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Abstract

This notebook and package redesign the didactics of the classic SIR, SIRD and SEIR(D) models,
using the example of the SARS-CoV-2 pandemic. (Issue 1) A first step is to relabel to SI(EY)A(CD). The
acquitted A= C + D are the cleared or deceased. This avoids the triple use of R for removed, recov-
ered, and reproductive number. The infected / = E + Y are the exposed and infectious. In SIA(CD) we
have A’= y I, with y the acquittal rate from infectiousness, with I’incidence, | prevalence and A
cumulated prevalence. The format of ordinary differential equations (ODE) should not distract. The
basic structure is given by the Euler-Lotka renewal equation. The deceased are a fraction of the
acquitted, D= @A, with ¢ the infection fatality factor (IFF). The ODE format D’=p/orD’= Y can be
rejected since it turns the model into a course in differential equations, with the need to prove D= ¢
Awhich can already be stated from the start. The ODE format also causes distracting questions
what p might be and whether there is a difference between a lethal acquittal period and a clearing
acquittal period, and how parameters values must be adapted when the acquittal rate y changes.
(Issue 2) The term “herd resistance” is much more preferred above the term “herd immunity”. The
notion means that the herd survives and doesn’t become extinct, even when the infection is lethal
to perhaps most members. Policy makers and the general public associate “herd immunity” with
protection for all members, which is not what the notion means (and which special outcome may
only occur with vaccination in a well-mixed population before the onset of infection). This source of
confusion between experts and non-experts can be prevented by using the term “herd resistance”.
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The common formula on herd resistance 1- 1/ Ry uses (i) a steady state or (ii) vaccination before
the start of an epidemic. (ad i) SI(EY)A(CD) has only an asymptotic steady state, for which the for-
mula does not apply. (ad ii) Vaccination during an ongoing epidemic means that there are still large
numbers of (asymptomatic) infected persons, so that the infection continues, called “overshoot”,
which does not give the protection that is suggested by the term “herd immunity”: there is only a
herd resistance. For SI(EY)A(CD), a notion of “near herd immunity” might be 95% of the limit values.
For SARS-CoV-2, RIVM (the Dutch CDC) has mentioned Ry = 2.5 and “herd immunity” (i.e. herd
resistance) of 60%, presumably using another type of model with a proper steady state. In
SI(EY)A(CD) an infection with Rg = 2.5 proceeds after 60% till the limit value of 89.3%, which, with IFF
=1.5%, would mean another 78,000 deceased in Holland, compared to 9,000 at the end of May.
(Issue 3) The objective of Public Health is to balance medical and economic issues. A better under-
standing of the SI(EY)A(CD) family of models helps to gauge exit strategies for the pandemic and its
economic crisis. A possible strategy is to eradicate the virus. With test, test, and test it would be
possible to put positively tested persons in quarantine till they have cleared. Another possible
strategy is that the vulnerable (elderly and comorbid younger) are put into quarantine while the
less vulnerable are infected (in cohorts dictated by ICU capacity), effectively using the virus as its
own vaccine, for a period of 12-16 months until there is a proper vaccine for the vulnerable compart-
ment of society. If this is rejected because the virus is so nasty then this is an argument for eradica-
tion. Itis remarkable that these scenario’s are so little discussed in policy making circles, where
there seems to be a preference for a lock-on - lock-off approach, that is risky and prolongs the
economic crisis. The SI(EY)A(CD) model uses lives saved (lives extended) but other life gain mea-
sures are the (quality adjusted) life-years gained, fair innings, proportional shortfall and UnitSqrt. A
life table computation that assumes annual loss of immunity shows that a 10% rise in annual
cumulated prevalence implies about a 0.5 year drop in life expectancy. The effect is relatively small
since the fatalities are mostly in the higher age groups. If cumulated prevalence would be 60% as
RIVM suggested, then life expectancy would reduce with 3 years, but the overshoot to 90% would
reduce life expectancy by some 4.5 years. The annual death toll is an acceleration of the mortality
by comorbidity. (Issue 4) Public Health and epidemiology exist for longer than a century and there
have been many warnings about the risk of pandemics. Lessons learnt at the level of cities and
nations are now learnt at world level. There is something fundamentally wrong in the relation
between society in general and science & learning. For the democratic setup of each nation it is
advisable to have both an Economic Supreme Court and a National Assembly of Science and Learn-
ing. We want to save lives and livelihoods but let us not forget fundamental insights about democ-
racy and science & learning.
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1. Introduction
1.1. What this notebook and package do

1.1.1. Didactic redesign

This notebook and package redesign didactics for the S(E)IR(D) - SI(EY)A(CD) epidemic models.

- There is no new finding on content. There is no new analysis. There are no new parameter esti-
mates.

- There is only an effort at better didactics of what already is known in the field.

- Readers of this notebook may be researchers from other fields than epidemiology or they may be
first-year students from a general background. Readers will have at least a first-year student under-
standing of mathematics and they will be open to the use of Mathematica. This readership will insist
upon the use of mathematics.

A readership with such competence should have little problem with the standard didactics of the
S(E)IR(D) » SI(EY)A(CD) models. Thus, an effort at improving these didactics can only have a very
marginal effect. However, advancement comes in small steps. The pandemic will cause an interest
by new students and researchers from other areas than epidemiology itself. This new readership

can be served by clearer exposition, with the benefit of computer algebra and a computable environ-
ment. One hope is that this notebook also reaches conventional teachers in S(E)IR(D) = SI(EY)A(CD)
modeling: they may not adopt all suggestions but can find some alerts.

PM. A new element may be the distinction in quarantine classes with a colouring scheme in Chapter
4 that could contribute to better communication.

1.1.2. There already is an abundance

There exists an abundance in (empirical) modeling, and it is useful to mention some such modeling,
and to again emphasize that there is no contribution on content here.

- The general modeling context is given by the Global Burden of Disease and in particular the Dismod
Il framework, see Barendregt et al. (2003), with incidence, prevalence, case fatality and recovery
(remission). The latter modeling used Excel while a later development is Dismod_mr in Python, see
Vos et al. (2012) and Flaxman & Collins (2019). For us, the duration of infection is so short that we
neglect background mortality. The Dismod framework has a constant transmission hazard (rate of
change) from the susceptibles to the incidence of disease (in variables given below: dLn[Sp] =-0),
but for an infectious disease the hazard is proportional to the prevalence of the infection (dLn[Sp] =
-B 1p). The cumulated prevalence (of who have had the disease) is important for the “herd resis-
tance” to the infection. The distinction between infection (virus SARS-CoV-2) and disease (Covid-19)
will be useful overall.

- There is an abundance of SI(EY)A(CD) modeling. Important is the Berger, Herkenhoff and Mongey
(2020) (March 29) paper, that adapts the SEIRD - SEYCD model to test-dependent states of quaran-
tine. Their code in Python is available. These authors are not epidemiologists but they present their
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paper as a proof of concept for the exit scenario of test, test, and test. See Tabarrok (2020) for an
independent appreciation that this exit scenario is cost-effective. Acemoglu et al. (2020) (May)
employ a SIRD - SICD model with at least three age compartments, and plot GDP & Death policy
frontiers. See another application in Python at Idmod.org, called “Emod”. The basic SI(EY)A(CD)
model has a constant basic reproduction factor Ry but there is also an abundance of related models
with time-varying parameters, for example (i) unrestrained development (with Ry), (ii) endogenous
response (with Ry end) When people notice that there is an epidemic, (iii) organised intervention on
social distancing or vaccination (with Rg int), see for example Silver (2020) with a spreadsheet and
Jones (2020) with a historical perspective.

- Such abundance also exists for Mathematica, see the list of references. For the virus SARS-CoV-2
and its disease Covid-19, the Kaurov (2020) collection of computational publications must be men-
tioned. Appendix D shows that one does not need this present notebook and package of mine for
epidemiological modeling with Mathematica. Who knows the S(E)IR(D) models and Mathematica
will find it simple and straightforward to create such model in Mathematica and run a WhenEvent
policy intervention. This present notebook and package only provide structure in use, though at the
cost of a learning curve. We only assume now that (such) experienced readers are willing to look at
the issue from the angle of didactics.

- Within Mathematica there are also many notebooks and demonstrations on actuarial computa-
tion, see for example Chandler (2011) with the Markov transition matrix with states of health, illness
and death. See also the links provided from there. There is also the Wolfram Language & System
Documentation Center (2020) discussion on actuarial computation. See Weisstein (2020b) (Mat-
hWorld) for a neat review of the life table and life expectation calculation, including an explanation
how R, relates to reproduction over the life cycle. The short discussion by the Dutch KAG (2020)
mentions (in Dutch) the key factors required for a proper assessment of the impact of Covid-19.
Appendix E reviews the life table and the effect of SARS-CoV-2 upon life expectancy, with a sum-
mary in section 7.11.

- There are other approaches to epidemic modeling than the SI(EY)A(CD) models. A fine discussion
has been given by 3BluelBrown (2020). See the interview by Spinney (2020) with Karl Friston on
models derived from physics; this kind of modeling is supported by Gill (2020). While SI(EY)A(CD)
assumes a homogeneous and well-mixed population, SARS-CoV of 2003 and SARS-CoV-2 of 2019
appear to show clusters, so that more relevant models use heterogeneity, see Fox et al. (1971),
Diekmann et al. (1990), Lloyd-Smith et al. (2005), Britton et al. (2020ab) and the editorial Thorp et
al. (2020).

- There is an abundance of approaches and software for elements in SI(EY)A(CD). Obadia et al.
(2012) present a package for R with five ways to estimate reproduction numbers for epidemic
outbreaks, using the epidemic curves and the serial interval. Interesting are also the peer review
reports available with the article. An estimate of Ry requires a fully susceptible population, and the
authors and some peer reviewers clarify that the software does not check upon this, so that it is
upon the user to consider whether the estimate really can be interpreted as such. An application of
this R-package for SARS-CoV-2 is by Michael Hohle (2020), with available source code. (I am not a
user of R though.)

- A key assumption of SI(EY)A(CD) modeling (specifically) consists of lasting immunity after recovery
from infection. Like the corona viruses for the common cold - Worrall (2011) - it seems that SARS-
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CoV-2 does not generate lasting immunity, see Seow et al. (2020), Sample (2020b),
Papachristodoulou et al. (2020), Kirkcaldy et al. (2020) and Irribando et al. (2020). This leads to (also
abundant) models with (seasonal) waves of infection, with also births and background mortality.
However, SI(EY)A(CD) modeling might still be useful for grasping the pandemic in the first half of
2020. Understanding of SI(EY)A(CD) modeling remains relevant as a base for understanding more
complex approaches.

1.1.3. Overview of this Introduction

This Introduction proceeds with (i) the overview of didactic redesign, (ii) the context of the SARS-
CoV-2 pandemic and exit strategies, (iii) the overview of the notebook itself.

The context can be summarised as follows. The virus is called SARS-CoV-2 and the disease Covid-19,
see Enserink (2020) about these WHO choices. The name of the virus is no coincidence. The virus
would be genetically very much like the original SARS-CoV from 2003, see Wilder-Smith et al. (2020):
“The whole genome of SARS-CoV-2 has a 86% similarity with SARS-CoV” while referring to Chan et
al. (2020), who actually state “Overall, the genome of 2019-nCoV has 89% nucleotide identity with
bat SARS-like-CoVZXC21 and 82% with that of human SARS-CoV.” SARS-CoV and SARS-CoV-2 have
many similar properties, see De Wit et al. (2016), like (i) the effect on age and sex and comorbidity,
(ii) asymptomatic transmission, see Wilder-Smith et al. (2005), and (iii) the relevance of superspread-
ing events (“clusters”) also related to aerosol transmission (see the overview in Colignatus (2020e)),
which explains the success of source and contract tracing in Japan, see department director Saito
(2020). The original SARS-CoV might have its peak viral shedding later in the symptomatic phase,
see Cheng et al. (2004), which makes detection by symptoms and subsequent quarantine effective,
while the current SARS-CoV-2 is already infectious in the asymptomatic phase and thus more
difficult to detect. Molecular biologist Borger (2020) argues that we are basically dealing with the
same virus of 2003 but a bit less deadly (as happens to viruses over time, though it may also be
closer to the bat original), and he wonders why the world did not prepare for its remergence, and
why it was claimed that the virus would be “new” and “unknown” - though admittedly the outbreak
of 2003 did not reach the West (see Colignatus (2020a:265)). Borger (2020) has a higher similarity in
the genome: “A study from March 2020 shows that the genetic material of the SARS-CoV2 virus is
96.11% identical to the SARS virus strain RaTG13”, referring to Yu et al. (2020) who clarify that this
concerns the bat virus. Of particular interest are pandemic experts Petersen et al. (2020) who
compare influenza en the SARS 2003 and 2019 versions. They observe that the two versions are not
identical, so that the English language allows that the 2019 version can be called “new”, but it
appears that the word “new” is overused here. By over-emphasizing the differences between the
versions of the virus the authors seem to imply that there were no professional mistakes in their
field of monitoring a pandemic. It would be better when pandemic experts state explicitly that they
could have diagnosed the not-newness already in January 2020, with a subsequent faster and more
effective response in the West, with a better balance between mortality, life-years gained, and costs
to the economy. The response in Germany and Greece was faster and more effective than what
happened in Holland.

PM. Overall, this notebook has a lot of repetition. Not only the models are much alike, but also the
analytical properties and the explanations of the routines, and the discussion of the aspects of the
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SARS-CoV-2 pandemic (e.g. in Holland and elsewhere). The assumption has been that readers
might skip sections (e.g. jump to their model of interest), so that such repetition is beneficial.

1.2. The renaming S(E)IR(D) - SI(EY)A(CD)

The S(E)IR(D) abbreviation stands for the family of epidemic models that have these compartments
or phases (switched on or off):

Susceptible - Exposed - Infectious - Cleared or Deceased

The conventional S(E)IR(D) setup uses the label “R” in three different meanings: Removed in the SIR
model, Recovered in SIRD and SEIRD, and overall for the (basic) reproductive factor Ry. Also, all

“l”

models use the “/” for the infectious compartment, but some also for “Infected”. SEIR(D) includes
the exposed, as the infected but not infectious yet. Since all models claim to add up to the total
population, and the exposed did not occur in SIR or SIRD, this implies that SEIR(D) would describe a

different population.

This family of models has been presented in this manner for half a century. Within the computer
algebra environment of Mathematica it appeared that there is a clear advantage of a better nomen-
clature. Unique names help the identification of variables, their parameters and the application of
associated routines. When we discuss the same population then our analysis should not be clut-
tered with issues on the administration of the compartments. While humans are flexible, computers
are a bit less so, and when humans work with computers then humans become rather inflexible too.

This notebook and package use:

- The Acquitted A instead of the Removed.

- The Cleared Cinstead of the Recovered.

- So that the A compartment can be splitin A= C + D or the Cleared or Deceased.

- The Infected / can be infectious or exposed but not infectious yet.

- The Infectious Y.

- So that the / compartment can be splitin /= E+ Y or the Exposed and Infectious.

- So that the SIA and SICD models have E=0 and /=Y, or that their infected | are also the infectious Y.

Thus we get the abbreviation SI(EY)A(CD). For all variables V we distinguish Vg for the levels and Vp
for the proportions w.r.t. the population N[0]. For plotting we can also plot the current population N
=NI[0] - D.

The decision to choose these names in this manner was taken with quite some hesitation and
consideration but would seem to be optimal. A practical argument for this compartmentalisation
and nomenclature is that the limit properties of SI(EY)A(CD) are determined by / (i.e. the sum /= E +
Y) just like in the SIA model, without the need for relabeling in SEYA(CD). The introduction of the
exposed compartment has only effect for the short run behaviour. For the (crucial) limit property
there really is a compartment / = E + Y, apart from the temporary distinction in the phases of Eand Y.
The package allows the user to adopt the conventional nomenclature, including the possibility of
using Y=E + [ instead. The underlying programming structure however is as above, and there is no
reason to hide it and not take advantage of it.

With a standard SEYCD model, an unhindered epidemic in Holland would have given roughly the
following path, using R, i.e. neglecting a change in parameters due to (i) endogenous reactions
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when people hear that there is an epidemic ( Ro end), and (ii) the intervention by the government in

March ( Ro,int). It is unclear what an endogenous reaction would have been, and the intervention is

discussed in Chapters 15 and 16. These figures for an unhindered epidemic have only a didactic

meaning, see below for a comparison to RIVM figures (the Dutch CDC). The first death was reported

on March 6 but according to the model there were actually already 6 that day. The unhindered

eventual total death toll could have been around 250,000, with 95% reached by May 22, and the
remaining 5% spreading over the remainder of the year. Only 2% of the population would not have

been infected at one stage.

Table legend: S = Susceptibles (uninfected), | = Infected (exposed or infectious), D = Deceased, C =

Cleared, N =N[0] - D remaining population, A= C + D (the acquitted). Percentages (p) are w.r.t. the

onset, i.e. N[0]. (Table taken from below.)

Date Day Sp Ip Dp Cp Np Ap

Onset 2020-02-23 0 100.0 0.0 0.0 0.0 100 0.0

1st Death 2020-03-06 12 100.0 0.0 0.0 0.0 100.0 0.0

1st Intervention 2020-03-18 24 99.9 0.1 0.0 0.0 100.0 0.0
Top if free 2020-04-21 58 25.0 40.3 0.5 34.1 99.5 34.7

Ap =50% 2020-04-25 62 13.5 36.5 0.7 49.2 99.2 50.0

95% Ap[eo] 2020-05-22 89 2.4 4.5 1.4 91.7 98.6 93.1
Limit if free oo oo 2.0 0.0 1.5 96.5 98.5 98.0

The levels (q) of the relevant compartments are as follows. (Table taken from below.)

Date Day Sq Iq Cq Dq

Onset | 2020-02-23 0 17.4x10° 100 0 0

1st Death | 2020-03-06 12 17.4x108 1290 391 6

1st Intervention 2020-03-18 24 17.4x10° 19438 6356 97
Top if free | 2020-04-21 58 4.4x10° 7.x10° 5.9x10° 90455

Ap =50% | 2020-04-25 62 2.4x10®  6.3x10° 8.6x10° 130500

95% Ap[ec] | 2020-05-22 89 419710 778037 16.x10° 243034
Limit if free oo o 344995 0 16.8x10° 255825

ReadMeSIA["Symbol"]

N[0]=S+E+Y+C+D,withl=E +Y, is the startup population of units.

N = N[O] - D is the current population, mainly used in plotting.

S are the Susceptible.

E are the Exposed but not infectious yet. (They might become diseased.)

Y are the Infectious. The (currently) Infected are | = E + Y, while C + D are have-beens.

A = C + D are the Acquitted, or the Aftermath. (A avoids confusion

with RO. A is conventionally denoted as R that may cause that confusion.)

C are the Cleared. (Avoid the confusing use of R as "Recovered".)

D are the Deceased.
I=E+YaretheInfected. INSIAE=0and =Y.
O =N[0] - S - | are "the other", so that these are all SIO models.

Variable V has level Vg and proportion Vp = Vq / N[0] (divided by N[0] and not N)

| 19
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? ReadMeSIA
Symbol

ReadMeSIA[] gives an overall explanation of the SIA™ package. See there for:
ReadMeSIA["Terminology"]

ReadMeSIA["Symbol"]

ReadMeSIA["Period"]

ReadMeSIA[model] for models SIA, SICD and SEYCD

ReadMeSIA[SEYCD, Simplify]

v

ReadMeSIA["Terminology"]

This terminology applies to the SICD model:

SICD improves on SIA by distinguishing A = C + D, for D deceased and C cleared.
(-Sp') is the xincidence= of infections at moment t.
Ip is the xprevalence= of infections at moment t.
1-Sp=1+C+Disthe xcumulated prevalence* at moment t (i.e. the haves and hads).
1 - Sp[eo] = Ap[oo] in both SIA and SICD is the *limit cum. prevalencex, since Ip[e] = 0.
Cp is the cumulated survival factor at moment t (but the Sp also count as living).
Dp is the xcumulated mortality factorx at moment t (mortality ~ population).
Cploo] is the limit cumulated survival, and part of the burden of disease (infection).
Dp[eo] is the *limit (specific) Infection Mortality Factor* (IMF) (prevalence of death).
Dp[oo] / Ap[oo] = Dp[oo] / (Cp[oo] + Dp[eo]) is the *limit Infection Fatality Factor= (IFF).
MusSICD[] is the *(instantaneous) Infection Fatality Rate= (IFR) (fatality ~ infection).
MuSICD[] = GammaSIA[] = PhiSICD[] in the model, with PhiSICD[] the IFF.
In addition for SEYCD:

Ip = Ep + Yp subdivides into Exposed (but not infectious) and Infectious.

1.3. Infection Fatality Factor (IFF) and symptomatic Case Fatality Factor
(sCFF)

The conventional discussion of the SI(EY)A(CD) model family is oriented at the ordinary differential
equations (ODE). In particular, the development of the deceased compartment is modeled as:

D’= 1l in SICD

D’=pY in SEYCD

This causes the question what p stands for. What happens if the parameter y for the infectious
period 1/y changes ? Would there be a distinction between a “lethal infectious period” and a
“clearing infectious period” ? Maugeri et al. (2020) have the better format D’ = y sCFF, for the symp-
tomatic case fatality factor (sCFF). A change in y will not affect the sCFF and the limit property of
the model. The Maugeri et al. (2020) formulation still relies upon the ODE format.

It appears that the C and D compartments are mere proportions of the acquitted A department. The
formulation as an ODE is only mathematical convenience of modelers who have adopted this
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format but it is not the essential property of the model as such. A discussion of these epidemic
models should not be confused with a course on differential equations. Assuming that didactics is
targeted at the relevant property, we get this structure, with ¢ the infection fatality factor (IFF):
A’=y1 in SIA(CD)

A’=yY in SEYA(CD)

D= @A

C=(1-@)A=A-D

This immediately clarifies that there is no distinction between a lethal infectious period and a
clearing infectious period: both compartments have the common 1/y infectious period. (Some
readers might want to check Appendix A.)

The package allows the conventional format too, and such properties can then derived, even
though it is also mathematically more elegant to directly specify what the model does.

This notebook and package use an Infection Fatality Factor (IFF) of 1.5%, based upon reweighing
the Verity et al. (2020) and Ferguson et al. (2020) estimates, applying the Dutch age composition
and inserting a special assumption on the age 70-79 group, see Colignatus (2020cd), part of which is
reproduced below in section 2.7. In testimony for Dutch Parliament, RIVM & Van Dissel (2020e)
mentions 9,000 deaths, and, using tests on antibodies that cause an expected value of the preva-
lence of infected (current and past) of 650,000 (3.74%), arrives at a crude IFF = 1.38%, not far of the
1.5% used in this notebook (that is directed at didactics).

PM. Not irrelevant: these models for infections are also used for symptomatic phases, which is also
the case for the Goh (2020) “epidemic calculator”. Thus below we also discuss the distinction
between the infection generation interval and the symptomatic serial interval. The sCFF has a
higher value than the infection fatality factor (IFF) since sCFF excludes the infections without symp-
toms, a.k.a. asymptomatic infections, which is important in the SARS-CoV-2 case.

