

Towards Accelerating Intrusion Detection

Operations at the Edge Network using FPGAs
1Yacine Rebahi, 1Faruk Catal, 1Nikolay Tcholtchev, 1Laurenz Maedje, 1Omar Alkhateeb, 1Vinoth Kumar Elangovan,

2
Dimitris Apostolakis

1Fraunhofer Institute for Open Communication Systems (FOKUS)

Kaiserin-Augusta Alee 31, 10598, Berlin, Germany

{firstname, lastname}@fokus.fraunhofer.de
2Future Intelligence, 207 Regent Street, W1B 3HH, London, UK

dapostolakis@f-in.co.uk

Abstract— In the current paper, we present our work towards

accelerating intrusion detection operations at the edge network

using FPGAs. Cloud computing and network function

virtualization have led to a new appealing paradigm for service

delivery and management. Unfortunately, this paradigm fails to

correctly support IoT applications and services that seek better

communication platforms. Security as a Service can also be seen

as a cloud-based model that needs to be accommodated to fulfill

these services requirements. Again, one of the main issues to be

addressed in this context is how to improve the performance of

such systems or services in order to make them capable of

coping with the huge amount of data while remaining reliable.

A potential solution is the FPGA based edge computing, which

is a powerful combination offering FPGA acceleration

capabilities together with edge and fog benefits. Indeed, our

work focusses on devising an Intrusion Prevention architecture

called FORTISEC (40SEC), that is meant to operate in a

completely softwarized as well as in an FPGA accelerated mode.

Thereby, we present suitable algorithms, design methodologies

and well defined components towards the implementation of

accelerated intrusion prevention on the edge. It is worth to

mention that although 40SEC is discussed here in the context of

edge computing, it can serve as a security solution for any Small

and Medium Enterprise looking for full protection of its

network at a reasonable price. We also present a testbed being

utilized for the implementation of 40SEC and its performance

testing.

Keywords—Security, IDS, IPS, SECaaS, Edge, Fog, FPGA,

netfilter, iptables, nftables, SME, FORTIKA

I. INTRODUCTION

Virtual Network Functions are network services or

capabilities that are softwarized and can also run on

commodity hardware. Contrary to functions running on

dedicated hardware, virtual functions offer flexibility and

easy deployment. The services that can be softwarized

include firewalls, Domain Name System (DNS), Network

Address Translation (NAT), and Intrusion

Detection/Prevention Systems (IPS/IDS) [23].

It can be fairly said that virtualization enabled moving a huge

number of services and applications to the cloud. However,

the related performance was not always as expected. This is

the case for instance for Internet of Things (IoT) [23]. The

latter is being used in a variety of systems and services in our

daily life. The quality of these services certainly depends on

the security solutions put in place in order to protect them.

Utilizing Intrusion Detection Systems (IDS) in the cloud, in

order to secure IoT services might not be the appropriate way

as with the huge amount of data to be analyzed, the response

time might face delays and the alerts could be received after

the attack has taken place.

Edge computing is a paradigm that particularly came to

optimize network bottlenecks that can be faced when using

clouds. The idea behind this concept is to perform data

processing and knowledge generation at the periphery of the

network and close to the originating sources. If we wish to

develop an IDS for protecting IoT services, we need to ensure

that: (1) it is lightweight enough to be deployed at the edge,

and (2) the performance of the detection operations will be

better than if the detection is made in the cloud.

In this paper, we discuss our research towards specifying and

prototyping an Intrusion Prevention System (IPS) that can be

used in Edge computing scenarios. Our solution, called

FORTISEC (or simply 40SEC), resembles to a Virtual

Security Appliance (vSA) that is composed of a firewall and

an IDS. Although, the focus in this paper is on edge

computing, our solution can be utilized in a variety of other

scenarios (e.g. enterprise security). One of the main

characteristics of our vSA is the fact that the parts of the IDS

that need intensive processing are implemented on Field

Programmable Gate Arrays (FPGAs) that are known for their

capabilities of accelerating compute intensive workloads

[25]. It was mentioned for instance in [25] that convolutional

Neural Networks (CNN) can be improved for image

classification on AlexNet up to 2,0/2,5 times in terms of

processing time – i.e. when utilizing FPGAs in comparison to

CPUs.

The rest of this paper is structured as follows: Sections two

and three discuss the state of the art related to the

implementation of IDS particularly on accelerators. Section

four introduces the 40SEC system. Sections five and six

describe the ARM based architecture and the FPGA based

architecture respectively. Section seven gives an overview of

the tests and the related results undertaken until now, and

section eight concludes the paper and outlines future

activities.

II. RELATED WORK AND PROGRESS BEYOND STATES-

OF-THE-ART

Implementing Intrusion Detection Systems on FPGA is a

topic that has been more or less discussed in literature. The

topic was approached from different angles, since existing

algorithms such as Wu-Manber [39] and Aho-Corasik [40],

which could be efficient in accelerating rule-matching

operations, are applicable to strings. However, the rule sets

that intrusion detection systems like Snort use are based on

regular expressions (regex). An ideal situation could have

been the utilization of the above-mentioned fast algorithms

with the rule sets offered by the existing IDS. Unfortunately,

this option is not easy to realize. Snort, for instance, provides

already a huge variety of rules where most of them are written

in Perl Compatible Regular Expressions (PCRE) [44], and

which cannot be integrate with the above high speed string-

matching approaches in a simple way.

The authors of [36] proposed a solution integrating network

interface hardware and packet analysis hardware into a single

FPGA chip. To realize this, they implemented a complete and

functional network IDS on a Xilinx Virtex II/Pro FPGA that

performs packet filtering on multiple Gigabit Ethernet links

using Snort rules [36]. In [38], an FPGA based high

performance pattern matching architecture was implemented.

The authors claim that the developed deep network packet

filter can protect a network of 1.6 Gbps and their design can

fit on very cheap FPGA hardware.

As the part in the IDS that requires intensive processing is the

string matching, several solutions implementing the related

operations on FPGA were suggested. For instance, the

authors of [37] presented a module utilizing non-

deterministic finite automata to create efficient circuits for

matching patterns defined through a standard rule language.

In order to have complete IDS, the mentioned module was

integrated with other hardware and software components.

The authors of [37] claim that their technique led to circuits

that are more than twice as dense as other proposed designs,

however the throughput necessary for processing at gigabit

line speeds and even beyond was maintained. The IDS

software versions like Snort use some rule matching

algorithms (such as the above-mentioned Wu Manber [39]

and Aho-Corasik [40]), which can be implemented on

hardware in order to accelerate the detection operations [41].

