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Abstract— In the current paper, we present our work towards 

accelerating intrusion detection operations at the edge network 

using FPGAs.  Cloud computing and network function 

virtualization have led to a new appealing paradigm for service 

delivery and management. Unfortunately, this paradigm fails to 

correctly support IoT applications and services that seek better 

communication platforms. Security as a Service can also be seen 

as a cloud-based model that needs to be accommodated to fulfill 

these services requirements. Again, one of the main issues to be 

addressed in this context is how to improve the performance of 

such systems or services in order to make them capable of 

coping with the huge amount of data while remaining reliable. 

A potential solution is the FPGA based edge computing, which 

is a powerful combination offering FPGA acceleration 

capabilities together with edge and fog benefits. Indeed, our 

work focusses on devising an Intrusion Prevention architecture 

called FORTISEC (40SEC), that is meant to operate in a 

completely softwarized as well as in an FPGA accelerated mode. 

Thereby, we present suitable algorithms, design methodologies 

and well defined components towards the implementation of 

accelerated intrusion prevention on the edge. It is worth to 

mention that although 40SEC is discussed here in the context of 

edge computing, it can serve as a security solution for any Small 

and Medium Enterprise looking for full protection of its 

network at a reasonable price. We also present a testbed being 

utilized for the implementation of 40SEC and its performance 

testing.  

Keywords—Security, IDS, IPS, SECaaS, Edge, Fog, FPGA, 

netfilter, iptables, nftables, SME, FORTIKA 

I. INTRODUCTION 

Virtual Network Functions are network services or 

capabilities that are softwarized and can also run on 

commodity hardware. Contrary to functions running on 

dedicated hardware, virtual functions offer flexibility and 

easy deployment. The services that can be softwarized 

include firewalls, Domain Name System (DNS), Network 

Address Translation (NAT), and Intrusion 

Detection/Prevention Systems (IPS/IDS) [23].  

 

It can be fairly said that virtualization enabled moving a huge 

number of services and applications to the cloud. However, 

the related performance was not always as expected. This is 

the case for instance for Internet of Things (IoT) [23]. The 

latter is being used in a variety of systems and services in our 

daily life. The quality of these services certainly depends on 

the security solutions put in place in order to protect them. 

Utilizing Intrusion Detection Systems (IDS) in the cloud, in 

order to secure IoT services might not be the appropriate way 

as with the huge amount of data to be analyzed, the response 

time might face delays and the alerts could be received after 

the attack has taken place.  

 

Edge computing is a paradigm that particularly came to 

optimize network bottlenecks that can be faced when using 

clouds. The idea behind this concept is to perform data 

processing and knowledge generation at the periphery of the 

network and close to the originating sources. If we wish to 

develop an IDS for protecting IoT services, we need to ensure 

that: (1) it is lightweight enough to be deployed at the edge, 

and (2) the performance of the detection operations will be 

better than if the detection is made in the cloud.  

 

In this paper, we discuss our research towards specifying and 

prototyping an Intrusion Prevention System (IPS) that can be 

used in Edge computing scenarios. Our solution, called 

FORTISEC (or simply 40SEC), resembles to a Virtual 

Security Appliance (vSA) that is composed of a firewall and 

an IDS. Although, the focus in this paper is on edge 

computing, our solution can be utilized in a variety of other 

scenarios (e.g. enterprise security).  One of the main 

characteristics of our vSA is the fact that the parts of the IDS 

that need intensive processing are implemented on Field 

Programmable Gate Arrays (FPGAs) that are known for their 

capabilities of accelerating compute intensive workloads 

[25]. It was mentioned for instance in [25] that convolutional 

Neural Networks (CNN) can be improved for image 

classification on AlexNet up to 2,0/2,5 times in terms of 

processing time – i.e. when utilizing FPGAs in comparison to 

CPUs. 

 

The rest of this paper is structured as follows: Sections two 

and three discuss the state of the art related to the 

implementation of IDS particularly on accelerators. Section 

four introduces the 40SEC system. Sections five and six 

describe the ARM based architecture and the FPGA based 

architecture respectively. Section seven gives an overview of 

the tests and the related results undertaken until now, and 

section eight concludes the paper and outlines future 

activities. 



II. RELATED WORK AND PROGRESS BEYOND STATES-

OF-THE-ART 

Implementing Intrusion Detection Systems on FPGA is a 

topic that has been more or less discussed in literature. The 

topic was approached from different angles, since existing 

algorithms such as Wu-Manber [39] and Aho-Corasik [40], 

which could be efficient in accelerating rule-matching 

operations, are applicable to strings. However, the rule sets 

that intrusion detection systems like Snort use are based on 

regular expressions (regex). An ideal situation could have 

been the utilization of the above-mentioned fast algorithms 

with the rule sets offered by the existing IDS. Unfortunately, 

this option is not easy to realize. Snort, for instance, provides 

already a huge variety of rules where most of them are written 

in Perl Compatible Regular Expressions (PCRE) [44], and 

which cannot be integrate with the above high speed string-

matching approaches in a simple way. 

The authors of [36] proposed a solution integrating network 

interface hardware and packet analysis hardware into a single 

FPGA chip. To realize this, they implemented a complete and 

functional network IDS on a Xilinx Virtex II/Pro FPGA that 

performs packet filtering on multiple Gigabit Ethernet links 

using Snort rules [36].  In [38], an FPGA based high 

performance pattern matching architecture was implemented. 

The authors claim that the developed deep network packet 

filter can protect a network of 1.6 Gbps and their design can 

fit on very cheap FPGA hardware.  

