
StreamFlow: cross-breeding cloud with HPC

Iacopo Colonnelli1, Barbara Cantalupo1, Ivan Merelli2, and Marco
Aldinucci1

1Department of Computer Science, University of Torino, Italy
2Biomedical Technologies (ITB) of the Italian National Research Council (CNR),

Italy

This paper is the accepted version of IEEE copyrighted material∗

I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, Streamflow: cross-breeding cloud with

HPC, IEEE Transactions on Emerging Topics in Computing, 2020.

DOI:10.1109/TETC.2020.3019202.

Abstract

Workflows are among the most commonly used tools in a variety of
execution environments. Many of them target a specific environment;
few of them make it possible to execute an entire workflow in different
environments, e.g. Kubernetes and batch clusters. We present a novel
approach to workflow execution, called StreamFlow, that complements
the workflow graph with the declarative description of potentially complex
execution environments, and that makes it possible the execution onto
multiple sites not sharing a common data space. StreamFlow is then
exemplified on a novel bioinformatics pipeline for single-cell transcriptomic
data analysis workflow.

1 Introduction

Both in the HPC and cloud realms, workflows play an essential role for applica-
tions coordination because they provide means to model and formalise complex
processes in multiple steps, e.g. tasks, jobs, OS containers or even Virtual Ma-
chines, depending on the target system. Steps are generally arranged in a partial
order induced by (true) data dependency. For this, workflows can be naturally
represented with direct graphs.

Although workflows are used in different execution environments, such as
HPC, cloud and edge, all of these environments continue their path toward
greater specialisation in term of typical features and workloads. While RESTful
APIs are becoming the lingua franca to access and compose computation and
storage in the cloud, the HPC platforms are bound to batch job schedulers.

∗ c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

1

ar
X

iv
:2

00
2.

01
55

8v
3

 [
cs

.D
C

]
 3

0
A

ug
 2

02
0

Starting a web server on an HPC platform is generally not admitted, as it is
impractical to access to cloud storage, e.g. to retrieve temporary results. While
the execution of independent steps in the cloud means they can be executed
in any temporal order in a single processing element, in the HPC platforms
the need for co-allocating at the same time multiple processing elements to
execute a single job is the rule [1]. This complementarity is the cornerstone
of a computing continuum that appears emerging in data-driven applicative
domains. We envision this continuum as composed of more and more specialised
and therefore heterogeneous environments. For this, also workflows need to
embrace heterogeneity, by embedding the capability to execute a single workflow
on multiple different environments. For this to happen, workflows should gain a
higher level of abstraction, subsuming the role of coordination language of other
lower level and more specialised workflows targeting a specific platform.

In this work, we introduce StreamFlow, a novel workflow model that extends
a classic workflow system with a declarative description of possibly many envi-
ronments and with the relations among workflow nodes and execution environ-
ments. StreamFlow is not yet another workflow system; it somewhat conceptu-
ally aims at complementing a workflow system to raise its level of abstraction,
providing the workflow with a “virtual” cross-site platform. In other words,
StreamFlow makes it possible to partition a workflow and describe an execu-
tion plan spawning across multiple sites, even if they do not share the same
data space. In this, StreamFlow leverages on lower level features such as the
deployment of explicitly parallel nodes, e.g. MPI execution, which is targeted
via HPC jobs schedulers (supporting OS containers).

The StreamFlow concept is exemplified by way of a proof-of-concept imple-
mentation based on the Common Workflow Language (CWL) interface, which
is used to specify a novel bioinformatic pipeline (single-cell transcriptomic data
analysis). Thanks to StreamFlow, the single-cell pipeline is executed on two
sites: a Kubernetes orchestrator on the cloud and an HPC cluster on-premise.

In Sec. 2 we describe related work. Being the literature in workflows massive,
we focus on the aspects of interest for this work, inviting the reader to refer to ex-
isting surveys for a more general comparison among workflow systems. In Sec. 3,
we present the proposed approach, i.e. StreamFlow basic principles, whereas
StreamFlow design and implementation are described in Sec. 4. Sec. 5 reports
the single-cell transcriptomic data analysis workflow, along with StreamFlow
experimentation. Finally, Sec. 6 summarises conclusions and future works.

2 Related works

Workflows provide powerful abstractions to design scientific applications, also
supporting their execution on specific infrastructures. According to this vision,
we can consider workflows as an interface between the domain specialists and
the computing infrastructure. The Workflow Management System (WMS) land-
scape is very variegated, as it embraces scientific domain tools, mainly focused
on resolving typical modelling issues in the domain, and low-level specifications,
aimed at executing tasks on multi processes infrastructures. Several surveys
exist on WMSs, comparing their different functionalities [2, 3], focusing on their
evolution [4] or providing classification with respect to the support for extreme-
scale applications [5]. In the context of this work, we are particularly interested

2

in understanding the most critical needs, the most effective approaches and
the most promising developments in this continuously changing technological
domain.

In particular, two main levels of analysis should be considered: the applica-
tion level, where the orchestration of the different functional components of the
application is managed, and the infrastructure level, where the computational
units composing the workflow are executed by the workflow engine. At the first
level, it is essential to evaluate the ability of the system to respond to user
needs, by supporting potentially complex multi-node execution environments,
and manage massive amounts of data ingested and computed by all the appli-
cations. At the infrastructure level, together with established architectures like
clusters or grids, the cloud is now the most referred infrastructure for application
execution and new paradigms are gaining attention like containers and orches-
trators. Finally, HPC facilities are getting more and more importance outside
the research centre even if there is no straight road-map for their integration
with other platforms till now.

2.1 Scientific workflows

WMSs for scientific workflows are user-driven systems specifically developed to
satisfy domain requirements. They provide researchers with a useful paradigm
to describe, manage and share complex scientific analyses, also ensuring repro-
ducibility and scalability properties. Experiments can be modelled by using
a high-level declarative language or advanced graphical interfaces, suitable for
researchers with little programming experience, or described programmatically.

Many scientific WMSs (e.g. Kepler1 [6], Askalon2 [7], Pegasus3 [8], Taverna4

[9] and Galaxy5 [10]) emerged with the diffusion of the web services and grid
technologies, which offered the possibility to access robust services and infras-
tructures in a more natural way than before [11]. Therefore, they were mainly
targeted towards these architectures and not focused on portability. Neverthe-
less, by evolving in strict contact with the scientific community, they acquired
maturity from the functional design point of view and started providing some
additional features, as workflow repositories or support for diverse newer archi-
tectures, establishing consensus among researchers.

Even if some of these tools like Pegasus and Askalon offer support for auto-
matic data transfers also in the absence of a commonly shared file-system among
worker nodes, they rely on specific transfer protocols (e.g. GridFTP, SRM or
Amazon S3) or delegate it to an external batch scheduler such as HTCondor,
actually constraining the set of supported configurations. Moreover, although
both Galaxy and Pegasus offer support for container execution, they only al-
low mapping a task into a single container. Asterism [12], a hybrid framework
where the stream-based workflow execution is managed by dispel4py [13] and
the data movement among workers is left to Pegasus, represents an interesting
exception. Indeed, it relies on Docker Compose6 to set up complex execution

1https://kepler-project.org/
2http://www.askalon.org/
3https://pegasus.isi.edu/
4https://taverna.incubator.apache.org/
5https://galaxyproject.org/learn/advanced-workflow/
6https://docs.docker.com/compose/

3

https://kepler-project.org/
http://www.askalon.org/
https://pegasus.isi.edu/
https://taverna.incubator.apache.org/
https://galaxyproject.org/learn/advanced-workflow/
https://docs.docker.com/compose/

clusters. Nevertheless, at the time of writing, dispel4py only provides MPI and
Apache Storm7 executors, strongly limiting the potential of the library.

An alternative approach to complex and feature-rich WMSs privileges per-
formances over accessibility, exposing lower-level programming models directly
to the user and allowing for the execution of a large number of interconnected
tasks on distributed architectures. Among these frameworks are HyperLoom
[14] and Dask8 [15], where pipelines of tasks can be defined with a Python
interface, Spotify’s Luigi9, which also comes with a visual interface for moni-
toring purposes, and COMP Superscalar (COMPSs) [16], that allow users to
parallelise existing sequential applications by identifying and annotating func-
tions that can be executed as asynchronous parallel tasks. Despite being very
efficient in terms of performances, these libraries are hard to use for domain
experts without programming experience.

Another approach tries to lower the level of complexity by implementing a
simplified Domain Specific Language (DSL) to describe workflows. For exam-
ple, in Apache Airflow10 and Snakemake11 [17] workflows are essentially Python
scripts extended by declarative code that can be executed on distributed infras-
tructures. Other systems adopt Unix-style approaches for defining workflows:
in Makeflow12 [18] the end-user expresses a workflow in a technology-neutral
way using a syntax similar to Make, while the Nextflow13 [19] bioinformatics
framework builds workflows on Unix pipe concept. In these frameworks, a set
of pluggable executors allows workflows to be deployed and run on different
infrastructures, including public cloud services, batch schedulers (e.g. HTCon-
dor, PBS, SLURM) and Kubernetes clusters. Nevertheless, different steps of
the same workflow cannot be managed by different executors, not guarantee-
ing support for hybrid cloud/HPC configurations. Moreover, even if containers
executions are permitted, it is not possible to specify complex multi-container
environments to execute a single task.