These algorithms need to be redesigned in order to use regular

expressions.

In [42], a hardware based regular expression engine for Snort

was built by transforming the PCRE opcodes generated by

the PCRE compiler from Snort regular expression rules. The

hardware implementation was tuned by using

Nondeterministic Finite Automaton (NFA) and greedy

quantifiers. Two hundred PCRE engines were implemented

and tested on a Virtex-4 LX200 FPGA. The authors claim

that this implementation performs much better (up to 353

times faster) than software based PCRE execution [42].

Sidhu and Prasanna [43] investigated the acceleration of grep

regular expression searches with FPGAs by utilizing a

compilation technique that quickly converts a regular

1 https://www.xilinx.com/products/design-tools/vivado.html

expression into an FPGA circuit. The regular expression is

compiled into a Nondeterministic Finite Automata (NFA)

that is directly implemented on the FPGA hardware. Another

way for handling regular expression operators, based on

standard regex syntax is to use JHDL [45], which is a

complete Java based design environment. Indeed, one can

write complex circuit generation algorithms in Java and

combine them with JHDL circuit libraries in order to create

sophisticated module generators [46]. Unfortunately, this tool

is not easy to use and cumbersome to learn and involve

unexperienced engineers.

Our approach differs from the above-mentioned work in the

following aspects,

 Both signature and anomaly based detection techniques

are considered in our design

 Our implementation considers pattern matching

algorithms that are already used by well know intrusion

detection solutions (e.g, Snort)

 “high-level” programming languages like C/C++ have

been used for implementing the pattern matching

algorithms on Xilinx Vivado1. This makes the update of

the code easier. Vivado also enables the generation of

bitstreams that can be uploaded on the FPGA hardware

III. INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems (IDS) are devices or software

applications used to monitor the network for abnormal and

malicious activities. Although the attacks that can be detected

by IDS are of various types, they can be generally classified

as follows [1],

Probing: This activity systematically scans a given network

in order to collect useful information or known

vulnerabilities. Once the topology of the network is known,

this activity could be followed by a severe attack. Port scan

is an example of such attacks.

Remote-to-Local (R2L): Here, the attacker gains

unauthorized access to a certain machine via a remote

connection. Examples of such attacks include buffer

overflow, network worms, and Trojan programs.

User-to-Root (U2R): By carrying out this attack, it is

intended to achieve higher access privileges in a victim

machine starting from a normal access. An example of such

attack [2] is the use of stack smashing, which feeds a packet

to a set-UID-to-root program that corrupts its address space

so that a return from subroutine instruction results in the

spawning of a setUID-to-root command shell.

Denial of Service (DoS): The goal of a DoS attacks is to

make a network resource unavailable for legitimate users.

One way to trigger the crash is to flood the system with a huge

amount of useless traffic. The other way for carrying out the

attack is to exploit software bugs in the system under

consideration and use them to reduce its performance or crash

it. This method is usually reflected by sending malformed

messages, which will be incorrectly handled by the targeted

resource. Examples of DoS attacks [1] include ICMP flood,

SYN flood, Ping of Death (PoD), and Teardrop attack.

The current security market offers a variety of IDS that can

be categorized according to the following factors,

Location: Here, we need to distinguish between host based

and network based IDS. The first subcategory collects data

from computer internal sources (e.g. operating system logs)

and monitors system programs execution and user activities.

A network based IDS monitors user activities on the network

by collecting network packets and analyzing the related

traffic.

Functionality: Here, we need to distinguish between an

Intrusion Detection System (IDS) and an Intrusion

Prevention System (IPS). Contrary to the IDS that performs

automatic intrusion detection activities, the IPS also manages

responsive actions. Usually an IPS is an IDS enhanced with

preventive functionalities such as firewalling, vulnerability

assessment, and anti-virusing.

Deployment: This factor simply means that an IDS can be

installed in one host or several ones. In the second case, the

detection is performed in a distributed manner and the results

will be coordinated by the IDS central management system.

Detection model: In the detection process, if the attack

pattern is available, each packet from the network traffic is

matched against the attack pattern. This way of inspecting the

network traffic is referred to as signature-based detection.

Unfortunately, it only detects known attacks. Anomaly

detection simply builds profiles for normal user/network

behavior, which will be compared to the actual behavior of

the user or the network. The mentioned profiles can be

defined by the administrator or through a training phase

(based on statistical and/or machine learning techniques) of

the IDS. Anomaly detection assumes that any abnormal

behavior indicates an intrusion. This is in general incorrect

and could lead to a significant number of false alarms.

Figure 1: ARM based Architecture

Intrusion Detection Systems do not exist only as commercial

solutions, some IDS open source software packages are also

available on the market and offer comparable levels of

security. Snort [3] and Suricata [4] are among these open

source solutions and implementing mostly signature based

intrusion detection.

IV. THE 40SEC SYSTEM

The edge gateway platform, on which our virtual Security

Appliance (40SEC) run, is a XILINX KRM-3Z7030 50mm x

70mm module [34] composed of an ARM processor and an

FPGA part, and carried by a KRC3701 Carrier Kit [35].

It is worth mentioning that virtualizing security appliances

has to deal intrinsically with performance restrictions. In the

past, optimal performance was provided through a dedicated

hardware. In virtualized environments, applications and

services running on an operating system compete for the

same hardware computing resource, which might slow down

the performance. One of the main objectives of this work is

to investigate how the performance behaves when the 40SEC

entirely runs on the ARM processor and when some of the

related security parts - that require more processing - are

moved to FPGA. For this reason, we decided to have the

40SEC architecture in two different versions. In the first one,

the entire 40SEC appliance runs on the ARM processor.

However, in the second version, the parts that require intense

processing are moved to the FPGA part, in order to speed up

the detection operations.

V. THE ARM BASED ARCHITECTURE

Figure 1 depicts the main components of the ARM based

40SEC architecture as well as the interfaces in between. As

previously mentioned, the entire 40SEC appliance is

implemented on the ARM processor in the first version. For

that purpose, various related components were dockerized

and made available. Since some existing Intrusion Detection

Systems - such as Snort - are available as open source and

offer a security level comparable to commercial security

solutions, we decided to explore their capability of running

on the ARM processor and measure their performance.

Within the 40SEC architecture, Snort was utilized due to its

popularity. Based on these high-level elucidations, the

following subsections discuss on vital aspects and processes

within the 40SEC architecture depicted in Figure 1.