PM. For antibody testing, see Slot et al. (2020), who also mention a 9.5% prevalence in the hardest
hit areas, and “that the protective effect of SARS-CoV-2-specific antibodies is not yet known”.

1.4. The meaning of parameters Ry, a, Band y

1.4.1. Euler 1767 and Lotka 1907

Leonhard Euler in 1767 already formulated a “renewal equation” for population dynamics, and the
SI(EY)A(CD) model appears to be a reformulation in terms of (ordinary) differential equations (ODE).
Relevant papers are Fine (2003), Svensson (2005, 2007), Wallinga & Lipsitch (2006, 2007), Breda et
al. (2012) and Champredon, Dushoff & Earn (2018). The latter paper is quite recommendable,
though they regrettably do not refer to Svensson while a comparison of results would have been
informative. Delamater et al. (2019) clarify that George MacDonald who introduced the term of
“reproductive number” (factor) in the epidemiological literature in the 1950s used Z,. See Heester-
beek (2002) for an overall brief history.

The structure that seems best for didactics can be found in the Wallinga & Lipsitch (2006, 2007)
paper. For understanding of the SI(EY)A(CD) model family we better now specify the latter main
structure here at the outset. Let us mention two models that do not apply - the fixed period and the
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normal distribution - and one model that does apply: the exponential distribution (to be distin-
guished from exponential growth). Park et al. (2019) can be recommended, also for didactic clarity,
and | tend to suggest that one first reads Park et al. (2019), then Wallinga & Lipsitch (2006, 2007),
and then proceeds here, since my summary might assume too much known. Alternatively, one
proceeds here, and falls back to these two articles if something would be unclear.

The general structure is that Ry, Band y are related to r, the rate of growth of the infected compart-
ment, and the Euler-Lotka "renewal" format rather than the ODE. First consider growth. In general,
a growth process x[t] has an average factor of growth f=f[t] = (x[t]/x[0])f and then there are these
formats:

- a “linear format”: f=1+ pforrate p=f- 1. A stepwise format is x[t] = x[t-1] (1 + p[t]). For a constant
o: x[t] =x[0] (1 + p)*

- an “exponential format”: f= Exp[r] for r = Log|[f]. A stepwise format is x[t] = x[t-1] Exp[r[t]]. For a
constant r: x[t] = x[0] Exp[r t].

While r=Log[1 + p] or 1 + p=Explr], for small values r = Log[1 + r] so that the formats differ but the
numbers not so much.

A doubling period is Py = Log[2] / r. The point for SI(EY)A(CD) is that exponential growth is impossi-
ble because the pool of susceptibles shrinks. Nevertheless, during the first growth phase the share
of susceptibles is close to 1 for a relatively long period and we might e.g. estimate B- y = Log[2] /
P4, see below.

For a population growth process, we count the numbers generated and measure the periods
(“generation interval”) over which this happens. (PM. This generation interval differs from the
“serial interval” for symptomatic disease, see Chapter 10.) Two new variables are P. and Ry.
Wallinga & Lipsitch (2006, 2007) write P but it will be useful at times to write 6 = P.. These variables
basically restate what has already been stated above about the general growth process, but now
the issue shifts to the context of an infection. The connection is that r = Log[Ro] / P. or Ry = Exp[r P.],
with P, the “generation interval” (or “generation period”), with “c” standing for the cohort contribu-
tion to the 2nd generation. Some authors write “generation time” but it is better to call it a period.

- The first generation has index 0. Starting with infector 0, the multiplication factor for the sec-
ondary infections of the new generation with be denoted by R,. Conventionally the factor is called a
number, but it is in relation to the number count 1 of the first generation. The outcomes are in
integer units. For generations with indexi=0, 1, 2, ... outcomes can be like {1, 2, 4, 16, 32, ...}. The
formula for the number of reproduced units is R; = (Ro)’+1, with the index shift because of the index
and historical notation Ry.

- The generation interval starts when the infector got infected, and it ends when the infector infects
another unit (and thus when a new generation starts with the infectee). When the interval is a
constant then there is a simple exponential process and when the interval has a distribution then
the complexity of epidemiological practice starts.

- The relation between index and timeisi+ 1=t/ P. or t=P. (i + 1). This gives the exponential
process R[t] = (Ro)”PC that starts at the value R[0] = 1 for t = 0 for the first generation, and that has
value R[P;] = Ry when t = P,. After two generation intervals or t =2 P, then R[2 P.] = (R)?.
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- Observe the relationships between the present format R[t] = (Ro)/ < = Exp[t Log[Ro] / P.] which has
P in the denominator in the exponent, and the expression Ry = Exp[r P.] that has P, in the numera-
tor of the exponent, and the standard growth format x[t] = x[0] (1 + p)! =x[0] Exp[r t] with rate rin
the numerator of the exponent, with r = Log[Ro] / P.. Park et al. (2019) call C=1/r= P, / Log[Ro] the
“characteristic time” - though this is a period too.

Let us use 6 = P. now. The linear growth rateis p= (R - 1) / 6,so that Ry =1+ 6 p, in which Ry - 1 is
the increase of the next generation compared to the single originator, and 6 = P, is the duration
over which this increase happens. Rewrite p=(Ro-1) / 0=(Ro/ 0) - (1/ 6) = B- y, with =Ry / 6 as
the contribution to the second generation over the generating / infectious period of the originator,
and y = 1/6 as the rate per time. Sometimes it may be convenient to write y = & or 6 = y" with H=
-1, thus in multiplicative format, see Colignatus (2018). SI(EY)A(CD) models are defined in terms of 8
=Ry & and y = 8"and not in terms of the direct Ry and 6. At the start of the process, when Ry
applies and not subsequent R, the exponential rate r = p= - y is close to the linear growth rate.
Larger numerical values show important differences in outcomes of the linear or exponential
format though. The question is how to proceed after the first generation. The standard approach
uses r rather than p.

With the process now formulated as R[t] = (Ro)!

= Exp[t Log[Ro] / Pc] the stage has been set for the
question about the relationship between Ry, P. and r when we assume a distribution for P, rather

than a constant value.

Wallinga & Lipsitch (2006, 2007) pose the question: “How should we choose the most appropriate
equation for inferring the reproductive number from observed growth rates for a particular infec-
tion?” Their conclusion is: “To conclude, the variety of equations that relate observed growth rate
to reproductive number can be understood within the Lotka-Euler [sic] framework which embraces
both a description of the infection cycle and a description of the change in number of new case
counts. The observed generation intervals and the observed epidemic growth, when taken
together, specify the appropriate value of the reproductive number, and therefore, the required
control effort to contain the epidemic. This means that infectious disease surveillance systems
which have an objective to inform health policy makers on the required control effort should
monitor the symptom onset date of new cases as well as their generation interval for new emerging
infections.”

These authors then consider the constant interval, the normal distribution, the exponential distribu-
tion, and the empirical distribution. Subsequently there is also the gamma distribution in general.

1.4.2. Constant generation interval

When the generation interval is no random number but a constant then all secondary infections
arise exactly after the same period. This constant P, then is also the mean generation interval. This
particular distribution of the infections over time is called the “delta distribution”. With the rate of
growth r and the period over which this applies, the number of secondary infections will be, as
already stated above:

Ro=Exp[rP]=e""

The development over time would show R[t] = Rot!Pe = Expl[t Log[Ro] / Pc] = Explrt].
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Above, we had the rate p=f-1in linear format or r = Log|[f] in exponential format. Now we have r=
Log[Ro] / Pc so that the unit of account for rand Ry is not 1 but the generation interval. A historical
reason is that Ry counted discrete units rather than being an average. The interval also has the
interpretation for the cohorts or generations of pathogens.

1.4.3. Normal distribution

When infections arrive with a generation interval with mean P, and a standard deviation o then,
with appeal to the law of large numbers, they might approximate the normal distribution. The

Dublin-Lotka result of 1925 is:
Rp == R@DublinLotka[r, P., o]
rra?

Ro = e

Note the constant value when g = 0. Also, the more dispersion, the lower Ry, meaning that faster
growing infection paths cannot compensate for the slower paths.

1.4.4. The SI(EY)A(CD) family

Epidemiology uses these notions from demographics for the SI(EY)A(CD) family of models. See the
formulas and the plot of the growth rates in Section 5.7 on the SIA model. The demographic model
assumes exponential growth of the population of pathogens. This will only work in the first and
final phases of an epidemic. For a long period, the development is distinctly not exponential.
However, the first and last phases can still be used for estimating the relevant parameters.

The relevant distinction within the SI(EY)A(CD) family is:

(1) P. = Pinf, or the generation interval is also the infectious period. This assumes an exponential
distribution.

(2) Pc=Pexp * Pinf, or the generation interval consists of the infectious period and a preceding
exposed period during which the unit is not infectious. This assumes the sum of two exponential
distributions, for both exposed and infectious.

Define the infections over the infectious period as B= Ry / Pinf (the 2nd generation considered over
the infectious period of the originator). This holds for both models. Thus Ry = 8 Pins.

The rate of leaving the infectious period is denoted as y, so that y =1/ Piys or Pins =1/ y. This note-
book takes Pjns = 10 days.

The rate of leaving the exposed period is denoted as &, so that @ =1/ Peyp Or Pexp =1/ @. This
notebook takes Peyp = 1 day.

Rewriting from periods to the parameters for the rates:

(ad1) Pc=1/y

(@d2) Pc=1/a+1/y

Each case has its relationship between the reproductive number and the growth rate r.
(@d1)Ry=1+rPins=1+r/y

(@d 2) Ro=(1+1Pexp)(L+1Pins) = (1+r/a)(1+r/y)=(a+r)(y+r)/(ay)
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PM. Roberts & Heesterbeek (2007:809) expandto Ry =1+r(1/a+1/y) + ;—zy

PM 1. We have done quite a roundabout to reproduce the original notion that r= (Ry - 1) / Pins =
Log[Ro] / Pint. However, while we can apply such transformation for any dynamic process at any
particular moment in time, only the exponential distribution will generate constant parameter
values, as assumed here.

PM 2. UsingRo =8/ v:
(@d1) B/y=1+r/yorr=B-y

For example, RIVM & Van Dissel (2020a)(the Dutch CDC) mention Ry = 2.7 and a doubling period of
5-6 days. If the SIA model applies:

eqs = {r@ = 2.7, r@ = beta / gamma, r == beta - gamma} /. {r - Log[2] / 5.5}

{ro =27,10= ,0.126027 = beta - gamma}

gamma

sol = Solve[eqs, {ro, beta, gamma}] // Quiet
{{r0 » 2.7, beta » 0.20016, gamma - 0.0741334}}

1/gamma /. sol[[1]]
13.4892

(@d2)B/y = (1+r/a)1+r/y)
(PM.ad 2) Log[B/y] =Logl(1+r/a)(1+r/ V)]
(PM.ad 2) Log[B] - Log[y]l = B-y=Log[l+r/a]+Log[l+r/yl=r/a+r]y
(PM.ad2)r=(B-y)/(1/a+1/y)

(PM. ad 2) The latter expression reduces for @ » oo to r = y (8- y) which shows that the latter is
a worse estimate than using the original non-approximated expression (1 +r/ a@)(1+r/y) > (1 +r/
V). It seems advisable to use (2) rather than the linearisation.
For the RIVM figures, assuming the SEYCD model:
eqs = {r@ = 2.7, r@ == beta / gamma, r@ = (1 +r /alpha) (1+ r/gamma)} /.

{r - Log[2] /5.5, alpha - 1}
beta 0.126027
12607 )

gamma gamma

{ro =2.7,r0= ,r0=1.12603 (

sol = Solve[eqs, {re, beta, gamma}] // Quiet
{{r0 » 2.7, beta » 0.243432, gamma — 0.09016}}

1/gamma /. sol[[1]]
11.0914

PM 3. The growth of the infected = infectious in SIA can be found in r=dLog[/]=1‘/I=i{=BSp - y, see
Section 5.7. It will be useful to identify the dynamic reproductive factor Ro[t] = B[t] / y[t] and the
effective reproductive factor R[t] = Ry[t] Sp[t], where the latter corrects for the influence of the
declining share of susceptibles. In SIA thus r=(Ro Sp - 1) / 6 for 6 =1/y, which gives an effective
version of the above. Here Sp would be a dimensionless number, as units of susceptibles per units
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of the base population.

PM 4. It is useful here to refer to the same result as in Chapter 10. The PDF of the random variable
that is the sum of two exponentially distributed variables is (and observe the symmetry):

SumTwoExp [a, ¥, t]
a y(ea(‘t) - eV('t))

y-a

When we substitute this pdf in the Moment Generating Function as indicated by Wallinga & Lipsitch
(2006), then (while remembering that this only holds for part of the process in SEYA(CD), namely the
exponential phases):

RO == 1/ Integrate[ Exp[-r t] SumTwoExp[¥, a, t], {t, @, Infinity},

Assumptions -» {{r, ¥, a} € Reals, y +r > 0, a+r > 0}]

_(a+n)(y+r)

= a—y

RO

1.4.5. Empirical distributions

Wallinga & Lipsitch (2006, 2007) mention the important case when the R[t] can be taken from the
moment generating function of an empirically observed distribution of interarrival times. Wallinga
has been affiliated with the RIVM, the Dutch counterpart of the US CDC, and has a special professor-
ship in Leiden. He is also co-editor of the “Handbook of infectious disease data analysis”. Our
chapter 2 below will copy the RIVM graph of such R[t]. See section 5.2 for terminology, with G[t] /
y[t] for the “dynamic reproduction factor”, while the “effective reproduction factor” R[t] also cor-
rects for the level of susceptibles Sp[t].

Aspects to consider are: (i) For a longer horizon, there are births and background deaths. (ii) When
there is symptomatic disease, there may be asymptomatic transmission, see Chapter 10, and this
may have complications for estimation and source and contact tracing. (iii) When one path system-
atically has short intervals and another path has systematically longer intervals, then the joint
distribution is not stable, and one might better distinguish two compartments. A distinction may be
that the elderly have faster symptoms and clear later. (iv) The RIVM R[t] graph is estimated on
hospital admissions but over time in Holland the empirical value of this series has not been con-
stant. There was a learning-effect about the virus, with a shift away from hospitalisation, with
deaths no longer tested and not officially recorded as “SARS-CoV-2 deaths” but showing up as
“excess deaths” in the monthly statistics.

1.4.6. Gamma distribution

The extension with a gamma distribution was reported on by Wearing et al. (2005), was taken up by
Roberts & Heesterbeek (2007), further developed by Nishiura et al. (2009) and reported on usefully
by Park et al. (2019). The exponential distribution is a special case of the gamma distribution. While
the exponential distribution fits the SI(EY)A(CD) model family, this also holds for the extended
model with m latency periods and n infectious periods, which gives a Gamma[m, n] distribution. It is
not clear however whether the gamma distribution (in general) without such assumption of sub-
phases still fits the SI(EY)A(CD) model family. Nishiura et al. (2009) assume a gamma distribution



2020-08-29-Didactics-SIEYACD.nb | 27

with mean p and coefficient of variation «, and use the following formula, for which Park et al.
(2019) provide examples and plots.

Ro = (1+K* un)M1/K%)

The suggestion is that one collects the follow-up data of the infected and their infectors, with the
observed generation intervals, finds the gamma distribution that best fits those, and uses its
parameters p and k. Potentially such parameters are taken from another study on the same dis-
ease. The rate of growth r would be taken from the development of incidence, for which Nishiura et
al. (2009) state another formula.

1.4.7. Interpretation of y, also for estimation

Above discussion with the generation interval has the didactically beneficial property that the
emphasis lies on the periods and not the rates. In the conventional ODE format, the SI(EY)A(CD)
models are formulated with S and y, and subsequently the relevance of Ry = 8/ y is deduced. Below
we will also present the models with those rates. However, the above should provide some anti-
dote, that underlying assumptions already have a close connection with the periods, the rate of
growth and the reproductive factor, via the notion that r=(Rg - 1) / Pinf = LOg[Ro] / Pint-

The interpretations of “infectious period” and rate of acquittal are adequate for an application for
e.g. such natural infectious period (a “real infectious period”). The issue may become more compli-
cated when we change our assumptions and the model might not quite apply like we might
suppose.

On occasion a better format for the model may be to replace 8- Ry / Pins. While Ry gives the num-
ber of infections, those given infections are spread over said period. A change of the "infectious
period" then does not affect the given number of infections. In this manner, B has been made
“variable” in order to fit the given number of infections Ry. This perspective appears relevant when
modeling and estimating an intervention. An estimation routine may be ill-conditioned for Sand y,
and show no real differences in outcome, when their ratio Ry does not change along the ray =Ry
y. In this perspective the Piys can better be seen as a normalisation factor, that cannot be changed,
and the estimation then concerns Ry only.

Let us consider another case when both Ry and B are reduced, with a reduction of the infections,
accompanied by a reduction of the “infectious period”. The rise in the rate of acquittals y causes a
surge of the acquittals, and thus also a rise in the death toll (in the short run). Let us first give a
numerical example before discussing the issue further. The following has values relevant for SARS-
CoV-2.

(base) There is a base case §=0.6 and y =0.1. Thus Ry = 6 and the infectious period is 10 days. The
graph below depicts this base case with dot-dashed lines (and not just dashed).

(intervention) Subsequently there is an intervention on day 24 with 8=0.4and y=2. Thus Ry = 0.2
and the infectious period is 1/2 day (people are quickly put into quarantine). This is depicted with
drawn lines (the deceased dashed though).

The intervention is dramatically effective. The death toll quickly tops at its limiting value of some
7000 persons (including those of before the intervention).
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(The following graphs are copied from section 16.13.)
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However, let us focus on the lower ranges. To the left of the intervention, the plotted lines overlap.
At the intervention and some few days after it, we see a surge of clearings and deaths. With y
changing from 1/10 to 2, the model presumes that there is an acceleration in acquittals indeed.
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Now that the graphs have been shown it will be easier to discuss the issue. The point is that the
SI(EY)A(CD) model concerns compartments and not necessarily events. The allocation to the com-
partment of D does not mean immediate death. It is true that the intervention with the quarantine
reduced the “infectious period” from 10 days to 1/2 day. And it is true that the Infection Fatality
Factor (IFF) proportion of those acquitted belongs to the compartment of the (soon to be)
deceased. However, the intervention did not speed up the process of dying. Given the new “infe-
ctious period” from the intervention, the infected are properly allocated to their compartment but
we should not assume that this “infectious period” still would be a “natural or real infectious
period” (ending e.g. in death). ( A consideration might be to use D’= p/ and not change , so that



2020-08-29-Didactics-SIEYACD.nb | 29

the change in the “infectious period” is borne by C’= A I. However, this implies changing the IFF.
The intervention cannot change this. A given proportion of the infected belongs to the compart-
ment of the deceased.) Thus, entry into the compartment of the deceased does not yet indicate the
day of actual death. The estimation on the observed death toll requires that we take into account
that the model speeds up the allocation to this compartment, so that we need a longer period from
entry into the compartment to actual death.

The conclusion is unavoidable that the SI(EY)A(CD) model has a parameter y that must be treated
with some care. The reading of 1/y as the “infectious period” would be unproblematic for the
natural process. When this interpretation is changed, in the context of an intervention, then 1/y is
rather regarded as a normalising constant and the interpretation as “infectious period” should not
be taken too literally with connotations from the other context.

PM. Also stated below: Yan & Chowell (2019:167) nicely show how the rescaling of timeinto 1=y t
changes the SEYCD model into one that is dominated by only two parameters: 3/ yand a/ y. Thus
we basically still need three parameters, the latter two, and the scaling of time. Their deduction
however helps us to focus on Ry and these ratios, and noton B/ a.

That said, the notebook and package have the conventional formulation with 8and y and only
consider this substitution 8- Ry / Pinf as a possibility for estimation.

1.5. Benefit of better didactics on SI(EY)A(CD) epidemic models.
Understanding herd resistance (“immunity”)

1.5.1. General understanding and communication

The 2020 pandemic (again) proves the relevance of the SI(EY)A(CD) models for the common under-
standing of infectious epidemics and their impact on the economy. The Goh (2020) “epidemic
calculator” allowed perhaps millions of people a better understanding, and clarified for them the
notion of “flattening the curve” to remain within the capacity of the health system. Pueyo (2020)
provided clarity for many too. There is common use of the model in the literature (see the refer-
ences). The model appears to be of key importance for a world at mercy of the pandemic, not only
for education, but also for communication between research communities and for the media and
general public. It stands to reason, but is not guaranteed, that better didactics would be beneficial
for such understanding and communication.

The SI(EY)A(CD) model remains too simple as a foundation for practical policy making (when we
have better models, see e.g. Diekmann et al. (1990) and Grant (2020)). However, the model remains
relevant for general understanding, and such general understanding very much concerns issues of
strategy too.

1.5.2. Interpreting official reports

RIVM - the Dutch equivalent of the US CDC - provides the national reservoir of experience in infec-
tious diseases and must have employed more complex models than SI(EY)A(CD) for its substantia-
tion to the Dutch government that there was a deadly pandemic. The international reports, the
WHO PHEIC of January 30, the WHO March 11 actual declaration of a pandemic, and the growing
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alarm in Dutch hospitals themselves were factors too of course. The point remains that, against this
backdrop, the SI(EY)A(CD) family of models can still be regarded as a bedrock for our understanding
of epidemics.

RIVM has had a policy of not-mentioning the death-toll at stake but focusing on flattening the curve
with the ICU capacity as a target. The RIVM & Van Dissel (2020a-f) reports to Parliament have a
speculation about “avoided ICU admissions” . However, “avoided deaths” are rather implied in the
published parameters. RIVM has reported values of Ry to Dutch Parliament starting with 2.7, down
to 2.3 and up to 2.5 again. With Ry = 2.5 and their IFF =1.38%, the death toll for a population of 17.4
million would have been, had there been no intervention:

Explain[SICD[Limit, BetaSIA[] - 2.5GammaSIA[], PhiSICD[] - ©0.0138], SICD]
{S-0.107354, 10, C— 0.880327, D - 0.0123185, N - 0.987681, A - 0.892646}

17.4 1076 = "D" /. TheFormer

214342.

The RIVM policy of not mentioning an implied death toll seems rather a consequence of the attitude
of avoiding speculation and “sticking to the facts”. However, it is actually better to mention these
implications, because death toll estimates make for a more transparant discussion about the
“value of a statistical life”. There may be a difference between the world of Public Health (including
economics) and the world of Medicine (without economics), with RIVM too much influenced by the
latter.