As the part in the IDS that requires intensive processing is the 

string matching, several solutions implementing the related 

operations on FPGA were suggested. For instance, the 

authors of [37] presented a module utilizing non-

deterministic finite automata to create efficient circuits for 

matching patterns defined through a standard rule language. 

In order to have complete IDS, the mentioned module was 

integrated with other hardware and software components. 

The authors of  [37] claim that their technique led to circuits 

that are more than twice as dense as other proposed designs, 

however the  throughput necessary for processing at gigabit 

line speeds and even beyond was maintained. The IDS 

software versions like Snort use some rule matching 

algorithms (such as the above-mentioned Wu Manber [39] 

and Aho-Corasik [40]), which can be implemented on 

hardware in order to accelerate the detection operations [41]. 

These algorithms need to be redesigned in order to use regular 

expressions.   

In [42], a hardware based regular expression engine for Snort 

was built by transforming the PCRE opcodes generated by 

the PCRE compiler from Snort regular expression rules. The 

hardware implementation was tuned by using 

Nondeterministic Finite Automaton (NFA) and greedy 

quantifiers. Two hundred PCRE engines were implemented 

and tested on a Virtex-4 LX200 FPGA. The authors claim 

that this implementation performs much better (up to 353 

times faster) than software based PCRE execution [42].   

Sidhu and Prasanna [43] investigated the acceleration of grep 

regular expression searches with FPGAs by utilizing a 

compilation technique that quickly converts a regular 

                                                           
1 https://www.xilinx.com/products/design-tools/vivado.html 

expression into an FPGA circuit. The regular expression is 

compiled into a Nondeterministic Finite Automata (NFA) 

that is directly implemented on the FPGA hardware. Another 

way for handling regular expression operators, based on 

standard regex syntax is to use JHDL [45], which is a 

complete Java based design environment.  Indeed, one can 

write complex circuit generation algorithms in Java and 

combine them with JHDL circuit libraries in order to create 

sophisticated module generators [46]. Unfortunately, this tool 

is not easy to use and cumbersome to learn and involve 

unexperienced engineers. 

Our approach differs from the above-mentioned work in the 

following aspects, 

 Both signature and anomaly based detection techniques 

are considered in our design 

 Our implementation considers pattern matching 

algorithms that are already used by well know intrusion 

detection solutions (e.g, Snort) 

 “high-level” programming languages like C/C++ have 

been used for implementing the pattern matching 

algorithms on Xilinx Vivado1. This makes the update of 

the code easier. Vivado also enables the generation of 

bitstreams that can be uploaded on the FPGA hardware  

III. INTRUSION DETECTION SYSTEMS  

Intrusion Detection Systems (IDS) are devices or software 

applications used to monitor the network for abnormal and 

malicious activities. Although the attacks that can be detected 

by IDS are of various types, they can be generally classified 

as follows [1],  

 

Probing: This activity systematically scans a given network 

in order to collect useful information or known 

vulnerabilities. Once the topology of the network is known, 

this activity could be followed by a severe attack. Port scan 

is an example of such attacks. 

 

Remote-to-Local (R2L): Here, the attacker gains 

unauthorized access to a certain machine via a remote 

connection. Examples of such attacks include buffer 

overflow, network worms, and Trojan programs.  

 

User-to-Root (U2R): By carrying out this attack, it is 

intended to achieve higher access privileges in a victim 

machine starting from a normal access. An example of such 

attack [2] is the use of stack smashing, which feeds a packet 

to a set-UID-to-root program that corrupts its address space 

so that a return from subroutine instruction results in the 

spawning of a setUID-to-root command shell. 

 

Denial of Service (DoS): The goal of a DoS attacks is to 

make a network resource unavailable for legitimate users. 

One way to trigger the crash is to flood the system with a huge 

amount of useless traffic. The other way for carrying out the 

attack is to exploit software bugs in the system under 

consideration and use them to reduce its performance or crash 

it.  This method is usually reflected by sending malformed 

messages, which will be incorrectly handled by the targeted 



resource. Examples of DoS attacks [1] include ICMP flood, 

SYN flood, Ping of Death (PoD), and Teardrop attack. 

 

The current security market offers a variety of IDS that can 

be categorized according to the following factors, 

 

Location: Here, we need to distinguish between host based 

and network based IDS. The first subcategory collects data 

from computer internal sources (e.g. operating system logs) 

and monitors system programs execution and user activities. 

A network based IDS monitors user activities on the network 

by collecting network packets and analyzing the related 

traffic.     

 

Functionality: Here, we need to distinguish between an 

Intrusion Detection System (IDS) and an Intrusion 

Prevention System (IPS). Contrary to the IDS that performs 

automatic intrusion detection activities, the IPS also manages 

responsive actions. Usually an IPS is an IDS enhanced with 

preventive functionalities such as firewalling, vulnerability 

assessment, and anti-virusing.  

 

Deployment: This factor simply means that an IDS can be 

installed in one host or several ones. In the second case, the 

detection is performed in a distributed manner and the results 

will be coordinated by the IDS central management system. 

 

Detection model: In the detection process, if the attack 

pattern is available, each packet from the network traffic is 

matched against the attack pattern. This way of inspecting the 

network traffic is referred to as signature-based detection. 

Unfortunately, it only detects known attacks. Anomaly 

detection simply builds profiles for normal user/network 

behavior, which will be compared to the actual behavior of 

the user or the network. The mentioned profiles can be 

defined by the administrator or through a training phase 

(based on statistical and/or machine learning techniques) of 

the IDS. Anomaly detection assumes that any abnormal 

behavior indicates an intrusion. This is in general incorrect 

and could lead to a significant number of false alarms.  