A. Packet Capturing

Packet Capturing makes all incoming network packets

available for further processing. The easiest and typical way

to receive all packets in Linux is to open a raw socket. Such

a socket will pass received Ethernet frames directly to the

user space application without any preprocessing (thus all

network headers are incorporated into the data). In Python,

such a socket can be created with the socket module and a

call to

socket.socket(socket.AF_PACKET, socket.SOCK_RAW,

socket.htons(3))

In this connection call, the first argument indicates the address
family (Packet, Internet Protocol 4, etc.), the second argument
describes the socket type (raw or datagram), while the third
one indicates that packets from all protocols will be received.
Received calls on the socket will then return single packets,
where the headers of the nested protocols must be parsed
manually to extract source, destination and other metadata.

B. Packet Filtering

In the following, the process of packet filtering is explained

along the legacy iptables technology. iptables [30] is a

program for the configuration of the Linux kernel firewall. It

is based on rules that are organized in chains. The rules are

managed internally and can be added, modified and deleted

through a user space application. To update the firewall rules

programmatically, one can dynamically build up strings and

configure them from a user space application via operating

system calls (e.g. with the function os.system in Python).

Figure 2: Development Methodology for accelerated FPGA

Firewalls

A different approach to filtering (but tightly connected to

iptables) was implemented within netfilter. This Linux kernel

interface allows one to create hook functions that will be

called on every incoming packet. Such a function can then

decide to accept or reject the packet. This gives direct control

over the firewall functionality, in contrast to the

configuration-based approach of iptables. Because the rules’

data is stored in the module and can be modified by program

code (in the case of netfilter), it is much easier to update the

rule set in a consistent way - e.g. all rules matching certain

criteria can be deleted easily or multiple rules can be merged

into a single one with a corresponding IP range. Adding

complex functionality is therefore more straightforward than

keeping track of all the rules of iptables and updating them

accordingly. Because the hook functions are inserted directly

into the kernel network stack, a netfilter-based firewall has to

be often developed as a kernel module in the C programming

language. Thus, with the greater flexibility also comes greater

responsibility, as a crash of the firewall as a kernel module

will bring down the entire system. Additionally, a

communication channel between the firewall and user space

has to be established to enable a REST service for

configuration. Indeed, a sysfs interface is used for this

purpose. Commands are inserted into a file in a virtual file

system that is being listened to by the kernel module.

C. Firewall Model Checking

Firewalls are a critical part in any security framework.

Unfortunately, because a lot of rules’ configuration work is

done manually by the network administrators,

misconfigurations are very common and can affect the

reliability of the firewall. Identifying such anomalies is a

challenging task, and we propose in this paper a tree based

verification model to deal with this issue in the scope of the

40SEC architecture.

Figure 2 depicts the methodology for verifying and

developing IDS/firewall rules in the scope of 40SEC.The

process starts with a requirements engineering phase where

various requirements are consolidated and further

transformed to a decision tree (or state automate)

representation, in order to enable the verification of the

firewall logic. Finally, the tree is used to generate

nftables/iptables rules for the netfilter module. Next, the steps

in Figure 2 are described in detail as they constitute the

formal framework for realizing various defense mechanisms

within 40SEC.

1) Requirements Engineering
Requirements engineering is one of the cornerstones for
successful systems’ design. In this phase, the firewall for a
product is described with respect to its desired functionality.
In general, requirements can originate from different sources
- e.g. functional specifications, security targets/profiles of
national cyber-security agencies, vulnerability databases [26],
or results from hacking contests. Thereby, it is important to
capture the requirements in a consolidated form, which can be
either given as a table representation or as a more structured
format such as ReqIF [27]. Suitable tools in this phase are
given by DOORS [28] or the Eclipse based ProR [29].
Thereby, it is of paramount importance to properly manage
the requirements, i.e. utilize a suitable meta-model that
enables the traceability of the requirements across the
development process.

Figure 3: Decision Tree Model for a Firewall Decision

2) Modelling and Model Checking

Next, we discuss on the Modelling and Model Checking

aspects outlined in Figure 2. The creation and management of

firewall and intrusion detection rules can be a cumbersome

task given the complexity of possible requirements and

aspects that need to be considered. Indeed, even the simple

blocking of packets based on specific properties is impossible

to verify in general through means of testing, provided the

extreme size of the possible input-output spaces. Furthermore,

industry and research have identified that the straightforward

listing of firewall rules leads to poor traceability between

requirements and implementation, poor maintenance, and is

difficult to explain and present in front of customers and

certification authorities. In addition, the linear listing of rules

and decision logic bears the pitfall of not addressing implicit

dependencies between requirements ([31],[32]).

Based on the above considerations, we apply decision trees

and state machines in the course of designing the 40SEC

firewall. For that purpose, various tools can be applied. Figure

3 depicts a part - i.e. sub-tree - of a larger decision tree applied

for managing, modeling and simulating firewall/IDS rules

based on the means provided by the Uppaal [33] model

checker. Thereby, a packet is looked at in the light of a context

that is represented as a tuple of various variables and

characteristics, which are in place at the moment of the packet

entering the edge node. Based on these characteristics, the

decision tree is traversed until a decision is reached on

whether to drop the packet or forward it according to the

underlying routing rules. Furthermore, a mapping between

the specific requirements for the device in question and the

paths through the decision tree is established, in order to

ensure traceability between requirements, model and

simulation.

Based on the model checking capabilities of the belonging
tools, various simulation and verification checks are possible.
For example, packet contexts (i.e. tuples of characteristics)
can be constructed and their processing within the 40SEC-
IDS/firewall-model can be validated.

3) Code Generation

Based on the model presented above, it is possible to develop

code generators from the abstract decision tree form to

various firewall representation languages. Hence, it is

possible to generate nftables, iptables, and even C/C++ or

Python code for embedding various algorithms and decision

making steps in the vSA packet handling process. Referring

back to Figure 3 and the presented Uppaal [33] based decision

tree, the model is stored as an XML file which can be easily

parsed, interpreted and utilized for code generation in the

scope of the current requirements.

D. Decision Engine

The Decision Engine enables the 40SEC appliance to actively

react on intrusions by analyzing the alerts generated from the

IDS and adapting the firewalls configuration to stop the

attack. Thereby, the firewall configurations and/or the IDS

decisions are designed and verified according to the above

described design, modelling and code generation process.

