculate the distance between two points by the Euclidean distance. If

one of the features has a broad range of values, the distance will be governed by this particular feature.

Some anomaly detection tasks, like increased traffic usage, need data aggregated by time intervals. The spikes

of traffic usage represent the anomalies and trigger alerts in AD components.

The main ML analyses tools are clustering algorithms, like k-means. The ML library in Apache Spark has strong

support for a wide variety of ML algorithm, including clusterisation algorithms.

4.6.3 Visualization, alerting and real-time information
AD publishes relevant statistics and the alerts to Kafka. It also exposes the data through web-services.

Data visualization is based on Interactive Dashboards Component. Relevant graphs will be available in ID so

the users can build dashboards with information that can help prevent and analyse security issues.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 34 of 35

5 Summary and Conclusions

This deliverable presented the current status of research work and the development direction for two SPHINX

components: Data Traffic Monitoring and Anomaly Detection. It was explained that the two components are

complementary, DTM detects known threats based on signatures, and AD is designed to detect unknown

threats by creating profiles of normal behaviour and searching for network traffic events that are considered

anomalous because they do not fit the profiles. The tools which are used in order to build the two SPHINX

components were described and their advantages are explained.

This deliverable covers the first iteration of development for DTM and AD. The work on DTM and AD will

continue during the second and final iteration. Lessons learned during the pilots and integration testing will

be included in the development effort for the 2nd iteration.

D4.1: SPHINX Cross Layer Anomaly Detection Framework v1

 35 of 35

6 References

[1] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, Kuang-Yuan Tung. Intrusion detection system: A

comprehensive review

[2] Tshark - The Wireshark Network Analyzer 3.2.6 https://www.wireshark.org/docs/man-pages/Tshark.html

[3] Suricata | Open Source IDS / IPS / NSM engine https://suricata-ids.org

[4] Apache Hadoop https://hadoop.apache.org

[5] Apache HBase https://en.wikipedia.org/wiki/Apache_HBase

[6] Apache Spark https://en.wikipedia.org/wiki/Apache_Spark

[7] MLlib: Main Guide - Spark 3.0.0 Documentation https://spark.apache.org/docs/latest/ml-guide.html

https://www.wireshark.org/docs/man-pages/tshark.html
https://suricata-ids.org/
https://hadoop.apache.org/
https://en.wikipedia.org/wiki/Apache_HBase
https://en.wikipedia.org/wiki/Apache_Spark
https://spark.apache.org/docs/latest/ml-guide.html