 

 
 

Figure 1: ARM based Architecture 

 

Intrusion Detection Systems do not exist only as commercial 

solutions, some IDS open source software packages are also 

available on the market and offer comparable levels of 

security. Snort [3] and Suricata [4] are among these open 

source solutions and implementing mostly signature based 

intrusion detection.  
 

IV. THE 40SEC SYSTEM 

The edge gateway platform, on which our virtual Security 

Appliance (40SEC) run, is a XILINX KRM-3Z7030 50mm x 

70mm module [34] composed of an ARM processor and an 

FPGA part, and carried by a KRC3701 Carrier Kit [35].  

 

It is worth mentioning that virtualizing security appliances 

has to deal intrinsically with performance restrictions. In the 

past, optimal performance was provided through a dedicated 

hardware. In virtualized environments, applications and 

services running on an operating system compete for the 

same hardware computing resource, which might slow down 

the performance. One of the main objectives of this work is 

to investigate how the performance behaves when the 40SEC 

entirely runs on the ARM processor and when some of the 

related security parts - that require more processing - are 

moved to FPGA. For this reason, we decided to have the 

40SEC architecture in two different versions. In the first one, 

the entire 40SEC appliance runs on the ARM processor. 

However, in the second version, the parts that require intense 

processing are moved to the FPGA part, in order to speed up 

the detection operations.   

 

V. THE ARM BASED ARCHITECTURE 

Figure 1 depicts the main components of the ARM based 

40SEC architecture as well as the interfaces in between. As 

previously mentioned, the entire 40SEC appliance is 

implemented on the ARM processor in the first version. For 

that purpose, various related components were dockerized 

and made available. Since some existing Intrusion Detection 

Systems - such as Snort - are available as open source and 

offer a security level comparable to commercial security 

solutions, we decided to explore their capability of running 

on the ARM processor and measure their performance. 

Within the 40SEC architecture, Snort was utilized due to its 

popularity. Based on these high-level elucidations, the 

following subsections discuss on vital aspects and processes 

within the 40SEC architecture depicted in Figure 1. 

 

A. Packet Capturing 

Packet Capturing makes all incoming network packets 

available for further processing. The easiest and typical way 

to receive all packets in Linux is to open a raw socket. Such 

a socket will pass received Ethernet frames directly to the 

user space application without any preprocessing (thus all 

network headers are incorporated into the data). In Python, 

such a socket can be created with the socket module and a 

call to 

  



socket.socket(socket.AF_PACKET, socket.SOCK_RAW, 

socket.htons(3)) 

  
In this connection call, the first argument indicates the address 
family (Packet, Internet Protocol 4, etc.), the second argument 
describes the socket type (raw or datagram), while the third 
one indicates that packets from all protocols will be received. 
Received calls on the socket will then return single packets, 
where the headers of the nested protocols must be parsed 
manually to extract source, destination and other metadata. 

B. Packet Filtering 

In the following, the process of packet filtering is explained 

along the legacy iptables technology. iptables [30] is a 

program for the configuration of the Linux kernel firewall. It 

is based on rules that are organized in chains. The rules are 

managed internally and can be added, modified and deleted 

through a user space application. To update the firewall rules 

programmatically, one can dynamically build up strings and 

configure them from a user space application via operating 

system calls (e.g. with the function os.system in Python). 

 

Figure 2: Development Methodology for accelerated FPGA 

Firewalls 

 

A different approach to filtering (but tightly connected to 

iptables) was implemented within netfilter. This Linux kernel 

interface allows one to create hook functions that will be 

called on every incoming packet. Such a function can then 

decide to accept or reject the packet. This gives direct control 

over the firewall functionality, in contrast to the 

configuration-based approach of iptables. Because the rules’ 

data is stored in the module and can be modified by program 

code (in the case of netfilter), it is much easier to update the 

rule set in a consistent way - e.g. all rules matching certain 

criteria can be deleted easily or multiple rules can be merged 

into a single one with a corresponding IP range. Adding 

complex functionality is therefore more straightforward than 

keeping track of all the rules of iptables and updating them 

accordingly. Because the hook functions are inserted directly 

into the kernel network stack, a netfilter-based firewall has to 

be often developed as a kernel module in the C programming 

language. Thus, with the greater flexibility also comes greater 

responsibility, as a crash of the firewall as a kernel module 

will bring down the entire system. Additionally, a 

communication channel between the firewall and user space 

has to be established to enable a REST service for 

configuration. Indeed, a sysfs interface is used for this 

purpose. Commands are inserted into a file in a virtual file 

system that is being listened to by the kernel module. 

 

C. Firewall Model Checking 

Firewalls are a critical part in any security framework. 

Unfortunately, because a lot of rules’ configuration work is 

done manually by the network administrators, 

misconfigurations are very common and can affect the 

reliability of the firewall. Identifying such anomalies is a 

challenging task, and we propose in this paper a tree based 

verification model to deal with this issue in the scope of the 

40SEC architecture.    

 

Figure 2 depicts the methodology for verifying and 

developing IDS/firewall rules in the scope of 40SEC.The 

process starts with a requirements engineering phase where 

various requirements are consolidated and further 

transformed to a decision tree (or state automate) 

representation, in order to enable the verification of the 

firewall logic. Finally, the tree is used to generate 

nftables/iptables rules for the netfilter module. Next, the steps 

in Figure 2 are described in detail as they constitute the 

formal framework for realizing various defense mechanisms 

within 40SEC. 