Since product-specific DSLs tightly couple workflow descriptions to a sin-
gle software, actually limiting portability and reusability, there are also efforts
in defining workflow specification languages or standards. For instance, The
Common Workflow Language (CWL)14 [20] is an open standard for describ-
ing analysis workflows following a JSON or YAML syntax or a mixture of the
two. One of the first and most used CWL implementations is CWL-Airflow
[21], which adds support for CWL to Apache Airflow, but also other products
(e.g. Snakemake and Nextflow) offer some compatibility with CWL. Another
interesting dataflow language for scientific computing is Swift15 [22], in which
all statements are eligible to run concurrently, limited only by the data flow.

7http://storm.apache.org/
8https://docs.dask.org/
9https://github.com/spotify/luigi/

10https://airflow.apache.org/
11https://snakemake.readthedocs.io/en/stable/
12http://ccl.cse.nd.edu/software/makeflow/
13https://www.nextflow.io/
14https://www.commonwl.org
15http://swift-lang.org/main/

4

https://docs.dask.org/
https://github.com/spotify/luigi/
https://airflow.apache.org/
https://snakemake.readthedocs.io/en/stable/
http://ccl.cse.nd.edu/software/makeflow/
https://www.nextflow.io/
https://www.commonwl.org
http://swift-lang.org/main/

2.2 Cloud orchestration

With the rise of cloud computing and the related *-as-a-Service approaches,
users from both academia and industry started to move computation from their
machines to the cloud. Nevertheless, all the scalability, portability and avail-
ability benefits brought by cloud technology necessarily come with increased
complexity in deploying, configuring and managing applications, especially in
hybrid-cloud scenarios.

Several tools have been developed with the precise aim to seamlessly sup-
port hybrid-cloud deployments of complex applications, composed of heteroge-
neous intercommunicating services, by exposing to the user just an agnostic and
straightforward interface, usually in the form of a DSL. This approach is often
referred to as Infrastructure-as-Code (IaC).

Early solutions [23, 24] focused their attention on the deployment phase,
with minimal support for contextualisation (a simple run-once script launched
right after the virtual machine creation) and no support at all for automatic
orchestration of active applications. In this setting, both the creation and main-
tenance of ad-hoc base images for each required software application and all the
post-deployment operations were left to the IT experts.

More recently, some more advanced tools have been proposed, addressing
different aspects of application deployment and orchestration. Caballer et al.
[25] focus on reusability, introducing a platform in which every configuration
element, from infrastructure descriptions to virtual machine images, can be
stored in a dedicated registry. SALSA [26] comes with a fine-grained, multi-
layered dependency structure, in order to handle the configuration of both vir-
tual machines and applications deployed upon them. Roboconf [27] proposes a
hierarchical DSL, capable of defining both containment and runtime relations,
and offers orchestration primitives to automatically manage the reconfiguration
of live systems in response to events, e.g. an increased workload or a failure.
Occopus [28] privileges compatibility and extendibility, proposing a pluggable
architecture in which combinations of replaceable plugins manage interactions
with external tools and services (as well as some core features and behaviours).
Moreover, it comes with some orchestration features, e.g. health-checking, auto-
scaling and garbage collection.

Workflow management and cloud orchestration technologies can benefit from
each other. For example, the OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA)16 [29] focuses on complex dependency manage-
ment, using workflow description languages to write the deployment and man-
agement plans for a cloud environment. Implementations of the TOSCA stan-
dard are currently provided by Cloudify17, an orchestration platform based on
event-driven workflows, and Yorc18 (Ystia orchestrator), an hybrid cloud/HPC
orchestrator developed in the Lexis project [30]. Moreover, a Cloudify plugin to
orchestrate batch applications in HPC and cloud environments has been devel-
oped in the Croupier19 project.

With the advent of containerisation as a lightweight alternative to virtualisa-
tion, some container orchestrators started to flourish. Among them, Kubernetes

16https://www.oasis-open.org/
17https://cloudify.co/
18https://github.com/ystia/yorc
19https://github.com/ari-apc-lab/croupier

5

https://www.oasis-open.org/

has become the de-facto standard for container orchestration during the last
years, and the vast majority of cloud providers include a managed Kubernetes
service in their offering. Kubernetes comes with a very flexible YAML-based
DSL, able to describe both deployment and runtime orchestration features for
multi-container applications. Containers are also gaining popularity in the sci-
entific domain, and several workflow frameworks have been built natively on top
of Kubernetes like Pachyderm20 [31], Argo21 and a specific Galaxy installation
developed in the PhenoMeNal22 project [32]. Moreover, all the leading cloud
vendors are currently focusing on offering hybrid solutions that allow combining
multi-cloud and on-premises infrastructures. The most integrated framework is
GoogleCloudComposer23, a fully managed workflow orchestration service built
on Apache Airflow. Despite offering great flexibility in interacting with Kuber-
netes resources, these products are tightly coupled with such technology and do
not allow for task offloading on different environments, such as HPC sites.

Even if both WMSs and orchestrators must be able to deal with dependencies
among different tasks, they differ in their primary goals. Indeed, from one side,
WMSs must focus on efficient ephemeral executions of tasks, minimisation of
the distributed execution overheads (e.g. through data-locality-based scheduling
policies) and should be easy enough to be used by domain experts. From the
other one, orchestrators must ensure availability and responsiveness of long-
lived systems, portability among different infrastructures and enough flexibility
to satisfy the needs of IT experts. With this in mind, StreamFlow aims to offer
an easy way to allow the automatic execution of workflows on top of complex
and orchestrated environments while keeping the two aspects distinct enough
to be easily handled by different kinds of users.

3 Methods

3.1 Multi-container environments

Portability and reproducibility have always been two fundamental aspects of
scientific workflows. Nevertheless, the combination of the two is undoubtedly
a non-trivial requirement to satisfy, since it is necessary to guarantee that a
piece of code running on top of potentially very diverse execution environments
will give identical results. The first obvious issue here comes from the need to
provide the same versions of all the libraries directly or indirectly involved in the
computation. On top of that, some numerical stability problems can arise when
running the same code on different platforms, e.g. on Linux and Mac OS X
[19]. Fortunately, with the diffusion of lightweight containerisation technologies
like Docker[33] and Singularity[34], a straightforward solution for these issues
finally appeared and nowadays container-based tasks are supported by a wide
number of WMSs on the market, either as an alternative to native execution or
as first-class citizens [35].

The typical way to support containerisation in WMSs is through a one-to-
one mapping between tasks and containers, i.e. a container image is associated

20http://pachyderm.io/
21https://argoproj.github.io/argo/
22http://phenomenal-h2020.eu/home/
23https://cloud.google.com/composer

6

http://pachyderm.io/​
https://argoproj.github.io/argo/
http://phenomenal-h2020.eu/home/​

with each task in the workflow graph. In this setting, the execution flow of a
single task always consists of three sequential steps: the container is launched,
the task is executed inside it, and finally, the container is stopped. Drawing a
parallel with the famous Flynn’s taxonomy [36], we could define this execution
pattern as Single-Task Single-Container (STSC).

When compared with a Multiple-Tasks Single-Container (MTSC) alterna-
tive, the STSC pattern comes with a decisive advantage. Since containers’
file-system is commonly ephemeral, every task execution runs inside a clean
and consistent environment (with the apparent exception of eventual tempo-
rary files saved into persistent folders). For its part, an MTSC execution can
provide some performance improvements in those cases when the task execution
is high-speed (comparable with the startup and shutdown overheads of a con-
tainer, generally in the order of milliseconds). Moreover, MTSC can be useful
also when a process inside the container must complete a heavy initialisation
phase before being ready to perform tasks or when some data dependencies are
stored in the ephemeral file-system, in order to avoid additional data transfers
when recreating containers.

Far more interesting would be the Single-Task Multiple-Containers (STMC)
setting, because it allows using multiple, possibly heterogeneous environments
to solve a single task. For example, with an STMC approach, it would be
possible to run an MPI task on top of multiple nodes or a MapReduce-based
task with multiple instances of Apache Spark.

Finally, the most general setting of Multiple-Tasks Multiple-Containers (MTMC)
would also allow for concurrent task execution, i.e. a configuration in which
tasks T1 and T2 execute at the same time on different resources and T1 pro-
duces data consumed by T2. The support for this last configuration becomes
fundamental when dealing with stream-based workflows [5]. In principle, also
an MTSC configuration enables the concurrent execution of tasks into the same
resource, but here the advantage is less valuable. Indeed, it is far easier to
obtain the same behaviour in an STSC setting with a single task charged with
launching and managing all the required processes.

Unfortunately, a simple many-to-many task-image association is not enough
to model an *MC configuration, because it is also necessary to explicitly specify
the connections among different containers. Nevertheless, some ways to define
multi-container environments are already present on the market, from simple
libraries like Docker Compose and Singularity Compose24 to complex orches-
trators as Kubernetes25 or Docker Swarm26. Therefore, it is a wise choice to
rely on them for the environment definition. This can be achieved by substitut-
ing the original one-to-one task-container association with a many-to-one task-
environment association and by treating an entire multi-container environment
as the unit of deployment. It is worth noting that even a many-to-many associ-
ation would be potentially feasible, allowing to split a single task among differ-
ent environments. Nevertheless, this would overcomplicate both the scheduling
policies and the communication layer, forcing the need to distinguish between
inter-environment and intra-environment interactions among different resources
executing the same task.