E. Alarms

Alarms in Snort can be structurally different according to the

parameters that we use when Snort starts. To get detailed

information about each packet triggering a rule in Snort, we

2 Five-tuples: https://www.techopedia.com/definition/28190/5-tuple, as of

date 28.01.2019

can use the -dev parameter. To get only the packet id and the

rule id, we can use -A test. To get more information about the

alarms in a file, we can use -A fast. In the scenarios that will

be described later on, we use -A test and -A fast to get enough

information about the alarms in a specific file. The

information that we get from the Snort alarms includes: time-

stamp, id of the packet that triggered the rule, id of the rule,

five-tuples2, class of the attack (classified by Snort in the

classification.config file), a message describing the alarm,

and the priority of the rule. An example of an alarm in the

alert log of Snort is shown in Figure 4:

Figure 4: Example Output of detected Port Scan

This example shows a port scan that was detected on port

80. You can see that "1688" is the packet id, "01/09-

09:56:06.661005" is the time-stamp, "10000002" is the rule

id, "TCP Port Scanning" is the message, "A TCP connection

was detected" is the classification, "4" is the priority, {TCP}

10.147.69.61:51397 -> 10.147.144.184:80 is the belonging

five-tuples.

Referring back to Figure 1, after gathering the Snort alarms

from various sources, we developed a Python code that listens

to any new alarms from Snort, extracts the important

information from them, and puts them in a JSON structure

that is subsequently sent to the Decision Engine via a

RestAPI.

Having described the key aspects of the softwarized version

of the 40SEC firewall/IDS, the following section proceeds

with the FPGA architecture which constitutes the

acceleration aspect on the edge network.

Figure 5: FPGA based Architecture

VI. THE FPGA BASED ARCHITECTURE

Intrusion Detection Systems can be anomaly based or

signature based. If we take a signature based IDS as an

example, we can see that it is composed of three main

functionalities:

1. Data processing: Here, the network traffic is collected

and formatted, in order to be analyzed by the detection

algorithms

2. Detection: This operation investigates the difference

between “normal” traffic and an intrusion.

3. Response: Here, appropriate alerts are generated based

on the decision criteria and the intrusions detected

The typical and most straightforward way of detecting

intrusions is to compare string patterns (attacks signatures) to

the payload of the traffic packets. It has been shown ([5], [8])

that utilizing existing efficient string matching algorithms

(e.g. [6], [7]) leads to significant costs. For instance, the

measurements performed recently with Snort on a production

network and reported in [8] show that almost 31% of the total

processing effort can be traced back to string matching. The

same report also emphasizes that in case of intensive web

traffic, the processing cost increases to 81% of the total

processing time. For these reasons, we would like to explore

how the performance of our 40SEC, in particular the IDS

part, will behave when the string matching algorithms run on

FPGA instead of the ARM processor. The belonging

architectural vision is depicted in Figure 5 illustrating the

separation between the software part (i.e. ARM part) and the

FPGA based hardware accelerator.

To realize the above mentioned vision for signature based

IDS, we have decided to implement on FPGA the Wu-

Manber algorithm that Snort uses in a simplified version. For

anomaly detection, we have chosen to implement two well-

known techniques from the flooding/DoS attacks detection

domain. The first one is based on adaptive thresholds, while

the second one relies on change point theory. It is worth to

mention that the algorithms that will be discussed below are

applied for IP packets in the current work, and can similarly

be used for other packet types such as SYN and ICMP.

A. Statistical Algorithms

In the following, key algorithms are presented that fit into the

abstract 40XLERATOR architecture.

Adaptive Threshold Algorithm

Flooding attacks detection cannot rely on static thresholds. In

fact, two main factors can affect the detection process. These

factors are the attack type and the situation of the

communication channel (burst or not). An attacker can flood

the target system gradually with malicious traffic. If the

channel is not in a burst mode and the threshold was assigned

a high value, the attack will not be detected. On the other side,

if the threshold was set to a small value and the channel

experiences a huge amount of traffic, the detection process

will lead to many false alarms. One way to overcome this

problem is to use a threshold that adapts to the traffic

behavior.

The algorithm we propose here relies on checking whether

the number of IP packets over a given time interval exceeds

a particular threshold. In order to take into account daily and

weekly traffic variations and trends, the threshold value is

computed adaptively based on an estimate of the mean

number of IP packets. Let us assume 𝑥𝑛 is the number of IP

packets in the n-th time interval, and 𝜇𝑛−1 is the mean value

calculated from measurements prior to n. In this case, an

alarm will be generated at time n if,

𝑥𝑛 ≥ (𝛼 + 1)𝜇𝑛−1 (1)

𝛼 is a strictly positive parameter representing the percentage

above the mean value that we consider to be an indicator of

an intrusion [14].

The mean 𝜇𝑛 can be calculated over some past time window

or using an exponential weighted moving average (EWMA)

of previous measurements,

𝜇𝑛 = 𝛽𝜇𝑛 + (1 − 𝛽)𝑥𝑛 (2)

where 𝛽 is the EWMA factor.

Like any other statistical algorithm, false positives could be a

serious issue. In order to reduce the amount of false positives,

the authors of [14] suggest sending alarms only after a

minimum number of consecutive violations of the threshold.

In addition, in the course of the FORTIKA project [47], we

will be further investigating how to tune the parameters:𝛼, ,

the length of the measurement time interval, and the number

of successive threshold violations, in order to increase

detection efficiency, while keeping the amount of generated

false alarms to the minimum.

Change Point Detection (Cumulative Sums Algorithm –

CUSUM-)

Change points represent sudden variations in time series data.

They may reflect changes that occur between states. The

change point theory is a powerful tool for investigating time

series and has been used in different applications including

health monitoring, climate change detection [18] and DoS

attacks detection and prevention ([19], [14], [20]). If we take

DoS attacks as an example, although intrusions happen at

unpredictable points in time, they are often accompanied with

a change of some statistical properties of the network traffic.

This makes Change Point detection schemes suitable for

investigating such changes. Often these techniques use

Cumulative Sums (CUSUM) of data that are computed over

time, and the resulting series is observed to localize the

change points that might occur. The CUSUMs are often used

because of their simplicity and low computational

complexity. There are two variants of these techniques: the

first one, called parametric CUSUM, assumes that the

observed variable follows a known distribution (e.g. Poisson

distribution). This assumption is in general not true. The

second variant, called non-parametric CUSUM, does not

require that the undertaken measurements exhibit a certain

pattern.