 

1) Requirements Engineering 
Requirements engineering is one of the cornerstones for 
successful systems’ design. In this phase, the firewall for a 
product is described with respect to its desired functionality. 
In general, requirements can originate from different sources 
- e.g. functional specifications, security targets/profiles of 
national cyber-security agencies, vulnerability databases [26], 
or results from hacking contests. Thereby, it is important to 
capture the requirements in a consolidated form, which can be 
either given as a table representation or as a more structured 
format such as ReqIF [27].  Suitable tools in this phase are 
given by DOORS [28] or the Eclipse based ProR [29]. 
Thereby, it is of paramount importance to properly manage 
the requirements, i.e. utilize a suitable  meta-model that 
enables the traceability of the requirements across the 
development process.  

 

Figure 3: Decision Tree Model for a Firewall Decision 

 

2) Modelling  and  Model Checking 

Next, we discuss on the Modelling and Model Checking 

aspects outlined in Figure 2. The creation and management of 

firewall and intrusion detection rules can be a cumbersome 

task given the complexity of possible requirements and 

aspects that need to be considered. Indeed, even the simple 

blocking of packets based on specific properties is impossible 



to verify in general through means of testing, provided the 

extreme size of the possible input-output spaces. Furthermore, 

industry and research have identified that the straightforward 

listing of firewall rules leads to poor traceability between 

requirements and implementation, poor maintenance, and is 

difficult to explain and present in front of customers and 

certification authorities. In addition, the linear listing of rules 

and decision logic bears the pitfall of not addressing implicit 

dependencies between requirements ([31],[32]).  

 

Based on the above considerations, we apply decision trees 

and state machines in the course of designing the 40SEC 

firewall. For that purpose, various tools can be applied. Figure 

3 depicts a part - i.e. sub-tree - of a larger decision tree applied 

for managing, modeling and simulating firewall/IDS rules 

based on the means provided by the Uppaal [33] model 

checker. Thereby, a packet is looked at in the light of a context 

that is represented as a tuple of various variables and 

characteristics, which are in place at the moment of the packet 

entering the edge node. Based on these characteristics, the 

decision tree is traversed until a decision is reached on 

whether to drop the packet or forward it according to the 

underlying routing rules.  Furthermore, a mapping between 

the specific requirements for the device in question and the 

paths through the decision tree is established, in order to 

ensure traceability between requirements, model and 

simulation.  

 
Based on the model checking capabilities of the belonging 
tools, various simulation and verification checks are possible. 
For example, packet contexts (i.e. tuples of characteristics) 
can be constructed and their processing within the 40SEC-
IDS/firewall-model can be validated. 

3) Code Generation 

Based on the model presented above, it is possible to develop 

code generators from the abstract decision tree form to 

various firewall representation languages. Hence, it is 

possible to generate nftables, iptables, and even C/C++ or 

Python code for embedding various algorithms and decision 

making steps in the vSA packet handling process. Referring 

back to Figure 3 and the presented Uppaal [33] based decision 

tree, the model is stored as an XML file which can be easily 

parsed, interpreted and utilized for code generation in the 

scope of the current requirements. 

 

D. Decision Engine 

The Decision Engine enables the 40SEC appliance to actively 

react on intrusions by analyzing the alerts generated from the 

IDS and adapting the firewalls configuration to stop the 

attack. Thereby, the firewall configurations and/or the IDS 

decisions are designed and verified according to the above 

described design, modelling and code generation process. 

 

E. Alarms 

Alarms in Snort can be structurally different according to the 

parameters that we use when Snort starts. To get detailed 

information about each packet triggering a rule in Snort, we 

                                                           
2 Five-tuples: https://www.techopedia.com/definition/28190/5-tuple, as of 

date 28.01.2019 

can use the -dev parameter. To get only the packet id and the 

rule id, we can use -A test. To get more information about the 

alarms in a file, we can use -A fast. In the scenarios that will 

be described later on, we use -A test and -A fast to get enough 

information about the alarms in a specific file. The 

information that we get from the Snort alarms includes: time-

stamp, id of the packet that triggered the rule, id of the rule, 

five-tuples2, class of the attack (classified by Snort in the 

classification.config file), a message describing the alarm, 

and the priority of the rule. An example of an alarm in the 

alert log of Snort is shown in Figure 4: 

 

 

Figure 4: Example Output of detected Port Scan 

This example shows a port scan that was detected on port 

80.  You can see that "1688" is the packet id, "01/09-

09:56:06.661005" is the time-stamp, "10000002" is the rule 

id, "TCP Port Scanning" is the message, "A TCP connection 

was detected" is the classification, "4" is the priority, {TCP} 

10.147.69.61:51397 -> 10.147.144.184:80 is the belonging 

five-tuples.  

 

Referring back to Figure 1, after gathering the Snort alarms 

from various sources, we developed a Python code that listens 

to any new alarms from Snort, extracts the important 

information from them, and puts them in a JSON structure 

that is subsequently sent to the Decision Engine via a 

RestAPI.  

 

Having described the key aspects of the softwarized version 

of the 40SEC firewall/IDS, the following section proceeds 

with the FPGA architecture which constitutes the 

acceleration aspect on the edge network. 

 

 

Figure 5: FPGA based Architecture 



VI. THE FPGA BASED ARCHITECTURE 

Intrusion Detection Systems can be anomaly based or 

signature based. If we take a signature based IDS as an 

example, we can see that it is composed of three main 

functionalities:  

 

1. Data processing: Here, the network traffic is collected 

and formatted, in order to be analyzed by the detection 

algorithms 

2. Detection: This operation investigates the difference 

between “normal” traffic and an intrusion. 