The following two requirements can summarise all these considerations:

24https://singularityhub.github.io/singularity-compose/
25https://kubernetes.io/
26https://docs.docker.com/engine/swarm/

7

https://singularityhub.github.io/singularity-compose/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/

R1 A uniquely identified multi-container environment definition must be treated
as an atomic deployment unit. A unit must be deployed before starting
to execute the first associated task and undeployed after the execution of
the last associated task.

R2 Each task can be associated with a single deployment unit, but the same
deployment unit can be associated with multiple tasks.

3.2 Hybrid workflows

When considering data-intensive scientific workflows, all those aspects related to
data management (such as data locality, data access, and data transfers) become
crucial as well. In this setting, the need for a WMS capable of dealing with hybrid
workflows, i.e. to coordinate tasks running on different execution environments
[5], can be a crucial aspect for performance optimisation when working with
massive amounts of input data. Indeed, an in situ data processing strategy
can prevent all the overheads related to data transfers and even to disk I/O
when in-memory processing is allowed. Moreover, hybrid workflow execution
becomes a mandatory requirement when dealing with federated data access or
strict privacy policies.

Even if many of the existing WMSs can run the same workflow with a diverse
set of executors, some of them addressing cloud environments and some others
more HPC-oriented, a far smaller percentage of them can deal with multi-cloud
and hybrid cloud/HPC execution environments for a single workflow. The first
step to take in this direction is to waive the requirement for any shared data
access abstraction among all the containers, keeping the only constraint for the
WMS management node to be able to reach the whole execution environment.
Such a scenario provides a significant amount of flexibility. Unfortunately, it
implies that every inter-container data transfer needs at least two copy opera-
tions: a first one from the source to the management node and a second one to
the destination. Sometimes this is the only way to go, but if direct communi-
cations between container pairs are possible, then it could be better to rely on
them if only to avoid overloads on the central management node. Therefore, the
best strategy here would probably be to consider the two-steps copy proposed
above as a baseline communication channel between every container pair while
allowing users to declare better ways to exchange information when available.

From a practical point of view, the logic related to data transfers can be
specified at two different levels:

• At the host language level, i.e. directly embedded in the business logic
of the producer task. In this scenario, the only thing that the WMS can
do is to check for the existence of the expected destination path before
starting the data transfer process, in order to avoid useless overheads.

• At the coordination language level, i.e. explicitly specified by the user
in the workflow description. In this scenario, the management of data
transfers is left to the WMS, which can rely on a dedicated channel or fall
back to the baseline strategy, as discussed above.

While the former case is quite easy to implement, the latter would require a
channel abstraction, flexible enough to manage different data types (from sim-
ple values to huge file-system portions) and to deal with the aforementioned

8

Workflow description

files

Docker compose Helm OccamCWL interpreter

StreamFlow

extensions
Connector

StreamFlow executor

Data manager
Deployment

manager
Scheduler

Model description

files

StreamFlow file

Figure 1: StreamFlow framework’s logical stack. Coloured portions refer to
existing technologies, while white ones are directly part of StreamFlow code-
base. In particular, the orange area is related to the definition of the workflow’s
dependency graph, while the green area refers to the execution environments.

multi-container environments, potentially deployed on multi-cloud or hybrid
cloud/HPC architectures. For now, to keep things a bit simpler, we decided
to always rely on the baseline strategy for the inter-environment case, while
implementing slightly more optimised solutions for the intra-environment case
whenever possible. Nevertheless, a better language specification for communi-
cation channels is, for sure, one of the most critical future improvements for the
proposed approach.

Again, the following two requirements can summarise the previous discus-
sion:

R3 If the WMS management node can reach the whole execution environment,
then an inter-container data transfer must always be possible, with a two-
steps copy operation as the baseline strategy. Optimisations are possible
for intra-environment data transfers.

R4 If data are already present in the destination path, the WMS should avoid
performing an additional copy.

9

4 StreamFlow framework

The StreamFlow framework27 has been created as a proof-of-concept WMS
based on the four previously discussed requirements. Written in Python 3, it
has been designed to seamlessly integrate with existing WMSs’ coordination
languages, in order to allow users to extend their existing workflows without
having to change what has been already done. In keeping with this point of view,
we also decided not to define a new description language for multi-container
environments, but rather to build a common interface to allow for the integration
with existing technologies.

In StreamFlow’s glossary, a complex multi-container environment is called
model. Each model is managed independently of the others by a dedicated
Connector implementation, which acts as a proxy for the underlying orches-
tration library. A single model can include multiple types of containers, called
services. For example, a Docker Compose file describing a database and a
Tomcat container linked together constitutes a model with two services. The
streamflow.yml file, the actual entry point for a StreamFlow execution, con-
tains pointers to workflows and models descriptions and specifies the way they
should relate to each other, i.e. the service that should execute each workflow
step. Since multiple replicas of the same service could coexist in a given model,
each service can refer to one or more containers, called resources.

Before actually executing a task, it is necessary to deploy the related model
successfully. The DeploymentManager class has precisely the role of creating
models when needed and destroying them as soon as they become useless. Then
the Scheduler class is in charge to select the best resource on which each task
should be executed while guaranteeing that all requirements are satisfied. Fi-
nally, the DataManager class, which knows where each task’s input and output
data reside, must ensure that each service can access to all the data depen-
dencies required to complete the assigned task, performing data transfers only
when necessary. At this point, a job (i.e. the runtime representation of a task)
can be successfully executed on the selected resource.

The rest of the current section is devoted to analysing with more detail each
of the components mentioned above, whose position in the StreamFlow’s logical
stack is represented in Fig. 1, and how they coordinate with each other.

4.1 The WMS integration layer

As stated before, one of the design choices for the StreamFlow approach is to rely
on existing coordination languages, instead of coming with yet another way to
describe workflow models. In order to realise a first proof-of-concept, we decided
to integrate with the CWL format. Being a fully declarative language, CWL is
far simpler to understand than its Make-like or dataflow-oriented alternatives.
Moreover, some existing WMSs provide at least a partial compatibility with
CWL format, even when it is not their primary coordination language. Last
but not least, the CWL’s reference implementation, called cwltool28, is written
in Python: this not only allowed us to use the official library to obtain the
compiled workflow representation, but also to rely on existing classes for the
main part of the execution process.

27https://streamflow.di.unito.it/
28https://github.com/common-workflow-language/cwltool

10

https://streamflow.di.unito.it/
https://github.com/common-workflow-language/cwltool

Deployment models

SPMD

Workflow StreamFlow+ =

k8s

cluster1

cluster2

Figure 2: Workflow graph transformation to include model deployment and un-
deployment tasks. Orange nodes represent original tasks, while the others refer
to model deployment (downward pointing arrow) and undeployment (upward
pointing arrow) phases.

Therefore, what we did in practice was to provide an extension layer to
the original cwltool codebase, using inheritance to inject additional features or
to override the existing ones whenever required. This approach considerably
reduced the development time, but the risk is to introduce excessively tight
coupling between the CWL-specific features and the more generic StreamFlow
logic. Since we plan to support other coordination languages in the future, a
more agnostic mid-layer representation of a workflow graph is definitely on the
todo list.

4.2 Model life-cycle management

In StreamFlow, the service allocation and the subsequent task execution happen
in two strictly distinct phases, leaving the containers’ life-cycle management to
an external orchestration library. A clear advantage of this approach lies in the
possibility to rely on all the orchestration features provided by a mature product
(e.g. autoscaling, restarting policies, affinity-based scheduling) and to adopt the
original deployment description language, sparing users the extra effort needed
to learn a new syntax. Moreover, as behind the scenes StreamFlow demands
the deployment and undeployment phases to the original orchestrator, there are
no constraints on the supported features: if it works with the original library,
it works with StreamFlow.

As shown in Fig. 2, from a theoretical point of view, this approach can still
be represented with a traditional workflow model, by transforming the original
dependency graph in order to include two new special kinds of tasks:

• The deployment task, which synchronously creates a new model. This
task does not depend on anything else, but all the tasks that should be
executed in such a model must depend on it.

• The undeployment task, which destroys an existing model. No other task

11

deploy(model_name: String,
 model_type: String,
 model_config: Map<String, Any>,
 external: Boolean): Connector
get_connector(model_name: String): Connector
is_deployed(model_name: String): Boolean
undeploy(model_name: String)
undeploy_all()

DeploymentManager

lock: RLock

config_map: Map<String, ConnectorConfig>

deployments_map: Map<String, Connector>

Figure 3: UML class diagram for the DeploymentManager class.

depends on it, but it should depend on all the tasks that must be executed
on such a model, in order to wait for their termination before starting the
undeployment process.

The result of this transformation is a perfectly fine dependency DAG, which
satisfies requirement R1 and can be correctly described by the vast majority
of coordination languages. Nevertheless, since deployment tasks have no de-
pendency, a standard scheduler will try to execute them as soon as possible,
according to an eager resource allocation strategy. In this setting, some models
can be up and running long before they are needed, leading to a potential waste
in terms of energy consumption and money. In such case, a far more practical
approach would be to let a model be deployed by the first fireable task which
requires it, according to a lazy resource allocation strategy.