Implementing the Change Point techniques on FPGA will

certainly lead to the acceleration of the applications being

considered. Unfortunately, from the research point of view,

only few papers discussing such implementations are

available. In [21], a nonparametric CUSUM that serves as a

hardware plugin for Software Defined Monitoring (SDM)

was implemented on a Network Interface Card (NIC) and

used to detect anomalies directly in FPGA. The authors claim

to be able to realize different detections simultaneously

without any loss in throughput. In [21], an online Change

Point detection algorithm based on an Auto Regression (AR)

model, called ChangeFinder, was implemented on a NIC.

The proposed solution computes the change-point score from

time series data received from the 10GbE (10Gbit Ethernet)

NIC. The objective of the authors was to reduce the host

workload and improve the performance by offloading the

ChangeFinder algorithm from host to the NIC [21].

According to their evaluation results, an improvement of

16,8x in change point detection throughput was realized

compared to the baseline software implementation while

keeping the same accuracy.

To apply Change Point theory to DoS attacks detection, three

parts are needed:

(1) The network traffic variable that will be measured and

which will be the basis for the time series to be observed.

Here, measurements related to protocols such as TCP,

UDP, ICMP, and SIP can be used. It is also possible that

pairs like TCP SYN-FIN [19], where a strong correlation

exists in between, can be observed and utilized by the

CUSUM techniques.

(2) Once the time series is defined, it may need to be made

stationary (i.e. a time independent normalization would

need to be applied before feeding values for alarm

generation) through appropriate transformations, in

order to be used by the CUSUMs.

(3) A bunch of parameters and thresholds must be set and

potentially optimized in order to detect the attacks and

reduce the amount of false alerts.

Concretely, the CUSUM technique we will be implementing

in FORTIKA [47] follows the algorithm discussed by Siris in

[14]. Let us assume we are observing the number of IP

packets entering the network under consideration during a

period of time that is divided into time intervals of the same

duration. As mentioned earlier, we can observe TCP, UDP,

and ICMP packets or even pairs such as TCP SYN-FIN,

instead of IP packets. Let 𝑋𝑛 be the number of IP packets

collected within the n-th time interval and 𝜇𝑛 the

corresponding mean rate at time n. The value 𝜇𝑛 is calculated

using an exponentially weighted moving average,

𝜇𝑛 = 𝛽 𝜇𝑛−1 + (1 − 𝛽) 𝑋𝑛 (3)

where 𝛽 is the exponentially weighted moving average

(EWMA) factor and 𝜇
0

 = 𝑋1. To give some more details,

the exponential weighted moving average is a weighted

average where the weighting decreases in an exponential way

with each following measurement with respect to previous

measurement values. The EWMA is also used in our context

to avoid explicitly taking into account the seasonability and

the trend factors ([14], [20]). As the time series 𝑋𝑛 , n = 1,

2, ... is in general non-stationary because of the just

mentioned factors, it can be made stationary by using the

following transformation (according to [19], [14]),

 �̃�𝑛 =
𝑋𝑛

𝜇𝑛−1
 𝑛 ≥ 1 (4)

The nonparametric CUSUM algorithm is given by,

𝑌𝑛 = max{0, 𝑌𝑛−1 + �̃�𝑛−1 − 𝑎}, 𝑌0 = 0 (5)

where a is a positive real number defined experimentally to

minimize the false alarm rate [19]. As it was discussed in

[20], assigning an appropriate value to the parameter a can be

done by taking it sufficiently large with respect to the

historical estimate 𝐸𝑒𝑠𝑡 (�̃�𝑛) for the expected value 𝐸(�̃�𝑛)

representing the normal behavior.

Indeed, an estimate 𝐸𝑒𝑠𝑡 (�̃�𝑛) of 𝐸(�̃�𝑛) can be calculated

experimentally, and then it can be set to the sum of

𝐸𝑒𝑠𝑡 (�̃�𝑛) and a multiple of the estimate of the

corresponding standard deviation, i.e,

𝑎 = 𝐸𝑒𝑠𝑡 (�̃�𝑛) + 𝜃 𝜎𝑒𝑠𝑡(�̃�𝑛) (6)

𝜃 is an appropriate non negative number and 𝜎𝑒𝑠𝑡(�̃�𝑛) is

an estimate of the standard deviation of the normal traffic.

Another parameter that is needed is the stopping time. The

latter is the time when a change in the CUSUM algorithm

occurs and can be formulated as follows,

𝑇 = 𝑇(𝑇ℎ𝑟) = 𝑚𝑖𝑛{𝑛 ≥ 1, 𝑌𝑛 ≥ 𝑇ℎ𝑟} (7)

The threshold Thr can be seen as a positive number

specifying the value that when exceeded, an attack is

signaled. This value can also be defined as a multiple of the

estimated standard deviation 𝜎𝑒𝑠𝑡(�̃�𝑛). This means Thr will

be of the form 𝜌 𝜎𝑒𝑠𝑡(�̃�𝑛) where 𝜌 is a positive number

reflecting the size (in terms of the standard deviation) of the

shift we want to detect [20].

B. Signature based Algorithms

Sun Wu and Udi Manber developed the Wu-Manber

algorithm in 1994. It has its origins in the Boyer-Moore and

Rabin-Karp matching algorithms, whereas the Wu-Manber

advantages are a high average case performance and a less

required small memory space. Some restrictions have to be

mentioned for the Wu-Manber algorithm:

(1) The amount of patterns that can be processed

simultaneously is less than a few hundred.

(2) There should not be a high deviation in the length

of the patterns that has to be matched, in order to

ensure reasonable performance.

(3) Searching time increases inversely proportional to

the length of patterns. This means that too short

patterns require a lot more time for searching.

C. The Wu-Manber Algorithm

The initial proposed Wu-Manber algorithm in 1994 provided

with several improvements. Beside other Intrusion Detection

Systems, snort uses a simplified variant of the Wu-Manber

algorithm too.

Recently published studies - dealing with the performance of

Snort using the Wu-Manber pattern search algorithm instead

of the formerly used Set-Wise Boyer-Moore and Aho-

Corasick algorithm - pointed out that Snort gained a

remarkable performance improvement with Wu-Manber.

Following pseudo-code [16] (see Figure 6) has been the

source for the implementation of the Wu-Manber algorithm

for the 40SEC platform:

Figure 6: Wu-Manber Algorithm Pseudo-Code [16]

Wu-Manber algorithm can be used as it is in email spam

detection. It can be considered as an anti-spam content-based

technique, and utilized to accelerate the emails analysis.