3. Response: Here, appropriate alerts are generated based 

on the decision criteria and the intrusions detected 

 

The typical and most straightforward way of detecting 

intrusions is to compare string patterns (attacks signatures) to 

the payload of the traffic packets. It has been shown ([5], [8]) 

that utilizing existing efficient string matching algorithms 

(e.g. [6], [7]) leads to significant costs. For instance, the 

measurements performed recently with Snort on a production 

network and reported in [8] show that almost 31% of the total 

processing effort can be traced back to string matching. The 

same report also emphasizes that in case of intensive web 

traffic, the processing cost increases to 81% of the total 

processing time. For these reasons, we would like to explore 

how the performance of our 40SEC, in particular the IDS 

part, will behave when the string matching algorithms run on 

FPGA instead of the ARM processor. The belonging 

architectural vision is depicted in Figure 5 illustrating the 

separation between the software part (i.e. ARM part) and the 

FPGA based hardware accelerator. 

 

To realize the above mentioned vision for signature based 

IDS, we have decided to implement on FPGA the Wu-

Manber algorithm that Snort uses in a simplified version. For 

anomaly detection, we have chosen to implement two well-

known techniques from the flooding/DoS attacks detection 

domain. The first one is based on adaptive thresholds, while 

the second one relies on change point theory. It is worth to 

mention that the algorithms that will be discussed below are 

applied for IP packets in the current work, and can similarly 

be used for other packet types such as SYN and ICMP. 

 

A. Statistical Algorithms 

In the following, key algorithms are presented that fit into the 

abstract 40XLERATOR architecture. 

 

Adaptive Threshold Algorithm 

Flooding attacks detection cannot rely on static thresholds. In 

fact, two main factors can affect the detection process. These 

factors are the attack type and the situation of the 

communication channel (burst or not). An attacker can flood 

the target system gradually with malicious traffic. If the 

channel is not in a burst mode and the threshold was assigned 

a high value, the attack will not be detected. On the other side, 

if the threshold was set to a small value and the channel 

experiences a huge amount of traffic, the detection process 

will lead to many false alarms. One way to overcome this 

problem is to use a threshold that adapts to the traffic 

behavior.   

 

The algorithm we propose here relies on checking whether 

the number of IP packets over a given time interval exceeds 

a particular threshold. In order to take into account daily and 

weekly traffic variations and trends, the threshold value is 

computed adaptively based on an estimate of the mean 

number of IP packets. Let us assume 𝑥𝑛  is the number of IP 

packets in the n-th time interval, and 𝜇𝑛−1 is the mean value 

calculated from measurements prior to n. In this case, an 

alarm will be generated at time n if, 

  
𝑥𝑛 ≥ (𝛼 + 1)𝜇𝑛−1                                                         (1)                                                            
 
𝛼 is a strictly positive parameter representing the percentage 

above the mean value that we consider to be an indicator of 

an intrusion [14].   

 

The mean 𝜇𝑛 can be calculated over some past time window 

or using an exponential weighted moving average (EWMA) 

of previous measurements, 

 

𝜇𝑛 = 𝛽𝜇𝑛 + (1 − 𝛽)𝑥𝑛                       (2) 

 

  

where 𝛽  is the EWMA factor. 

 

Like any other statistical algorithm, false positives could be a 

serious issue. In order to reduce the amount of false positives, 

the authors of [14] suggest sending alarms only after a 

minimum number of consecutive violations of the threshold. 

In addition, in the course of the FORTIKA project [47], we 

will be further investigating how to tune the parameters:𝛼,  , 

the length of the measurement time interval, and the number 

of successive threshold violations, in order to increase 

detection efficiency, while keeping the amount of generated 

false alarms to the minimum. 

 
Change Point Detection (Cumulative Sums Algorithm – 

CUSUM-) 

Change points represent sudden variations in time series data. 

They may reflect changes that occur between states. The 

change point theory is a powerful tool for investigating time 

series and has been used in different applications including 

health monitoring, climate change detection  [18] and DoS 

attacks detection and prevention ([19], [14], [20]). If we take 

DoS attacks as an example, although intrusions happen at 

unpredictable points in time, they are often accompanied with 

a change of some statistical properties of the network traffic. 

This makes Change Point detection schemes suitable for 

investigating such changes.  Often these techniques use 

Cumulative Sums (CUSUM) of data that are computed over 

time, and the resulting series is observed to localize the 

change points that might occur. The CUSUMs are often used 

because of their simplicity and low computational 

complexity. There are two variants of these techniques: the 

first one, called parametric CUSUM, assumes that the 

observed variable follows a known distribution (e.g. Poisson 

distribution). This assumption is in general not true. The 

second variant, called non-parametric CUSUM, does not 

require that the undertaken measurements exhibit a certain 

pattern.   



 

Implementing the Change Point techniques on FPGA will 

certainly lead to the acceleration of the applications being 

considered. Unfortunately, from the research point of view, 

only few papers discussing such implementations are 

available. In [21], a nonparametric CUSUM that serves as a 

hardware plugin for Software Defined Monitoring (SDM) 

was implemented on a Network Interface Card (NIC) and 

used to detect anomalies directly in FPGA. The authors claim 

to be able to realize different detections simultaneously 

without any loss in throughput.  In [21], an online Change 

Point detection algorithm based on an Auto Regression (AR) 

model, called ChangeFinder, was implemented on a NIC. 

