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Abstract—Intrusion Detection Systems (IDSs) are considered
as one of the fundamental elements in the network security of
an organisation since they form the first line of defence against
cyber threats, and they are responsible to effectively a potential
intrusion in the network. Many IDS implementations use flow-
based network traffic analysis to detect potential threats. Network
security research is an ever-evolving field and IDSs in particular
have been the focus of recent years with many innovative methods
proposed and developed. In this paper, we propose a deep
learning model, more specifically a neural network consisting of
multiple stacked Fully-Connected layers, in order to implement
a flow-based anomaly detection IDS for multi-class classification.
We used the updated CICIDS2017 dataset for training and
evaluation purposes. The experimental outcome using MLP for
intrusion detection system, showed that the proposed model can
achieve promising results on multi-class classification with respect
to accuracy, recall (detection rate), and false positive rate (false
alarm rate) on this specific dataset.

Index Terms—Cybersecurity, Intrusion Detection System, Deep
Neural Networks, CICIDS2017, Flow Feature-Based, Multi-Class
Classification

I. INTRODUCTION

During the past few years, the rising exposure of many
organisations to sophisticated cyber-attacks have led to a rapid
development of innovative IDSs. The development of IDSs
concerns both the academic and the industrial community
worldwide, due to the impact that each cyber attack has,
as economic cost, reputational damage, and legal sequences.
Therefore, it is a matter of great importance to secure networks
from unauthorized access and protect the user communication
and their data, [1], as well as to reveal new security issues
that arise.

A. Intrusion Detection System

Intrusion Detection System (IDS) is an efficient security
reinforcement tool for the detection and the protection of
cyber-attacks in any network or host. The IDSs* responsibility
is to detect suspicious behaviors and act appropriately to
protect the network from the onset of attacks and reduce
functionally and financial losses, [2].

In literature, IDSs can be categorized as, [3], either
signature-based, [4], anomaly-based, [5], or a hybrid combi-
nation of both.

Signature-based intrusion detection systems (SIDS), also
known as Rule-based or Misuse IDS, conducts ongoing mon-
itoring of network traffic and seeks out sequences or patterns
of inbound network traffic that matches an attack signature.
An attack signature can be identified based on network packet
headers, destination or source network addresses; sequences
of data that correspond to known malware or other patterns,
sequences of data or series of packets that are known to
be associated with a particular attack. They work with high
accuracy rates in identifying possible known invasions, by
keeping error rates low. However, the system s database should
be updated manually by the administrator and SIDS can detect
only intrusions that exist in the system s database, excluding
new attacks detection (zero-day-attack), as there is no relevant
attack signature pattern in the system s database.

The anomaly-based intrusion detection systems (AIDS),
or behavior-based detection, analyzes the normal networks
behavior, by monitoring network traffic to detect abnormal
activity. AIDS have the ability to be trained with anomaly
detection algorithms or to be self-trained with self-learning al-
gorithms, so they can detect new types of intrusions. Compared
to signature-based, anomaly-based shows a significant differ-
ence in identifying novel attacks. Moreover, the configuration
profile of each system can be customized, so it is difficult for
the attackers to figure out which intrusion activities will be
undetected, [6].

Hybrid Intrusion Detection System (HIDS) can combine the
advantages of both signature-based and anomaly-based system
and increase the detection of known intrusion attacks, while
eliminating the error rates of unknown attacks. Most of the
latest hybrid IDSs are based on machine and deep learning
methods.

Due to the advantages of the anomaly-based intrusion
detection systems in the field of zero-day attacks, the proposed
model develop an anomaly-based Intrusion Detection System
which is based on deep learning.

B. Flow feature-based Classification

One of the main methods of intrusion detection is the net-
work traffic analysis and the extraction of the desired statistical
features in order to detect abnormal network traffic, in near-
real time. Thus, traffic classification is a core component in



an Intrusion Detection System, which since analyze network
packets, can determine whether the network behavior violates
the systems security, by continuously monitoring the network.
IDS:s, in order to work properly and detect abnormal activities
effectively, use divided traffic packets into network flows,
according to source/ destination IP, source/ destination port,
protocol, and timestamp, [7], [8]. A useful flow definition is
mentioned bellow. A flow is a group of IP packets with some
common properties passing a monitoring point in a specified
time interval, [9].