The DeploymentManager class, whose UML diagram is represented in Fig.
3, has precisely the role of implementing these allocation strategies, relying on
the underlying orchestration library through a pluggable implementation of the
Connector interface. In particular, the deploy method atomically checks if a
model has been already deployed and, if not, it puts a new Connector instance
into the deployments map and invokes its deploy method. Since the require-
ment R2 states that a single instance of a model can be used to execute multiple
tasks, the lock is necessary to avoid race conditions when concurrent tasks re-
quire the same model. Finally, the external attribute allows StreamFlow to
interact with an externally managed model, relieving the DeploymentManager

of deployment and undeployment duties.
Ideally, a model should be undeployed as soon as the last task needing it

has been completed. This logic is quite easy to implement when dealing with
static DAGs, but things get more complicated in the dynamic setting. Prob-
ably the best strategy for the second case would be to set a grace period, af-
ter which the model is undeployed if no new task required it. For now, the
DeploymentManager confines itself to undeploy all the models at the end of
the entire workflow execution, calling the undeploy all method. Moreover, the
same method is also invoked by StreamFlow’s main process in case of unrecover-
able failures. This approach is very straightforward, but it can lead to resource
wastes if some models remain unused for a long time.

12

copy(src: String,
 dst: String,
 kind: ConnectorCopyKind,
 soure_remote: String = null)
deploy()
get_available_resources(service: String): List<String>
run(resource: String,
 command: List<String>,
 environment: Map<String, String> = null,
 workdir: String = null,
 capture_output: Boolean = false): Any
undeploy()

<< interface >>

Connector

Figure 4: UML class diagram for the Connector interface.

As discussed before, StreamFlow interacts with each underlying orchestra-
tion technology by means of a common Connector interface, whose UML di-
agram is shown in Fig. 4. This adheres to the separation of concerns princi-
ple, providing an easy way to add support for additional products if required.
The Connector interface is a low-level block in the StreamFlow’s logical stack,
which is used by all the higher-level components. Besides the deploy and
undeploy methods, which are called by the DeploymentManager class, the
get available resources method is invoked by the Scheduler class to obtain
all the replicas of a given service in the model, while the copy method is instead
used by the DataManager class to perform data transfers among resources, with
the kind argument specifying the direction of the transfer operation. Finally,
the run method is used to execute a command on top of a remote resource
and potentially to capture the generated output value. For now, three different
Connector implementations come out-of-the-box with StreamFlow, supporting
Docker Compose, Helm29 and Occam, the supercomputing centre of Università
di Torino [37].

4.3 The StreamFlow file

When launching a StreamFlow execution, the only argument it takes is the path
of a YAML file, conventionally called streamflow.yml. The crucial role of such
file is to link each task in a workflow with the service that should execute it.
Moreover, in order to ensure this binding is unambiguous, each service in a
model and each task in a workflow should be uniquely identifiable. This section
describes the StreamFlow file syntax and the strategies adopted to guarantee
such unambiguity.

A valid StreamFlow file contains the version number (which currently only
accepts the v1.0 value) and two main sections: workflows and models. The
workflows section consists of a dictionary with uniquely named workflows to be
executed in the current run. Each workflow specification is an object containing
three fields. The type field identifies which language has been used to describe
the dependency graph (at the moment cwl is the only accepted value), while the

29https://helm.sh/

13

https://helm.sh/

config field includes the paths to the files containing such description. Finally,
the bindings list contains the task-model associations. Different workflows are
independent of each other, in that an entire StreamFlow logical stack is allocated
for each of them. It means that, even if two tasks in two different workflows
can refer to the same model specification, two different environments will be
deployed for their execution.

Considering workflows as dependency graphs, each node can refer to either
a simple task or a nested sub-workflow. Therefore, we decided to adopt a file-
system based mapping of each task to a Posix-like path, where each simple task
is mapped to a file, and each sub-workflow is mapped to a folder, which can
contain both files and sub-folders. In particular, the most external workflow
description is mapped to the root folder. Such method allows for easy and un-
ambiguous identification of tasks, given that there exists an intuitive way to
assign a name to each task in the workflow’s graphical structure and that such
name has the uniqueness constraints required by a typical file-system represen-
tation. Fortunately, CWL standard (and also the vast majority of coordination
languages on the market) satisfies both these requirements.

The models section contains a dictionary of uniquely named model speci-
fications, each of which is an object with two distinct fields. The type field
identifies which Connector implementation should be used for its creation, de-
struction and management, while the config field contains a dictionary with
configuration parameters for the corresponding Connector. Usually, the config
parameters are directly extracted from the tools commonly used to interact with
the underlying orchestration library (e.g. the docker-compose CLI for Docker
Compose or the helm CLI for Helm charts), so that a user who is familiar with
these libraries can easily understand the StreamFlow format.

The best way to unambiguously identify services in a model strictly depends
on the model specification itself. For Docker Compose, where the unit of deploy-
ment is a single container, it is enough to take a key in the services dictionary
to identify the related service uniquely. Moreover, since an Occam description
file is practically equivalent to the services section of a Docker Compose file,
the same strategy can be applied to it, too. Unfortunately, in Kubernetes (and
consequently in Helm) the unit of deployment is a Pod, which can contain mul-
tiple containers inside it. In this case, the user is explicitly required to fill in the
name attribute of each container in the Pod template with a unique identifier.

The format adopted for the bindings list takes into account all the previ-
ously discussed considerations on unambiguous identification of tasks and ser-
vices. In particular, each element of such list contains a target object, with
a model and a service attributes that uniquely identify a service, and a step

attribute containing a path in the aforementioned file-system abstraction of a
workflow graph. If the path resolves to a folder (i.e. to a nested sub-workflow),
the same target service is applied recursively in the file-system hierarchy, unless
a more specific configuration (i.e. another entry in the bindings list with a
deeper path in its step field) overrides it. For the interested reader, the whole
specification for the current version of the StreamFlow file is contained in a
JSON Schema file named config schema.json. Since such file is also used in
the validation phase during a StreamFlow execution, it represents the authori-
tative source of truth for the StreamFlow file format.

14

4.4 Task scheduling

The task scheduling strategy is a fundamental component of a WMS, mainly for
the large impact it has on the overall execution performances. It is a common
practice for WMSs to allow users to specify some minimum hardware require-
ments for a task, e.g. in terms of the number of cores or the amount of memory.
Such requirements are generally configurable using optional parameters in the
coordination language, while the actual mapping on top of adequate worker
nodes is left to the implementation of the specific executor.

It is much easier for a scheduling algorithm to work with homogeneous re-
source pools, in which all the nodes have the same characteristics in terms
of cores, memory, network and persistence. Nevertheless, in a real scenario,
different tasks likely require very diverse amounts of resources, resulting in sub-
optimal workloads for homogenous pools. The case of hybrid workflows is even
more complicated since the non-uniform data access makes it particularly im-
portant to rely on data locality whenever suitable, trying to minimise the need
for data transfers among different models.

In general, all container-based WMSs tend to tightly-couple the allocation
of a container with the subsequent execution of the task inside it. In this set-
ting, all the available worker nodes are ultimately identified by the amount
of computing power they can provide. Requirement R1, which states that in
StreamFlow, the unit of deployment should be a complex environment with
different containers, introduces an additional level of complexity here. Indeed,
it is no longer true that a task can be executed on any worker node equipped
with enough hardware, but rather the services exposed by each container can
be identified as capabilities, and a task can be executed on top of it only if
all its requirements are satisfied. StreamFlow straightforwardly manages this
requirement-capability association, by identifying each container type with a
single service, according to requirement R2, and specifying which service is re-
quired by each task (through the bindings list described in Sec. 4.3). Since
in StreamFlow the model life-cycle is managed by an external orchestration
library, container-related resources constraints should be specified in the en-
vironment description file. Task-related resource constraints, specified in the
workflow description, and requirement-capability associations, specified in the
StreamFlow file, are instead directly managed by the Scheduler class when se-
lecting the target resource. Even if only a single target service can be specified
for each task, multiple replicas of the same service could exist at the same time
and, if the underlying orchestrator provides auto-scaling features, their num-
ber could also change in time. It is the responsibility of the Scheduler class
to both extract the list of compatible resources for a given task (by calling the
get available resources method of the appropriate Connector instance) and
to apply a scheduling policy to find the best target.

Given the very complex nature of the execution environments managed by
StreamFlow, it is improbable that a universally best scheduling strategy actually
exists. Indeed, many different factors (e.g. computing power, data locality,
load balancing) can affect the overall workflow execution time. For this reason,
we decided to implement a Policy interface to allow users to implement their
custom strategies. As can be seen from the UML class diagram shown in Fig. 5,
the Policy interface only contains a single method, called get resource, with
five input arguments:

15

get_resource(task_description: TaskDescription,
 available_resources: List<String>,
 remote_paths: Map<String, List<RemotePath>>,
 jobs: Map<String, JobAllocation>,
 resources: Map<String, ResourceAllocation>
): Optional<String>

<< interface >>

Policy

Figure 5: UML class diagram for the Policy interface.

• The task description argument contains a characterisation of the cur-
rent task in terms of resource requirements and data dependencies.

• The available resources argument is the list of all the resources which
satisfy the requirement-capability association for the current task.