1.5.3. Remarkable statistical fits

This notebook took Ry = 4 from the literature, and ¢ = 1.5 was found by using international age-
specific factors for the Dutch population composition. The explanatory power of the SI(EY)A(CD)
model remains baffling. The following plot has used SEYCD and shows the fit of the model to the
official number of deceased in Holland till May 20 (week 21), to a total of 5748 deaths. This still
excludes the untested non-hospitalised "excess deaths" of these months, so that the actual death
tollin this period is likely over 9000, see CBS (2020). Jointly, CBS and PBL arrive at excess deaths
including SARS-CoV-2 in week 11 to 21 of 10,164, see Husby et al. (2020). For all clarity: this estima-
tion is only for didactic purposes. This uses only 15 data-points on the cumulative death toll, and
includes a heuristic linear-proportional back-tracing of the recorded day of death to an estimated
end of the “infectious period”. (Graph copied from below.)
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This “didactic estimate” also allows to locate the Dutch onset to between Valentine’s Day (February
14) and Dutch Carnival (February 23). There are also reasonable estimates of the basic reproductive
factor Ry of the period before and after the intervention of the partial lockdown announced on
March 12 and the closing of the schools on March 15. The estimate indicates that there would have
been some 250,000 deaths if we disregard (i) an endogenous response, (ii) the intervention by the
government. It is testimony of the quality of the model that such an estimate can be regarded as
reasonable. The difference with the similarly implied outcome of the RIVM parameters is not overly
large. It are the properties of exponential processes, the SI(EY)A(CD) modeling itself, and such
statistical fitting that makes this inference about the avoided death toll so reasonable. The Dutch
economy suffers a lot, but the alternative, this death toll, would have been stark - while it remains
an open question how the economy would have reacted if these deaths had actually occurred.
National disasters were the flood of 1953 with 1836 deaths and the 2014 MH17 plane with 298
deaths, and we are now considering disaster sizes of 130 floods or 800 planes.

Above graph and “didactic estimation” on the official death count figures awkwardly exclude the
"excess deaths" while the parameter ¢ = IFF = 1.5% in the estimation includes them. It would seem
that the estimate on the distribution of deaths is not affected by the proportional parameter. A
reduction to ¢ = 1% within the estimation would basically mean a lower RMSE. The model is flexible
and can be adapted. The following graph clarifies that above estimate has used such flexibility. This
graph shows the Root Mean Squared Error (RMSE) as a function of both the Ry before the interven-
tion (Re-pre) and the possibility that the onset of infections happened some days earlier than

Carnival, February 23 2020. (Graph copied from below.)
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This notebook chose Rg = 4 with reference to the literature, before doing this estimation on Dutch
data. The value of 4 agrees with 9-10 days earlier than Carnival: Valentine’s Day. With a higher Rq
then there is less need for an earlier onset to explain the cumulative death toll at the end of May. We
can maintain the onset at Carnival, if Re-pre would be 5.7, and then have the same RMSE level as in
other cases - which RMSE is so uniform low because all fits are so well (or so worse since none
reaches 0). In all these cases we maintained y =0.1. The range of 4 - 5.7 seems rather large. How-
ever, it so happens for the SI(EY)A(CD) model family that this range is not unreasonable.

1.5.4. Limit values

The following gives the contours of the proportion of the acquitted A = (1 - susceptible - infected), as
a function of Ry. There is a close relation between Ry and the limit value of those affected in society.
Remember that the death toll is a fixed proportion of the acquitted as well. Based upon the age
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composition of Dutch society, the IFF = 1.5%. For our assumption of Ry = 4, the top of infections
would have been reached after 58 days. The level of 50% of the population would have been
reached after 62 days. The limit value of some 98% would never have been reached because itis a
limit value. However, 95% of this limit value would have been reached after 89 days, say three
months. The point to observe is that the values of the limit shares are rather flat in the range of 4 <
Ro < 6. This gives some leeway for above “didactic estimation” outcome. (Graph copied from
below.)
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1.5.5. Vaccination

Let us assume that vaccination results into immediate and lasting immunity and that the suscepti-
bles have been vaccinated with degree v, so that visin the range [0, 1]. The first infectious unit (the
seed) has an offspring of Ry units, via direct infection of its contacts. With perfect mixing of units,
this means that v Ry would not be infected and (1 - v) Ry would still be infected. The infection will
remain constant when (1 - v) Ry = 1; it will grow then (1-v) Ry > 1; and it will reduce when (1-v) Ry <
1. The latter can be rewritten into a condition for the degree of vaccination to warrant that the
infection will be reduced: v>1-1/R,. Normally there is a small number of infectious units (seed) at
the start. If vaccination is done during a raging epidemic then we must take into account that there
is a large number of infectious units present that will continue the infection.

The level of acquitted Ap=1-1/ Ry is sometimes called “herd immunity”. Jaap Goudsmit (2020):
“The idea is that you do not have to vaccinate everyone to still protect all against the consequences
of an infection.” (translated) However, there is a distinction between vaccination before an infec-
tion and vaccination during a raging epidemic: in the latter case there can be huge numbers of
infected people so that the epidemic can proceed (called “the overshoot”) before it subsides.
Because of reasons like this, the better term is “herd resistance” than “herd immunity”. The real
meaning of “herd immunity” is that the herd does not become extinct, even when most members
would succumb. Goudsmit (2020) is correct about the protection for all for a vaccination before an
epidemic, but this is not the full and only meaning of the term.

It depends upon circumstances whether we can really compare v with Ap, see the discussion in the
next subsection. At this point we can already plot the distinction between the final outcome in the
limit and the vaccination requirement v>1-1/ Ry, sometimes also referred to as "herd immunity".
When a raging infection reaches level Ap=1-1/ Ry then the infection will continue till Ap[oo] is
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reached, and then there is little protection by this level of so-called "herd immunity". For vaccina-
tion it is important to have it done before an outbreak, to prevent it.

ApByROPlot [ "HerdImmunity"]

Ay called Herd Immunity
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1.5.6. Understanding herd resistance (so-called “herd immunity”)

RIVM informed the Dutch Prime Minister Mark Rutte about the notion of “herd immunity”, which
information the PM used in his television speech of March 16 2020. Rutte (2020) did not mention a
specific number but RIVM circulated that herd immunity would be around 60% of the population,
see the interview by journalist Tweebeeke and RIVM department head Van Dissel (2020). There are
at least four possibilities how to arrive at such notion with such value, see Section 6.12. The former
section has already clarified that we must distinguish between the start of an epidemic and a raging
epidemic, and between the limit outcome and the level of her resistance (so-called “herd
immunity”).

(a) Potentially, 40% of society (7 million) are vulnerables who will remain in permanent quarantine,
so that 60% (10.4 million) would be the less vulnerables who might be in mutual contact with a
death toll of 10.4 10° * 0.06% = 6240 persons of younger age. This would work, see below, but it is
remarkable that RIVM does not discuss the issue in these terms.

(b) When Ry = 1.5, then the limit value can be 60% (see above graph). It is less likely that RIVM used
this notion, when they explicitly reported Ry in the range of 2.3 to 2.7, and when the notion of herd
immunity was indicated for the period after the lockdown. But conceivably RIVM might have the
argument that Ry = 1.5 might work for the new rules on social distancing, and then accept the limit
value for the raging infection. RIVM suggested that the vulnerables would be protected from infec-
tion, potentially by quarantine but also that 60% herd immunity would protect them too. RIVM then
seems to imply that also the vulnerables would be exposed (i.e. under the conditions of herd immu-
nity) while the very idea is to protect them (rather with quarantine). If protection by means of
quarantine fails then the implied death toll is 60% * 1.5% = 0.9% of the population, or 156,600
persons. Perhaps this issue clarifies to RIVM that it is useful to also mention the death toll, even
while it is “speculative”.

(c) Within the epidemiological literature there might be authors who are subject to confused reason-
ing with a formulax=1-1/ R, for some (unstated) x, like potentially the level of vaccination v
before the onset of an infection. When RIVM has Ry = 2.5 and applies this formula then this gives 1 -
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1/2.5=60% indeed. There is more than one way how this formula 1 - 1 / Ry may arise though.
Nevertheless, when also the vulnerables are exposed then the death toll would be said 156,000
persons.

In general, the effective reproduction R=Sp Ry =(1-Ip-Ap) Ry <1,iffIp+Ap>1-1/Ry. With Ip>0
then infections continue, even while they are slowed down. The effect can be large in a raging
epidemic with /p >> 0. The literature calls this “overshoot”, which doesn’t provide the protection
that RIVM refers to. With overshoot the death toll would be higher than 156,000.

(c1) If the formula for vaccination v>1- 1/ Ry is used and the substitution v—» Ap is done (as a
"natural form of vaccination"), then the proper substitution actually has /jp+Ap>1-1/ Ry, and one
cannot overlook that the epidemic is already raging.

(c2) If Ry > 1 then the infections have a top when the susceptibles are at Sp = 1/R,. Perhaps this
invites attention for 1 - Sp =1 - 1/R, again. At this top Ip >> 0 and not a steady state or limit value.
After the top the infections decline, but the infections continue nevertheless. When Ry = 2.5, then
the limit value Ap[eo] = 90% (see above graph). When the Acquitted are at 60%, the infection may be
reducing, but is not over yet, and still continues with 30% * 1.5% = 0.45% of the population or 78000
deaths.

Explain[SIA[Ip, Top, RO], SIA] (* the real top of Ip *)

1 RO - log(R0O) - 1 log(RO
{S—)—,I—) 8(R0) ,A> g( )}
RO RO RO

Explain[SICD[Limit, BetaSIA[] - 2.5GammaSIA[]], SICD]
(» the limit values for RO = 2.5 x)

{S—-0.107354, 1 - 0, C—> 0.879256, D - 0.0133897, N - 0.98661, A - 0.892646}

In above plot, the difference between the curves (for A[ec] and Ay;) times the population times the
Infection Fatality Factor (IFF) is the overshoot in deaths, that is not accounted for by the claim that
Apy =1-1/ Ry would give “protection” (“herd immunity”).

(d) The formulaAp=1-1/ R, can also be found with a model with a steady state. The SI(EY)A(CD)
family of models does not have a steady state but an “asymptotical steady state”. Perhaps the
model used by RIVM has a steady state. This was not explained however.

(abcd) In sum, the possibility cannot be excluded that Dutch RIVM was itself the cause for confusion
here. RIVM was explicitly reticent in discussing the implied death counts for such policy scenario’s.
It would have been better, and for the future it will be better, when the death toll is explicitly men-
tioned so that it becomes clear what scenario is discussed. For journalists, it might be that it
requires knowledge of mathematical modeling to know when those models are not needed when
IFF values can applied directly.

PM. The three (inadequate) scenario’s as proposed by RIVM are at the Dutch government archive
https://archief09.archiefweb.eu/archives/archiefweb/20200605115253/https.//www.rivm.nl/coronavir
us-covid-19/aanpak-bestrijding or in English at https.//web.archive.org/web/20200527143138/http-
s://www.rivm.nl/en/novel-coronavirus-covid-19/dutch-response-to-coronavirus.

(Current strategy https.//www.rivm.nl/en/novel-coronavirus-covid-19/dutch-response-to-coronavirus

)
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1.5.7. Relevance of better didactics

A presumption of better didactics is that it would be beneficial for the general discussion, at least
within the wider community of researchers and policy makers, when such notions, as just dis-
cussed, would be well-understood.

PM. In a paper that got through peer-review, loannidis (2020) (my italics): “Focusing on protecting
susceptible individuals may be preferable to maintaining countrywide lockdowns longterm.” Likely
he means “protecting vulnerable individuals”. With the terminology of epidemiological models,
protection of all susceptibles requires a national lockdown.

1.6. A nasty virus, asking for eradication. A challenge anyway

1.6.1. Aworld at risk but also badly managed

John Snow (1813-1858) is considered one of the founders of modern epidemiology, when he deliber-
ately searched for and identified a Soho water pump in the London cholera epidemic of 1854. We
are more than 150 years later. It is not for nought that the world has set up the WHO and created
the notion of an official warning of a public health emergency of international concern (PHEIC).
Recent more general warnings were e.g. from HIV / AIDS 1981-present, SARS 2003, MERS 2012-
present, the Mexican “swine flu” 2009, Ebola 2013-2016 and 2018-2020 and still risky, and Zika
2015-2016. Microsoft founder Bill Gates is credited for a 2015 TED talk warning for “the next out-
break”. Piot (2018) is more recent and essentially more qualified. The UK government provided for
a study how to respond to pandemics, which study was duly used by Singapore for the current
SARS-CoV-2 outbreak. However, it was not used by the UK itself. The USA response team was
dismantled from the US White House a few years ago. Something has gone badly wrong in the last
decade. The world in the last few years shows a huge pandemic mismanagement, likely caused by
fundamental misunderstandings, while the issue was already clearly spelled out in the literature
decades ago.

Observations are: (1) The health community has a hierarchical setup and mindset while the eco-
nomic community is more liberally minded. When top health officials do not strongly criticise policy
makers - because they have to work with them on a daily basis - then the health community appar-
ently also subdues criticism. But economics is not perfect either. (2) What are severely lacking in the
democratic setup of each nation are both an Economic Supreme Court and a National Assembly of
Science and Learning, see Colignatus (2020a).

1.6.2. Prevent future pandemics

Future pandemics are better prevented. The BBC Horizon (2020) broadcast can be much recom-
mended for its overview of the issue and essential information, including the discussion of the WHO
2018 warning on pandemics and the identification of risk "hotspots". At roots, the lessons already
learnt on epidemics ages ago are rediscovered for the world-scale without world-governance, and
with scientists already warning for decades. Mankind is advised to make some fundamental
changes, towards much lower world population and environmentally sustainability, including less
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contact with wildlife and their pathogens, but also in the information and decision making struc-
ture in society, see Colignatus (2020ab).

There is a perspective that SARS-CoV-2 might only mean a reduction of life-expectancy of 1%, see
Richardson & Spiegelhalter (2020). For Dutch readers there is Jaspers (2020). From this perspective,
there is only a limited effect, and there might be no need for more involved changes. However, the
other view is that we got only lucky now. And perhaps we are not so lucky actually, since the virus
appears to be a nasty one.

1.6.3. A nasty virus, asking for eradication

SARS-CoV-2 is a nasty virus that attacks many parts of the body, see the column by Collins (2020),
the director of the US National Institutes of Health (NIH), and the interview with Longley by BBC
Horizon (2020) (May 26). For Dutch readers there is De Visser (2020). A possibility is also that the
body is cleared of infection but that the immune system is out of control and starts to attack the
own body.

Draulans & Piot (2020), is an interview with Piot, who suffered the virus, and who says:

"Many people think COVID-19 kills 1% of patients, and the rest get away with some flu-like symp-
toms. But the story gets more complicated. Many people will be left with chronic kidney and heart
problems. Even their neural system is disrupted. There will be hundreds of thousands of people
worldwide, possibly more, who will need treatments such as renal dialysis for the rest of their lives.
The more we learn about the coronavirus, the more questions arise. We are learning while we are
sailing. That's why | get so annoyed by the many commentators on the sidelines who, without
much insight, criticize the scientists and policymakers trying hard to get the epidemic under con-
trol. That's very unfair."

Viruses mutate fast, and are apt in exchanging parts of their RNA, and we would not want that this
"multi-system attack property" is spread amongst viruses. Perhaps it is still feasible to choose for
eradication. The example of smallpox, eradicated, and polio, though still with problems, is encourag:
ing, see WHO GPEI & Heymann (2020). This notebook will not arrive at a choice, and only mention
the options: either eradication or find a way to live with the virus till there is a vaccine. There is an
overlap in measures: a discussion about “herd immunity” might also fit a scenario of eradication.

Piot also states: “Let’s be clear: Without a coronavirus vaccine, we will never be able to live nor-
mally again. The only real exit strategy from this crisis is a vaccine that can be rolled out worldwide.
That means producing billions of doses of it, which, in itself, is a huge challenge in terms of manufac-
turing logistics. And despite the efforts, it is still not even certain that developing a COVID-19 vac-
cineis possible.”

1.6.4. Under normal conditions the virus can no longer be contained

If we want to eradicate SARS-CoV-2 then special conditions must apply. Under normal conditions it
can no longer be contained in the world. The reasons for the latter are standard from an introduc-
tory course in infectious disease - see e.g. BCM (2020).

- getting a vaccine takes time (perhaps 1.5 years) ... and then give it to 7.5 billion people on the
planet
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- health care is under strain, will perform less well, thus there will be breaches and ever newer
infections

- the virus already shows mutations and is likely to continue to do so: every new mutation would
require a swift reaction for new containment - but the health care system already is under strain
- special for SARS-CoV-2: the pandemic cannot be suppressed because of the asymptomatic
infectious.

Kissler et al. (2020) at Harvard mention already two strains and suggest that intermediate periods
of national lockdowns might be needed (“lock-on-off”). The logic is impeccable, and worthy of
more than a century of research in epidemiology. The logic however leads to the absurd conclusion
that we must destroy our economy in order to save lives, while the destruction of the economy also
costs lives - not included in their study. Epidemiologists have lived too long in a world that
accepted models without consequences for the economy.

Less developed nations lack the medical systems of the developed world, will be open to the virus,
and will form breeding grounds for new waves and mutations. Developed nations might think that
they might insulate themselves by containment and suppression, but it is dubious that they can
insulate themselves forever. We can expect waves of new infections indeed, like with the flu, but
then 10 times more infectious / deadlier than the flu, with the risk of shorter intervals because of
faster mutations. The Northern hemisphere now benefits from the Summer, but in Autumn the
reduced health because of the common cold and flu will combine with SARS-CoV-2, causing
increased joint mortality. The Summer of 2020 should rather not be wasted.

There are more than 7.5 billion people on the planet. Not all will comply with quarantine or get the
eventual vaccine in time. Viruses mutate. This virus derives from the common cold strain and
people may lose immunity after a period. The economic price of national lockdowns is high and it
seems that the virus is “not terrible or deadly enough” for people to bear that price, causing much
indecision and delay perhaps till it is too late again.

1.6.5. Return to some normalcy, or consider what urgently requires
improvement

With the pandemic still continuing, the medical world faces the challenge to restore care to the
level of before the pandemic. Gupta (2020) reports that some 40% of normal care has fallen away
because of the focus on SARS-CoV-2 and the fear amongst patients of getting infected in the hospi-
tal. De Rek & Goudsmit (2020) is an interview with virologist Jaap Goudsmit (involved in finding HIV)
who comments that the emergency brake of the national lockdown contained the problem but that
normal care ought to be restored, and: (i) there is a lack of data, (ii) reliance on models means also
a reliance upon assumptions, (iii) there is too little attention for scenario’s (the three scenario’s
presented by RIVM are not enough). See https://jaapgoudsmit-over-corona.nl/

The economy faces the similar challenge, see Baldwin (2020ab), Baldwin & Weder di Mauro (2020),
Berger et al. (2020) and Acemoglu et al. (2020).

A core question is: if some return to normalcy would be possible today, in May through September
2020, then why wasn’t it considered in January ? Was it really necessary for Western Europe to first
have this wave and national lockdowns from February to May, before its CDCs, governments and
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citizens would accept the idea that “normalcy” would require some adaptation ? If CDCs have only
an advisory role, what happened at the government Departments of Health ? Indeed, it is reported
that Taiwan, Hong Kong, Singapore and South Korea learned their lessons by the SARS-CoV-1
epidemic in 2003. Would this mean that countries can only learn from disasters happening on their
own territory ? And if this would be the sad truth indeed, then what have countries learned from the
present episode ? (It is said, however, that Singapore used the pandemic scenario developed in
London, that London itself did not use. Thus Singapore can learn, and what is so special about
Singapore ?)

RIVM, the Dutch counterpart of the US CDC, issued a health warning in January. RIVM (2020a)
advised the Ministry to give alert status A to SARS-CoV-2, which e.g. allows mandatory quarantine.
This status was assigned. (https://www.rivm.nl/meldingsplicht-infectieziekten/welke-infectieziek-
ten-zijn-meldingsplichtig) However, when a general practitioner doctor (GP) reports a case, the
case is only a “suspected case”, and there is no legal obligation for microbiological testing, and
somehow this then isn’t done. Thus, Dutch statistics, with the official death toll of 5748 at the end
of May 2020, are based upon hospital admissions. RIVM’s modelers estimated the dynamic reproduc-
tive number R[t] as getting below 1 by March 16, but based upon such hospital admissions where
such testing is done. At the end of May, CBS Statistics Netherlands reported a total of 9000 “excess
death”, i.e. above the normal level expected from earlier years. Thus some 3000 cases (likely mostly
reported) were left untested. Why doesn’t RIVM make sure that all suspected cases are tested and
included in the official statistics ? If making sure that statistics are collected is not in their job descrip-
tion, then in whose job descriptioniis it ?

Originally there was source and contact tracing by GGD but this was later repealed when the num-
ber of cases rose, instead of hiring more people to do the job. In May, the GGD director stated that
they would be capable to take up source and contact tracing again. The media and eventually
Parliament found it problematic that he mentioned some 2-3 hours per case, and that he intended
to use of a letter of warning. Germany uses some 16 hours per case. A letter of warning might be
used for a sexually transmitted infection while SARS-CoV-2 requires direct telephone calls.

If Holland had clammed down the infections from January like Taiwan did, and e.g. forbidden
Carnival, and quarantined the provinces of Brabant and Limburg where they had the Carnival
festivities anyway, then the economy would not have needed to lock down, and 9000 deaths by the
end of May could have been prevented. Comparison with Malaysia Airlines MH17 with 298 deaths in
2014 might be seen as somewhat dramatic, but we are speaking about thirty of such disasters,
caused by home-grown failure of the protective system.

So, if RIVM is only advisory, what prevented the Dutch Ministry of Health from seeing the notion of a
pandemic in proper perspective, even while there had been ample warnings about pandemics
before, and while they are the professionals on public health ? If we can understand what is blocking
insights at government Departments of Health the world over, then perhaps we can find out what is
blocking the insight on preventing pandemics in the first place. Yes, indeed “the world” is a big

vague place outside of your own territory, but are you sure that you can really continue to neglect it
?
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1.6.6. While there is no vaccine: options for an exit strategy

In all cases, there remains the challenge for the upcoming period till there would be a vaccine.

As an economist, | find it remarkable that the Dutch Prime Minister Mark Rutte (2020) (March 16)
spoke about "herd immunity", first as one of the aims of the Dutch partial lockdown but later
corrected to only a consequence and by-product of the real policy aim of flattening the curve. A
crucial question is: if the government allows the virus to spread in a more natural way amongst the
less-vulnerables, as a by-product, then why not use the virus as its own vaccine ? Apparently there
is only the problem of responsibility - so to speak "the (legal) blame" - of who causes an infection,
especially when it goes wrong: either some "natural cause", or the person self or a vaccinator. This
issue of responsibility can better be discussed openly with an evaluation of the options, risks and
costs involved. Also with an eye on future pandemics (that we rather ought to prevent though).
Obviously, herd immunity is an objective in any vaccination programme, and vaccines differ from
the dangerous pathogens: so the properly phrased question is whether this virus for this target
subgroup of the less-vulnerables is like such vaccine and thus not the dangerous pathogen as it is
for the vulnerables. One cannot avoid the impression that the Dutch government thought so, as it
allowed the virus to spread (though asking for self-quarantine).

Another element is: a vaccine test on humans also requires deliberate infection. McKie (2020)
reports in May about the Van Bunnik et al. (2020) paper: “UK scientists want to infect volunteers
with Covid-19 in race to find vaccine. Trials could be speeded up by using risky strategy of deliber-
ately introducing the virus”. Critical researcher Riley at Edinburgh University: “Challenge studies
are done for many diseases but only when strict criteria are followed. Firstly, the virus should be
really well studied and its clinical behaviour understood in detail. It should also be incapable of
causing severe illness in healthy individuals, or there should be a highly effective drug to clear the
infection. None of these criteria are met for Covid-19, and | would be very concerned to hear chal-
lenge studies were being planned.” The latter reasoning is within the well-defined world of medical
testing and its protocols. It neglects the phenomenon that the lifting of lockdown will cause the
virus to spread again anyhow, and that the economy collapses if we do not lift the lockdown.