Cisco, [10], referred that A complete flow is a unidirectional
exchange of consecutive packets on the network between a port
at an IP address and another port at a different IP address,
using a particular application protocol.

Therefore, traffic classification is necessary for the efficient
flow management, processing and machine learning exploita-
tion, [11]. In general, the most widespread and broad traffic
classification categories are using different flow features and
are divided to port-based methods, payload-based methods,
host-based and flow feature-based methods.

Intrusion detection systems apply different anomaly detec-
tion methods, depending on each case study, the available
resources and the accessible technologies. The current work
focuses on the flow feature-based technique, since it can
overcome numerous limitations of other techniques, such
as unregistered port numbers, encrypted packet payload etc.
Flow-based method uses flow features as discriminators to
exploit the diversity of the traffic packets and map flows to
classes, [11]. Moreover, concerning the privacy issues, flow-
based method is preferable instead of payload method, because
of the absence of payload.

Flow-based traffic classification is conducted with a high
degree of accuracy, using machine-learning techniques, and
occupies a large area of research. Boutaba et al., [11] referred
that discriminative MLP-NN classifier can achieve over 99%
of accuracy for traffic classification with flows. Furthermore,
Sperotto et al., [12] provide a comprehensive flow-based
intrusion detection survey.

C. Machine Learning and Deep Learning techniques for IDS

Machine learning and deep learning techniques have been
used to develop IDSs in the field of cybersecurity. In order to
increase effectiveness of IDSs, the research has been focused
on novel learning technologies and algorithms of Artificial
Neural Networks (ANN), Support Vector Machines (SVM),
Naive-Bayesian (NB), Random Forests (RF), self-organizing
map (SOM) etc. In fact, machine learning consists of a set
of algorithms to draw conclusions using mathematical and
statistical methods. The widespread use of machine learning
extends to the fields of prediction, classification and estima-
tion, especially in the field of network security.

The need for a complete, rich, up-to-date, and well-formed
dataset with various criteria and features, is a key concern of
researchers for experiments conduction, testing, and evaluation
of the models, [13], [14] on modern networks. A dataset is
appropriate when it:

e is updated in time due to the high malware mutation and
evolution

o represents real world network traffic

« has traffic diversity and volume

e is desirable to be publicly available

In literature, there are numerous datasets available for exper-
imentation, but only a few fulfil all the desired features. It is
advisable to refer to some of the most well-known, nominally,
with few details.

KDD-99, [15], CAIDA, [16], ISCX2012, [17], Kyoto, [18]
are datasets that represent real world network traffic, but
nowadays, are considered outdated due to the continuous
evolution of network‘s attacks and threats. On the other hand,
a quite popular in the field of research is the CICIDS2017
dataset, which was released recently and contains many traffic
types, fulfils the criteria of the real world network traffic,
and was created to overcome some issues of existing datasets.
Based on Gharib et al., [19], CICIDS2017 meets all the criteria
of an accurate and complete dataset. Although, an issue that
need to be addressed in this dataset is that there is a high-class
imbalance that can mislead the classifier, [13]. Currently, a
new dataset appeared named CIC AWS 2018, [20], similar to
its previous version, CICIDS2017, however has not yet been
much reported.

Based on the CICIDS2017 dataset our goal was to imple-
ment an anomaly network intrusion system using flow-based
statistical data that detects and classifies with high accuracy
each type of attack into multi classification. Flow classification
achieved with the use of deep learning methods in the field
of machine learning. We used supervised learning and a
Multi-Layer Perceptron (MLP). We designed an improved
deep neural network model to classify the network traffic.
Therefore, this paper propose a flow based anomaly detection
system using Deep learning approach.