• The remote paths argument contains, for each file explicitly managed by
the WMS, the list of its remote copies. This information can be used by
a scheduling policy to take into account data locality in its algorithm.

• The last two arguments describe the previously allocated jobs, allowing
the implementation of load-balancing features in the scheduling strat-
egy. In particular, the JobAllocation class contains the task descrip-
tion, the resource to which it has been assigned and its status, while the
ResourceAllocation class contains the related model and service of an
existing resource and the list of jobs assigned to it.

The StreamFlow Scheduler class processes fireable tasks according to a
simple First Come First Served (FCFS) order, without allowing for preemption.
Moreover, since each scheduling policy can only process one task at a time,
all those strategies that require a global knowledge of the tasks queue (e.g. the
various flavours of backfilling or a Shortest Job First approach) cannot currently
be implemented. Even if this can result in sub-optimal scheduling solutions
in some cases, the proposed approach drastically reduces the implementation
complexity, which is an essential aspect for proof-of-concept work.

A very general scheduling policy, serving as a default strategy, comes out-of-
the-box with StreamFlow. When a task becomes fireable, the algorithm iterates
over all available resources, starting from those containing at least one of its data
dependencies to privilege data locality and trying to reserve the first one which
is free (i.e. does not contain jobs in the running status) and satisfies all the
constraints. If the search fails, then a null value is returned, and the task is
inserted into a waiting queue: a new scheduling attempt will be performed as
soon as a running job notifies its termination.

4.5 Data transfers

As pointed out in Sec. 3.2, hybrid workflow executions make it necessary to
waive the comfort brought by a globally shared data space, leaving to the WMS
the task of explicitly moving the data whenever required. Since large data

16

add_remote_path_mapping(resource: String
 local_path: String,
 remote_path: String)
collect_output(path: String)
transfer_data(src: String,
 dst: String,
 target: String)

DataManager

lock: RLock

scheduler: Scheduler

deployment_manager: DeploymentManager

remote_paths: Map<String, RemotePath>

Figure 6: UML class diagram for the DataManager class.

transfers are very time-consuming operations, especially for long distances and
in the absence of dedicated high-throughput communication networks, the WMS
should always select the best communication channel between two endpoints
and avoid all unnecessary data movements. The StreamFlow framework has
been designed in order to meet requirements R3 and R4, which represent two
fundamental steps in this direction. In particular, a dedicated DataManager

class, whose UML diagram is in Fig. 6, has been developed with the precise
goals of keeping track of the remote locations of each data dependency and
performing data transfers between successive steps.

Whenever a task terminates in completed status, it is in charge of atomically
updating the remote paths structure with the remote position of all its output
files and folders by calling the add remote path mapping method. The same
structure is also used by the transfer data method, which is called every
time a task needs a file or a folder from one of its predecessors, to verify if a
data transfer is needed or not. In particular, transfers can always be avoided
when both tasks run on the same resource, but this can also happen when two
resources share a data space (e.g. a persistent volume) or if a task explicitly
performs a data transfer before completing.

If the destination path does not exist, then a data movement is unavoid-
able. If the source and the target resources belong to distinct models, then
StreamFlow adopts the baseline strategy mentioned in requirement R3, per-
forming the first transfer from the source resource to the management node and
a second copy to the target resource. Instead, if the two resources belong to
the same model, the transfer is directly performed by the copy method of the
corresponding Connector implementation. In the latter case, some optimisa-
tions are possible. For example, since all Occam nodes share the /archive and
/scratch portions of the file-system, only a local copy on the target resource is
required to transfer a data dependency which resides in one of such folders.

Finally, the collect output method performs a data transfer from a remote
resource to the local management node. This method is always called before
a remote resource is undeployed in order to retrieve the final output of the
workflow model. Moreover, when a task must be performed locally but requires
some remote input data, this method is called before starting its execution.

17

4.6 Task-container mapping patterns

Since models are not redeployed after each task execution, when multiple tasks
are bound to the same service StreamFlow implements by default an MTSC
pattern. This design choice is the standard one adopted by CWL when tasks are
executed on the local machine and is consistent with R4, which tries to minimise
data transfers to achieve better performances. Nevertheless, it gives up for the
clean and consistent execution environment commonly provided by containers,
which can be problematic if previous task executions can have unexpected effects
on the next ones. In order to force an STSC pattern, a recycle directive can be
added to a binding entry in the StreamFlow file. This induces a redeployment
of the involved service before the task execution. In such a case, StreamFlow
will automatically handle all required data transfers, ensuring that at least one
copy of each task output is stored in a persistent location before deleting the
container.

The unique parallel execution pattern natively included in CWL standard
is the scatter, in which a list of input data is partitioned among multiple,
identical tasks that can be executed in parallel by multiple nodes. More complex
interactions among tasks (e.g. an MPI application) must be directly handled in
the code, and it is up to the user to ensure that the correct amount of worker
nodes is up and running before the task execution. Conversely, StreamFlow
offers explicit support for STMC mapping: in the StreamFlow file, a single
step can be bound to multiple resources through the replicas directive (which
defaults to 1). In case of multiple replicas, StreamFlow initialises two additional
environment variables: a STREAMFLOW RANK variable, containing a unique rank
for each job, and a STREAMFLOW HOSTS variable, containing the comma-separated
list of nodes (i.e. hostnames) allocated for the task. These variables can be used
inside the task script to guide the execution on each node, e.g. to implement
a master-worker pattern or to execute an mpirun command on the node with
rank 0.

The case of MTMC pattern is a bit trickier. Indeed, while StreamFlow
seamlessly supports co-allocation of different tasks on different services, the
CWL standard is not able to explicitly describe such property. Although the
simultaneous allocation of apparently independent steps just happens in many
situations, it is evident that a formal and generic way to express tasks co-
allocation directly in the workflow model is a mandatory requirement to entirely
support this feature. Find the best way to improve MTMC pattern support is
an essential milestone in StreamFlow’s future development.

5 Single-Cell application use-case

As extensively described in Sec. 2.1, scientific applications are an ideal target
for workflow modelling. To demonstrate StreamFlow’s ability to satisfy require-
ments at both user-level, in terms of supporting easy application modelling, and
infrastructure-level, offering flexibility in the choice of deployment targets, we
selected a novel pipeline in the field of Bioinformatics, which is the discipline
supporting molecular biology and biomedicine in the analysis of data. Bioinfor-
matics, together with astronomy, is one of the first scientific fields to deal with
Big Data. Indeed, biological datasets are massive, heterogeneous, and grow

18

very fast, making this discipline hungry for computational power and storage
capabilities.

Moreover, these data should be analysed by Bioinformatics researchers, with
a mixed background in biology, medicine and computer science. This scenario
requires the development of hybrid computational systems by HPC experts,
implying a careful selection of the target infrastructure according to the different
applications, desired performance, but also cost requirements.

From this perspective, in this section, we want to show how StreamFlow
features can be used to implement complex analysis workflows in an extremely
portable way, which allows users to find the best deployment option for each step
in heterogeneous, hybrid HPC/cloud infrastructures without modifying neither
the code nor the workflow description itself.

5.1 Single-cell sequencing

More specifically, the Bioinformatic application we selected for our tests is a
pipeline for single-cell sequencing data analysis. Generally stated, sequencing
is the process of determining the order of the four bases (adenine, guanine, cy-
tosine, and thymine/uracil) of a nucleic acid molecule, which can be DNA or
RNA. The first nucleic sequences were obtained in the early 1970s by academic
researchers using laborious methods based on two-dimensional chromatography.
Following the development of fluorescence-based sequencing methods, sequenc-
ing has become more accessible and orders of magnitude faster, allowing the first
draft of the human genome. During the last decade, massive high-throughput
sequencing methods have revolutionised the entire field of molecular biology,
both considering DNA sequencing and RNA sequencing, accelerating medical
research and discovery, since samples from patients can now be sequenced rou-
tinely.

DNA sequencing is usually performed to describe the genomic differences
between two samples, which impact on their phenotypes, such as having different
eyes’ colour or susceptibility to a specific disease. On the other hand, RNA
sequencing (RNA-seq) is performed to understand what is going on inside the
cell, which genes are actually transcribed and active, because, for example, a
liver must implement different biological processes in comparison to a spleen
(although they share precisely the same genome). The idea is that we can
compare DNA to a program stored on a disk and RNA as the same program
loaded into RAM.

The opportunity to study the transcriptome of cells (cultured cells, cells from
mouse models or cells from human samples, such as blood) using RNA-seq has
fuelled many crucial discoveries in biology and biomedicine, being now a routine
method in clinical research. However, RNA-seq is typically performed in ”bulk”,
which means to sequence the RNA of all the cells in a sample (thousands or
millions of cells), and the data represent an average gene expression pattern
across a population of cells. This might obscure biologically relevant differences
between cells, such as tumour clones that are resilient to chemotherapy.

Single-cell RNA-seq (scRNA-seq) represents an approach to overcome this
problem. The idea is to isolate single cells through microfluidic approaches,
capturing their transcripts through emulsion droplets loaded with chemical
reagents, and generating sequencing libraries in which the transcripts are tagged
(through a nucleotidic barcode) to track their cell of origin. One of the most

19

popular platforms for single-cell analysis is marketed by 10X Genomics, which is
capable of analysing from 500 to 20,000 cells in each run. Then, combined with
massive high-throughput sequencing producing billions of reads, scRNA-seq al-
lows the assessment of fundamental biological properties of cells populations
and biological systems at unprecedented resolution.