There are four main scenario’s on the table. All scenario’s rely upon some notion of infection status.
Chapter 4 distinguishes actually 11 compartments with own risk profiles, and the compartments
are indicated by a colouring scheme. An inspiration was my suggestion of having a “passport” for
the status on sexually transmitted infections, see Colignatus (2004). At issue is not whether such
compartments might exist, since any scenario uses their existence. At issue is whether it is feasible
or even desirable to give an official role for such compartments.

(1) The current policy by the Dutch government: muddle through, wait and see, prepare ICU capac-
ity for the Autumn, apparently especially for the vulnerable compartment that has only a 50% of
survival at the ICU (see below “ad 1”).

(2) Lock-on-off. The “Harvard study”, or Kissler et al. (2020). RIVM commented on it favourably, but
also called it risky, and it need not be the policy of the Dutch government. Kissler et al. (2020) point
to the need to have (recurrent) lock-on-offs to “flatten the curve” and remain within the capacity of
the health system. They suggest that over two years some “herd immunity” can arise as a by-
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product as well. Thus, they allow infections, but shift the blame to “natural causes”. They might
also think that it is impossible to shield the vulnerables by quarantine so that there indeed would be
a high demand for the ICU. Remarkably, RIVM & Van Dissel (2020ef) in May still discuss only the
Harvard study but not the two following options that should already have been obvious in February
too.

(3) Eradication. There is the test, test, and test approach, and then quarantine anybody who tests
positive. Berger, Herkenhoff and Mongey (2020) provide a model-based proof of concept. Tabarrok
(2020) supports the cost-effectiveness. Suppression fits the observation by Draulans and Piot (2020)
that an infection may cause more damage than thought. It may be that the use of a SI(EY)A(CD)
model is required for the proof of concept, but one might also argue that the method would be
logical by itself too. The death toll could likely be calculated directly without a model run. In Hol-
land in March, RIVM stated that there was a lack of tests. However, Alex Friedrich, head of microbiol-
ogy and infection diseases of the University of Groningen medical center (UMCG), states that RIVM
made a deliberate decision, and he arranged a testing strategy for Groningen, see 1V EenVandaag
(2020) (April 17). RIVM misinformed the public about the options. At the end of May, the government
and RIVM are making tests available for the whole country. Tweebeeke & Sietsma (2020) (June 10)
report that elderly home care managers are distressed and furious that the much higher available
capacity for testing has not been used at a much earlier moment.

(4) Segment and shield. A policy is to distinguish a compartment of vulnerables - say 60+ and those
with comorbidity - and a compartment of less vulnerables - the younger others though perhaps still
with some hidden risk. Van Bunnik et al. (2020) (May 5) call this “segmenting and shielding”, see
also Sample & Mason (2020). The issue is discussed by Colignatus (2020bcd) (March 31) and with a
full model by epidemiologists De Vlas & Coffeng (2020) (April 12) at Erasmus MC, while Frijters
(2020) (March 21) has much by implication. A non-quantitative discussion is by Eichenberger et al.
(2020) (March 25), who also point to the rising frustration by the immune compartment when they
would be subjected to a string of lock-on-offs. Criticism is: (a) Sridhar & Rafiei (2020) argue that it is
practically impossible to shield the vulnerables. Government policies like in the UK and Holland
already promised such shielding but actually only achieved this by the national lockdown. Adamik
et al. (2020) alert us that families magnify the number of contacts. The proper question is: Have we
done enough to achieve the required shielding ? (b) There is the protest that deliberate infection runs
against the rules for vaccination. This is better seen in the light of the Draulans and Piot (2020)
observation that it is a nasty virus that can have chronic effects. If there were no nasty effects then
the principle on vaccination would actually be adhered to (which is also why the idea originated).

We arrive at the latter scenario without the SI(EY)A(CD) models. Thus, our praise for SI(EY)A(CD) is
guarded. We could have arrived at such compartmentalisation also in February, right after the WHO
declaration of the PHEIC. A modeler’s question obviously is whether these two sections in the
population can be putinto the model, and how would they interact ? To some extent it is remark-
able and even amazing that RIVM in its reports to Dutch parliament hasn’t much reported on these
two structural compartments, and still presents only a single R[t], as if persons from the two com-
partments could freely mingle, and as if it should not be obvious that there is quite a distinction
between the elderly and comorbids who would always have to be quarantined and the others for
who contact reduction is less relevant.
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Consider the following figures about the Dutch population, latest age-group data of 2019, using the
level of 17.4 million of 2020. For SARS-CoV-2 there are 9000 “excess deaths” including 5748 official
deaths, of which 177 below the age of 60, of which none in the ages 9-14. Let us allocate the 3252 =
9000 - 5748 unofficial deaths in proportion. The distinction of the chronically ill and multi-morbid
are by Van Oostrom et al. (2011). Multi-morbidity is defined as having at least 2 chronic afflictions.
Their age-group specific prevalences are applied to the age-groups of 2019. It is remarkable that the
younger vulnerables have such a low SARS-CoV-2 death score, but they do not tend to live in care

homes.

Category \ Age <6060 + Total
Population 2019 |12.9] 4.5 |17.4million
Chronically ill | 3.4 ]3.1 | 6.4million

Multi morbid 0.9 | 1.8 | 2.7million
SARS - CoV - 2dead ] 177 |5571]5748 persons
Idemunofficial | 100 |3152 | 3252 persons

Let us identify the vulnerables as the 60+ and the younger chronically ill (which includes the multi-
morbid), thus 4.5 + 3.4 = 7.9 million (45%). Then the less-vulnerables are 9.5 million (55%).

Let us assume that the vulnerables are put into quarantine but that 1% of quarantines will be
breached, with the group-specific IFF of 5.1% (observed for the 60+), meaning 7.9 million x 1% x
5.1% = 4029 deaths. Potentially, all these deaths have tried the ICU with a 50% chance of survival
(but still this net outcome). Regrettably there is no good indication for the IFF of the younger
vulnerables.

The less-vulnerables will have the (observed) group-specific IFF of 0.06%. Avoiding the confusion of
"herd immunity" we adopt 95% of the limit value Ap[oo]. With a Ry = 4 (chosen from the literature),
the limit value of all infections is Ap[eo] = 0.98. A value of 95% of this limit value is 93.1% and this is
reached after some three months. This means 9.5 million x 93.1% x 0.06% = 5307 deaths. All these
youngsters will likely have been to the ICU, with a 90% chance at survival (and still said net out-
come). The ICU will not be oversupplied (allowing for normal service too) if the infections take place
in cohorts of 325,000 every 1.5 weeks, for a total of some 10 months. These cohorts are spread over
hospital service areas. These assumptions give the following table, and a more detailed discussion
with an Excel spreadsheet is provided by Colignatus (2020d) (update in the next week).

Category \ Compartment Vulnerables |Less Vulnerables Total
Population 2019 7.9 9.5 17.4million
Infected : breaches vs deliberate 1% 93.1 % 8.9million
Infection Fatality Factor (IFF) 5.1-% 0.06 % Quarantine average
SARS - CoV - 2 deaths 4029 5307/ 9336 persons
Maximum deaths (100 - %) 402 900 5700 408 600 persons

At issue is not the choice between lockdown versus “let the pandemic run its course”. At issue is a
sound (and not only preached) quarantine of the vulnerable and possibly deliberate (self-) infection
of the less-vulnerable with sufficient medical backup if something goes wrong (because it remains
risky to predict who would be less-vulnerable). This does not yet include the observation by Peter
Piot on chronic effects of infection.

The scheme is not without risks, for example when people cross the quarantine barriers. This idea
thus requires close discussion. See Van Bunnik et al. (2020) for their version of “segment and shield”
and self-infection, see also McKie (2020). The idea to deliberately speed up the path to the limit
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values provides a way to cope with the economic recession, which otherwise might develop into
worse than the Depression of 1930-1941. The world has some luck that the SARS-CoV-2 pandemic
hits an identifiable compartment in society. In another situation, when potential victims cannot be
identified so easily, it would be much harder to think of a solution approach (other than test, test,
and test). The sobering idea is the observation by Peter Piot that we actually may be in such a much
harder situation, with a burden of disease that still must be diagnosed.

Above compartmentalisation could have been done in February with the information available at
that time. Why were these policy options not formulated in this manner ? The potential answer is:
RIVM might be rather a “Bureau of Infection Statistics” and not an “Infection Planning Bureau”.
Though there are “the three scenario’s”, also on the RIVM website, it still seems as if they do not
have a tradition of making such scenario’s, and if they do not wish to speculate about the number
of deaths as if such discussion would make it seem as if they are responsible for those deaths. RIVM
advises, they report and trace infections and advise on vaccinations rather than “plan” infections in
the sense of advising on organising who gets what. Vaccinations are designed to protect the vaccina-
tor from accusations of wrong-doing. By consequence, at the end of May, Holland has 9000 deaths,
but precisely in the category of the vulnerables, the very group that RIVM advised to protect. Risk
aversion behaviour caused the risk to actually happen (to others than RIVM itself). And while Hol-
land in May somewhat recovers from the first wave, above scenario with another 9336 deaths is still
in the waiting, at least if we want “segment and shield” as an exit strategy for the economic crisis.

(ad 1) We can compare with the Dutch planning on ICU beds, see NVIC & Gommers (2020) and NVIC
(2020) (April 26), the Dutch association of intensive care doctors. Their calculation is elementary.
Their population are the 20+ aged: 13,490,325. They observe that 4% has been infected (based upon
testing of blood samples) and that this will grow to 60% in the next three years. (Possibly confused
about herd immunity, or assuming a permanent quarantine of 40%, or assuming a Ry = 1.5.) The 4%
arose over 8 weeks, so that the other 56% would take some 112 weeks, but with a lower Ry they
now assume 156 weeks or three years. Of the infected, 0.45% arrives at the ICU. (Thus they assume
that the vulnerables will not be protected, because only those have such high demand.) With 19
days per patient (indeed for the vulnerables) this translates into 700,000 bed-days. In the 8 weeks
from March to April 2020 there were 2500 patients. With another 37500 persons to go, this would
imply 15 other 8 week periods. While 1150 ICU beds is the Dutch standard, the new standard would
be 1531 beds. A peak capacity of 2400 beds seems required. NVIC admits that regular care has
suffered from the SARS-CoV-2 episode. What is remarkable in this calculation is that NVIC does not
distinguish between the two compartments. It is remarkable that they do not mention the death
toll: they plan beds, and if survival is only 50%, then this is not in their planning. They do not
strongly advise that much more is done to prevent vulnerable patients to get infected in the first
place. This kind of planning helps to obscure the issue. When there are sufficient beds available,
then beginning-of-pipe organisations with care of the vulnerables might think that they have room
to send patients downstream, while an infection may still come with quite some risk.

We will return to the issue in Chapter 2. In all cases, a discussion of these aspects requires an
underlying understanding of epidemics. This translates as a basic understanding of models of
epidemics.
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1.6.7. Information that is missing now about such scenarios

Information that is missing now, and that we would need for informed decision making, is the
following.

Common effect measures are lives extended (“lives saved”) and (quality adjusted) life-years gained.
Colignatus (2003, 2020) proposes the UnitSqrt compromise: though galy’s might no longer be
needed, it still would be useful to calculate them to clarify the compromise. The issue is compli-
cated by the Piot (2020) implication of chronic effects (an argument for eradication and an argu-
ment against deliberate infection: but there is uncertainty about the effect size), and we may
include the increased awareness of the Post Intensive Care Syndrome (PICS). Such effects do not
affect the death count but reduce the qaly’s and increase economic costs. PM. Such effect mea-
sures require the extension of the modeling with the hospital sector, not included in the present
SI(EY)A(CD) model family. Models with such enlargement are Goh (2020) and Berger et al. (2020)
and Acemoglu et al. (2020). Relevant is Bodenstein, Corsetti, Guerrieri (2020), for the distinctions in
economic sectors, and that rational policies, including lockdowns, are preferable above chaos. For
the present modeling, | give priority on didactics above including such enlargements. (This second
version includes a discussion of the life gain measures.)

While the alternative scenarios of eradication (assuming that asymptomatic infection allows this)
versus “segment and shield” (with quarantine for the vulnerables and cohort-wise deliberate
infection for the less vulnerables) seem rather well defined, it is still unclear what the current
government policy is (except that it starts to look like the Harvard lock-on - lock-off), and it needs to
be defined if we want to be able to compare outcomes.

For the base scenario, the first half of the year 2020 forms a sunk cost. We would be interested in an
evaluation but there is no use in crying over spilled milk (except for restructuring the social decision
making process). We better start from the present state of the economy and health system, and
work from there. Since government policy can be expected to be erratic, we need a stable base
scenario. The best selection is a path that avoids global warming and reduces the risks of future
pandemics. It would be rather irrational to assume a path towards global warming with new pan-
demics, and then try to micro-manage the case of 2020 on this path. Indeed, it makes sense to
assume a structural change, and then evaluate policies about SARS-CoV-2 in this context. See
Colignatus (2020fg) for the Tinbergen & Hueting approach in the economics of National Accounts
and ecological survival.

The required information is in the following table. We would gauge the costs not only in sizeable
percentages of national income and national debt, but also in terms of unemployment, private
debt and bankruptcy, and measures of inequality. We see a strange combination of both epidemio-
logical modeling that reckons in days and macro-economic modeling that concerns the medium
term (5 years) and the long term (the year 2100). A new topic is how the standard economic models
would need to be adapted to the new circumstances - while it seems that we did not yet finish the
discussion on including the financial crisis. PM. Mortality rates are w.r.t. the population (as opposed
to the IFF that is w.r.t. the infected). PM. S&S = “segment and shield”.
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Category \ Compartment Vulnerables |Less Vulnerables Total
Population 2019 7.9 9.5 17.4million
Mortality by SARS - CoV - 2 Ly UL (2020 as sunk cost)
Mortality by reduced care LR HLR (take a longer hor‘izon)
Mortality in eradication Live LLE (needs elaboration)
Mortality inS&S Liva L (quarantine vs deliberate infection)
Lifeyears Lost by SARS - CoV - 2 Ave ALc (2020 as sunk cost)
Lifeyears lost by reduced care AVR AR (2020 as sunk cost)
Lifeyears lost in eradication AVE ALE
Lifeyears lost inS&S Ava ALa
UnitSqrt measure, govt policy Uvc R UVL&R Colignatus (2003, 2020)
UnitSqgrt in eradication UVE ULE
UnitSqrtinS&S Uva ULa
Economic cost, govt policy (likely aggregate only)
Economic cost in eradication (cost definedw.r.t. base scenario)
Economic cost inS&S

1.7. Summary of a complex objective

In summary, this notebook has a complex objective:

(a) Redesign of didactics about SI(EY)A(CD) in order to reduce confusion.

(b) Document the latter within the computer algebra environment of Mathematica.

(c) Middle of the road: we may assume novice readers but do not aspire at an introductory course
for novices, and allow for refreshment for modelers.

(d) Make this modeling and documentation very accessible for others, also for variants.

(e) Use SARS-CoV-2 parameter estimates and scenarios as examples for such SI(EY)A(CD).

(f) Place the discussion within the literature, with real data and commentary about the quality of
the data.

(g) Allow for some creativity along the way, like the use of colour-coding for (quarantine) compart-
ments.

(h) Give the context of above exit strategies of eradication or using the virus as its own vaccine.

(i) Identify what information is missing, which we need when we want to make informed decisions.
(j) Regard the pandemic as only an example of a much more fundamental issue, see Colignatus
(2020a).

SI(EY)A(CD) is only a very basic model. It is adequate only for outlining the exit strategies. It allows
us to show that the current (partial) lockdown is wise as an emergency brake - for Holland - given
the otherwise deadly outbreak, with a rough indication of how many deaths would have occurred
otherwise. It allows us to observe that said exit strategies were already feasible in February, so that
the lockdown in March was an emergency brake indeed. It also allows us (in a later notebook) to
evaluate the (quality adjusted) life-years gained, since we should not focus on the mortality count
only.

1.8. Structure of this notebook

The SIA, SICD and SEYCD models are discussed sequentially in Chapters 5-9. Each opens with a first
practical chapter on model structure and how to run the software and proceeds with a second
chapter on analytical properties (supported by other routines). There is no analytical chapter on
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SICD since the model merely splits A=C +D.

The SI(EY)A(CD) model family is formulated for infections but is also applied for symptomatic
disease. Chapter 10 thus discusses the distinction between the infection generation interval and
the symptomatic serial interval. There is no suggestion of new didactics on this, and the discussion
here is only provided for completeness, taking advantage of the best presentations that | have seen
elsewhere.

Chapter 11 compares with four empirical studies, reproducing their model within the present
environment. Those studies tend to use symptomatic disease, for the obvious reasons that patients
turn up when they have symptoms and that (lab) testing is not easily arranged. Chapter 11 does
actual model runs, while some such comparisons are already mentioned in Chapter 10.

Intervention and estimation have a complexity of their own. Chapter 12 gives a short overview.
One method is the use of full separate models. Alternatively, there is also Mathematica’s
WhenEvent feature that can be used fruitfully for estimation. Chapter 13 compares base and
alternative scenarios using full SEYCD models. Chapter 14 discusses the death toll data that might
be used for estimation. Chapter 15 uses the WhenEvent structure for Ry, with a “model insert”
SEYCDT - “T” for “time of intervention”. Chapter 16 is analogous, with SEYCDB for . The last
subsection of the chapter does a “post-mortem” on y, the result of which has been shown in the
Introduction, section 1.4.6. In all estimation we regard y=1/10 as a given normalisation parameter.

This present notebook is not a developed “course”. There are no student syllabus and teacher’s
manual. This notebook serves both such purposes now. The assumption is that new students look
at all material and that experienced readers (teachers) might take bigger steps. In some sense, the
Introduction chapter is a teacher’s manual. Novice readers will understand little about this Introduc-
tion but can return to it after reading the subsequent chapters. PM. This notebook and package
target didactics, and do not target education. Still, while writing, | have been increasingly assuming
that this notebook might also be used by first year students under guidance of their teachers.
Supplementary introductory comments for this have been put in Appendices A, B and C. Appendix
Ais advisable and B & C may be useful.

Appendix A discusses the basic Success versus Failure model, with exponential decay of Success,
and with Failure collecting the fall-out. The model is basic for understanding the relationship
between factor and rate, the relation between rate and period = 1/rate, the notion of a half-life, and
for the comparison of dynamic events and the exponential probability distribution. Appendix B
refers to my background on queueing theory and related packages in The Economics Pack. Epidemio-
logical models with interarrival periods have a conceptual overlap with some queueing theory. The
distinction between exposed and infectious phases concerns sequential processing but the distinc-
tion between cleared and deceased is not parallel processing but merely proportional allocation.
Appendix C refers to other survival analysis packages in The Economics Pack. Appendix D shows
that one does not need this notebook and package. For who knows the S(E)IR(D) models and
Mathematica, it is simple and straightforward to create such model in Mathematica and run a
WhenEvent policy intervention with it. The present notebook and package only provide for some
structure, and intended didactics. The present notebook and package also confront the user with a
learning curve which might slow down needlessly. Mathematica is a wonderful computer algebra
environment but has a learning curve of its own. There is always the issue that when some routine
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doesn’t (quite) do what one wishes, or doesn’t work for other applications than shown in the
example, then it might be easier to adapt or trace errors when you have written the routine your-
self. For example, the SI(EY)A(CD) model family has extensions with Birth and background death,
that allow for annual dynamics in infection processes (and a real steady state), and likely more
relevant notions of herd immunity: this is not implemented here. A user faces the question whether
to try to adapt what has been presented here or find alternatives.

These Chapters on SI(EY)A(CD) are preceded by the following three chapters. Chapter 3 is on the
Survival™ SIA™ package, its limitations, and repeats the aims in didactics and application, but now
directed at the level of programming. Chapter 4 discusses compartments and quarantine colour
coding. There are more compartments in the real world than used in SI(EY)A(CD). For a policy
discussion on SARS-CoV-2 it is relevant to distinguish between the more vulnerables and the less
vulnerables, but these compartments are not in the models that we look at. Thinking about quaran-
tine caused me to design a colour scheme anyway. This scheme was at least useful for the current
plotting of SI(EY)A(CD) graphs.

Finally there is Chapter 2, following next, about the Dutch timeline and some issues of strategy and
policy making. The Dutch performance is actually not so well. While the WHO issued its PHEIC on
January 30, i.e. warned about the risk that a pandemic might be developing, the month of February
was basically not used in Holland. The period of the (partial) lockdown since March 18 has passed
much in waiting and without developing clarity about an exit strategy. Is the world going to try to
exterminate SARS-CoV-2 or are we going to accept and perhaps even target some (potentially
confused notion of) herd immunity or .... ? Such issues of strategy however are not in the
SI(EY)A(CD) models themselves. This notebook and package were written partly to clarify that some
points ought to be clear at the foundational level. The focus was on didactics and there has been no
effort at economic modeling.

1.9. About the author

1.9.1. Caveat

The caveat is that | am an econometrician (Groningen 1982) and teacher of mathematics (Leiden
2008) and no medical doctor or epidemiologist. If SARS-CoV-2 is a virus that humanity cannot live
with - like with smallpox that was eradicated in 1980, see WHO GPEI & Heymann (2020) - for exam-
ple because the virus has risky properties also for future mutations, then the current low preva-
lence might be a good start for eradication via surveillance and quarantine for the infected. This
might come at the economic price of national lockdown and the burden of disease because of the
deterioration of common health care. It might be unwise to target for herd immunity, even though
such might be seen as part of eradication. It depends upon the properties whether stable immunity
can be created indeed. Corona viruses of the “common cold” tend to be forgotten by the immune
system. At first | did not think that containment / suppression / eradication was really a feasible
option - Taiwan would remain an island - but the Piot (2020) warning and the Berger et al. (2020)
paper and Tabarrok (2020) commentary caused me to change views. For now, it is best to present
and discuss scenario’s, and subsequently enquire for medical views.
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1.9.2. Work related to medicine

In 2002-2004 | collaborated at Erasmus Medical Center on the modeling of the Human Papilloma
Virus (HPV) as the cause of cervical cancer. | gave a presentation on MISCAN modeling at a gynaecol-
ogy conference in Paris and had a poster at the 4th IHEA world congress at San Francisco on public
health economics. My background in modeling and also logistics was relevant because diseases
may look like a Markov logistics process with stages and transition probabilities. There can be the
same issues of test reliability, criteria of lives-saved or life-years-gained, and cost-effectiveness of
screening and treatment. Jan Barendregt (who sadly passed away in 2017 and who will be remem-
bered for DisMod Il / EpiGear) recommended Manton & Stallard (1988) and lent me his copy (that |
found excellent indeed). | also followed the discussion about the SARS epidemic of 2003. My period
at Erasmus MC was too short to allow for publishing peer reviewed papers but let me mention two
working papers of that period, and actually another one of 2019, all with software that eventually
was included in The Economics Pack. Applications of Mathematica, see Colignatus (1995, 2020e).
Currently  am in a phase towards retirement, and consider the purpose of the Pack as shifting
towards didactics and education.