The structure of this paper is as follows. Section II describes
some of the related work of network intrusion detection using
machine learning and deep learning techniques, mostly in
CICIDS2017 dataset. Section III explains the dataset used for
the analysis and describes the pre-processing procedure. In
Section IV, we provide a brief description of the architecture
of the Deep neural network, the algorithms and our proposed
MLP flow-based anomaly detection system. In Section V,
we analyze the experimental results of MLP and discuss the
proposed solutions. Finally, Section VI gives a conclusion of
this paper and presents future work.

II. RELATED WORK

In recent literature, most of the studies in flow-based Intru-
sion Detection Systems based on machine-learning technolo-
gies are using the CICIDS2017 dataset, for the training and
the evaluation. However, due to the new entrant dataset in the
field of cyber security, there are limited published studies yet.

Ullah and Mahmou, [21], proposed a hybrid model anomaly
detection model, using technologies of flow-based anomaly
detection for the classification at CICIDS2017 and UNSW-
15 datasets. They used Recursive Feature Elimination (RFE)



for the selection of significant features, Synthetic Minority
Over-Sampling Technique (SMOTE) for the oversampling
and Edited Nearest Neighbors (ENN) for the cleaning the
CICIDS2017 and UNSW-15 datasets, in order to be balanced.
At level-1 the network flows were classified with decision tree
classifier, as normal or abnormal (binary classification) and
then, were forwarded to the level-2 in order to determine the
type of the attack (multi-classification). The results of speci-
ficity, precision, recall and F-score for level-1 were measured
100% for the CICIDS2017 dataset and 99% for the UNSW-15
dataset, while the level-2 model precision, recall, and F-score
were measured at 100 % for the CICIDS2017 dataset and 97
% for the UNSW-15 dataset, respectively.

Vijayanand, Devaraj and Kannapiran, [22], proposed a
novel IDS with genetic-algorithm-based feature selection and
multiple support vector machine classifiers for wireless mesh
networks. In order to succeed better accuracy, they select spe-
cific features exploiting the Genetic Algorithm-based feature
selection and SVM classifier. The evaluation of the system
is done using an intrusion dataset, generated from a WMN,
and simulated in Network Simulator 3 (NS3) tool by using
the standard intrusion dataset. Moreover, they validate the
system using ADFA-LD and CICIDS2017 intrusion datasets.
A comparative analysis is performed, between the proposed
system and MI-based feature selection, suggesting that GA-
based feature selection with SVN classifier exhibit better
performance metrics, with higher accuracy, about 99%, and
less computational complexity.

Zhang, et al., [2], presented a anomaly detection model
based on neural network. They designed an IDS using LeNet-
5 convolutional neural network and LSTM network for fea-
ture extraction. The experiments were conducted using the
CICIDS2017 and CTU datasets for both binary and multi-
classification. They performed CNN, LSTM and the hybrid
combination of both, which achieved good classification re-
sults in both binary-classification and multi-classification ex-
periments. The accuracy succeeded was about 99%. They, also
analyzed the flows which were important for the classification
and for the efficient abnormal detection.

Ferrag and Maglaras, [23], presented the DeepCoin which is
a novel deep learning and blockchain-based energy framework
to protect the smart grid against cyber attacks. The used the
practical Byzantine fault tolerance algorithm recurrent neural
network algorithm for the block-based network using deep
learning. They worked in three different datasets for evaluation
reasons and performance testing, including CICIDS2017, a
power system dataset, and a web robot (Bot)-Internet of Things
dataset. The accuracy rate by using recurrent neural networks,
with backpropagation through time was 98.23%.

Binbusayyis and Vaiyapuri, [24], mainly focused on creating
an ensemble for feature selection using different evaluation
measures, that can implement an intrusion detection system.
Particularly, they proposed a set of feature selection and
feature extraction and developed an IDS model by using the
learning algorithm, Random Forest. The evaluation was done
on various evaluation datasets, namely, KDDCup’99, NSL-

KDD, UNSW-NB15 and CICIDS2017, in order to demonstrate
the effectiveness of the proposed model. The results revealed
that the specific subset of features is promising due to the
final high performance metrics, achieving 99.88% accuracy,
compared to other approaches.