The problem with this technique is the noise that is exaggerated by the
need for very high amplification from the small amounts of RNA found in each
cell. Denoising these data and estimating the adequate amount of sequencing
reads covering each gene in the cell is of critical importance to define a reliable
RNA count matrix, the fundamental data structure for this kind of analysis
which represents for each cell and each gene how many transcripts have been
captured. This is a quite complex bioinformatic pipeline that requires many
different statistics and repeating the procedures many times to identify the
right thresholds for the sample in analysis. In this context, the processing
power and the automatic management of the pipeline are of critical importance,
since analysing each cell in a population requires from hundreds-of-thousands
to millions of comparisons to be processed in a high throughput manner.

5.2 Application pipeline

Once the noise caused by the experimental amplification of the RNA has been
controlled, and the count matrix has been built, the key idea is to implement
techniques aimed at reducing the data dimensionality in order to cluster cells
with a similar expression profile. Therefore, a typical pipeline for single-cell
transcriptomic data analysis can be broadly divided into two main parts: the
creation of the count matrix and its statistical analysis.

The first step is the creation of the RNA count matrix, and it must be
performed according to the adopted single-cell experimental technology and the
used sequencing approach. For example, considering a typical 10x genomics
experiment followed by an Illumina Novaseq sequencing, the first part of the
pipeline will be performed using a tool called CellRanger [38]. In particular,
this part of the analysis will consist in two steps: the creation of the fastq files
(the raw sequences of the four bases, called reads) from the flowcell provided in
output by the sequencer and the alignment of the reads against the reference
genome.

The fastq creation is performed by looking at the images generated by the
sequencer cycle after cycle into the flowcell on which the sequences have been
hybridised. From the computational point of view, the algorithm looks at the
images and calls the bases for each position. It also provides, for each base in
each read, a quality score according to the accuracy by which the base has been
called.

The second step performed by CellRanger is the creation of the count matrix
itself, a process that requires two distinct procedures. First, sequences that have
been generated in the previous step are aligned against the reference genome
using STAR, which is the most popular aligner currently available for transcrip-
tomic analysis. These alignments are then processed according to the genome
annotation, in order to recapitulate for each gene how many reads have been
captured.

Once the count matrix has been computed, a quantitative analysis of the
results is usually performed. The aim is clustering cells having similar transcrip-

20

tomic profiles and characterising them according to some reference databases.
This can be performed using ad-hoc developed software in Python or R, the
latter being probably the most popular at the moment. In the context of this
pipeline, we used two main R packages for the analysis of the count matrix:
Seurat [39, 40] for normalisation, dimensionality reduction and clustering of
cells, and SingleR [41] for labelling the clusters, that is identifying the cell type,
according to public databases of single-cell data annotation.

In particular, Seurat is used to loading data into the R environment and to
filter outliers for specific statistics, such as the number of unique transcripts or
the presence of mitochondrial transcripts, which correlate with the vitality of
the cells. Data are then normalised, taking into account the different coverage
of the different cells, and the most variable genes are identified. These genes are
used to perform a dimensionality reduction through the computation of principal
component analysis. Cells are then clustered using the Louvain algorithm, which
has been specifically designed for detecting communities in networks. At last,
marker genes are identified for each cluster by comparing the expression profile
of the cells inside the cluster with all the other cells.

Once clusters have been identified, the pipeline uses SingleR to characterise
each cell trying to identify its type (such as Blood Cell, Bone Cell, and Stem
Cell) in an unbiased way. SingleR leverages reference transcriptomic datasets
of pure cell types to infer the identity of every single cell independently. In
particular, SingleR starts by calculating a Spearman coefficient for each cell in
the single-cell experiment with the reference data set, using only variable genes,
thus increasing the ability to distinguish closely related cell types. This process
is performed iteratively, using only the top cell types from the previous step
and only the variable genes among these remaining cell types, until a precise
cell type can be assigned to the analysed cell.

As a test case, in this work, we used a published dataset [42] concerning
Gene Editing in Hematopoietic Stem Cell. In particular, this dataset was pro-
duced to compare the efficiency of different gene-editing approaches and, for
this reason, the whole experiment is composed of 6 different single-cell samples
sequenced independently. This complex experimental design resulted in a par-
ticularly challenging and time-consuming dataset, making a flexible, automated
and scalable workflow management systems particularly desirable.

5.3 StreamFlow implementation

In general, the design of a StreamFlow application can be split into three high-
level steps:

• The design of the workflow dependency graph, using a coordination lan-
guage of choice among those supported by the framework. For now, as
discussed in Sec. 4.1, CWL is the only possible choice, so we obviously
opted for it.

• The design of the execution environment, in terms of one or more models
containing one or more services each. Here we decided to experiment
two different combinations of Occam and Helm environments, as better
detailed below in this section.

21

CellRanger

R environment

CellRanger mkfastq

CellRanger count

Seurat

SingleR

Figure 7: Dependency graph and model bindings for the single-cell workflow.
In this case, the first step creates six different sequences, which can then be
processed independently of each other for the remaining three steps.

• The creation of a StreamFlow file, as described in Sec. 4.3, in order to
wrap things together.

Fig. 7 provides a graphical representation of the whole StreamFlow model
for a single-cell pipeline of the kind described in Sec. 5.2. In this case, the
workflow dependency graph is a simple DAG with four different kinds of tasks.
In terms of workflow patterns [43], it can be represented as an initial parallel
split, with a fan-out equal to the number of sequences produced by the first
task (six in this case), followed by as many independent sequence blocks of
three tasks each. In CWL, this can be easily implemented using the scatter

directive. It is also worth noting that, since none of the tasks can be executed in
a distributed fashion, the maximum number of nodes from which the workflow
execution can take some benefit is equal to the fan-out of the initial parallel
split.

Since CellRanger executes the first two types of tasks and the last two tasks
require two main R packages (i.e. Seurat and SingleR) plus all the related
dependencies, we decided to implement two distinct container images. Parti-
tioning the tasks with respect to their target container, we obtain two disjoint
subsets, each of which can execute concurrently on a maximum of six nodes.
Therefore, if enough hardware resources are available, the best strategy would
be to allocate six replicas of each image, implementing an MTSC mapping as
described in Sec. 4.6. Nevertheless, since the containers initialisation time is
negligible with respect to the time required for the completion of tasks them-
selves and outputs are always stored in a persistent location, this ends up being
practically equivalent to an STSC pattern. Given that, it should be clear that
requirements R1 and R2 of Sec. 3.1 do not bring additional concrete value to
this workflow.

Conversely, the hybrid workflow execution enabled by requirements R3 and
R4 of Sec. 3.2 can be beneficial, for example, to perform a data preprocessing
phase on a dedicated HPC structure before moving data to the cloud to complete
the remaining steps. Indeed, in the examined case, the total size of the initial

22

0 2000 4000 6000 8000 10000 12000

Seconds since start

occam6

occam5

occam4

occam3

occam2

occam1

Figure 8: Execution timeline for the StreamFlow single-cell application on six
Occam nodes, each allocated to both a CellRanger and an R environment con-
tainers.

data is almost 60GB, but modern sequencing machines can achieve 10 billion
of sequences per flowcell, corresponding to about 3TB of data. Moreover, the
cellranger count command requires a quite high amount of resources to be
performed: the official documentation reports 8 cores and 32GB of memory as
minimum requirements, but a significant speedup can be appreciated until up
to 32 cores and 128GB of memory.

If hybrid workflows were not supported, the best strategy would be to ex-
ecute the entire set of tasks on top of six HPC nodes, in order to take full
advantage of the available grade of parallelism while avoiding data transfers.
Moreover, when using total wall clock time as the only evaluation metric, this
one keeps being the best solution also when compared with hybrid alternatives.
Therefore, it is worth to use this setting as a baseline in order to evaluate the
significance of performance loss when switching to a mixed HPC/cloud config-
uration.

We reserved six Light nodes on the Occam facility, each of which having
2x Intel Xeon E5-2680 v3 (12 core each, 2.5GHz) CPUs and 128GB (8x16,
2133MHz) of memory, and prepared a model which allocates each node to both
a CellRanger and an R environment containers. As mentioned in Sec. 4.5, all
Occam nodes share the /archive folder, mounted as an NFS export, and the
/scratch folder, with a LUSTRE parallel file-system. We copied initial data
on the /archive file-system and configured StreamFlow to use a folder on the
/scratch hierarchy as its output folder. In this way, data could be accessed
by dependent tasks without the need for explicit transfers. Then we ran the
StreamFlow application inside a container launched on an additional Occam
node.

The timeline for this execution is reported in Fig. 8. The whole dura-
tion is about three hours and a quarter, dominated by the CellRanger count
and the Seurat commands. White space between subsequent bars represents
the time needed by StreamFlow itself to perform some internal tasks before
launching a new command, including copying the input data on a staging folder
(as mentioned in Sec. 4.5). Nevertheless, the time taken to perform each of
these operations is negligible with respect to the time needed to complete tasks
themselves.

