Measurement of light-mediated changes in pupil size under real-world conditions

Rafael Lazar^{1, 2, [0000-0001-7972-5634]} & Manuel Spitschan^{1, 2, 3, [0000-0002-8572-9268]}

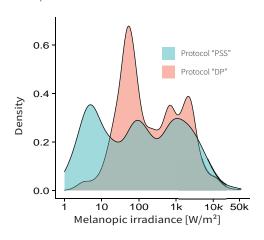
- 1 Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Switzerland
- 2 Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Switzerland
- 3 Department of Experimental Psychology, University of Oxford, United Kingdom

Correspondence

Rafael Lazar Dr Manuel Spitschan rafael.r.lazar@psychol.uni-giessen.de manuel.spitschan@psy.ox.ac.uk

@rafaelrlazar @mspitschan

Introduction

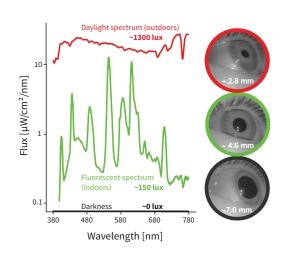

Pupil size is sensitive to a variety of higher-level processes including attentional shifts, target detection and cognitive load. At a lower level, pupil size is a non-invasive behavioural readout of visual and non-visual processing in humans, determined largely by the melanopsin-mediated stimulus on the retina.

Here, we demonstrate a method to assess the light inputs regulating pupil size under dynamic real-world conditions.

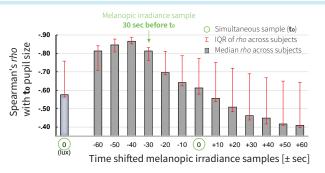
Methods

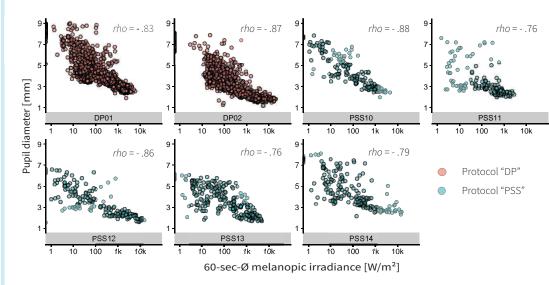
A wearable infrared video-based eye tracker (Pupil Labs GmbH) was integrated with a small-scale spectroradiometer (Ocean Insight Inc.) and attached to a bespoke 3D-printed adjustable head mount.

Both devices were connected to a miniature, battery-driven control computer (Raspberry Pi), enabling simultaneous sampling of pupil size and spectral irradiance at 10-sec intervals.


In both protocols healthy, young participants (n = 7, age: 20-30 years) moved in and between indoor and outdoor environments varying in light conditions and engaged in a range of everyday tasks.

We measured natural variation in pupil size across two protocols:


- I. "Pilot series" ("PSS", n = 5), each 1× 50-min session in the institute.
- II. "Deep phenotyping" ("DP", n = 2), each $10 \times$ 70-min sessions in home environment


Results

We accurately predict variation in pupil size as a function of near-corneal melanopic irradiance in the real world, yielding distinct dose-response curves for each participant.

Under these uncontrolled conditions, data retention was reasonably high (~65% data retained).

In line with slow melanopsin signalling, pupil size was more accurately predicted by integrating preceding melanopic irradiance values (60-sec window) than the simultaneous samples.