Radford, Richardson and Davis, [25], presented an anomaly
detection sequence model based on Long Short-term Memory
(LSTM) recurrent neural network (RNN). They used em-
bedded sequences passed through two bidirectional LSTM
models in order to implement the proposed system. The testing
experiments were conducted with the use of CICIDS2017 and
the model results aimed at multi-classification.

Ahmim et al., [26], proposed a novel IDS using three
different machine learning classifiers. They used REP Tree
and JRip algorithm for binary classification and the output of
them used as input to the Forest PA for multi-classification
of cyber-threats. The experiments conducted in CICIDS2017
dataset and were compared with some well known classifiers
(J48, Jrip, Naive Bayes, MLP, REP Tree, Random Forest,
FURIA, LIBSVM, J48 Consolidated, Forest PA, WISARD).
The performance metrics showed that they achieved accuracy
rate of 96.66%, detection rate of 94.47% and false alarm rate
of 1.14%, where it turned out that their model had a better
and improved performance than the rest of the classifiers.

Idhammad, Afdel and Belouch, [27], implemented a dis-
tributed intrusion detection system for Cloud environments. At
first, they used the Naive Bayes model for anomaly detection
and data preprocessing and then, for the multi-classification,
they used a classifier based on Random Forest, that detects
the type of each attack. The experiments were conducted
in CICDDS-001 dataset with high performance metrics, like
overall accuracy rate of 97.05% and False Positive Rate of
0.21%.

III. PRE-PROCESSING AND DATA ANALYSIS
A. CICIDS2017 Dataset Description

This work is relying on a public intrusion detection dataset
namely CICIDS2017, [14], created by the University of New
Brunswick (UNB) in cooperation with the Canadian Institute
for Cybersecurity (CIC). The CICIDS2017 dataset not only
contains the most up to date network attack scenarios but also
fulfills all the criteria of real-world cyber attacks.

The dataset contains benign (normal) and abnormal (dif-
ferent types of attacks) network traffic from five consecutive
days of capturing, and it is divided into 8 different files. For
each day a different type of attack was deployed as show in
Table I. We merged the 8 files into one single file containing
the whole dataset, and our work was based on this file. The
number of instances/examples in the merged file is equal to
2830743, and the distribution of all the 15 classes is shown in
Table II.

Each row in the dataset contains 83 features which have
been extracted from the network traffic using the CICFlowMe-
ter tool, [28], [29]. The CICFlowMeter generates Bidirectional
Flows (Biflow), where the first packet determines the forward
(source to destination) and backward (destination to source)



TABLE I
DAILY TRAFFIC OF CICIDS2017 DATASET

Day
Monday

Type of Traffic
Benign (Normal)
Benign,
FTP-Patator, SSH-Patator
Benign,
Dos GoldenEye, Dos Hulk,
DoS Slowhttptest, Dos slowloris,
Heartbleed
Benign,
Web Attack - Brute Force,
Web Attack - SQL Injection,
Web Attack - XSS,
Infiltration
Benign,
Bot, PortScan, DDoS

Tuesday

Wednesday

Thursday

Friday

directions, hence the 83 statistical features include data that
derive from both the forward and reverse direction. We used
a subset of the original 83 features, ommiting some features
like source and destination IPs, the ID of the Biflow, timestamp
etc., and we ended up with a dataset of 79 features where the
79t is the label, denoting what kind of traffic is described in
the current Biflow.