23

In a real scenario, it would be probably better to dedicate the HPC structure
to the completion of the first tasks, while executing the rest of the workflow
directly on a cloud environment. Indeed, the output data of the last task must
often be stored into a database or visualised in a web application, and the
cloud is undoubtedly the most natural place to host such kind of services. By
observing intermediate data in the workflow model, it is possible to notice that
output data of the second task have a total size of about 15-30MB, while the
third task produces output data for more than 200MB. Given that, in order to
minimise the overhead introduced by a data transfer, the best strategy would
be to execute the first two tasks on an HPC facility and the remaining two in a
cloud infrastructure.

We configured a virtualised Kubernetes cluster on top of the GARR30 cloud,
based on OpenStack31, containing six worker nodes with 4 virtual CPUs and
8GB of memory each. Then we prepared two different models:

• A first model with six Occam nodes, with an instance of the CellRanger
container allocated on each of them

• A second model with six Kubernetes Pods, each with an instance of the R
environment container and a podAntiAffinity parameter to ensure that
each Pod is allocated on a different worker node whenever possible.

It is worth noting that there is no need to modify the CWL description of
the workflow to run it on the new environment: changes only involve model
descriptions and the streamflow.yml file.

On Kubernetes, the StreamFlow output folder of each container has been
mapped to a persistent volume managed by Cinder, the OpenStack’s block
storage service, configured with a readWriteOnce access mode. It means that
no shared data space exists between different worker nodes. Nevertheless, the
scheduling policy described in Sec. 4.4 makes it so that each SingleR task is
executed by the node where its required input data already reside, removing the
need for additional data transfers. Given that, since we kept running Stream-
Flow application inside an Occam node, the only unavoidable data movement
is from Occam to Kubernetes, between the second and the third tasks.

The timeline for this second run is reported in Fig. 9. The first important
thing that can be observed is how the whole duration of this hybrid execution is
comparable with the previous full-HPC configuration. This is mainly due to the
combination of two factors. Firstly, the time needed to transfer data from the
Occam facility to the GARR cloud is negligible when compared with the time
needed to complete the tasks themselves. Moreover, the Seurat task seems not
to benefit so much from additional computing power, making it quite useless
to commit HPC machines for its execution. In a situation like this, it is pretty
clear that the StreamFlow approach can be beneficial to obtain a more efficient
resource allocation without significant performance drops.

6 Conclusion and further development

The recent explosion in popularity faced by lightweight containerisation tech-
nologies also invested the scientific workflows’ ecosystem, with undoubted gains

30https://garr.it/it/
31https://www.openstack.org/

24

https://garr.it/it/
https://www.openstack.org/

0 2000 4000 6000 8000 10000 12000

Seconds since start

kube6

kube5

kube4

kube3

kube2

kube1

occam6

occam5

occam4

occam3

occam2

occam1

Figure 9: Execution timeline for the StreamFlow single-cell application in a
hybrid configuration, with six Occam nodes allocated to CellRanger as many
replicas and six Kubernetes worker nodes allocated to as many R environment
containers.

in portability and reproducibility. During the very last years, a significant num-
ber of WMSs started to include container-based workflow executions among
their features, while new container-native alternatives began to appear. Never-
theless, some common simplifications in the design process can prevent a WMS
to exploit the potential of containerisation technologies fully.

This work aims at exploring the potential benefits deriving from waiving
two common properties of existing WMSs. Firstly, a one-to-one task-container
mapping prevents the execution of tasks in multi-container environments and
makes it unnecessarily difficult to support concurrent executions of communicat-
ing tasks. Moreover, the requirement for a single shared data space represents
an obvious obstacle for hybrid workflow executions, which could instead highly
benefit from containers’ portability properties.

The StreamFlow framework has been developed as a proof-of-concept WMS
which explicitly drops these constraints by design. In StreamFlow, the unit of
deployment is a complex multi-container environment, directly managed by an
underlying orchestration technology. Moreover, each container can exchange
files with every other, with the only constraint for the WMS management node
to be able to reach the whole execution environment. This second feature has
been used to run a bioinformatics workflow on top of a hybrid HPC/cloud envi-
ronment without significant performance losses, therefore showing the potential
benefits introduced by the proposed approach in terms of more efficient resource
usage.

The next crucial step now is to investigate benefits brought by multi-container
deployment units in scientific applications. Potential forthcoming candidates
for experimentation are all those applications which require distributed execu-
tion, as MPI-based simulations or distributed deep learning frameworks. In

25

case of positive feedback, some further developments will be necessary to evolve
StreamFlow in a mature product, as the support for more coordination lan-
guages and orchestration libraries. Moreover, as previously mentioned, a robust
abstraction for inter-container communication channels would significantly re-
duce performance losses introduced by large data transfers.

Acknowledgement

This article describes work undertaken in the context of the Deep-
Health project32, “Deep-Learning and HPC to Boost Biomedical
Applications for Health” which has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme

under grant agreement No. 825111 [44]. This work has been partially supported
by the HPC4AI project33 [45].

References

[1] M. Aldinucci, H. L. Bouziane, M. Danelutto, and C. Pérez, “STKM on
SCA: a unified framework with components, workflows and algorithmic
skeletons,” in Proc. of 15th Intl. Euro-Par 2009 Parallel Processing, ser.
LNCS, vol. 5704. Delft, The Netherlands: Springer, Aug. 2009, pp. 678–
690.

[2] S. C. Boulakia, K. Belhajjame, O. Collin, J. Chopard, C. Froidevaux,
A. Gaignard, K. Hinsen, P. Larmande, Y. L. Bras, F. Lemoine, F. Mareuil,
H. Ménager, C. Pradal, and C. Blanchet, “Scientific workflows for compu-
tational reproducibility in the life sciences: Status, challenges and oppor-
tunities,” Future Generation Comp. Syst., vol. 75, pp. 284–298, 2017.

[3] J. Liu, E. Pacitti, and V. P. et al, “A survey of data-intensive scientific
workflow management,” Journal of Grid Computing, vol. 13, no. 4, pp. pp
457–493, Dec. 2015.

[4] M. P. Atkinson, S. Gesing, J. Montagnat, and I. J. Taylor, “Scientific work-
flows: Past, present and future,” Future Generation Comp. Syst., vol. 75,
pp. 216–227, 2017.

[5] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deel-
man, “A characterization of workflow management systems for extreme-
scale applications,” Future Generation Comp. Syst., vol. 75, pp. 228–238,
2017.

[6] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
Kepler system,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

32https://deephealth-project.eu/
33http://www.hpc4ai.it

26

https://deephealth-project.eu/
http://www.hpc4ai.it

[7] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H. L. Truong, A. Villazón, and M. Wiec-
zorek, “ASKALON: A development and grid computing environment for
scientific workflows,” in Workflows for e-Science, Scientific Workflows for
Grids, 2007, pp. 450–471.

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, and R. K. Wenger, “Pegasus,
a workflow management system for science automation,” Future Generation
Comp. Syst., vol. 46, pp. 17–35, 2015.

[9] T. M. Oinn, R. M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris,
K. Glover, C. A. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. W.
Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Tav-
erna: lessons in creating a workflow environment for the life sciences,”
Concurrency and Computation: Practice and Experience, vol. 18, no. 10,
pp. 1067–1100, 2006.

[10] E. Afgan, D. Baker, M. van den Beek, D. J. Blankenberg, D. Bouvier,
M. Cech, J. Chilton, D. Clements, N. Coraor, C. Eberhard, B. A. Grüning,
A. Guerler, J. Hillman-Jackson, G. V. Kuster, E. Rasche, N. Soranzo,
N. Turaga, J. Taylor, A. Nekrutenko, and J. Goecks, “The Galaxy platform
for accessible, reproducible and collaborative biomedical analyses: 2016 up-
date,” Nucleic Acids Research, vol. 44, no. Webserver-Issue, pp. W3–W10,
2016.

[11] R. Badia, E. Ayguade, and J. Labarta, “Workflows for science: A challenge
when facing the convergence of HPC and big data,” Supercomput. Front.
Innov.: Int. J., vol. 4, no. 1, p. 2747, Mar. 2017.

[12] R. Filgueira, R. F. d. Silva, A. Krause, E. Deelman, and M. Atkinson, “As-
terism: Pegasus and dispel4py hybrid workflows for data-intensive science,”
in 2016 Seventh International Workshop on Data-Intensive Computing in
the Clouds (DataCloud), 2016, pp. 1–8.

[13] R. Filguiera, A. Krause, M. Atkinson, I. Klampanos, and A. Moreno,
“dispel4py: A python framework for data-intensive scientific computing,”
The International Journal of High Performance Computing Applications,
vol. 31, no. 4, pp. 316–334, 2017.

[14] V. Cima, S. Böhm, J. Martinovic, J. Dvorský, K. Janurová, T. V. Aa,
T. J. Ashby, and V. I. Chupakhin, “Hyperloom: A platform for defining
and executing scientific pipelines in distributed environments,” in Proceed-
ings of the 9th Workshop on Parallel Programming and RunTime Man-
agement Techniques for Manycore Architectures and 7th Workshop on De-
sign Tools and Architectures for Multicore Embedded Computing Platforms,
PARMA-DITAM@HiPEAC 2018, Manchester, United Kingdom, January
23-23, 2018, 2018, pp. 1–6.