Wu-Manber is a computation extensive algorithm which

makes it a good candidate for an FPGA implementation. A

naïve replication of it on the FPGA will not be efficient when

compared to that of an ARM processor. In addition,

implementing the algorithm on an FPGA creates a memory

overhead for data transfer between the processor and the

FPGA since it is a memory resource-constrained architecture.

This will lower the performance and hence we need to

parallelize the algorithm.

3 http://www.cs.uu.nl/docs/vakken/magr/2017-

2018/files/SIMD%20Tutorial.pdf

D. Parallalizing Wu-Manber

The Wu-Manber algorithm comprises of two stages – a

preprocessing phase (represented as step 1 in Figure 6) and

the scanning phase (represented as steps 2-30 in Figure 6).

The control flow and the dataflow are serialized in this

algorithm. The preprocessing phase is computed for the given

set of keywords/patterns only once and doesn’t add to the

overall computation time period.

We decided to exploit data level parallelism in the scanning

phase algorithm using an asynchronous mode of execution.

The SIMD3 architecture is implemented. Let L be the length

of the input data stored in the processor memory. Using the

AXI4 burst transfer mode, the input data is double buffered

asynchronously into the FPGA BRAM with buffers Bn, where

B is the buffer of length N (0 < N ≤ L) and n is the number of

buffers (n > 1). Let h be the number of identical hardware

instances of the scanning phase. The buffered input data is

sliced into N/h slices.

This FPGA design is done via Vivado HLS which offers the

flexibility for RTL synthesis from high level programming

language (C/C++) and generates the bitstream for the IP core.

By utilizing the asynchronous mode of operation, the h

hardware instances operate on their corresponding buffer

slice. The goal is to improve the performance by 2x at the

maximum.

VII. TESTING AND EXPERIMENTS

In order to test the 40SEC and each of its subcomponents

(Firewall, IDS, RESTApi, etc.) within defined scenarios, a

test environment was set.

A. Scenarios

The following table provides the scenarios used in our testing

activities. The listed attacks were executed in order to test and

validate the current state of the 40SEC implementation.

Attack

name

Port Scanning

(Reconnaissance Attack)

Verification/

testing

procedure

1. Scan the destination with nmap to

check all the open ports: this attack

will send a lot of different TCP

packets to different ports in the

destination to see what are the ports

that are open and then use them to

exploit the possible further attacks.

2. See what information can be gathered

that may be useful for additional

attacks.

3. Check if the IDS detects the scanning.

Attack

name

Denial of Service

Verification/

testing

procedure

1. Perform multiple DoS-based attacks

(also possible with nmap):

◦ SYN Flood (using the hping3

with flag S tool in Kali Linux):

this attack will be done by

sending a lot of TCP packets

with SYN flag to port 80 to

initiate a connection with the

web server

◦ Ping of death (using ping

<dest_IP> -t -l 65500): this

attack will send a lot of huge size

ICMP packets to the destination

IP, in order to make the

belonging device go down.

2. Check if the IDS detects the attack.

Attack

name

Malicious File

Verification/

testing

procedure

1. Create a text file with malicious

content to be sent over the IDS

controlled link

2. Match the malicious content with the

belonging Snort rules and generate the

alarm

3. Check if the IDS detects the attack

[and if the IPS is able to prevent it]

B. Testbed Components

Figure 7 illustrates our local testbed. One can clearly see the

positioning of the vSA as allowing it to control traffic

between the LAN and WAN segments towards the Internet.

Thereby, the LAN segment can be assumed as representative

for the local network of a European SME. Furthermore, a

management interface and a belonging management/control

network is spanned over all involved components allowing us

to control their behavior, initiate different scenarios, execute

tests and run experiments evaluating different configuration

of the 40SEC vSA. In the following, the selected tools are

introduced, which we have deployed in our testbed and utilize

for testing and experiments.

IPerf (client, server) [48]: IPerf is used to generate TCP and

UDP data streams. It provides a client-server application that

allows to measure bandwidth, quantity of data that passes a

network and belonging time aspects. IPerf creates a report

with a timestamp, details of transmitted network packets and

measured bandwidth. In the case of the 40SEC vSA, IPerf is

used to assess the network data processing performance of the

FPGA hardware in conjunction with the ARM part.

TCPReplay [49]: TCPreplay contains different open source

utilities that can be used to replay a pcap file that has been

captured before. It can be easily used as a test tool to check

the performance of IDS, IPS or Firewall systems. In our

scenarios, we are utilizing it to simulate a big network traffic

coming to our network and checking if it gets blocked by our

Firewall or reported by our IDS. TCPreplay can take long

time to replay all the information included in the pcap file.

To improve the performance we use -k parameter with

TCPreplay, which preloads packets into RAM before

sending. In addition, we use the -t parameter to replay packets

as fast as possible. It is possible to use the --loop parameter

in case you are using a small pcap file, which is to be

repeatedly communicated towards the target network

infrastructure.

Figure 7: FOKUS local Testbed Components

Web Service: To test the performance of the Virtual Security

Appliance, we run a simple web service in our testbed, which

offers a REST API for computing a complex function value

based on an inputted number over the REST API - we use a

complex function for simulating web server load. Then we

can measure the availability and performance of the service

under different scenarios, from high network load to different

attacks. This will give information about the latency,

throughput and effectiveness of the 40SEC security device.

Performance and Security Testing Tools: Besides tools that

are available (e.g. hping3, Metasploit nmap and Wireshark)

and preinstalled in Kali Linux (a free Debian Linux System

for penetration testing), JMeter is one of the tools that is used

to simulate a heavy load to the 40SEC Gateway and to test its

performance under different load types. Furthermore, in our

scenarios, we have used tools like nmap to achieve port

scanning attack and hping3 to achieve SYNflood attack.

C. First Experimental Results

The first experiments we wanted to undertake are related to

the Wu-Manber algorithm. The idea was to run this algorithm

on ARM and also on FPGA and compare between the

corresponding performances. As mentioned earlier, this

algorithm can directly be used for email spam content

analysis, however as we could not find a suitable email spam

database for testing purposes, we have chosen to apply this

algorithm on available books.

When conducting the measurements, we took a set of corpora

from different sizes (“Word Count”-column) and searched in

those for various random patterns. The corpora were given by

various books (e.g. adventures of Sherlock Homes, History

of United States of America, Manual for Surgery and War

and Peace), whilst the patterns were randomly sampled from

available lists of common words in the English language.

The experiments were performed on a Zync-7000 SoC

architecture from Xilinx [50]. It houses a dual-core ARM

Cortex-A9 based processing system and a Zync-7000 Kintex-

7 FPGA with ARM AMBA AXI based interconnect between

the processor system (PS) and the programmable logic (PL).