TABLE 11
CLASS DISTRIBUTION OF CICIDS2017 DATASET
(BEFORE PRE-PROCESSING)

D Label Number of | % w.r.t. tl§e number
Instances of total instances

1 BENIGN 2273097 80.3

2 DoS Hulk 231073 8.16

3 PortScan 158930 5.61

4 DDoS 128027 4.52
Dos

5 GoldenEye 10293 0.36

6 FTP-Patator 7938 0.28

7 SSH-Patator 5897 0.21

8 DoS slowloris 5796 0.20
DoS

9 Slowhttptest 2499 0.19

10 | Bot 1966 0.07
Web Attack -

11 Brute Force 1507 0.05
Web Attack -

12 XSS 652 0.02

13 | Infiltration 36 0.0012

14 | Web Attack - 21 0.0007
Sql Injection

15 | Heartbleed 11 0.0004

B. Data Cleansing

Machine learning algorithms are directly related to data,
and in order to be as accurate as possible, this data needs to
be refined. Firstly we identified rows/Biflows in the dataset
having missing values, infinity values, and values that did not
make sense (i.e. negative time duration of a communication,
etc.). There are many ways to deal with missing/wrong values
in a dataset such as, replacing with mean/median/mode of
the column (feature), using a regression model to predict and
replace these values, omitting the whole row/example which

contains the missing values, and even more. This step is crucial
in order to maintain the reliability of the dataset and not to add
noise, so the choice of method has to be done with caution. In
our case, most of the rows with missing/wrong values were on
classes with many examples (BENIGN, DoS Hulk, PortScan,
DDoS) so we decided to remove them, since we already had
enough examples to work with.

Moreover, we analyzed and extracted some statistics (stan-
dard deviation, variance, mean, etc.) for each one of the
features independently. We discarded the features with zero
variance (i.e. features with a constant value for all the ex-
amples), since they could not provide additional statistical
information, [30], for our ML algorithm to be able to ’learn”
from these features.

We also performed Pearson, [31]-[33] correlation test on
the remaining features in order to evaluate the associations
between them. If two or more features are highly correlated,
this implies that they are measuring the same underlying
information, so removing one should not compromise the
performance of the model and may even lead to better results.
Pearson correlation coefficient or Pearson’s r is the metric
which measures the linear correlation between two variables
and it’s value lays in [—1, 1]. We have removed features where
this metric was above or below the threshold of 0.95 or -0.95
respectively.

Finally, we checked and deleted all the duplicate
rows/Biflows. As a result of the above cleaning and feature
extraction methods we end up with a dataset of 2515416
examples and 45 features where the 45" column is the label.

C. Data Transformation

We have decided to merge three of the dataset classes into
one larger common class. These classes are Web Attack-Brute
Force, Web Attack-XSS, and Web attack Sql Injection. We
merged them as their behavior in network traffic level is almost
identical (something that was also confirmed by the results of
several different ML models during the evaluation phase). The
final distribution of the classes on the cleansed dataset is show
in Table III.

Before start feeding the cleansed data into our ML algorithm
we did some more statistical analysis by plotting and visually
inspecting the distribution of each feature. We were able to do
this since we had a relatively small number of features and
we were able to inspect them one by one. During this process
we noticed that many of the features were highly skewed
(mostly on the left). Skewness is the asymmetry in a statistical
distribution, in which the curve appears skewed either to the
left (negatively skewed), or to the right (positively skewed).
There are many ways to deal with data skewness such as cube
root, square root, logarithm transformation, or square, cube, or
a higher power transformation. Although these methods work
on many cases, in our case we used the Yeo-Johnson, [34]
transformation because it worked better for our ML algorithm.

Yeo-Johnson is a family of transformations which is appro-
priate for reducing skewness and to approximate normality.
It extends in some way the functionality of the original Box



TABLE III
CLASS DISTRIBUTION OF CICIDS2017 DATASET
(AFTER PRE-PROCESSESING)

D Label Number of | % w.r.t. tl!e number
Instances of total instances
1 BENIGN 2089692 83.07
2 DoS Hulk 172838 6.87
3 PortScan 128008 5.08
4 DDoS 90694 3.6
Dos
5 GoldenEye 10283 0.41
6 FTP-Patator 5931 0.23
7 SSH-Patator 5385 0.21
8 DoS slowloris 5228 0.20
DoS
9 Slowhttptest 3219 0.12
10 | Web Attacks 2143 0.085
11 | Bot 1948 0.08
12 | Infiltration 36 0.0014
13 | Heartbleed 11 0.0004

& Cox, [35] transformations, which is valid only for positive
values, to be able to use both negative and positive values.
The Yeo-Johnson transformations are defined as follows:

((y+D*=1)/A ifA#0,y>0
_ Jlog(y+1) ifA=0,y>0

v = —[(~y+ 12 =1D]/2-A) ifA£2,y<0 M
—log(—y+1) ifA=0,y<0

In Figure 1 we present the effect of the Yeo-Johnson
transformation on the distributions of some of the features
in the CICIDS2017 dataset. The Yeo-Johnson transformation
also normalizes the data, so we did not have to do this step
explicitly.
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Fig. 1. Yeo-Johnson Transformation

By looking at the Table III, someone can notice the high
class imbalance in the dataset. There are some classes (i.e.
Heartbleed, Infiltration, and Bot) with very few examples.
It can be very difficult for a ML algorithm to be able to
“learn” how to map the input features of such classes to their
corresponding labels since there are not many data to learn

from. One of the most direct ways for dealing with class imbal-
ance is to alter the class distributions toward a more balanced
distribution. There are two basic methods for balancing class
distributions. Under-sampling, i.e. eliminating examples of the
majority class, and Over-sampling, i.e. replicating examples of
the minority class.

There are many ways to under-sample and over-sample an
imbalanced dataset, where some of the most common are
described by Gustavo Batista et al. in their works, [36] and,
[37]. In our case we have used the SMOTEENN method,
which is a combination of the well known Synthetic Minority
Over-Sampling Technique (SMOTE), [38] method for over-
sampling the minority class (in our case there were more
than one minority classes), followed by the Edited Nearest
Neighbor (EEN), [39] method for under-sampling not only the
majority class but all of the classes as a data cleaning method.

When using over-sampling methods, someone must be very
careful with the evaluation process. If the over-sampling is
performed before the splitting of the dataset in training,
development, and test sets, then the evaluation will not be
reliable since the test set has been merged with new artificially
created data and its distribution will be different from the
original. The proper way to proceed, is to split the dataset
and then use the over-sampling method only on the training
set. This way the ML algorithm gets more data for training, but
the development and test sets remain untouched and reliable
for fine-tuning and evaluating the model.

IV. DEEP NEURAL NETWORK ARCHITECTURE

As a step prior to neural network implementation we have
splitted the data into 3 parts. The 80% of the data has been
used for the training (known as training set), 10% has been
used on the development process and hyperparameter tuning
(known as dev or validation set), and the last part which is
also 10% has been used for testing purposes (test set).

After a lot of experimentation and having tried many
different architectures we came up with the architecture as
shown in Figure 2. In the proposed architecture for the deep
neural network, the model consists of one input layer which
has 44 features passed as input to the neural network as those
emerged from the feature engineering described in chapter III.
The input layer is followed by 8 hidden layers with 140, 120,
100, 80, 60, 40, 20, and 120 nodes respectively. The final
layer is the output layer or softmax layer, which produces
the probabilities for the 13 classes where the prediction takes
place.

For the initialization of the weights in all of the Dense (Fully
Connected) layers we used the lecun-uniform initialization,
[40], while for the output / softmax layer we used the glorot-
uniform initialization, [41]. We came up using the ReL.U, [42]
as activation function for all of the Dense layers, after testing
different activation functions like tanh, sigmoid, selu etc., since
it produced the best results in comparison with the previously
noted activation functions. In order to train the neural network
we tested many optimizers like stochastic gradient descent,
RMSProp, Adagrad but we finally used Adam optimizer, [43]



Fig. 2. Neural Network Architecture

since it produced a more robust model with better results
during the evaluation. Although regularization techniques like
L1, L2 regularization, dropout are used quite often to address
overfitting in neural networks, in our case it made no different
to the final results so we decide not to add any kind of
regularization to our model.

V. NUMERICAL RESULTS

In this chapter we present the results of the proposed
architecture in terms of recall, precision, and F1 score for
each one of the 13 different classes that our model is able to
detect. The evaluation of the model was based on a 10 fold
cross validation. In each one of the 10 splits we choose 90%
of the data as the training set and 10% as the test set, while the
test set in each of the 10 splits is unique and never overlaps
with any other test set in any other split. In order to produce
a single final value for each specific metric on each class we
average the results from each of the 10 splits on that metric,
to finally get the evaluation results for our model.