[15] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

27

https://dask.org

[16] F. Marozzo, F. Lordan, R. Rafanell, D. Lezzi, D. Talia, and R. M. Badia,
“Enabling cloud interoperability with compss,” in Euro-Par 2012 Parallel
Processing, C. Kaklamanis, T. Papatheodorou, and P. G. Spirakis, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 16–27.

[17] J. Köster and S. Rahmann, “Snakemake - a scalable bioinformatics work-
flow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[18] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: a portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, SWEET@SIGMOD 2012, Scottsdale,
AZ, USA, May 20, 2012, 2012, p. 1.

[19] P. Di Tommaso, M. Chatzou, E. W. Floden et al., “Nextflow enables re-
producible computational workflows,” Nature Biotechnology, vol. 35, no. 4,
pp. 316–319, Apr. 2017.

[20] P. Amstutz, M. R. Crusoe, N. Tijani, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, J. Kern, D. Leehr, H. Mnager, M. Nedeljkovich, M. Scales,
S. Soiland-Reyes, and L. Stojanovic, “Common workflow language, v1.0,”
2016. [Online]. Available: https://doi.org/10.6084/m9.figshare.3115156.v2

[21] M. Kotliar, A. V. Kartashov, and A. Barski, “CWL-Airflow: a lightweight
pipeline manager supporting Common Workflow Language,” GigaScience,
vol. 8, no. 7, 07 2019.

[22] J. M. Wozniak, M. Wilde, and I. T. Foster, “Language features for scal-
able distributed-memory dataflow computing,” in Proceedings of the 2014
Fourth Workshop on Data-Flow Execution Models for Extreme Scale Com-
puting, ser. DFM 14. USA: IEEE Computer Society, 2014, p. 5053.

[23] T. C. Chieu, A. A. Karve, A. Mohindra, and A. Segal, “Simplifying solu-
tion deployment on a cloud through composite appliances,” in 24th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS
2010, Atlanta, Georgia, USA, 19-23 April 2010 - Workshop Proceedings,
2010, pp. 1–5.

[24] A. Lenk, C. Dänschel, M. Klems, D. Bermbach, and T. Kurze, “Require-
ments for an iaas deployment language in federated clouds,” in 2011 IEEE
International Conference on Service-Oriented Computing and Applications,
SOCA 2011, Irvine, CA, USA, December 12-14, 2011, 2011, pp. 1–4.

[25] M. Caballer, J. D. S. Quilis, G. Moltó, and I. Blanquer, “A platform to
deploy customized scientific virtual infrastructures on the cloud,” Concurr.
Comput. Pract. Exp., vol. 27, no. 16, pp. 4318–4329, 2015.

[26] D. Le, H. L. Truong, G. Copil, S. Nastic, and S. Dustdar, “SALSA: A
framework for dynamic configuration of cloud services,” in IEEE 6th Inter-
national Conference on Cloud Computing Technology and Science, Cloud-
Com 2014, Singapore, December 15-18, 2014, 2014, pp. 146–153.

28

https://doi.org/10.6084/m9.figshare.3115156.v2

[27] L. M. Pham, A. Tchana, D. Donsez, N. D. Palma, V. Zurczak, and
P. Gibello, “Roboconf: A hybrid cloud orchestrator to deploy complex
applications,” in 8th IEEE International Conference on Cloud Computing,
CLOUD 2015, New York City, NY, USA, June 27 - July 2, 2015, 2015,
pp. 365–372.

[28] J. Kovács, P. Kacsuk, and M. Emodi, “Deploying docker swarm cluster
on hybrid clouds using occopus,” Adv. Eng. Softw., vol. 125, pp. 136–145,
2018.

[29] “Topology and orchestration specification for cloud applications version
1.0,” http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.
html, 2013.

[30] A. Scionti, J. Martinovic, O. Terzo, E. Walter, M. Levrier, S. Hachinger,
D. Magarielli, T. Goubier, S. Louise, A. Parodi, S. Murphy, C. D’Amico,
S. Ciccia, E. Danovaro, M. Lagasio, F. Donnat, M. Golasowski, T. Quintino,
J. Hawkes, T. Martinovic, L. Riha, K. Slaninova, S. Serra, and R. Peveri,
“Hpc, cloud and big-data convergent architectures: The lexis approach,”
in Complex, Intelligent, and Software Intensive Systems, L. Barolli, F. K.
Hussain, and M. Ikeda, Eds. Cham: Springer International Publishing,
2020, pp. 200–212.

[31] J. A. Novella, P. E. Khoonsari, S. Herman, D. Whitenack, M. Capuccini,
J. Burman, K. Kultima, and O. Spjuth, “Container-based bioinformatics
with Pachyderm,” Bioinformatics, vol. 35, no. 5, pp. 839–846, 2019.

[32] P. Moreno, L. Pireddu, P. Roger, N. Goonasekera, E. Afgan,
M. van den Beek, S. He, A. Larsson, D. Schober, C. Ruttkies,
D. Johnson, P. Rocca-Serra, R. J. Weber, B. Gruening, R. M.
Salek, N. Kale, Y. Perez-Riverol, I. Papatheodorou, O. Spjuth, and
S. Neumann, “Galaxy-kubernetes integration: scaling bioinformatics
workflows in the cloud,” bioRxiv, 2019. [Online]. Available: https:
//www.biorxiv.org/content/early/2019/02/12/488643

[33] D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[34] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific con-
tainers for mobility of compute,” PLOS ONE, vol. 12, no. 5, pp. 1–20, 05
2017.

[35] N. Kulkarni, L. Alessandr̀ı, R. Panero, M. Arigoni, M. Olivero, G. Ferrero,
F. Cordero, M. Beccuti, and R. A. Calogero, “Reproducible bioinformatics
project: a community for reproducible bioinformatics analysis pipelines,”
BMC Bioinformatics, vol. 19, no. 10, p. 349, 2018.

[36] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE
Transactions on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972.

[37] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S. Rabellino, “Oc-
cam: a flexible, multi-purpose and extendable HPC cluster,” in Journal of
Physics: Conf. Series (CHEP 2016), vol. 898, no. 8, San Francisco, USA,
2017, p. 082039.

29

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://www.biorxiv.org/content/early/2019/02/12/488643
https://www.biorxiv.org/content/early/2019/02/12/488643

[38] G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wil-
son, S. B. Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gre-
gory, J. Shuga, L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y.
Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj,
A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland, K. R. Loeb,
W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen,
B. J. Hindson, and J. H. Bielas, “Massively parallel digital transcriptional
profiling of single cells,” Nature communications, vol. 8, pp. 14 049–14 049,
Jan. 2017.

[39] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, “Integrating
single-cell transcriptomic data across different conditions, technologies, and
species,” Nature Biotechnology, vol. 36, no. 5, pp. 411–420, 2018.

[40] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. I.
Mauck, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija, “Comprehensive
integration of single-cell data,” Cell, vol. 177, no. 7, pp. 1888–1902.e21, Jun
2019.

[41] D. Aran, A. P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R. P.
Naikawadi, P. J. Wolters, A. R. Abate, A. J. Butte, and M. Bhattacharya,
“Reference-based analysis of lung single-cell sequencing reveals a transi-
tional profibrotic macrophage,” Nature Immunology, vol. 20, no. 2, pp.
163–172, 2019.

[42] G. Schiroli, A. Conti, S. Ferrari, L. della Volpe, A. Jacob, L. Albano,
S. Beretta, A. Calabria, V. Vavassori, P. Gasparini, E. Salataj, D. Ndiaye-
Lobry, C. Brombin, J. Chaumeil, E. Montini, I. Merelli, P. Genovese,
L. Naldini, and R. Di Micco, “Precise gene editing preserves hematopoietic
stem cell function following transient p53-mediated dna damage response,”
Cell Stem Cell, vol. 24, no. 4, pp. 551–565.e8, Apr 2019.

[43] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros, “Work-
flow patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51,
Jul. 2003.

[44] M. Caballero, J. Gomez, and A. Bantouna, “Deep-learning and hpc to
boost biomedical applications for health (deephealth),” in 2019 IEEE 32nd
International Symposium on Computer-Based Medical Systems (CBMS).
Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2019, pp. 150–155.

[45] M. Aldinucci, S. Rabellino, M. Pironti, F. Spiga, P. Viviani, M. Drocco,
M. Guerzoni, G. Boella, M. Mellia, P. Margara, I. Drago, R. Marturano,
G. Marchetto, E. Piccolo, S. Bagnasco, S. Lusso, S. Vallero, G. Attardi,
A. Barchiesi, A. Colla, and F. Galeazzi, “HPC4AI, an AI-on-demand fed-
erated platform endeavour,” in ACM Computing Frontiers, Ischia, Italy,
May 2018.

30

	1 Introduction
	2 Related works
	2.1 Scientific workflows
	2.2 Cloud orchestration

	3 Methods
	3.1 Multi-container environments
	3.2 Hybrid workflows

	4 StreamFlow framework
	4.1 The WMS integration layer
	4.2 Model life-cycle management
	4.3 The StreamFlow file
	4.4 Task scheduling
	4.5 Data transfers
	4.6 Task-container mapping patterns

	5 Single-Cell application use-case
	5.1 Single-cell sequencing
	5.2 Application pipeline
	5.3 StreamFlow implementation

	6 Conclusion and further development