During the experiments with the ARM processor, we pre-

loaded the data into the architecture’s memory, and the data

was correspondingly pre-processed. Afterwards, the

matching operations were initiated. From Table 1, we could

observe the timing benchmark for the performance of Wu-

Manber on ARM processor for various sizes of the text and

the patterns.

Word count Matches Init + Search

100,000 70,972 0.2048 s

100,000 145,251 0.8247

100,000 14,791 0.1438

100,000 1,867 0.5368

100,000 3,262 1.3042

1,000,000 733,226 2.286

1,000,000 1,756,633 9.7276

1,000,000 174,759 1.6762

1,000,000 20,786 5.9409

1,000,000 35,890 14.1044

Table 1: Wu-Manber related measurements on ARM

Table 2: Wu-Manber related measurements on FPGA

without parallelization

During the second stage of the experimentation, we

implemented the algorithm the serial and the parallelized

versions on FPGA, utilizing Vivado HLS programming. The

entire dataset was stored on the memory of the processor and

communicated over the AXI interface. As mentioned before

in Section VI. C, the FPGA performed poorly in the serial

version. The parallelized version as mentioned in Section VI.

D had a performance improvement of 20% to 50% when

compared to the serial version as observed in Table 2 and

Table 3. However, when compared to the benchmark the

performance is still poor. It can also be observed from Table

3 that the number of matches is lesser than that of the

benchmark.

The inferences from the experiment being – despite the

parallelization, the data transfer overhead from PS to PL

during the process execution on the PL causes stall in

execution. This significantly lowers the performance by 70-

80%. The reduced number of matches in the parallelized

version signifies the patterns that were missed due to the

slicing of the text data.

Table 3: Wu-Manber related measurements on FPGA with

parallelization

VIII. CONCLUSIONS AND FUTURE WORK

The current paper presented our activities towards
implementing IDS in the edge network segment. Indeed, we
discussed the 40SEC IDS architecture, which can run both in
a virtualized setup and in an FPGA supported mode. In that
line of thought, various important aspects related to the key
operations and the modeling and design of the 40SEC
(firewalls/IDS) were presented, whilst in parallel the most
important operational modules (e.g. pattern matching) were
identified, which are also key candidates for FPGA
acceleration. A set of scenarios simulating network attacks,
and a testbed for rapid prototyping of security appliances in
ARM and FPGA were described.

We have implemented Wu-Manber algorithm on FPGA to
support the signature-based IDS and compared the results with
that of the ARM processor. The experiments have called for a
redesigning of the algorithm and a more sophisticated
parallelization.

We will also focus on increasing the level of acceleration,
which is currently on a very generic level. Thereby, we want
to identify more aspects for handling in FPGA and
establishing a stable process from the high level design down
to the hardware deployment of the required IDS/IPS/firewall
mechanisms.

ACKNOWLEDGMENT

This work has been undertaken in the context of the European

H2020 project FORTIKA [47], Grant agreement no 740690).

This project aims at developing a robust, resilient and

effective cybersecurity solution that combines hardware and

software and which can be effortlessly tailored to each

individual enterprise’s evolving needs. This will be achieved

by opening the FORTIKA middleware platform to third-party

cyber security applications and services through the

FORTIKA marketplace.

REFERENCES

[1] D. Lin, “Network Intrusion Detection and Mitigation Against Denial

of Service Attack”, Technical Report, January 2013, University of
Pennsylvania, Link:

https://repository.upenn.edu/cgi/viewcontent.cgi?article=2027&conte

xt=cis_reports
[2] A. Alharbi, S. Alhaidari, M. Zohdy, „ Denial-of-Service, Probing, User

to Root (U2R) & Remote to User (R2L) Attack Detection using Hidden

Markov Models “, International Journal of Computer and Information
Technology (ISSN: 2279 – 0764) Volume 07– Issue 05, September

2018, Link:

https://www.ijcit.com/archives/volume7/issue5/IJCIT070501.pdf, as
of date 22.01.2019

[3] Snort, Link: https://www.snort.org, as of date 22.01.2019

[4] Suricata, Link: https://suricata-ids.org/, as of date 22.01.2019

[5] S. Antonatos, K. G. Anagnostakis†, E. P. Markatos, M. Polychronakis,

“Performance Analysis of Content Matching Intrusion Detection

Systems”,
[6] A. Aho and M. Corasick. Fast pattern matching: an aid to bibliographic

search. Commun. ACM, 18(6):333–340, June 1975.

[7] R. Boyer and J. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, October 1977.

[8] M. Fisk and G. Varghese. An analysis of fast string matching applied
to content-based forwarding and intrusion detection. Technical Report

CS2001-0670 (updated version), University of California - San Diego,

2002.
[9] Sourcefire. Snort 2.0 - Detection Revisited.

http://www.snort.org/docs/Snort 20 v4.pdf, October 2002.

[10] S. Wu and U. Manber. A fast algorithm for multi-pattern searching.
Technical Report TR-94-17, University of Arizona, 199

[11] S. Wu and U. Manber. A fast algorithm for multi-pattern searching.

Technical Report TR-94-17, University of Arizona, 1994.
[12] M. Basseville et aI, "Detection of Abrupt Changes: Theory and

Application", ISBN: 0-l3-126780-9, Prentice Hall, 1993.

[13] H. Wang et aI, "Detecting SYN Flooding Attacks", In Proceedings of
lEEE INFOCOM 2002, New York, June 2002

[14] V. A. Siris, F. Papagalou, “Application of Anomaly Detection

Algorithms for Detecting SYN Flooding Attacks”, In Proc of

Globecom 2004, Texas, 29 Nov -3 Dec, Dallas, Texas, USA.

[15] NS-KDD, Link: https://www.unb.ca/cic/datasets/nsl.html, as of date

22.01.2019
[16] Lua definition, Link: https://www.lua.org/about.html, as of date

22.01.2019

[17] Nguyen Le Dang, Dac-Nhuong Le, Vinh Trong Le, “A New Multiple-
Pattern Matching Algorithm for the Network Intrusion Detection

System, IACSIT, April 2016

[18] S. Aminikhanghahi, D. J. Cook, “A survey of Methods for Time Series
Change Point Detection”, PMC Jun 8,2017 Jun 8.

doi: 10.1007/s10115-016-0987-z

[19] H. Wang, D. Zhang, K. G. Shin, “Detecting SYN flooding attacks,” in
Proc. of IEEE INFOCOM’02, 2002.