(1) Colignatus (2003, 2020): On the value of life. This compares the lives-saved and life-years-gained
measures, and develops a compromise: a “unit-square-root” (UnitSqrt) measure, that regards each
life as 100% and takes the square root of the relative gain (relative to the 100% including that gain).
It compares somewhat with the “fair innings” notion in the value attached to youngsters but
doesn’t have a minimum age standard but a 100% standard. (Perhaps it has “fair outings”.) The
relation to SARS-CoV-2 is discussed by Colignatus (2020b). Discussion of the value of life meets with
the problem of the “cricket and the ant”. If there would be an ideal scoring measure for ants, then
what to do with a cricket that has been living irresponsibly and that, facing death, wants to be
treated like an ant ? The UnitSqrt method would apply for a general class of deserving persons,
consisting of generally responsible behaviour, likely with a grace period up to 25 years where
youngsters might need to learn from accidents, and the occasional insurable glitches for ages 25+. |
have no developed ideas for chronic irresponsible behaviour of the 25+ ages who burden the public
health system. However, the latter discussion should not be confused with the earlier topic of
valuing normal decent lives (e.g. the lives of doctors and health workers). While the 2003 paper was
written in the context of SARS, the 2020 SARS-CoV-2 pandemic caused me to update the paper with
a more explicit comparison with Fair Innings and Proportional Shortfall. | now included the
UnitSqrt measure in my software presentations of the life table alongside life expectancy, and the
discussion below in section 7.11 shows this enhancement of clarity.

(2) Colignatus (2004): Modifying behaviour with a passport for sexually transmitted infections (STI). At
that time there was no HPV-vaccine yet. An option was to manage human behaviour. The status of
infection can be recorded in the medical dossier: free (green) or carrier (red). While children can
gets warts, an assumption might be that children start out uninfected by the harmful HPV variants
(status green). When adults meet and want to get into a serious relationship - in the sense of
sharing their germs - then they can show each other their status of infection in their medical
dossier and discuss the implications. From this working paper, we may take the idea of recording
the status of infection, and using colour coding for clear communication. For SARS-CoV-2, it is
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better to use “red” (alarm, or hungry in Chinese restaurants) for the barrier between zones and
groups. This is discussed by Colignatus (2020c). PM. Due to the national lockdowns, we may also
see a reduction in STls, and one may wonder whether behaviour oriented policies should not have
been more prominent in the past (catching HIV before it hibernates).

(3) Colignatus (2019): Population size and climate change. Encourage women to delay having their
first child till they are of age 30+. This will give a crucial contribution in reducing climate change,
especially in the crucial decade 2020-2030. Colignatus (2020a) discusses the gap between demogra-
phers and researchers on climate change.

2. Timeline and assumptions of the Dutch case

2.1. Introduction

This Chapter assumes that the reader has knowledge about the SI(EY)A(CD) models. Readers new to
the subject are advised to reserve this chapter for later. This especially holds if you already had
problems with the Introduction.

The idea of this notebook is to improve the didactics of SI(EY)A(CD) while using the SARS-CoV-2
case for Holland as an example. The ongoing pandemic is a prime motivation to look at these
models, and we learn about both the models and the virus by looking at the practical issue. This
Chapter considers the timeline of the Dutch case. Dutch readers may benefit from the review in
NRC-Handelsblad by Derk Stokmans and Mark Lievisse Adriaanse (2020).

The timeline reported here basically stopped around June 15. The update in this 2nd version of this
notebook till the end of August concerned the modeling of intervention, vaccination and herd
resistance, see section 6.12, and the use of the life gain measures and life table method, see section
7.11 and Appendix E. In June | advised that the Summer of 2020 should not be lost, and now at the
end of August it seems that it has been lost. A new development (though not unexpected for a virus
like the common cold) is that there now are cases for who immunity has not been retained.

2.2. Properties of SARS-CoV-2 and some support for the Dutch policy
statement of 2020-03-16

SARS-CoV-2 can be deadly for (i) younger persons with comorbidity and (ii) the elderly (60+) (often
with comorbidity). This group can be called “the vulnerable”.

For younger and healthier persons, SARS-CoV-2 may compare to the common cold - though this
issue is not clear-cut, see section 1.6.3 that refers to Draulans & Piot (2020) with the warning about
chronic effects. With respect to short term fatality, this group can still be called “the less vulnera-
ble”. There is always a risk that such person is misclassified and actually appears to be vulnerable.
In an address to the nation of March 16, Dutch prime-minister Mark Rutte (2020) formulated the
policy:

(1) Protect the vulnerable

(2) Remain within the capacity of the health system, and in particular the intensive care units (ICU)
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(3) Allow the less vulnerable to build up herd immunity.

At first it was presented as if herd immunity was a policy objective. In discussion (also) with Dutch
parliament Rutte clarified that the 3rd aspect was only a consequence of the first two aspects.

Ever more measures were imposed, short of a total lockdown of Holland that would require permits
for leaving one’s home. Eventually, reports were focusing on the hope that the basic reproduction
factor was getting below 1. However, in sum, containment / suppression hasn’t been an longer
term policy objective (yet).

In the press conference on April 21 2020, the policy was (re-) formulated:

(4) Wait and see, collect data and policy options, because we are still much in the dark

(5) Develop instruments for better surveillance, like an “app”, for a potential long term policy
objective of containment and suppression

(6) Restart the health system on normal care, which had deteriorated by the focus on the pandemic
(7) Release a few restrictions, like allowing young children to go to school and participate in sports.

Official Dutch policy is much guided by the lack of good data (see below), but it also seems that the
policy options are not fully developed yet. The ship sails between the cliffs of a deadly outbreak and
economic collapse (with additional collapse of the health system). This situation is not different at
the beginning of June.

The following discussion basically supports points (1) - (3) above, and allows for the notion of
deliberately using the virus as its own vaccine, namely for the less vulnerable group, while still
remaining within the confines of the health system (ICU) and protecting the vulnerable. The issue is
wide open however, given the nasty properties of the virus that are asking for eradication.

2.3. Relating to the RIVM data and parameters (1)

RIVM is the Dutch counterpart to the US CDC or EU ECDC. The RIVM modeling is much more com-
plex than SI(EY)A(CD) and it is dubious to try to give translations for the relatively simple
SI(EY)A(CD) model. For example, the SIA effective reproductive factor is R[t] = Ry Sp(t], and RIVM
also publishes an effective reproduction factor Rriym[tcal] indexed on the day of the calendar: which
puts us at a loss whether we can take t = 0 for the first day of this calendar series, with Ry = R[0] for
our simple case, especially when the Rriym[tcall in the graph starts below 2 while RIVM has stated
that Ry would be 2.7, then 2.3 and then 2.5. The views and estimates of RIVM are also evolving with
the Dutch data and interventions over the period, so there is no “the” view. When this notebook
and package were written, basically starting March, the parameters mentioned in some RIVM
documents caused too many questions, and perhaps | simply did not locate the relevant docu-
ments. Thus, for the present didactic exposition, | selected Ry =4, =0.4, y=1/10 and a =1 based
upon the international literature, in which Dutch authors were actually involved too. Since the
notebook and package are oriented at didactics, the difference with (recent) views with RIVM does
not matter much, though it remains relevant for the suggestion of “taking the example of Holland”.
The following discussion first presents the choices for this notebook and package starting in March.
Section 2.9 below compares with the RIVM view of May. The following table already reviews the
differences.
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RIVM (January - May)

This notebook

Objective R[t] for intervention Didactics
Onset in Holland February 1@ (footnote) February 23 with Seed 100
Ro 2.7then2.3then2.5 4
Generation interval |"Generation time" first 6 then3 -5 1/ + 1/y = 11days
Doubling period 5.5 2.3 days
Impliedf3 0.2 0.4
(Implied) v 0.09016 (usinga = 1) 0.1
© (IFF) 0.0138 0.015
Incubation 6 6 days
Incubation yes no
longer than
generation time
Infectious period implied11.1 = 1/0.09 10 days
Asymptomatic 1 -3 days (related to the above ?) 5 = 6 -1days
infectiousness 1/aa=6-3=3days?a=1/3?

Period from infection
toHospital admission

14 days

Footnote: This first date seems a result of later back-tracing. It was not widely published at the time
(did not stop Carnival).

RIVM presents the following graphs as input and result from their model on R[t]. Their approach
differs from our present simple models. The inference that R[t] dropped below 1 on March 16 can
only hold for the official death counts; additional CBS data show a spike of some 3000 additional
“excess deaths” in April. Many patients, supported by their families and GPs, decided to no longer
report to the hospital, since they were afraid of the prospect of dying alone and unconsciously in an
ICU bed. It is fully unclear what this means for the dynamics of the process and the estimate. PM.

See section 5.2 on the terminology of the effective R[t].
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PM. Documentation of the RIVM modeling: https://www.rivm.nl/en/novel-coronavirus-covid-19/cal-
culations/calculation-models-are-public-and-accessible

2.4. Basic parameters Ry, a, 8 and y for unmitigated spreading before the
lockdown

2.4.1. Choice of latency a

Anderson et al. (2020), Supplement 3, suggest a value of 1 day for the latency of the Exposed. There
are not really competing alternatives. Thus a=1/ (1 Day) = 1 too.

2.4.2. Choice of Ry

Flaxman et al. (2020), in a study on 11 European nations, find a Ry = 3.87 for SARS-CoV-2.

Let us take 4. We write R[0] = Ry = 4. We need to know the time-dependent reproduction factor R[¢]
too. Flaxman et al. (2020:25) allow that a national lockdown takes 4 days to take full effect, and
when it happens then the effect is uncertainly around RO = 1. For the smaller and closer knit country
of Holland we might take 3 days for full effect.

2.4.3. Choice of y
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For this notebook we want to have a value of the infectious period 1/y such that the natural process
of clearing has been observed without confounding and intervention, so that we can subsequently
insert the assumption that this clearing period would also be the (natural) infectious period.

Kretzschmar et al. (2020) (May 15) take an infectious period of 1/y = 10 days, though with variable
infectiousness, which doesn’t quite fit the assumptions of a constant rate in SI(EY)A(CD). But a
constant rate can be seen as a special case of a variable rate.

Li et al. (2020) (January 29 & 31) gave one of the first estimates. They have 10 confirmed cases with
a mean incubation period of 5.2 days. Based upon 6 pairs of cases, they find a serial interval with a
mean of 7.5 days with a sd of 3.4 days and a 95% confidence interval of 5.3 to 19 days. They present
an estimate of Ry and a doubling period.

For SIA, we have the following equations for the growth rate r=6- y:

eqs = {r@ = 2.2, r@ = beta / gamma, beta - gamma = Log[2] / 7.4}

a
{ro =22,10= , beta — gamma = 0.0936685}

gamma

sol = Solve[eqs, {ro, beta, gamma}] // Quiet
{{r0 » 2.2, beta - 0.171726, gamma - 0.0780571}}

1/gamma /. sol[[1]]
12.8111

For SEYCD we have the following equations for the growth rate, for us with a = 1:
eqs = {r@ = 2.2, r@ = beta / gamma,
growth = Log[2] / 7.4, r@ = (1 +growth) (1+ growth/gamma) }

growth . 1)}

{ro =22,10=
gamma

a
, growth = 0.0936685, r0 = (growth + 1)(
gamma

sol = Solve[eqs, {ro@, beta, gamma, growth}] // Quiet
{{r0 > 2.2, beta » 0.203712, gamma - 0.0925964, growth - 0.0936685}}

1/gamma /. sol[[1]]

10.7996

Joseph Wu et al. (2020) use cases “exported from Wuhan internationally”. They present an estimate
of Ry and a doubling period.

For SIA:

eqs = {r@ = 2.68, ro = beta / gamma, beta - gamma == Log[2] / 6.4}

eta

{ro =268, 10= , beta - gamma = 0.108304}

gamma

sol = Solve[eqs, {ro, beta, gamma}] // Quiet
{{r0 > 2.68, beta —» 0.172771, gamma - 0.0644668}}

1/gamma /. sol[[1]]
15.5119
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For SEYCD with a=1:
eqs = {r@ = 2.2, r@ = beta / gamma,
growth = Log[2] / 6.4, r@ = (1 +growth) (1+ growth /gamma) }

rowth
8 + 1)}
gamma

{ro =22,10=

a
, growth = 0.108304, r0 = (growth + 1)(
gamma

sol = Solve[eqs, {ro, beta, gamma, growth}] // Quiet
{{r0 -» 2.2, beta » 0.241894, gamma — 0.109952, growth —» 0.108304}}

1/gamma /. sol[[1]]
9.09488

Rocklov et al. (2020) about the Diamond Princess state: “The cruise ship conditions clearly amplified
an already highly transmissible disease.” This will indeed complicate the estimate on Sand Ry, but
need not affect the infectious period when there is no quarantine yet. However, they do not esti-
mate but choose 1/y =10 days, simply stating “In the homogeneous model, the infectious period, i, of
COVID-19 was set to be 10 days based on previous findings”, where they refer to Li et al. (2020), where
we see 1/y =12.8 (SIA). They also refer to Joseph Wu et al. (2020) for their modeling (with a higher
1/y for SIA). On the Diamond Princess, apparently an index case got on board around January 21-25,
and by February 20 619 persons of 3700 passengers and crew (17%) tested positive. The outbreak
of the infection was noted on February 3 with 10 cases, with subsequent measures on February 4.
The authors write take 1/y =10 fort <16 and 1/y = 4 for t 2 16, counting from (and including) Jan-
uary 21.

DayCount [ {2020, 01, 21}, {2020, 02, 04}]
14

Rocklov et al. (2020) also take an incubation period as the parameter for their “exposed” category,
suggesting that their “SEIR” model does not concern infections but symptomatic disease. Their a=1
/ (5 days) = 0.2. For infections, we took a=1.

We can agree that 1/y = 10 is a conservative assumption w.r.t. the (longer SIA) estimates by Li et al.
(2020) and Joseph Wu et al. (2020), in the sense of a faster indication of the risk. This gives us the y
that we are looking for.

PM 1. The distinction between infection and symptom will be discussed in Chapter 10. Let us first
develop the models with a focus on infection only, so that we are in a better position to understand
the complication of symptoms (especially for parameter estimation).

PM 2. SIA, SICD and SI(EY)CD assume that the mean clearing period is also the mean infectious
period. Therefor the naming and value-assignment of 1 / y causes some difficulty. A clearing period
is biologically given and cannot be easily changed. It is a property of the person rather than the
process of infection, that can involve (self-) quarantine. A choice of a mean clearing period of 10
days seems acceptable for a younger population, if the virus would only circulate there. The period
would be longer for elderly persons who do not cure as fast, but they would get sick and soon be
less in contact with others. Overall, the actual clearing is not relevant for us, since we do not look
(yet) at the further process towards (self-) isolation or hospitals. For the present modeling exercise,
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it suffices that the period of infectiousness has stopped after the mean value of 10 days.

PM 3. On May 15 2020, the European CDC reports for the general public: “The infectious period may
begin one to two days before symptoms appear, but people are likely most infectious during the
symptomatic period, even if symptoms are mild and very non-specific. The infectious period is now
estimated to last for 7-12 days in moderate cases and up to two weeks on average in severe cases.”
https://www.ecdc.europa.eu/en/covid-19/questions-answers. However, they do not provide a
reference. It may well be that their “infectious period” doesn’t quite apply to the kind of modeling
that we intend. Potentially they refer to the 99% confidence value required to keep people in
quarantine, while the SI(EY)A(CD) model requires a mean value.

2.4.4. Consequence for B

With Ry =4 and y = 1/10 we find that B[0] = 8= 0.4, with a doubling period of Log[2] / (B- y) =2.3
days. See section 5.4 for the meaning of B. In principle Ry is a dimensionless factor, 1/y has the
dimension of duration, and with Ry = B/ y then 8 has the dimension of 1/duration. The interpreta-
tion of Bas the number of infectious contacts per (infectious) period requires that Ry has the dimen-
sion of a number. This is immaterial for the point that contacts might be influenced by behavioural
or non-pharmaceutical interventions like quarantine. In any case we get 8= G[t]. On March 12 2020,
the Dutch government decided to a (partial) national lockdown, and closed the schools on March
15, so that 8 has changed since then. Presently we continue with 8= 0.4, and look at a change when
discussing intervention and estimation.

PM. Anderson et al. (2020) look at the original situation in China, and report a doubling time in the
early phase of 4-5 days, or say r= 8- y = Log[2] / 5= 0.14. They suggest a Ry = 2.5 and herd immunity
of some 60%, which for a y = 0.1 fits a 8= 0.25. The value of Flaxman et al. of Ry for Europe seems
more relevant however. Liu et al. (2020) give comparisons, and there is quite some variety depend-
ing upon circumstances. It is not clear to what extent Chinese citizens already practiced (self-)
quarantine. PM. Observe that a has no role here, except for delay.

NB 1. There is a difference between the internationally applied “full lockdown” (people may no
longer leave their home, except for one person who gets the necessary supplies, and the personal
distance is 2 meters) and the Dutch “partial lockdown” (in which people might on occasion go for a
stroll but keep a distance of 1.5 meters).

NB 2. The Adamik et al. (2020) study of the MOCOS groups is important. They warn that the number
of contacts should rather be based upon households, since household members infect each other.
They do a micro-simulation rather than this SI(EY)A(CD) model. PM. They also nicely phrase the
dichotomy between “infect nobody” and “infect towards herd immunity” though they do not
mention the issue of overshoot, see our discussion of “herd resistance”: “Mitigation of a novel
infectious disease with the aim to reach herd immunity is a classical textbook concept in epidemiol-
ogy and has been successfully applied in the past, foremost in the case of novel influenza strains
(...). Theideais simple: in the absence of a vaccination for a novel infectious disease one tries to
flatten the incidence curve to such an extent that the daily number of cases that require medical
assistance is kept below the capacity of the health care system. The long term goals are to obtain a
sufficiently large fraction of the population that has become infected and to reach herd immunity
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which would lead to a less severe or even subcritical second outbreak wave. On the other hand, an
extinction strategy would aim at introducing sufficient contact reductions to keep the epidemic
subcritical and not lifting these restrictions until the disease becomes extinct.”

2.4.5. General understanding about the choice of Ry

The following two plots give an indication how Ry = 4 is located within the ranges. The acquitted
compartment tells how large the impact of the infection will be eventually, with the limit in A[co].
Thus we concentrate on this compartment. (The distinction within the acquitted between the
cleared and deceased is a later issue (SICD).)

The first plot below gives the contour lines of the acquitted A as a function of the basic reproduction
factor. See a discussion in Section 6.10 below. Observe that the 50% level (62 days) does not have
to be in the legend, and that there cannot be a number of days for the limit value because this
would be infinite. (Potentially, though, we might say that the infection is exterminated when the
value of the infected units drops below 1 or 0.5 (rounding error), but this does not work well for our
interpolations.)

Observe: (i) After Ry = 4, higher values have remarkably less impact on the outcome. Below in
estimation, we will find a possible value of Ry = 5.7 but this hardly affects the death toll anymore. (ii)
The values of Ry =4 and Ry = 0.5 (below 1) can be compared by inferring that the number of con-
tacts must be 4 /0.5 = 8 times reduced. This may be difficult, when people live in households, infect
each other within households, and as a household have many more contacts than a single unit, see
Adamik et al. (2020) of the MOCOS group.

(PM. The plot uses a the current variables. In this case, first a SI(EY)CD model with a latency of 1 day
was run, which means a delay of about 14 days w.r.t. the SIA(CD) without latency. The model has /=
E +Y=Exposed + Infectious, so that the variable / of infected can directly be compared to the /in
SIA(CD) (with £=0).)

ApByROPlot[] (* locked from an earlier run with SEYCD and a = 1;
see also section 6.10%)

A=1-S-I
1.0
0.8}
06l — Aattopl
i — Alx]
o4t  fi i 62days 95% A[oo]

0.2}

L L L L L R
6 g

The line for the top is downward sloping after a certain point: a higher value of Ry will cause a
higher infection level for / at the top, and thus there will be a lower value for A at that time.

The second plot gives the contour lines for the number of days as a function of the basic reproduc-
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tion factor. One may check the number of days at Ry = 4. PM. The contour of 95% Ap[e] can be
crossed because it is not the limit value itself.

TimeByRO[ListLinePlot, SEYCDTimeAsFunctionOfRO[List] ]
(» former run, read from file at startup =x)

Days
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It is surprising that the dynamics of the process can be caught in a single parameter Ry. The word of
caution of course is that the parameter actually changes, and cannot simply be assumed to be
constant.

2.5. Choice of Infection Fatality Factor (¢ = IFF)

Verity et al. (2020) find an Infection Fatality Factor (IFF) for China of 0.66%. Ferguson et al. (2020)
adapt to the UK population profile and find 0.9%. Applying their age-group specific fatality factors
(that they call a “ratio”, their Table 1) to the Dutch age composition causes a Dutch infection fatality
factor of 1.27%. Holland has on average an older society.

However, we will look at this in section 2.7 in more detail. Asummary is: The Dutch data are quite
unreliable, with underreporting, lack of testing, testing focused in hospital workers, changes in
practices (whom to send to a hospital), and after March 15-18 the national intervention. However,
the age-group of 70-79 seems most reliable, since they tend to still participate in society but do not
work at hospitals. For this age-group, Ferguson et al. have an infection fatality factor of 5.1% (that
they call a “ratio”). When we apply this to the Dutch deaths in this age-group (certified for SARS-
CoV-2 with the current reporting practices) then the prevalence of infections for them (on some n
days before April 2) was 0.535%. When we assume this to be the national infection prevalence, then
we get an age profile of infections and deaths that is not unreasonable, see Colignatus (2020cd),
with also adoption of the Ferguson IFF for the 80+. In that case, the Dutch IFF is 1.45% instead of
1.27%. This is considerably higher than the UK 0.9%, but Holland is apparently not only an older but
also a more densely populated country after all. This translates into a SI(EY)CD model input parame-
ter, rounded to ¢ =0.015 = PhiSICD[] = IFF, or the Infection Fatality Rate IFR =0.015 * y = 0.0015.

2.6. A timeline with scores from a SEYCD model without endogenous
reaction or intervention
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With these parameters for the standard SEYCD model, an unhindered pandemic in Holland would

have given the following path, i.e. neglecting a change in parameters due to the intervention on
March 12-15 2020, with an assumed delay of 3 days, thus March 18.

The death toll could have been at 250,000, with 95% reached by May 22, and the remaining 5%
spreading over the remainder of the year. Only 2% of the population would not have been infected

at one stage.

Table legend: S = Susceptibles (uninfected), | = Infected (exposed or infectious), D = Deceased, C =

Cleared, N = N[0] - D remaining population, A= C + D (the acquitted). Percentages (p) are w.r.t. the

population at the time of onset, i.e. N[0].