The proposed solution computes the change-point score from 

time series data received from the 10GbE (10Gbit Ethernet) 

NIC. The objective of the authors was to reduce the host 

workload and improve the performance by offloading the 

ChangeFinder algorithm from host to the NIC [21]. 

According to their evaluation results, an improvement of 

16,8x in change point detection throughput was realized 

compared to the baseline software implementation while 

keeping the same accuracy.  

 

To apply Change Point theory to DoS attacks detection, three 

parts are needed:  

 

(1) The network traffic variable that will be measured and 

which will be the basis for the time series to be observed. 

Here, measurements related to protocols such as TCP, 

UDP, ICMP, and SIP can be used. It is also possible that 

pairs like TCP SYN-FIN [19], where a strong correlation 

exists in between, can be observed and utilized by the 

CUSUM techniques.   

(2) Once the time series is defined, it may need to be made 

stationary (i.e. a time independent normalization would 

need to be applied before feeding values for alarm 

generation) through appropriate transformations, in 

order to be used by the CUSUMs.  

(3) A bunch of parameters and thresholds must be set and 

potentially optimized in order to detect the attacks and 

reduce the amount of false alerts. 

 
Concretely, the CUSUM technique we will be implementing 

in FORTIKA [47] follows the algorithm discussed by Siris in 

[14]. Let us assume we are observing the number of IP 

packets entering the network under consideration during a 

period of time that is divided into time intervals of the same 

duration. As mentioned earlier, we can observe TCP, UDP, 

and ICMP packets or even pairs such as TCP SYN-FIN, 

instead of IP packets. Let 𝑋𝑛  be the number of IP packets 

collected within the n-th time interval and 𝜇𝑛  the 

corresponding mean rate at time n. The value 𝜇𝑛 is calculated 

using an exponentially weighted moving average,   

 

𝜇𝑛 =  𝛽  𝜇𝑛−1    + (1 −  𝛽) 𝑋𝑛                                  (3)  

 

where 𝛽 is the exponentially weighted moving average 

(EWMA) factor and  𝜇
0

  =   𝑋1. To give some more details, 

the exponential weighted moving average is a weighted 

average where the weighting decreases in an exponential way 

with each following measurement with respect to previous 

measurement values. The EWMA is also used in our context 

to avoid explicitly taking into account the seasonability and 

the trend factors ([14], [20]). As the time series  𝑋𝑛 , n = 1, 

2, ... is in general non-stationary because of the just 

mentioned factors, it can be made stationary by using the 

following transformation (according to [19], [14]),  

 

     �̃�𝑛  =   
𝑋𝑛

𝜇𝑛−1
             𝑛 ≥   1                                 (4)                                                                            

 

The nonparametric CUSUM algorithm is given by, 

 

𝑌𝑛 =  max{0,   𝑌𝑛−1  + �̃�𝑛−1 − 𝑎},    𝑌0  = 0      (5)                                            

 

where a is a positive real number defined experimentally to 

minimize the false alarm rate [19]. As it was discussed in 

[20], assigning an appropriate value to the parameter a can be 

done by taking it sufficiently large with respect to the 

historical estimate 𝐸𝑒𝑠𝑡  (�̃�𝑛) for the expected value 𝐸(�̃�𝑛)  

representing the normal behavior.  

 

Indeed, an estimate 𝐸𝑒𝑠𝑡  (�̃�𝑛)  of  𝐸(�̃�𝑛) can be calculated 

experimentally, and then it can be set to the sum of 

𝐸𝑒𝑠𝑡  (�̃�𝑛)   and a multiple of the estimate of the 

corresponding standard deviation, i.e,  

 

𝑎 =  𝐸𝑒𝑠𝑡  (�̃�𝑛) +  𝜃 𝜎𝑒𝑠𝑡(�̃�𝑛  )                               (6)                                                                 

 

𝜃 is an appropriate non negative number and 𝜎𝑒𝑠𝑡(�̃�𝑛  )  is 

an estimate of the standard deviation of the normal traffic.  

 

Another parameter that is needed is the stopping time. The 

latter is the time when a change in the CUSUM algorithm 

occurs and can be formulated as follows,  

 

𝑇 = 𝑇(𝑇ℎ𝑟) = 𝑚𝑖𝑛{𝑛 ≥ 1,   𝑌𝑛   ≥ 𝑇ℎ𝑟}              (7)                          

 
The threshold Thr can be seen as a positive number 

specifying the value that when exceeded, an attack is 

signaled. This value can also be defined as a multiple of the 

estimated standard deviation 𝜎𝑒𝑠𝑡(�̃�𝑛  ). This means Thr will 

be of the form 𝜌 𝜎𝑒𝑠𝑡(�̃�𝑛  ) where 𝜌 is a positive number 

reflecting the size (in terms of the standard deviation) of the 

shift we want to detect [20]. 

 

B. Signature based Algorithms 

Sun Wu and Udi Manber developed the Wu-Manber 

algorithm in 1994. It has its origins in the Boyer-Moore and 

Rabin-Karp matching algorithms, whereas the Wu-Manber 

advantages are a high average case performance and a less 

required small memory space. Some restrictions have to be 

mentioned for the Wu-Manber algorithm:  

 

(1) The amount of patterns that can be processed 

simultaneously is less than a few hundred.  

(2) There should not be a high deviation in the length 

of the patterns that has to be matched, in order to 

ensure reasonable performance.  



(3) Searching time increases inversely proportional to 

the length of patterns. This means that too short 

patterns require a lot more time for searching.  