[20] Y. Rebahi, D. Sisalem, “ Change-Point Detection for Voice over IP

Denial of Service Attacks”, In the Communication in Distributed
Systems – 15. ITG/GI Symposium, 26 Feb.-2 March 2007, ISBN: 978-

3-8007-2980-7

[21] T. Cejka, L. Kekely, P. Benacek, R. B. Blazek, H. Kubatova, “ FPGA
Accelerated Change-Point Detection Method for 100Gb/s Networks”,

9th Doctoral Workshop on Mathematical and Engineering Methods in

Computer Science (MEMICS), At Telc, Volume: ISBN 978-80-214-
5022-6

[22] T. Iwata, K. Nakamura, Y. Tokusashi, H. Matsutani, “Accelerating

Online Change-Point Detection Algorithm using 10GbE FPGA
NIC”, Euro-Par Workshops 2018: 506-517

[23] Network Functions Virtualisation, Introductory White Paper, ETSI,

Link: https://portal.etsi.org/nfv/nfv_white_paper.pdf, , as of date
22.01.2019

[24] Most CIOs fear IoT performance problems could damage revenues,

Link: http://www.netimperative.com/2018/11/most-cios-fear-iot-
performance-problems-could-damage-revenues/, as of date 22.01.2019

[25] S Jiang, D He, C Yang, C Xu, G Luo, Y Chen, Y Liu, J Jiang,
"Accelerating Mobile Applications at the Network Edge with

Software-Programmable FPGAs" IEEE INFOCOM 2018-IEEE

Conference on Computer Communications, 55-62
[26] CVE MITRE: https://cve.mitre.org/, as of date 22.01.2019

[27] ReqIF format: https://www.omg.org/spec/ReqIF/About-ReqIF/, as of

date 22.01.2019
[28] Overview of Rational DOORS:

https://www.ibm.com/support/knowledgecenter/en/SSYQBZ_9.6.1/c

om.ibm.doors.requirements.doc/topics/c_welcome.html, as of date
22.01.2019

[29] ProR: http://www.eclipse.org/rmf/pror/, as of date 22.01.2019

[30] iptables: https://github.com/ldx/python-iptables, as of date 22.01.2019
[31] Kamel Karoui, Fakher Ben Ftima, Henda Hajjami Ben Ghézala:

„Distributed firewalls and IDS interoperability checking based on a

formal approach”, CoRR abs/1310.2861 (2013)
[32] Thawatchai Chomsiri, Xiangjian He ,Priyadarsi Nanda, "Limitation of

listed-rule firewall and the design of tree-rule firewall", Proceedings of

the 5th international conference on Internet and Distributed Computing

Systems 978-3-642-34882-2, Wuyishan, Fujian, China, 275-287, 2012,

10.1007/978-3-642-34883-9_22, Springer-Verlag

[33] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul
Pettersson, Wang Yi, “UPPAAL - a Tool Suite for Automatic

Verification of Real-Time Systems.” Hybrid Systems 1995: 232-243

[34] XILINX KRM-3Z7030 50mm x 70mm module, Link:
http://www.knowres.ch/products/krm-3z030-768/, as of date

29.01.2019
[35] KRC3701 Carrier Kit, Link:

http://www.knowres.ch/products/krc3600-carrier/.as of date

29.01.2019
[36] C. R. Clark, C. D. Ulmer & D. E. Schimmel, “An FPGA-based network

intrusion detection system with on-chip network interfaces”,

International Journal of Electronics, 2006, 93:6, pp. 403-420, DOI:
10.1080/00207210600566083

[37] C. R. Clark and D. E. Schimmel, "A pattern-matching co-processor for

network intrusion detection systems", Proceedings. 2003 IEEE
International Conference on Field-Programmable Technology (FPT)

(IEEE Cat. No.03EX798), Tokyo, Japan, 2003, pp. 68-74.

[38] Young Hyun ChoWilliam H. Mangione-Smith, "Deep network packet
filter design for reconfigurable devices", February 2008ACM

Transactions on Embedded Computing Systems 7(2), DOI:

10.1145/1331331.1331345
[39] R. Proudfoot, K. Kent, E. Aubanel and N. Chen, "Flexible Software-

Hardware Network Intrusion Detection System," 2008 The 19th

IEEE/IFIP International Symposium on Rapid System Prototyping,
Monterey, CA, 2008, pp. 182-188. doi: 10.1109/RSP.2008.11

[40] Y. Liu, D. Xu, D. Liu, L. Sun, „A Fast and Configurable Pattern

Matching Hardware Architecture for Intrusion Detection“, WKDD
2009, pp 614-618

[41] C. Greco, E. Nobile, S. Pontarelli and S. Teofili, "An FPGA based

architecture for complex rule matching with stateful inspection of
multiple TCP connections," 2010 VI Southern Programmable Logic

Conference (SPL), Ipojuca, 2010, pp. 119-124. doi:

10.1109/SPL.2010.5483029
[42] Abhishek Mitra, Walid Najjar, Laxmi Bhuyan, "Compiling PCRE to

FPGA for accelerating SNORT IDS", Proceedings of the 3rd

ACM/IEEE Symposium on Architecture for networking and
communications systems. 978-1-59593-945-6, Orlando, Florida, USA,

pp. 127-136, 2007

[43] R. Sidhu, V. K. Prasanna, “Fast Regular Expression Matching using
FPGAs”, In J. M. Arnold and K. L. Pocek editors, Proc of the IEEE

Workshop on FPGAs for Custom Computing Machines, Napa, CA,

April 2001
[44] Perl Compatible Regular Expressions (PCRE), Link:

https://www.pcre.org/, as of date 29.01.2019

[45] JHDL, Link: http://www.jhdl.org/overview.html, as of date 29.01.2019
[46] Brad L. Hutchings, R. Franklin, D. Carver: “Assisting Network

Intrusion Detection with Reconfigurable Hardware”, FCCM 2002: pp.

111-120

[47] FORTIKA project: https://fortika-project.eu/, as of date 29.01.2019

[48] Iperf, Link: https://iperf.fr/, as of date 29.01.2019

[49] TCPreplay, Link: https://tcpreplay.appneta.com/, as of date 29.01.2019
[50] Zynq-7000 SoC Data Sheet: Overview, Link:

https://www.xilinx.com/support/documentation/data_sheets/ds190-

Zynq-7000-Overview.pdf, as of date 11.11.2019

https://dblp.uni-trier.de/db/conf/europar/europar2018w.html#IwataNTM18