SIABasicTable[SEYCDBasicRun, 100, { Sp, Ip,

(* former run, read from file %)

Dp, Cp, Np, Ap}]

Date Day Sp Ip Dp Cp Np Ap
Onset 2020-02-23 0 100.0 0.0 0.0 0.0 100 0.0
1st Death 2020-03-06 12 100.0 0.0 0.0 0.0 100.0 0.0
1st Intervention 2020-03-18 24 99.9 0.1 0.0 0.0 100.0 0.0
Top if free 2020-04-21 58 25.0 40.3 0.5 34.1 99.5 34.7
Ap =50% 2020-04-25 62 135 36.5 0.7 49.2 99.2 50.0
95% Ap[eo] 2020-05-22 89 2.4 4.5 1.4 91.7 98.6 93.1
Limit if free o oo 2.0 0.0 15 96.5 98.5 98.0
The levels (q) of the relevant compartments are as follows.
SIABasicTable [SEYCDBasicRun, 1,
{Sq, Iq, Cq, Dq}, TableSpacing - {1, 2}] // PopulationForm
Date Day Sq Iq Cq Dq
Onset | 2020-02-23 0 17.4x10° 100 0 0
1st Death | 2020-03-06 12 17.4x10° 1290 391 6
1st Intervention 2020-03-18 24 17.4x10° 19438 6356 97
Top if free | 2020-04-21 58 4.4x10° 7.x108 5.9x10°6 90455
Ap =50% 2020-04-25 62 2.4x10° 6.3x10° 8.6x10° 130500
95% Ap[eo] | 2020-05-22 89 419710 778037 16.x10° 243034
Limit if free ) 1) 344995 0 16.8x10° 255825

2.7. Dutch data are unreliable, but the 70-79 age group might be stable

While epidemiologists and these modelers emphasize the uncertainty in the data, they are also the

group whom we expect to provide us with estimates anyhow, whatever those uncertainties. Thus,

paradoxically, we may be so focused on finally receiving some reliable information that we might

perhaps not listen carefully enough to them about their warnings about these uncertainties. Some

statisticians, who are (now) at some distance of involved modeling, can be more candid, see

Richardson & Spiegelhalter (2020) (Royal Statistical Society) and Gill (2020) (emeritus Leiden) for
example. It remains useful to identify some uncertainties.

The Dutch data are unreliable because:

(1) Tests were hardly available, and symptomatic cases were not trusted because of a partly concur-

rent flu episode. There was some surveillance in the beginning, but this was stopped because of

the lack of tests, and the authorities decided to monitor hospital admissions and the death counts,

assuming the connection between the infections, symptoms and deaths, but relying on people

reporting to hospitals, and apparently underestimating those who did not report to hospitals (the
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“excess deaths”, which later appeared to be some 3000 of a total of 9000 deaths).

(2) Available tests were restricted to health system workers and hospital patients. The ratio "hosp-
italised / (confirmed infections)" thus contains confirmed infections amongst (younger) health
workers.

(3) Overall (also normal) deaths, also from non-hospitalised cases, also including normal deaths,
were not tested. The mixture of “normal” and “excess” components changed, as normal hospital
services stagnated, and the national lockdown changed the economic process.

(4) In the beginning, GP doctors were unfamiliar with the disease, and were more inclined to send
patients to the hospital, when they considered that the symptoms were more severe than a flu.
Over time, when it became clear that elderly patients would suffer longer periods of isolation at the
ICU, and with a lower survival probability, patients themselves, their families and GPs became more
reluctant on hospitalisation. Holland has a somewhat stronger notion on the quality of life and the
acceptance of death when life reaches its end. However, the change in attitude within this episode
still makes for mixed data. When hospitals and ICUs reported lower arrivals, then this does not
mean by itself that the infections were waning. The infected vulnerables have become more
reluctant.

(5) There have been reports about outbreaks in home-care for the elderly. Personal protection
equipment (PPE) and tests for care workers there were hardly available. Those patients might no
longer be hospitalised because of (4).

(6) New tests are arriving and thus more infections will be reported merely because of this availabil-
ity. There is also a planned uptake on surveillance now that this wave seems to be ending (May 20).

(7) Obviously, there is the distinction between pre-lockdown, the lockdown phase, and the now
partial release. Modeling these phases becomes an even more complex issue.

My impression is that the data on the 70-79 age group are the most reliable. They still are relatively
healthy and partake in society, they do not work in the health care system, and they are still in the
phase that hospitalisation is regarded as a better option than accepting the end. Using their data as
the “canary in the mine” indeed gives a profile also for the other age groups that looks reasonable
and comparable with international data. See Colignatus (2020cd) for the argument and calculation.

The calculation has been as follows: The infection fatality factor (IFF) stated by the Imperial College
group, Ferguson et al. (2020) (their Table 1), of 0.051 for the 70-79 age group was also applied to this
Dutch age group, and the number of observed deaths thus implied a number of infected. Given the
population size of this age-group, it followed that 0.0136807 had been infected. This infection rate
was applied to the younger age groups, giving the numbers of infected for them. The recorded
deaths and these numbers of infected gave an estimate for the IFF per age group. The outcome
showed a pattern like the IFF published by Ferguson et al. (2020).

The total number of infected thus generated and the recorded total number of deaths combine into
an average IFF of 1.45%. This factor will be biased, since it is based upon the group that reported to
the hospital. Assuming that all Dutch people would be infected and then applying the age-specific
IFFs generates a maximum number of deaths in Holland of 183,422, which translates as the popula-
tion average of 1.061%. The crucial difference is by the 80+ group, that the excel sheet takes conser-
vatively at 9.3% but which might also be double, with a large impact on numbers. Given the uncer-
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tainties involved, including the possibility of overburdening the health care system when the
epidemic is out of control, this (didactic) paper opts for an IFF of 1.5%, or a maximum number of
261,000 deaths in a population of 17.4 million in 2020.

Let us reproduce some aspects. Colignatus (2020c) states about Ferguson et al. (2020) (their Table
1) and these Dutch data of April 2:

"The Imperial College estimates give problems for the Dutch data. With 121 deaths in the Dutch
60-69 age group, the London age-specific IFF gives 5500 infected in the population while their
"symptomatic cases per hospitalised" gives 7663 symptomatic cases in the population, which is too
much since we are assuming that the flu season is over. Holland has 29 hospitalised children of age
0-9, and the London symptoms / hospital ratio for this group gives 29000 symptomatic children in
the Dutch population, which would create panic if true. Looking the issue over, | cannot find a
match. It must be remarked that the Dutch "reported number of cases" is rather useless, because of
the lack of tests, and their preferred application to medical personnel rather than patients. Also the
death count is understated since non-hospitalised deaths are not tested. See Table 1 below."

“However, the Dutch 70-79 age group may be used as canary in the mine. The number 2951 of
“reported cases” will be accurate for this group, since they do not belong to medical personnel.
These patients will have some symptoms (like “feeling really sick”) and not be tested for nought.
The reported number of 2951 means only 0.19% of the whole age group. The Imperial College IFF
for this group gives an estimate that 8137 would be infected, or a share of 0.005346 or 0.5%. We
arrive at the problem that we are not in the steady state. Either these elderly “infected but non-
patients-yet” have a stronger immune system or they are due to arrive at the hospital at a later
moment. With lack of other information, we can still presume that this is the overall prevalence of
infection (haves and have-beens) in Holland. When we apply this prevalence to the whole popula-
tion, then we get age-group specific ratios of hospitalisation and IFF that show the same pattern as
in China and the London research group. Especially relevant is the “hospitalised per infected ratio”
(H/1). See Table 2 below. NB. This uses IFR and CFR, namely as “rates” while it actually are factors
IFF and sCFF (symptomatic case fatality factor).”

CBS 2019|RIVM 2020-04-02 Implied Impenial College "Impact’|implied by Impenal College

Holland |Reported Hospital deaths DH CFR|H/Smp ICUH IFR|Sympt Infected Sensible
Total | 17282163 14677 5778 1339 0.232 0.0912 80443 27909 No
0-9 1783504 56 29 0| 0.000 0.0000{ 0.001 005 000002| 29000 0 No
10-19 | 2008334 104 15 0| 0.000 0.0000f 0.003 005 000006 5000 0 No
20-29 | 2201788 901 70 0| 0.000 0.0000{ 0.012 005 00003] 5833 0 No
30-39 | 2108199 1170 154 1| 0.006 0.0009 0.032 005 00008 4313 1250 No
4049 | 2261107 1473 391 1| 0.003 0.0007| 0.049 0.063 0.0015| 7980 667 No
50-59 | 2508388 2415 856 24| 0028 0.0099] 0.102 0122 0.006| 8392 4000 No
60-69 | 2089913 2298 1272 121| 0095 00527| 0166 0274 0022 7663 5500 No
70-79 | 1522110 2951 1785 415 0232 0.1406| 0243 0432 0051 7346 8137 Perhaps
80+ 798820 3309 1206 777 0644 02348/ 0273 0709 0093 4418 8355 Okay
<60 12871320 6119 1515 26 0.017 0.0042 61018 5917
60+ 4410843 8558 4263  1313| 0.308 0.1534 19426 21992

Colignatus (2020d) performs the same analysis, now with data of April 19. The table 2 at that
moment is as follows. Given the IFF of 0.051 for the age-group of 70-79, the implied infection preva-
lence of the 70-79 group is 20824 / 1522110 = 0.0136807, and this is applied to the groups younger
than 70 years. The pattern of the age group specific IFFs is acceptable. The overall (infection
weighted) IFF of 0.0145 has been rounded for this notebook and package as 0.015. (The derivation
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of the population weighted IFF of 0.01061 is not shown here.)

CBS 2019|RIVM 2020-04-19 Implied Using Canary China/Lancet
Holland |Reported Hospital deaths DM CFR|Infected IFF HA HA
Total | 17282163 31574 9593  3600| 0.375 0.1140| 248160 0.0145068 0.0387
0-9 1783504 75 39 0| 0.000 0.0000 24400 0.0000000 0.0016 0
10-19 | 2008334 274 27 1| 0037 00036| 27475 00000364 00010/ 0.000408
20-29 | 2201788 2553 134 3| 0.022 0.0012] 30122 0.000099 0.0044 0.0104
30-39 | 2108199 2686 264 6| 0023 00022| 28842 0.0002080 0.0092| 00343

4049 | 2261107 3475 680 13| 0.019 0.0037| 30934 0.0004203 0.0220, 0.0425
50-59 | 2508338 5717 1579 83| 0.053 0.0145| 34317 0.0024187 0.0460| 0.0816

60-69 | 2089913 4388 2163 325| 0.150 0.0741] 28591 0.0113670 0.0757 0.118
70-79 | 1522110 5011 2828 1062| 0.376 0.2119] 20824 0.0510000 0.1358 0.166
80+ 798820 7395 1879  2107| 1.121 0.2849| 22656 0.0930000 0.0829 0.184
<60 12871320| 14780 2723 106/ 0.039 0.0072| 176089 00006020 0.0155
60+ 4410843] 16794 6670 3494 0.509 0.2081] 72071 0.0484800 0.0953

PM. The excel sheet is available here, and parts can be shown as follows.

fil = ToFileName[ {$TEPDirectory[], "Applications", "Economics", "Data"},
"2020-04-19-Dutch-Covid19-core.x1s"]

C:\Users\Eigenaar\AppData\Roaming\Mathematica\Applications\Economics\Data\2020-04-19-Dutch-

Covid19-core.xls

lis =

Import[fil][[1]]

rows

Take[lis, {5, 20}]; rowheaders =

rows [ [All, 17]]

{, , Total, 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+, , <60, 60+, }

/. X_?NumberQ :» If[FractionalPart[x] == @., IntegerPart[x], X];

These are the Dutch data with their implied ratios of hospitalised / infected from a reported class

also due to symptoms, death / hospitalised, and the sCFF = death / reported.

TableForm[Take[rows, All, 8], TableAlignments - {"."}, TableSpacing - {1, 1} ]

CBS 2019 RIVM 2020-04-19 Implied

Holland Reported  Hospital Deaths H/Rep D/H sCFF
Total 17282163 31574 9593 3600 0.303826 0.375274 0.1

0-9 1783504 75 39 0 0.52 0 0
10-19 2008334 274 27 1 0.0985401 0.037037 0.0l
20-29 2201788 2553 134 3 0.0524873 0.0223881 0.0l
30-39 2108199 2686 264 6 0.0982874 0.0227273 0.0l
40-49 2261107 3475 680 13 0.195683 0.0191176 0.0l
50-59 2508388 5717 1579 83 0.276194 0.0525649 0.0
60-69 2089913 4388 2163 325 0.492935 0.150254 0.0
70-79 1522110 5011 2828 1062 0.564358 0.37553 0.2
80+ 798820 7395 1879 2107 0.254091 1.12134 0.2
<60 12871320 14780 2723 106 0.184235 0.0389277 0.0l
60+ 4410843 16794 6870 3494 0.409075 0.508588 0.2

share 60+ 0.970556

The ratios by the Imperical College, Ferguson et al. (2020) (their Table 1), can be applied to these
Dutch data, which gives implied symptomatic and infected cases. Comparison of the reported and
implied data shows that the outcomes make no sense (e.g. more symptoms than infected), except
for the 70+ age group.
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TableForm [ColumnTake[rows, { {3, 5}, {12, 14}}], TableAlignments - {"."},
TableHeadings - {rowheaders, Automatic}, TableSpacing - {1, 1} ]

1 2 3 4 5
RIVM 2020-04-19 Implied by Imperial College

Reported  Hospital Deaths Symptom Infected Sensibl:
Total 31574 9593 3600 128325. 114919. N
0-9 75 39 0 39000 0 N
10-19 274 27 1 9000 16666.7 N
20-29 2553 134 3 11166.7 10000 N
30-39 2686 264 6 8250 7500 N
40-49 3475 680 13 13877.6 8666.67 N
50-59 5717 1579 83 15480.4 13833.3 N
60-69 4388 2163 325 13030.1 14772.7 N
70-79 5011 2828 1062 11637.9 20823.5 Perhap
80+ 7395 1879 2107 6882.78  22655.9 Oka

<60 14780 2723 106 96774.6 56 666.7

60+ 16794 6870 3494 31550.8 58252.2

share 60+ 0.970556

The following assumes that 100% = 1 of the people in Holland are infected, applies the age-specific
IFFs, and finds that at most 183,422 will die from the complications, which translate to the popula-
tion IFF of 1.061%.

TableForm [ColumnTake[rows, {{2}, {16}, {19}}], TableAlignments -» {"."},
TableHeadings - {rowheaders, Automatic}, TableSpacing - {1, 1} ]

1 2 3
CBS 2019 Deaths
Holland IFF 1
Total 17282163  0.0145068 183422.
0-9| 1783504 O 0
10-19| 2008334 0.0000363962 73.0957
20-29| 2201788 0.000099595 219.287
30-39| 2108199 0.000208033 438.574
40-49 | 2261107 0.000420256 950.244
50-59 | 2508388 0.00241866 6066.94
60-69 | 2089913 0.011367 23756.1
70-79| 1522110 0.051 77627.6
80+ 798820 0.093 74290.3
<60112871320 0.000601969 7748.14
60+ | 4410843 0.04848 175674.

2.8. Timeline of the Dutch case, to determine onset and when B changed

Reference to the time line on wikipedia (a portal and no source) may be made.

The WHO confirmed on January 12 2020 that there was a novel virus in Wuhan. The European
Centre for Disease Prevention and Control (ECDC) judged the risk of introduction and spread in
Europe as low. They might have been little aware that Northern Italy has workshops with cheap
Chinese immigrant workers who produce luxury “Made in Italy” products (while Southern Italy has
unemployment). It later appeared that Lombardy had had privatisations in the health system that
caused a slow uptake of alarm. In the Dutch medical community, Bonten et al. (2020) started
blogging on January 24.

Dutch RIVM (2020a) discussed the situation on January 27, and formulated a strict "case definition":
(i) symptoms, and either from an infected area or having been in contact with a certified infected
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person, (ii) neglect others. Cases falling under this definition however had to reported with priority
A.

On January 30, WHO Director-General, Tedros Adhanom, declared the PHEIC, i.e. that there was the
risk that a pandemic was developing. (The actual declaration of the pandemic was on March 11.)
Holland was rather lacklustre in responding. While January was lost to the whole world, February
was also lost to Holland, see Hendrickx & Modderkolk (2020). China collected medical supplies from
all over the world, and the Dutch emptied their stocks and sent an airplane load to China on Febru-
ary 10, which effectively meant that those medical supplies and personal protection equipments
(PPE) were in short supply when Holland needed them later. The February 21 conference at the
Dutch royal academy of sciences KNAW (2020) had presentations that were correct on scientific
content - they indicated the general lack of knowledge about the virus - but they also showed the
failure by the RIVM agency for public health: namely, that while Aura Timen (RIVM) mentions the
PHEIC, RIVM apparently neglects the cause for alarm given by the Asian data. Later the Leiden
expert on Korea, professor Remco Breuker (2020), suggests that RIVM might be an expert on epi-
demiology but no expert on Asia. Another problem of course lies in communication. If RIVM had
advised a lockdown on February 1, the Dutch population would not have understood. It is advisable
to first have a national training on the situation, and broadcast reports about the situation in other
countries, to generate public understanding for the WHO declaration of the pandemic. Within 10
days (before the plane leaves).

The Northern part of the country benefitted from an earlier Winter holiday and people returning
from ski holidays earlier. On February 23-25 there was carnival in Southern Holland, with people
participating who had returned from ski holidays and Northern Italy. For Holland, the first infection
was confirmed for February 27, for a man having been in Italy. (RIVM states February 10 as the date
of first recorded infection, but this seems a result of later back-tracing and was not widely pub-
lished at the time.) The first official death was reported on March 6. According to the model run
shown above, that day actually had six deaths in total: according to the model five were not offi-
cially recorded as SARS-CoV-2 cases. The policy of surveillance of individual cases soon broke
down, since the available tests were urgently required within the health care system itself, to
protect health care workers.

The government then opted for herd immunity, which was supported by RIVM (Jaap van Dissel), see
Tweebeeke & Van Dissel (2020). Prime Minister Mark Rutte warned about the economy, and that
parents would not be able to go to work when their children could not go to school. Keulemans
(2020) is an interview with Jaap van Dissel (RIVM) published on March 12. Van Dissel indicates that
RIVM has only limited responsibility, namely advising about measures and not having responsibility
in managing them, and that RIVM did not protest against limited measures for the South only -
apparently allowing for a spread to other parts of the country. A quote: “If you would lock down the
country then the economy stops.” This neglects partial solutions, ranging from quarantining South-
ern Holland to the whole range mentioned by RIVM at the end of May. Van Dissel showed little
concern about the death counts in other nations and likely implied by RIVM models, and he has
tended to in general to reject such modeling projections. Later that day, March 12, the government
however extended the measures for the entire country. It was only on Sunday March 15 that cafes
and restaurants and schools were closed, after strong advice by the Dutch federation of medical
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specialists (FMS), but not so advised by RIVM.

Mark Rutte (2020) is the prime-minister's speech of March 16. He indicates three options: (1) free
reign and overburdening the health care system, with many deaths as a result, (2) total lockdown,
with a permit system for leaving one’s home, for the coming two years, effectively closing down the
economy, (3) his choice: (a) to protect the vulnerable, (b) to remain within the capacity of the health
care system, (c) to allow the less vulnerable to build up herd immunity. The third option (3abc)
became government policy. It is exactly the policy suggested in the original version of this present
notebook, but this notebook is much stricter on quarantine barriers and deliberate use of the virus
as its own vaccine. Since March, it has appeared that the virus is nastier than | thought, see Collins
(2020) and De Visser (2020) and Draulans & Piot (2020). Herd immunity may be the wrong tactic, and
eradication a better one.

Tweebeeke & Van Dissel (2020) is the interview that discusses the prime-minister's speech. It shows
RIVM's support for the government policy towards herd immunity. Remarkably, Van Dissel suggests
that children would have no role in spreading viruses, and that this would neither show from the
Asian data. His statement is in contradiction with views by epidemiologists if not everyday experi-
ence that children / schools have a key role in spreading viruses. He however states that the role of
children in spreading SARS-CoV-2 is being investigated now. Later in May, there is the report by
German researchers, Jones et al. (2020) (including Christian Drosten).

In the discussion in the Dutch House of Parliament March 18, the Dutch health minister Bruno
Bruins collapsed during his speech, and he resigned a few days later, reporting a burn-out. The
prime-minister Mark Rutte restated his televised policy, though actually made a switch, by stating
that herd immunity was no policy objective but a consequence of the policy, which actual objective
was (3a) to protect the vulnerable and (3b) remain within health system capacity. Members of
Parliament criticised him for awkward communication. The switch on herd immunity has been
documented by Kustaw Bessems (2020). On March 23 mass events that require advance regulation
(like Summer festivals) were forbidden. RIVM & Van Dissel (2020a) is the powerpoint presentation
given by Jaap van Dissel on March 25 for the Dutch House of Parliament, with modeling done by
professor Jacco Wallinga (Leiden, RIVM). Van Dissel emphasizes the process towards Rp = 1, which is
required for reducing the number of cases, if only to remain within the capacity of the health
system.

Overall, the Dutch policy had a focus on remaining within the capacity boundaries of the health
system, especially for the bottleneck of ICU beds. There hasn’t yet been an actual policy choice on
containment / suppression (forcing Rg << 1) versus an alternative.

Over the course of April it appeared that the protection of the vulnerable wasn’t well maintained in
the home-care for the elderly. Personal protection equipment (PPE) supplies were directed towards
hospitals and ICUs. They were not supplied to home-care institutes and workers. This is curious,
since it is the system of care that sends patients to the ICU. There are reports about a distinction
between “medicine” and “care”, and a pecking order in social status, also in attention by policy
makers.

RIVM stated that there was a lack of tests. However, Alex Friedrich, head of microbiology and
infection diseases of the University of Groningen medical center (UMCG), states that RIVM made a
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deliberate decision, and he arranged a testing strategy for Groningen, see 1V EenVandaag (2020)
(April 17). At the end of May, RIVM is making tests available for the whole country. RIVM misin-
formed the public about the options for testing.

The number of SARS-CoV-2 confirmed deaths on April 2 was 1339 and on April 18 was 3600, and this
rise predominantly was in the 60+ age group, apparently not-well-protected, even though it was the
government-stated policy target. These are the official numbers only.

Also, there is a rise in general mortality, higher than what would be "normal” in this period like in
the past, the “excess deaths”. This rise in mortality includes persons who have not been tested on
the virus, because they were not hospitalised. RIVM has estimated that this rise is twice as high as
the officially recorded number of SARS-CoV-2 deaths. Thus the April 2-18 period may have seen a
rise of some 4000 deaths, predominantly in the 60+ age with comorbidity group.

PM. With a low prevalence, and regional heterogeneity, testing the general population is costly.
However, testing the deaths (the regular average of 12,000 per month) comes with a higher preva-
lence, and thus is relatively cheap, and can be targeted on indications by GPs.

On April 21, the prime-minister announced that the government will kick the can further down the
road, with another reprise at the end of May. However, children can go to elementary school again
at the end of current holidays, on May 11. RIVM suggests that they tested that children were
infected via adults and not via other children. (The finding is against common sense and other
epidemiological reports. One hopes that RIVM did not test only during this quarantine phase.) A
personal report is that traffic intensity rose significantly in the days after April 21, which suggests
that many people regard the April 21 press statement as an indication of a reduced need for quaran-
tine. However, one might assume that people may be aware of their personal risk, and behave
accordingly, though with greater likelihood with neglect of the risk of others.