 

C. The Wu-Manber Algorithm 

The initial proposed Wu-Manber algorithm in 1994 provided 

with several improvements. Beside other Intrusion Detection 

Systems, snort uses a simplified variant of the Wu-Manber 

algorithm too.  

 

Recently published studies - dealing with the performance of 

Snort using the Wu-Manber pattern search algorithm instead 

of the formerly used Set-Wise Boyer-Moore and Aho-

Corasick algorithm - pointed out that Snort gained a 

remarkable performance improvement with Wu-Manber. 

Following pseudo-code [16] (see Figure 6) has been the 

source for the implementation of the Wu-Manber algorithm 

for the 40SEC platform: 

 

 
Figure 6: Wu-Manber Algorithm Pseudo-Code [16] 

 

Wu-Manber algorithm can be used as it is in email spam 

detection. It can be considered as an anti-spam content-based 

technique, and utilized to accelerate the emails analysis.      

 

Wu-Manber is a computation extensive algorithm which 

makes it a good candidate for an FPGA implementation. A 

naïve replication of it on the FPGA will not be efficient when 

compared to that of an ARM processor. In addition, 

implementing the algorithm on an FPGA creates a memory 

overhead for data transfer between the processor and the 

FPGA since it is a memory resource-constrained architecture. 

This will lower the performance and hence we need to 

parallelize the algorithm. 

 

 

                                                           
3 http://www.cs.uu.nl/docs/vakken/magr/2017-

2018/files/SIMD%20Tutorial.pdf 

D. Parallalizing Wu-Manber 

 

The Wu-Manber algorithm comprises of two stages – a 

preprocessing phase (represented as step 1 in Figure 6) and 

the scanning phase (represented as steps 2-30 in Figure 6). 

The control flow and the dataflow are serialized in this 

algorithm. The preprocessing phase is computed for the given 

set of keywords/patterns only once and doesn’t add to the 

overall computation time period.  

 

We decided to exploit data level parallelism in the scanning 

phase algorithm using an asynchronous mode of execution. 

The SIMD3 architecture is implemented. Let L be the length 

of the input data stored in the processor memory. Using the 

AXI4 burst transfer mode, the input data is double buffered 

asynchronously into the FPGA BRAM with buffers Bn, where 

B is the buffer of length N (0 < N ≤ L) and n is the number of 

buffers (n > 1). Let h be the number of identical hardware 

instances of the scanning phase. The buffered input data is 

sliced into N/h slices.  

 

This FPGA design is done via Vivado HLS which offers the 

flexibility for RTL synthesis from high level programming 

language (C/C++) and generates the bitstream for the IP core. 

By utilizing the asynchronous mode of operation, the h 

hardware instances operate on their corresponding buffer 

slice. The goal is to improve the performance by 2x at the 

maximum. 

VII. TESTING AND EXPERIMENTS 

In order to test the 40SEC and each of its subcomponents 

(Firewall, IDS, RESTApi, etc.) within defined scenarios, a 

test environment was set.    

A. Scenarios 

The following table provides the scenarios used in our testing 

activities. The listed attacks were executed in order to test and 

validate the current state of the 40SEC implementation. 

 

Attack 

name 

Port Scanning  

(Reconnaissance Attack) 

Verification/ 

testing 

procedure 

1. Scan the destination with nmap to 

check all the open ports: this attack 

will send a lot of different TCP 

packets to different ports in the 

destination to see what are the ports 

that are open and then use them to 

exploit the possible further attacks. 

2. See what information can be gathered 

that may be useful for additional 

attacks. 

3. Check if the IDS detects the scanning. 

Attack 

name 

Denial of Service 

Verification/ 

testing 

procedure 

1. Perform multiple DoS-based attacks 

(also possible with nmap): 

◦ SYN Flood (using the hping3 

with flag S tool in Kali Linux): 

this attack will be done by 



sending a lot of TCP packets 

with SYN flag to port 80 to 

initiate a connection with the 

web server 

◦ Ping of death (using ping 

<dest_IP> -t -l 65500): this 

attack will send a lot of huge size 

ICMP packets to the destination 

IP, in order to make the 

belonging device go down. 

 
2. Check if the IDS detects the attack. 

 

Attack 

name 

Malicious File 

Verification/ 

testing 

procedure 

1. Create a text file with malicious 

content to be sent over the IDS 

controlled link 

2. Match the malicious content with the 

belonging Snort rules and generate the 

alarm 

3. Check if the IDS detects the attack 

[and if the IPS is able to prevent it] 
 

 

B. Testbed Components 

Figure 7 illustrates our local testbed. One can clearly see the 

positioning of the vSA as allowing it to control traffic 

between the LAN and WAN segments towards the Internet. 

Thereby, the LAN segment can be assumed as representative 

for the local network of a European SME. Furthermore, a 

management interface and a belonging management/control 

network is spanned over all involved components allowing us 

to control their behavior, initiate different scenarios, execute 

tests and run experiments evaluating different configuration 

of the 40SEC vSA. In the following, the selected tools are 

introduced, which we have deployed in our testbed and utilize 

for testing and experiments. 

 

IPerf (client, server) [48]: IPerf is used to generate TCP and 

UDP data streams. It provides a client-server application that 

allows to measure bandwidth, quantity of data that passes a 

network and belonging time aspects. IPerf creates a report 

with a timestamp, details of transmitted network packets and 

measured bandwidth. In the case of the 40SEC vSA, IPerf is 

used to assess the network data processing performance of the 

FPGA hardware in conjunction with the ARM part. 