The metrics we used to evaluate our model in each one of
the 10 splits of cross validation are all based on the confusion
matrix that each of the splits produced. The metrics are the
following:

TP+ TN
TP+TN+FP+FN

Accuracy =

TP
TP+ FP’

TP

Recall = m

Precision =

2xTP
2+«TP+ FP+ FN

FP
FP+TN
For each one of the metrics we have calculated the (macro)
average over the 10 splits of the cross validation in order to
be as much robust and precise as possible in the evaluation of
our model.

F1 Score =

False Positive Rate =

The results (average of 10 splits) of Precision, Recall, F1
are presented in Figure 3. Based on the results in Figure 3
we have also calculated the averages over all of the classes
of the model. The overall accuracy of our model is 99.95%,
precision equals to 94.31%, recall or detection rate is 95.62%,
and F1 Score is 94.1%. Beside that we have also calculated
the False Positive Rate or False Alarm Rate, which is equal
to 0.0005, as an average of the FPR of all classes and all the
splits.

Finally, we have calculated the ROC Curves for each class
that our model detects as long as the micro and macro averages
of these curves. This can be shown in Figure 4 alongside with
the Area Under Curve (AUC) metric for each class and the
average for all of the classes. The (macro) average AUC value
of all the classes is equal to 0.99.

Comparison with relevant literature based on CICIDS2017
dataset, can not be performed directly, especially in the case
of multi-class classification. Although, in most of the cases
the evaluation details are not defined explicitly, a qualitative
comparison can be performed. For example, Vijayanand et
al., [22], used an SVM classifier resulting in a multi-class
classification accuracy equal to 99.85% and FPR equal to
0.0009, but it is not stated if this was a result of a cross
validation evaluation or if it was a random split of the dataset.
The same occurs in some more cases, like in, [23], where
Ferrag et. al. using an RNN classifier came up with the
following results: accuracy of 99.81%, FPR of 0.009, and
detection rate of 94.09%. Similarly, in, [24] and, [25] the
authors using random forest and LSTM respectively came up
evaluating their models using the AUC metric reporting 0.96
and 0.87 values as an average of all classes used. In, [2], Zhang
et al., using CNN and LSTM models report accuracy equal to
99.77%, precision equal to 99.94%, recall equal to 99.95%,
and F1 Score equal to 99.94%, classifying only 10 classes
(dropping the ones with the fewer instances in the dataset)
and without reporting the use of cross validation or not.

Even though the comparison with related work is not a
straight forward process, the proposed work performs effi-
ciently even though the relatively small model used for the
classification.

VI. CONCLUSIONS AND FUTURE WORK

In this work we implemented a deep neural network model
which is able to detect abnormal or malicious behavior (a
potential cyber-attack) in the network traffic of an enterprise,
and to classify the type of traffic between 13 different cases.
During the data analysis and pre-processing of the dataset we
were able to significantly reduce the number of input features
to the model without reducing its performance at all. By using
over-sampling and down-smapling techniques we were able to
detect even minority classes with very few examples in the
original dataset with high values of recall and precision. The
proposed model achieves very promising results in a multi-
class classification problem, while being at the same time a
very simple and relatively small model.



Fig. 3. Model Evaluation on 10 Fold Cross Validation
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As future work we plan to perform an analysis on reducing
even further the input features, by testing various techniques
such as Principal Component Analysis (PCA), Autoencoders,
Independent Component Analysis (ICA), etc. so as not to
reduce the performance of the model. One more thought is
to improve and extend the current dataset with even more
types of network based attacks and re-train the model to be
able to detect them without reducing its performance on the
original 13 classes. Finally, we plan on trying different types
of architectures to approach this problem. More precisely, we
consider the implementation of an RNN (LSTM, GRU, etc.)
architecture for the model since the dataset contains sequential
data.
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