Blok & Stronks (2020) (May 6) of an action group for containment, protest against the Dutch policy
of mitigation, that allows gradual spreading of the virus, and the path towards release of the lock-
down, with the prospect of lock-on-off cycles.

On June 3, the bloodbank Sanquin reports, based upon blood samples amongst blood donors (age
18-75), that 5-6% of the population has antigens. This outcome must be biased, and RIVM itself
combines such finding with its own Pienter project.

RIVM views and the latter research are now contested by Willem Engel (https://viruswaanzin.nl), but
in dubious fashion, see Van Erp (2020). Why doesn’t Engel publish a paper on the issue ?

PM. Above timeline gives events that are specific for the development of the infection itself, dating
from the presumed onset at the carnival of February 23, and assuming unmitigated spreading.
There are some other points in time that are relevant to mention as well. In the “didactic estima-
tion” below we will only take account of the intervention on day 24.

(a) Delay in response, from earliest indication to PHEIC to the closing of Dutch schools: this period
remains uninformative since we do not have other data about the role of schools.

{DayCount [ {2020, @1, 12}, {2020, 3, 15}], DayCount[{2020, @01, 30}, {2020, 3, 15}]}
{63, 45}

(b) Assume 100 infections for carnival February 23 and unmitigated spreading. The first official
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death was recorded on March 6. There is a break in the S[t] by the closing of schools on March 15
with an overall delay of say 3 days for societal implementation.
{DayCount [ {2020, @2, 23}, {2020, 3, 6}],

DayCount [ {2020, 02, 23}, {2020, 3, 15 + 3}]}

{12, 24}

(c) The press statement of April 21 that some people interprete as a loosening of quarantine. Elemen
tary schools start up again from May 11, though modestly, like with half-classes per day.

{DayCount[{2020, 3, 15 + 3}, {2020, @4, 21+3} ],
DayCount[ {2020, @4, 21+3}, {2020, 05, 11} ]}

{37, 17}
2.9. Relating to the RIVM data and parameters (2)

2.9.1. Introduction

RIVM calculation models are public and accessible, see: https://www.rivm.nl/en/novel-coronavirus-
covid-19/calculations/calculation-models-are-public-and-accessible

The above discussed the situation in March 2020, when we selected the parameters for this didactic
version of the SI(EY)A(CD) model. Subsequently, new data have come available, and RIVM, the
Dutch CDC, provided evidence to Dutch Parliament also on new modeling. Above, we already
compared these findings with the parameter values in this notebook and package. In this section,
we summarily discuss some reports.

There are a RIVM report from January 27 and subsequently slides from March to May with presenta-
tions at Dutch Parliament by RIVM head of the department for control of infectious diseases, profes-
sor Jaap van Dissel. We will not discuss all of these. These reports have different objectives than
merely reporting on modeling but we can trace some aspects on this. The slides must be read in the
context of listening to the spoken presentation. I still find it remarkable that the slides do not
provide clear definitions: they could be included for reference without the need to read them aloud.
Below | try to determine what some figures or graphs may mean, and mainly arrive at questions. |
wonder whether the Members of Parliament would have surplus information.

RIVM & the Outbreak Management Team (OMT) (2020) (May 6 online) gives the Dutch view on
asymptomatic transmission. Our own Chapter 10 below provides two common definitions. (i) The
“serial interval” for symptomatic disease. (ii) The “generation interval” for infections. This was also
discussed in the Introduction, subsection 1.4.

2.9.2. RIVM & the Outbreak Management Team (OMT) (2020) on source and
contact tracing

In conventional language, “contact” means any type of contact. For epidemic “source and contact
tracing” for a particular subject (“index”), the term “contact” is redefined, and there is the termino-
logical difference between “source” (subject and unknown infector) and “contact” (subject infect-
ing sinks). (Dutch weblink: https://lci.rivm.nl/COVID-19-bco.) There is also a difference between
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asymptomatic transmission (the infector is asymptomatic) and the incubation period (the infectee is
asymptomatic).

(1) Incubation is generally taken as 6 days. In order to trace the infector of the subject, i.e. “source
tracing”, contacts (in the colloquial sense though) in the six days before the onset of symptoms
must be traced - or actually till the source has been found.

(2) RIVM & OMT (2020) discuss asymptomatic transmission and the consequences for “contact
tracing” (i.e. that the subject can infect others). They arrive at the same conclusion of the European
CDC (ECDC). The asymptomatic period can be 1-3 days. For surveillance it would suffice to back-
trace contacts (recipients) to 2 days before onset of symptoms with the subject.

("Dit betekent dat voor effectieve bron- en contactopsporing (met of zonder app) contacten tot 1-3
dagen voor de eerste ziektedag moeten worden gerapporteerd en opgespoord. Het ECDC neemt
hiervoor in haar rapport over contactonderzoek twee dagen voor de eerste ziektedag (ECDC 2020).
Voor de Nederlandse praktijk sluiten wij aan bij het advies van de ECDC. ") https://lci.rivm.nl/-
covid-19/bijlage/onderbouwing-a-pre-vroegsymptomatische-transmissie

The reasoning is unclear.

(2a) If it is acknowledged that asymptomatic transmission can occur 1-3 days earlier than why stop
at2 ? RIVM & OMT only refer to the ECDC guideline and apparently do not question it ? (If itis a
matter of costs, specify those: what is the price of eradication ?)

(2b) RIVM refers to model studies, cluster studies, and cross-sectional studies. Only the first two
could in theory support a 1-3 period of asymptomatic infectiousness on content. The cross-sectional
studies indicate asymptomatic infectedness but this differs from infectiousness. RIVM & OMT (2020)
notably refer to Kimball et al. (2020). Their key finding is: “Among 23 (30%) residents with positive
test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic.
Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symp-
toms and were recategorized as presymptomatic at the time of testing.” A key conclusion is that 3/
23 =13% remains asymptomatic. Supposedly the infection clears after a while. Nevertheless, the
relevant issue is whether they were also infectious. This, however, was not looked at in this study.
Perhaps the viral load might say something about this, but this is unclear to me. However, for the
issue of contact tracing, the safest assumption is that these 13% asymptomatic infected persons
would also be infectious. Thus, if contact tracing hits upon an asymptomatic infected person, then
contacts over the full infectious period of this person must be traced, in our assumptions 10 days
(though perhaps the growth and waning of the viral load might give an indication how long this
person has been infectious). This notion is relevant precisely because we have seen that new
outbreaks can occur via asymptomatic carriers. It is unclear why RIVM has no remark on this.

2.9.3. RIVM January 27

RIVM (2020a) (January 27) mentions a possible Ry = 2.7 and a “generation time” of 6 days, defined
as “the number of days for the next cycle of infections” (it is better to call a period a period). The
reader is advised to first read Chapter 10 on the infection “generation interval” and the symptomatic
disease “serial interval”. We also discussed the “generation interval” in the Introduction, subsection
1.4. Estimates from a period with intervention generate other values for the generation interval. A
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complication is that there is the generation interval for the first infections from patient zero, as
would be measured at the individual level in empirical studies, while there is also the model that
uses a generation interval (period) at the aggregate level for the generation means: over time one
may allow changes in B[t] / y[t] so that the beginning become less relevant.

At the aggregate level, the generation interval is also the transmission period, which, in the assump-
tions of this notebook, consists of an exposed period of 1 day and an infectious period of 10 days,
thus a total of 11 days. The value stated by RIVM also fits ranges mentioned in the literature but
does not fit our choice of parameters. There is no reason to assume that the Dutch in February and
the beginning of March were inclined to self-quarantine, as much as the Chinese people were at the
time of some of their reports. Also, later an incubation of 6 days is mentioned: RIVM apparently
allows that the incubation period is longer than the generation interval. Perhaps Chapter 10 should
drop the assumption that for the aggregate the transmission interval = generation interval = incuba-
tion + infectious period = serial interval ? It may just be that we are using a SI(EY)A(CD) model while
RIVM is not. RIVM later reports a "generation time" of 3-5 days, and their website later in the year
refers to the Ganyani et al. (2020) estimate in which researchers at RIVM partook: this study is
discussed in our section 10.6. A key comment by Ganyani et al. (2020) is: "This means that our
estimates do not necessarily reflect the natural epidemiology of COVID-19, but instead reflect what
is observed in the presence of these intervention measures." Instead, for the present notebook, we
want to have the "natural epidemiology" first, before we consider an intervention. Ganyani et al.
(2020) mention that the interventions cause a larger number of observations of negative serial
intervals for individual cases, i.e. that the infectee develops symptoms before the infector does.
This is okay for individual cases. However, Ganyani et al. (2020) (table 1 and 2) also have the aggre-
gate effect that the generation interval and the serial interval have the same duration. This does not
take away the large difference between 5 (RIVM) and 11 (us), and is suggestive of a distinction
between “first infection” (starting a generation) versus “generation mean”.

2.9.4. RIVM March 25

(1) RIVM & Van Dissel (2020a), March 25, depict the possible onset on February 4 (data by GP’s) or
February 10 (confidence range chart), apparently back-tracing from information by patients. They
mention Ry = 2.7, a doubling time of 5-6 days (which in the graph is extended to 4-7 days), an
incubation period of 6 days, and a "generation time" of now 4-5 days. Though the RIVM may have
arrived at this estimate while using a different q, it remains unclear to us which, and with our a we
get this reconstruction of Sand y.
eqs = {r@ = 2.7, r@ = beta / gamma, r@ = (1 +r /alpha) (1+ r/gamma) } /.

{r - Log[2] /5.5, alpha -» 1}
beta 0.126027

_ 1)}

{ro =27,r0=
gamma gamma

, r0=1.12603 (

sol = Solve[eqs, {ro, beta, gamma}] // Quiet
{{r0 » 2.7, beta » 0.243432, gamma - 0.09016}}

1/gamma /. sol[[1]]
11.0914



68 | 2020-08-29-Didactics-SIEYACD.nb

We assume the exposed period as 1 / a=1 day. Thus, the RIVM “generation time” with value 4-5
days differs even more from the “generation interval” in our assumptions.

1/a+1 /gamma /. (a > 1) /. sol
{12.0914)

With an incubation of 6 days, we have 5 =6 - 1 days of asymptomatic infectiousness. RIVM would
have a symptomatic period of 12.1 - 6 = 6.1 days. Since RIVM did not provide definitions or discus-
sion, it is unclear where they stand.

(2) RIVM concentrates on “flattening the curve”, to remain within the capacity of the ICU, even to
the effect that they do not provide any indication of the potential number of deaths. Basically, RIVM
avoids any discussion about the effect measures of “lives saved” and (quality adjusted) “life years
gained”. Policy makers, the “Outbreak Management Team”, the medical world and RIVM have
converged on the idea that medical conditions of patients imply treatment at an ICU so that this
capacity must be respected. The government and RIVM had presented the “three scenario’s” butin
qualitative format, and there is no effort at developing more options, in also quantitative manner.

RIVM reproduces the Chinese CDC summary (Wu & McGoogan (2020) in JAMA), keeps the numbers
and changes the diagnoses: 81% “mild” becomes “little affected or without symptoms”, 14%
“severe” becomes “seriously sick”, and 5% “critical” becomes “fatal”. While the Wu & McGoogan
(2020) write “critical” and also explicitly state a case fatality of 2.3%, the RIVM interpretation is
bizarre. Potentially, though, RIVM finds the CDC estimate unreliable, with its selection of mostly
symptomatic patients reporting at hospitals. It is better to mention this.

RIVM oppose this Chinese "pyramid" with a finding at hospitals in Breda and Tilburg of 97% little
affected and 3% seriously sick, and apparently no deaths. We can wonder why this is so relevant
because in the next slide RIVM mentions 276 deceased.

Using their Ry and our IFF = 1.5% we can find the implication of the SICD model of the limit value of
deceased of the pandemic in Holland at around 240,000.

Explain[ SICD[Limit, BetaSIA[] - 2.7 gamma, GammaSIA[] - gamma], SICD]

{S > 0.0844068, | -0, C— 0.901859, D » 0.0137339, N - 0.986266, A - 0.915593}

Explain[ 17.4 <1076 % SICD[Limit, BetaSIA[] - 2.7 gamma, GammaSIA[] - gamma], SICD]

{s—1.46868x10°, | » 0., C—» 1.56924x 107, D - 238970., N » 1.7161x 107, A— 1.59313x 107}

2.9.5. RIVM April 8

(1) RIVM & Van Dissel (2020b), April 8, now mention Ry = 2.3, a doubling time of 5-7 days, an incuba-
tion period of 6 days, and a "generation time" of 3-5 days.

(2) Remarkably, the first slide still has the Breda and Tilburg message that there would be no
deaths, and a few slides later that there are 2101 deceased, and again a few slides later there is the
report of the “excess deaths”. The first slide has become somewhat like a “logo”.

(3) Again RIVM concentrates on “flattening the curve”, to remain within the capacity of the ICU, but
they do not provide any indication of the potential number of deaths.

(4) Slide 17 shows the effective R, in which the first day of symptomatic disease is traced back from
the Osiris database, apparently February 27, which allows us to infer that the GP-data are not in this
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database. The effective R got lower than 1 on March 23. Slide 18 shows the measures that were
gradually taken in the period of February 27 to March 16.

Since Ry changed from March 25 to April 8, let us reconstruct Sand .

eqs = {r@ = 2.3, r@ = beta / gamma, r@ = (1 +r /alpha) (1+ r/gamma)} /.
{r - Log[2] /6., alpha - 1}

a
{ro =23,10= L r0=1.11552 (

0.115525 1)}
—_—
gamma

gamma
sol = Solve[eqs, {ro, beta, gamma}] // Quiet
{{r0 -» 2.3, beta » 0.250239, gamma — 0.1088}}

1/gamma /. sol[[1]]
9.19121

The number of implied deceased, using IFF = 1.5%:
17.4 <1076 % SICD[Limit, BetaSIA[] - 2.3 gamma, GammaSIA[] - gamma] [[4]]
225093.

2.9.6. RIVM April 22

(1) RIVM & Van Dissel (2020c), April 22, still have the first “logo” slide, and correct with a later slide
with 3916 deaths. Osiris mentions 34 thousand patients who tested positive on SARS-CoV-2, of
which 33% are care workers, given the lack of tests and the policy that only patients and care
workers are tested.

(2) Slide 9 gives the claim that without the interventions 23354 ICU admissions more would have
been required, representing 90% of the total, while current admissions are 10%. A later RIVM figure
is that 0.35% of all national diseases arrive at the ICU. Thus, the implied limit number of infections
is Aq[eo] = Infections / Case * 23354 /.9 / 0.0035. One wishes that the slide would give full informa-
tion and not only some tidbits with much to assume. Using the RIVM Ry = 2.3 we can find the
implied symptomatic Cases Per Infection (sCPlI).

23354 /.9 /0.0035 ==
CasesPerInfection17.4 <1076 % SIA[Limit, BetaSIA[] - 2.3 GammaSIA[]][[3]]

7.41397 x 10° = 1.50062 x 107 CasesPerInfection

Keep in mind that Infection = Exposed + Asymptomatic + Symptomatic, but that we might have to
make a distinction between “merely symptomatic” and “disease that might cause hospitalisation”.
Solve [TheFormer, CasesPerInfection]

{{CasesPerInfection - 0.494061}}

(3) Slide 16 has the claim that the effective reproduction factor came below 1 on March 16, i.e. the

first Monday when schools were closed. Apparently RIVM adapted the estimate. The estimate refers
to Wallinga & Lipsitch (2006, 2007).

Contact tracing apparently allows a chart of “what age group infects what age group” (slide 20).

RIVM reports about a study done on infectious spread under and by children, but this study was
done in April after schools had closed, and RIVM accurately reports that there is “selection bias”. We
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can be very skeptical about this study. | am much amazed that RIVM presents this biased finding as
“conclusions”.

(4) Tests on blood donors: On average 3.6% of the population has antigens. This is 1% for persons
below 20 years and 4.2% for those older. We may presume that there has been correction for
sampling selection; it leads too far now to look into the referred study (F van der Klis et al, V-
Clb/RIVM). The issue returns on May 20, and then allows an estimate of the Infection Fatality Factor
(IFF).

2.9.7.RIVM May 7

RIVM & Van Dissel (2020d), May 7, still have the first “logo” slide, corrected later with 5204 deaths.

The levels at the ICU have dropped so much that RIVM concentrates on giving scientific blessing to
the government plan of phasing out lockdown measures such that a second wave ought to be
avoided.

2.9.8. RIVM May 20

(1) RIVM & Van Dissel (2020e), May 20, no longer have the first “logo” slide. The death toll is 5715,
not counting the “excess deaths”. Osiris counted 44249 patients, and thus a Hospital Fatality Factor
(HFF) of 12.9%. In the chart on slide 9, RIVM puts Holland below instead of above Spain with 12%.
Below, for lack of other data, we will take the sCFF as this HFF.

HFF == 5715 / 44249.

HFF = 0.129155

(2) Slide 9 gives the “excess deaths” as 9000, which means some 3300 cases more than the official
number 5715. There is no information yet about the composition of these excess deaths. There may
also be flu victims, deaths from reduced normal care, and there will be fewer traffic accidents
(normally 65 per month).

Research on blood samples, now a combination of blood donors and a RIVM panel called “Pienter”,
shows that 3-4% of Dutch inhabitants have antigens. RIVM mentions 650,000 that “have been”
infected, which means that they took 3.735%.

650000 / (17.4 < 10"6)

0.0373563

RIVM arrives at an Infection Fatality Factor of 1.3%, and it is somewhat remarkable that they do not
round to 1.4%.

IFF == 9000 / 650000.

IFF = 0.0138462

(3) RIVM actually provides this (incomplete) table that is focused on hospitals.

Hospital | Not All

Have been infected |44249 + ? |rest |650 000
Patient 44249 ? ?
Deceased 5715 rest | 9000

We have: IFF=D/1=D/H*H/ I, but there are different death counts, and the H/ | ratio must be
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corrected for this.
We can combine the Osiris data and the infections from the blood testing.
HospitalCasesPerInfection == 44249 / 650000.

HospitalCasesPerinfection = 0.0680754

We would like to have the symptomatic Case Fatality Factor (sCFF) too. We have IFF=D/I=D/sC*
sC/1=sCFF * sCPI with the symptomatic Case Per Infection (sCPI). Above we had an indication that
it might be 0.49 but this was dubious.

(4) However, let us suppose that the distribution of infections copies the distribution of deaths, or
that we can use the IFF to backcast the infections. Let us suppose that the symptomatic death rate
as observed for hospitals (HFF) roughly applies to the total of 9000 deaths, with sCFF = HFF, so that
we can backcast the symptomatic development. Then we can fill in two blanks.

Hospital | Not All
Have been infected 412750 ]237 250 | 650000
Little affected or no symptoms | 368501 |211815 |580316
Patient or symptomatic 44249 25435 | 69684
Cleared 38534 22150 | 60684

Deceased 5715 3285 9000

And we can now compare with the Chinese CDC “pyramid”, see Wu & McGoogan (2020). Though
they also have confirmed cases, their selection has been biased by mostly symptomatic patients,
though confirmed by microbiological testing.

Chinese CDC (IFF) JHolland (IFF)
Deceased 2.3 1.38
Critical (including deceased) 5 -
Severe 14 9.34
Mild 81 89.28

Thus we now have the decomposition IFF = sCFF * sCPI with sCFF = 12.9% (HFF = 9000 / 69684) and
sCPI=69684 / 650000 = 10.7%.

(5) The claim on the number of ICU admissions that has been prevented has now risen to 44000.
RIVM does not specify what percentage this is, and thus we search for a statistic on the current
cumulative number of ICU admissions. For May 20 this is 2847, see https://www.stichting-nice.nl/.
Thus we can do the same algorithm as above. It is actually here on May 20, slide 16, where it is
stated that the ICU form 0.35% of all diseased per day. RIVM states that 16 /100,000 new diseases
per day mean 40 hospital admissions and 10 ICU admissions per day, in the latter ratio of 1/4. Less
rounded numbers are 154 / 100,000 disease new cases, 384 hospital and 96 ICU admissions, still
with the latter 1/4. With a population of 17.4 million, the 0.00154 figure translates into 26796 cases
per day, of which then 384 = 1.4% hospital and 96 = 0.358 ICU admissions. It still are rounded
numbers. The implied figure of 1.4% “hospital case per disease” differs much from what we found
above, as 9.34% “severe” or even the 6.8% “hospital cases per infection”. Something happened to
the definition of “disease” and it is unfortunate that the slides do not give a definition. (It is even
unclear whether the ICU belong to the hospitals or are a separate category.) However, we can take
1/4 as the ratio and presume that 9.34 / 5 of the critical might be at ICU of which more than 50%
actually dies.
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{hosp, icu} = {384, 96} / (17.4 1076 * 154/ 10"5)

{0.0143305, 0.00358262}

Assuming that 0.35% was rounded, and using the RIVM Ry, we find a high figure for the disease per
infection, that doesn’t fit even the high factor of asymptomatic cases. For us, it is a mystery what
RIVM here is presenting to Dutch Parliament.

(44000 + 2847) /0.00358262 ==
DiseasePerInfection17.4 <1076 * SIA[Limit, BetaSIA[] - 2.3 GammaSIA[]][[3]]

1.30762 x 107 = 1.50062 x 107 DiseasePerlnfection

Solve[TheFormer, DiseasePerInfection]

{{DiseasePeriInfection - 0.871386}}

(8) Slide 13 has this curious diagram of the periods between the stages. Incubation has been
reduced from 6 to 5 days, and instead of “symptoms” there are “complaints” (“klachten”) (which |
would regard as a major distinction). In the recording, Van Dissel states that the seriously ill have
their own shorter path from complaints (“klachten”) to ICU (9.2. days). The total period from infec-
tion to hospital admission is 5+ 7.7 + 7 =19.7 days, suggesting a one-decimal accuracy. However,
when RIVM estimates the effective reproductive factor R[t], then they can back-trace hospital
admissions to infections 14 days earlier (as apparently recorded in the Osiris database). | would say
that 14 differs from 19.7. It may well be that various visits to the GP (“huisartsbezoek”) do not result
into a hospital admission, so that the averages in this scheme are much influenced by either the
healthier who eventually clear by themselves or those who prefer to die at home rather than uncon-
scious in an ICU bed. This scheme is more confusing than informative, though the period for back-
tracing likely will be accurate (as accurate as the database entry system).