 

TCPReplay [49]: TCPreplay contains different open source 

utilities that can be used to replay a pcap file that has been 

captured before. It can be easily used as a test tool to check 

the performance of IDS, IPS or Firewall systems. In our 

scenarios, we are utilizing it to simulate a big network traffic 

coming to our network and checking if it gets blocked by our 

Firewall or reported by our IDS. TCPreplay can take long 

time to replay all the information included in the pcap file. 

To improve the performance we use -k parameter with 

TCPreplay, which preloads packets into RAM before 

sending. In addition, we use the -t parameter to replay packets 

as fast as possible. It is possible to use the --loop parameter 

in case you are using a small pcap file, which is to be 

repeatedly communicated towards the target network 

infrastructure.  

 

 

Figure 7: FOKUS local Testbed Components 

 

Web Service: To test the performance of the Virtual Security 

Appliance, we run a simple web service in our testbed, which 

offers a REST API for computing a complex function value 

based on an inputted number over the REST API - we use a 

complex function for simulating web server load. Then we 

can measure the availability and performance of the service 

under different scenarios, from high network load to different 

attacks. This will give information about the latency, 

throughput and effectiveness of the 40SEC security device. 

 

Performance and Security Testing Tools: Besides tools that 

are available (e.g. hping3, Metasploit nmap and Wireshark) 

and preinstalled in Kali Linux (a free Debian Linux System 

for penetration testing), JMeter is one of the tools that is used 

to simulate a heavy load to the 40SEC Gateway and to test its 

performance under different load types. Furthermore, in our 

scenarios, we have used tools like nmap to achieve port 

scanning attack and hping3 to achieve SYNflood attack. 

C. First Experimental Results 

The first experiments we wanted to undertake are related to 

the Wu-Manber algorithm. The idea was to run this algorithm 

on ARM and also on FPGA and compare between the 

corresponding performances. As mentioned earlier, this 

algorithm can directly be used for email spam content 

analysis, however as we could not find a suitable email spam 

database for testing purposes, we have chosen to apply this 

algorithm on available books. 

  

When conducting the measurements, we took a set of corpora 

from different sizes (“Word Count”-column) and searched in 

those for various random patterns. The corpora were given by 

various books (e.g. adventures of Sherlock Homes, History 

of United States of America, Manual for Surgery and War 

and Peace), whilst the patterns were randomly sampled from 

available lists of common words in the English language.  

 

The experiments were performed on a Zync-7000 SoC 

architecture from Xilinx [50]. It houses a dual-core ARM 

Cortex-A9 based processing system and a Zync-7000 Kintex-



7 FPGA with ARM AMBA AXI based interconnect between 

the processor system (PS) and the programmable logic (PL). 

 

During the experiments with the ARM processor, we pre-

loaded the data into the architecture’s memory, and the data 

was correspondingly pre-processed. Afterwards, the 

matching operations were initiated. From Table 1, we could 

observe the timing benchmark for the performance of Wu-

Manber on ARM processor for various sizes of the text and 

the patterns.  

 

Word count Matches Init + Search 

100,000 70,972 0.2048 s 

100,000 145,251 0.8247 

100,000 14,791 0.1438 

100,000 1,867 0.5368 

100,000 3,262 1.3042 

      

1,000,000 733,226 2.286 

1,000,000 1,756,633 9.7276 

1,000,000 174,759 1.6762 

1,000,000 20,786 5.9409 

1,000,000 35,890 14.1044 
 

Table 1: Wu-Manber related measurements on ARM 

 

 

 
 

Table 2: Wu-Manber related measurements on FPGA 

without parallelization 

 

During the second stage of the experimentation, we 

implemented the algorithm the serial and the parallelized 

versions on FPGA, utilizing Vivado HLS programming. The 

entire dataset was stored on the memory of the processor and 

communicated over the AXI interface. As mentioned before 

in Section VI. C, the FPGA performed poorly in the serial 

version. The parallelized version as mentioned in Section VI. 

D had a performance improvement of 20% to 50% when 

compared to the serial version as observed in Table 2 and 

Table 3. However, when compared to the benchmark the 

performance is still poor. It can also be observed from Table 

3 that the number of matches is lesser than that of the 

benchmark. 

 

The inferences from the experiment being – despite the 

parallelization, the data transfer overhead from PS to PL 

during the process execution on the PL causes stall in 

execution. This significantly lowers the performance by 70-

80%. The reduced number of matches in the parallelized 

version signifies the patterns that were missed due to the 

slicing of the text data. 

 

 
 

Table 3: Wu-Manber related measurements on FPGA with 

parallelization 

VIII. CONCLUSIONS AND FUTURE WORK 

The current paper presented our activities towards 
implementing IDS in the edge network segment. Indeed, we 
discussed the 40SEC IDS architecture, which can run both in 
a virtualized setup and in an FPGA supported mode. In that 
line of thought, various important aspects related to the key 
operations and the modeling and design of the 40SEC 
(firewalls/IDS) were presented, whilst in parallel the most 
important operational modules (e.g. pattern matching) were 
identified, which are also key candidates for FPGA 
acceleration. A set of scenarios simulating network attacks, 
and a testbed for rapid prototyping of security appliances in 
ARM and FPGA were described. 

We have implemented Wu-Manber algorithm on FPGA to 
support the signature-based IDS and compared the results with 
that of the ARM processor. The experiments have called for a 
redesigning of the algorithm and a more sophisticated 
parallelization.  

We will also focus on increasing the level of acceleration, 
which is currently on a very generic level. Thereby, we want 
to identify more aspects for handling in FPGA and 
establishing a stable process from the high level design down 
to the hardware deployment of the required IDS/IPS/firewall 
mechanisms. 
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