*

o A

COVID-19
infecties

infectie 7N

‘Sdg

klachten

R¢ ‘ 7.7 dg

14 dg huisartsbezoek

terui ‘ 7 dg

ziekenhuisopname

‘ 1-2 dg

IC-opname «~—9.2dg

(9) The pyramid in above diagram refers to the original Chinese CDC summary that 81% mild, 14%
severe, and 5% critical (that RIVM calls “fatal”). RIVM has drawn a dashed line to indicate that there
are many asymptomatic infectious, i.e. “below the radar of symptoms”. In the video presentation,
Van Dissel very shortly remarks that most experts think that the pandemic cannot be suppressed
because of these asymptomatic infectious. Singapore and South Korea thought that they had the
infection under control but were confronted by recurrences caused by such carriers. Never-ending
surveillance and contact tracing are required.
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(10) RIVM then discusses Kissler et al. (2020), the Harvard study, referring to it as “Marc Lipsitch et

al, Science, 2020”, and subscribe to the findings. A method of lock-on-and-off could respect the
capacity of the health care system, and would gradually result into a build-up of herd immunity of
some 55% over two years. The fact that antigens have been found in Dutch blood samples is encour-
aging for the assumption of immunity, but it is not clear how long this will last. (Sanquin stated
independently that antibodies need not say much about immunity. Corona viruses cause the
common cold and the immunity system tends to forget them.) The method requires close monitor-
ing of developments (with said delay of 14 days between onset and hospital admission), and comes
with a risk of a “Fall peak” (this Fall and Winter) and overlap with the flu. Apparently “herd immu-
nity” still is an appreciated by-product (see our deconstruction in section 1.5.6 and Chapter 6).

(11) RIVM suggests a gradual release of lockdown. There are distinctions between individual /
group, inside / outside, local / regional. There are systems for “early warning” and “surveillance”.

2.9.9. RIVM May 25

RIVM & Van Disssel (2020f), May 25, has the “logo” slide re-instated, though no longer mentioning
Breda and Tilburg that reported no deaths, and replacing the Chinese CDC pyramid for confirmed
infections with the RIVM undefined “disease”, of 98% “no or few complaints”, 1.5% hospital admis-
sions and 0.35% of ICU (which at least informs us that these are separate categories, i.e. ICU not
counted as part of hospitals): (i) which emphasises the RIVM focus on the ICU, (ii) which neglects the
deaths, also outside of the hospital system, and which does not mention the IFF of 1.5% as a rele-
vant issue (their own estimate 1.38%). Remember that the sCFF was 12.9% so the RIVM undefined
“disease” is something else then landing in the hospital because of symptoms. However, the slide
mentions the world death toll of 350,000, so RIVM shows awareness that deaths are happening
somewhere. The Ry had been 2.7 and had been reduced to 2.3, and is now put at 2.5. What is the
meaning of this change: has RIVM indeed done a re-estimation of the situation in February, oris it
only the presenter of the slides who happened to pick one particular file on his computer out of a
large collection of versions ? Incubation had been put at 6 days, then 5, and is back at 6 again.

2.10. A partial result of this exercise

2.10.1. Aresult for us

This exercise is partly useful to determine what if we hadn’t had a lockdown. Thus, using =4 and y
=1/10, what would the death toll have looked at the end of the year ? Many people would agree
that a temporary lockdown in March 2020 has been sensible, if only to consider the options. Dutch
society saved some time to consider the options. But did we really consider those options, and,
what are the options actually ? As said, this discussion cannot be settled with a didactic exercise,
but one can discuss what information would have to be improved in order to make such discussion
fruitful.

2.10.2. A list of questions for others

The government and RIVM allowed the virus to spread, first formulated as an objective but quickly
rephrased as a by-product of the policy of flattening the curve. Allowing a virus to spread might be
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based upon medical criteria and the properties of the virus, like the common cold, but it has a
distinct legal flavour of avoiding responsibility for the spread. If the virus is innocent then why not
use it as its own vaccine ? The situation is a conundrum in terms of public health. Such questions
should have been addressed with the WHO PHEIC, but are still waiting for an answer. The health
system allowed events to evolve such that the emergency brake of a lockdown was required, so
that such questions were sidetracked, but such questions still need attention.

It is sobering that the Dutch lockdown in the middle of March was an emergency brake. Given the
statement of RIVM (2020a) of January 27, then, when the WHO declared the PHEIC on January 30,
the proper course would have been to clam down on the infection, as in Taiwan, Hong Kong,
Singapore and South Korea. This would have required intensive education of the Dutch population,
within 10 days, but the scenes from Wuhan and Italy would have helped. The plane that left Holland
on February 10 with medical supplies and personal protection equipments collected for China,
would have stayed here.

The above criticises RIVM statements about herd immunity and the role of children. There was the
collapse of conventional hospital care. It seems that RIVM was focused on the end-of-pipe ICU beds,
with prominent doctors, and with neglect of up-stream homes of the elderly, with less status, even
while RIVM stated that the policy was targeted at protecting the vulnerables. RIVM only advises, but
still.

Sridhar and Rafiei (2020) indicate that it is almost impossible to shield the vulnerables, except by a
national lockdown. | have my doubts whether we actually tried enough. However, RIVM in the early
phase called for such protection as if it were possible without a lockdown. In the later phase RIVM
provided various measures for social distancing, but rather late and even now, with RIVM support-
ing the release of lockdown measures, it seems that they trust that the vulnerables can be shielded.
We can only assume that this is evidence based, so, what is this evidence ?

There are questions about source and contact tracing. Critical questions arose in the media while
one would assume that RIVM should have spotted the problem itself earlier (even when it is GGD
that has been assigned that task).

RIVM allowed that deaths were only counted for hospitals, and that suspected cases at home were
not tested, even though RIVM knows that this distorts the information. We discussed the estimate
of the dynamic R[t] on hospital data only, with unreliable uncertainty because of the changing
attitude w.r.t. hospitals and the peak in “excess deaths” in April.

There are questions about the balance of medical needs and economic needs. The provinces of
Brabant and Limburg were not put into quarantine with the argument that a lockdown would also
lock down the economy, but the lock down of two provinces does not lock down the entire nation.
When RIVM had manoeuvred the process into the funnel of a national lockdown, then it seemed as
if discussion with economists was superfluous, but such discussion would have been needed at all
times, even in January, even now. Though it is useful to remark that this notebook looked at the
didactics of SI(EY)A(CD) modeling with the example context of SARS-CoV-2 for Holland, and this
notebook does not discuss the didactics of economic models for this context.

PM 1. The above basically concerned the RIVM department of infectious diseases. RIVM does more
than this, and RIVM also does many more things not. In 2004, minister of Economic Affairs L.J.
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Brinkhorst and public health and environment secretary P. van Geel wrote to Dutch Parliament that
RIVM had been given funds to calculate each five years the figure of environmentally Sustainable
National Income (eSNI) according to the definition by Hueting, see Brinkhorst & Van Geel (2004).
This was done till 2005. Thereafter the calculations stopped, and it is not clear why. See Colignatus
(2020f).

PM 2. The Dutch path towards lockdown is quite different from Germany and doesn’t much differ
from the path taken by the UK, see Wren-Lewis (2020) (March 30): “ Did the government follow the
science? In a way that question is irrelevant. As Ben Chu suggests, dealing with a pandemic does
not involve dealing with a science where the answers are well established and known with near
certainty. No scientist would want to stop a government, on seeing the first cases of COVID-19 in the
UK in mid-February, distributing PPE equipment to medics, ordering new ventilators and ramping
up testing capacity. That this didn’t happen in the UK until mid-March is, as the Lancet suggests, a
national scandal.”

3. The package

3.1. Caveat: This is didactics. The package only hints at the real world

The above already indicated:

(a) We want to focus on SARS-CoV-2 but we will not get far. SIA, SICD and SI(EY)CD have few parame-
ters, and we should not expect that these few parameters are sufficient to describe the world. It is
educational that such a simple model already conveys major conceptual aspects about a pan-
demic, but an increased confidence in one’s understanding of pandemics should not cause
overconfidence.

For example, these basic models have only 1 class of susceptibles. In our own discussion there are
rather two classes (SI(EY)CD2): vulnerables and less-vulnerables. Modeling with more stages and
more age-groups likely requires SI(EY)CD20.

In other words: If and when elements from this notebook and package are used for real world
applications then those must be documented for themselves.

(b) The notebook and package present both the conventional S(E)IR(D) setup and a didactic
redesign to a new format SI(EY)A(CD). It you want to, you can use this package in the traditional
S(E)IR(D) format. In all cases, there is no change in conceptual content or material findings. There is
only the suggestion that the (underlying) notions are expressed more clearly and more accessible,
extended now with user-friendly programming for an environment of computable writing. The
principle is: Do not program to others what you do not want to be programmed to you.

There are obvious drawbacks to this effort at restating what is already known. An experienced
reader might wonder why this redesign is needed: there is a learning curve for this notebook and
package, with nothing gained on new understanding. A novice reader might benefit from a better
understanding of models and programming as provided here, but then still faces the literature with
its conventions. This notebook and package thus are a rather dubious endeavour. The proofisin
the eating of the pudding. My expectation is that many readers will find that the reading has been
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worthwhile. (For teachers: When one doesn't adopt the redesign itself then this discussion at least
highlights issues in didactics.)

3.2. Design / Redesign of didactics

The following repeats the overview of the choices from didactics, as stated in the Introduction, but
relates those choices now to some programming particulars, like the choice of options and the use
of variable names.

3.2.1 Avoid using R for compartments, and instead use Aand C

The conventional S(E)IR(D) model uses the label R for three applications: the Removed, the Recov-
ered and the Reproduction factor. Perhaps best would be to avoid R altogether, so that there is not
even the question what R might mean. However, Ry is used in various models and it suffices to
relabel the compartments. We use A for the Acquitted, and C for who has cleared the infectious
period without dying. On occasion we may write f for the reproduction factor, since it is a factor
indeed.

PM. The symbol R is also avoided in the “traditional versions” that the package recognises. How-
ever, Rq, Rp, and Rg are available, and users may set Rq = Aq, Rp = Ap and Rg = Ag. (This would have
to be done after each clearing of the variables, and one might write a small routine that both clears
and redefines.)

3.2.2. Have D = @ A as an explicit proportion

Section 7.3. The conventional format of the SICD (SIRD) model has D’ = /. This causes the question
what ¢ means, how to calculate its value, and what happens if the overall y would change. The best
didactic format is to give the actual model D = ¢ A. The deceased are a mere proportion of the
acquitted, with @ = Infection Fatality Factor (IFF). The conventional format is oriented to Ordinary
Differential Equations (ODEs) and it is an exercise in mathematics to show that this translates in the
proportions. It is clearest however to state what the model entails, and regard the education about
ODE as another issue.

PM. The “traditional version” in the package has D’ = 1.

3.2.3. One single conceptual model SIA with two kinds of splits:A=C+Dand /=
E+Y

SlAis the conceptual model that has two kinds of nuance splits, whence the full name is SI(EY)A(CD):

(a) Section 7.3. The acquitted A can be split into the Cleared and Deceased, thus A=C +D.

(b) Section 8.3. The infected = infectious | can be split into the Exposed and Infectious, either [=E+Y
(didactically clearest) or traditionally Y= E +/ (in which / puts emphasis on being infectious).

Within the new didactic format, the two splits are such, that the properties of the S, |, and A compart-
ments remain the same (taking / = £ +Y). This warrants the use of a single set of Options[SIA] that
control the functioning of all model formats. The routines for SIA, like finding the top of /= E + Y and
the limit values, apply to all variants, since the same assumptions apply.
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PM. The “traditional version” in the package has Y=E +1.

PM. For simplicity, no background births and deaths have been included, though they obviously
effect conclusions about waves of infections and a steady state.

3.2.4. Separate models but joint options

Good programming requires that a new model comes with its own set of options: but this applies
only when we really have different models. The SIA, SICD and SI(EY)CD models are so alike that it
would be unwise to have different sets of options. Having different sets of options would require

checks on e.g. the same size of the population etcetera, and this better be avoided.

It would have been possible to construct SICD by first run SIA and then split Ainto C and D, but we
follow the convention (historical development) to present SICD as a separate model indeed. This

has the advantage that all variables are available in both input and output. We include A=C+Din
the model, for this purpose. For SEYCD we also include / =E +Y.

(It may be remarked that the design of this package started out with separate options and the more
traditional format “SEICD”. This appeared to be too complex, for the reasons given. Thus the setup
was simplified, and using the routines showed that this was beneficial. An example is the run on the
intervention, in which the same set of Options[SIA] can be adapted to the new regime.)

PM. Still, applications of the options can differ. The user can call the routine SIA[Options, Check] for
some diagnostics on the settings. For example, the parameters GammaSICD[] and MuSICD[] are
used in the traditional setup of the models, and it may be useful to check that they add up to
GammaSIA[] for the SIA.

Options[SIA]

{Ath -0, Cqt0 —» 0, DataMold - {S, |, A}, Dqt0 - 0, 1qt0 - Null, Ngt0 - 1.74x 107, Onset - 0, Seed - 100,
Yqt0 - 0, AlphaSEYCD() - 1., BetaSIA() -» 0.4, GammaSIA() - 0.1, PhiSICD() - 0.015, RO() » NuII}

SIA[Options, Check] // MatrixForm (x these are strings - values %)

beta == RO x gamma (estimation) - 0.4 = 0.1 Null
0.1 = GammaSICD() + MuSICD()
Aqt0 == Cqt0 + Dqt0 —» True
Sqt0 is no parameter, Sq[t0] is in equations » 1.73999 x 107
{SIA and SICD use Seed instead of Itg0, {Igt0 - Null, Seed - 100}}
{Didactic SECYD has (Igt0 - Null), Iqt0 - Null}
{Traditional SEYCD has (Yqt0 - IqtO + Seed), Ygt0 - Null + 100}

3.2.5. Joint set of parameters and variables

The models not only have a joint set of parameters but also a joint set of variables Sq[t], Iq[t], Aq[t],
... for the levels and Sp[t], Ip[t], Ap[t], ... for the proportions. The routines defined for the variables of
SIA can be used by SICD and SEYCD. The routines defined for C and D for the SICD model can also be
used by SEYCD.

One would not expect anything less from an integrated didactic environment. Any disciplined
writer would also generate such administration too. However, it is somewhat remarkable that in
the many formulations of the S(E)IR(D) literature, mostly only those variable names and Ry, Sand y
are the same, while there is a somewhat chaotic variety in other aspects. Let authors feel invited to
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adopt more uniformity.

While variables Sq(t], Iq[t], Aq[t], ... have specifications that are also agreeable for computational
writing, the package also provides for translation to shorter symbols S, I, #A, ... for the human eye.

3.2.6. Distinction between infections and symptomatic disease

The distinction between infection and symptomatic disease is fundamental in this discussion.
Chapter 10 gives the conventional distinction between the generation interval and the serial inter-
val. This notebook and package have no contribution to this discussion. There is only the advan-
tage that the discussion has been rephrased within the confines of above redesign. A basic finding
is that many reports in the literature apply the S(E)IR(D) - SI(EY)A(CD) model to symptomatic
disease (e.g. the Goh (2020) “epidemic calculator”). For SARS-CoV-2, the crucial phenomenon is
asymptomatic infectiousness.

3.2.7. Models SEYCDT and SEYCDB for estimation

Chapter 12 discusses two methods to present an intervention.

The first method has a Base SEYCD model alongside an Alternative SEYCD model, and the models
differ in parameters and time of intervention.

The second method compares the Base SEYCD model with a model that uses the Mathematica
feature of the WhenEvent statement: either SEYCDT for an intervention on Ry or SEYCDB for an
intervention on B. The WhenEvent formulation appears fruitful for estimation, so that not only the
parameter before the intervention but also the parameter after the intervention can be estimated,
taking into account that the observed number of deceased will be an effect of overlapping periods.
Again, this estimation has educational objectives only. Practical application would require more
data and also much more precise data (with e.g. regional aspects). Another advantage of this
limited estimation exercise is that it clarifies the meaning of the parameters.

Having an intervention and estimation may require an administration of the N[0] that is used as the
denominator of the proportions. This is not required for the latter SEYCDT and SEYCDB with the
WhenEvent approach,

3.2.8. Modularity

A fundamental programming principle is to build with blocks that are fully functional and well-
tested. The user often knows little about the building blocks and only requires that everything
works as stated in the manual.

It is tempting to create flashy results (e.g. some plots below) using quick and dirty routines. In such
cases, it takes only a small glitch and the whole edifice doesn't work anymore. Even worse: if
programming isn’t well-structured, then it is often impossible to trace its cause and repair the issue.

The present setup provides both the building blocks and the higher-up routines. The building block
have been tested (by writing this notebook, also in steps) and are reliable. If there would occur
glitches in the higher-up routines (e.g. entering 1/0) then it remains possible to redo the process in
steps by using the underlying building blocks.
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For example, in steps (available building blocks) we define the equations, assign parameter values,
do the NDSolve for the path, set the level variables Sq, Iq, Aq, ... to the interpolated functions, set
the proportion variables Sp, Ip, Ap, .... Normally all steps have a standard sequence, so there is also
a routine to do the steps for us. The higher-up routines are less-tested than the building blocks, so if
something happens, like with a parameter out of range, then it still is possible to do the steps. For
example, while the package presents a main plot format with a particular choice of plotting
options, and there would be a glitch, say by a newer version of Mathematica that changes some-
thing in plotting, it always remains possible to use the Plot routine that is standardly available
within Mathematica.

3.2.9. Administration of scenarios

Apart from this discussion of what the models and package do, there is also the application that
requires record keeping of assumptions, parameters and outcomes. This is handled in another
package Survival® ApplySIA™, not shown or discussed here. My administration is organised but it
has not been documented for use by others.

3.3. General setting on programming

3.3.1. Reasons for choosing Mathematica

Reasons for choosing Mathematica are the same as for writing packages in Mathematica in general:

- Use of a general environment, so that code isn’t locked-up within the confines of a particular
application, but can be used in direct combination with other computable aspects, like estimation
and economic implications. There is a price to pay though: this notebook and package come with
the confinement of the Mathematica environment.

- While the language of mathematics is universal, also on the computer, Stephen Wolfram had a
talent to bring it to the computer. Mathematics has been developing over millennia, and my impres-
sion is that Mathematica has caught this development in the best manner for application on the
computer. Other applications obviously must satisfy mathematics if they are to work, and mathe-
matics can have many dialects, so this reason need not be an universal truth itself, and likely it is
only a matter of (acquired) taste.

- All this is embedded within my proposal for redesign of mathematics education, see https://zeno-
do.org/communities/re-engineering-math-ed/about.

I made a choice for Mathematica in 1993 and have much benefitted from it. Over the years, other
computer algebra packages have not developed as much. New options like R and Python do not
have the appeal of the language.

3.3.2. The Economics Pack

This notebook and its discussion are open access. At first my objective was to make the package
open access too, but soon | found it more efficient to use features from The Economics Pack, which
features had been developed in the past for good reason. The pack is available at a cost, see Coligna-
tus (1995, 2020e). Considering that others can use notebooks in Mathematica only by also acquiring
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Mathematica anyhow (except for the MathReader, now WolframPlayer), | dropped the notion of an
open access package. The new package is basically for convenience. The Economics Pack already
contained a section on the life sciences, and Survival SIA™ is included there. When the Pack has
been installed on the computer, use the file explorer to find the notebooks. A complication is that
the Help function of Mathematica has abolished the HelpBrowser, and switched to a paclet struc-
ture. The Pack hasn’t adapted to this yet. However, the user can find the explanatory files by use of

the file explorer.

ToFileName[ {$TEPDirectory[], "Applications”,
"Economics", "Documentation", "English", "LifeSciences"}]

C:\Users\Eigenaar\AppData\Roaming\Mathematica\Applications\Economics\Documentation\English\

LifeSciences\

3.4. The SIA package

Contents["Cool Survival SIA™"] (% click on symbols to find explanations x)

Cool’Survival'SIA® v

Acquitted Dp MusSICD QuarantineColours  SICD

Ag Dq Ng R Sq

AlphaSEYCD Dqt0 Np RO Sqto

Ap Eg Nq RODublinLotka Susceptible

ApByROPlot Ep Nqto ReadMeSIA TforAp

Aq Eq Og Recovered TforAp50

Aqto Exposed OmegaSICD Rg TforAp95

AttackRate FindTime Op Rp TforTopEq
{ BetaSIA GammasSIA Options$SEYCD Rq TforToplq

BetaSIADivNqt0 GammaSICD Options$SEYCDB Seed TforTopYq

Cg ICU Options$SEYCDT SEYCD TimeByRO

Cleared Ig Options$SIA SEYCDB Toplq

Cp Infected Options$SICD SEYCDLettersOnly  Yg

Cq Infectious Oq SEYCDNumericQ Yp

Cqto Ip Other SEYCDT Yq

Deceased Iq PhiSICD Sg Yqt0

Dg Iqto PlotLegendsSIA SIA
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? ReadMeSIA
Symbol

ReadMeSIA[] gives an overall explanation of the SIA™ package. See there for:
ReadMeSIA["Terminology"]

ReadMeSIA["Symbol"]

ReadMeSIA["Period"]

ReadMeSIA[model] for models SIA, SICD and SEYCD

ReadMeSIA[SEYCD, Simplify]

v
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ReadMeSIA[]

The SIA™ package recognises the levels (q) and proportions (p) with Vp = Vg / Nq[0] for variable V: N, S, E, |,
R, A, C,D,Y, O. The proportions are w.r.t. N[0] and explicitly not current Nq (thus not Vp = Vq
/ Nq). The didactic assumptions are A=C+ D and I = E + Y (with Y the infectious). The package

uses the short names Vg. The long names like Exposed etcetera are available as symbols only.
The routines generally allow for user options when these are relevant.

ReadMeSIA["Terminology"] clarifies terms on mortality, fatality, factor and rate.
ReadMeSIA["Period"] gives equations on latency period and serial interval (using Strings).

ReadMeSIA["Symbol"] lists the meanings of the symbols.

The basic routines f are SIA, SICD and SEYCD. They operate via the standard Mathematica practice of
using options. We do SetOptions[SIA, ...] for the parameters, call sol = f{NDSolve, ...], call f[Set, sol]
to set Sq[t], Iq[t] etcetera, and then SetOptions[Plot, ...] and Plot[f[t], {t, 0, tmax}] and also f[Plot, ....].

We want to use Sq[t] for both numerical output at one time and as a variable
or a symbolic expression for solving at another time. To do so, the runnable equations

are put into Hold. We first clear the variables before submitting them to NDSolve.

The models can be presented in traditional or simplified form. Default is the latter.
ReadMeSIA[model] for SIA, SICD, SEYCD gives an even more simplified form, using 8+ = 8/ NqtO0.
ReadMeSIA[SEYCD, Simplify] gives an even more simplified format.

For traditional form use f[Equations, TraditionalForm, ...] and f[N, TraditionalForm, ...]

PM 1. In Mathematica: N is the number function, E is the exponential number, | is the unit complex
number, C the coefficient, D the differential operatator, and O for Landau, and there are In[]
and Out[], so that we use q instead of n for the number. We avoid name conflicts, and actually
enhance clarity, by using Vg and Vp. At times, using Script font appears to work was well.

PM 2. Default parameters RO —> 4 and y —> 1/10 and ¢ —> 0.015 and a -> 1 are for Holland
and the SARS-Cov-2 pandemic, April 21 2020. PM. The SIA model uses 8=R0 * y

3.5. Initialisation cells for loading of The Economics Pack and Survival SIA®

3.5.1. The Economics Pack

Needs [ "Economics™ Pack™ "]
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ResetAll

{Utilities'CleanSlate’, Economics Pack’, Cool Tool", Cool'Manager", Cool List’,
Cool'Declare’, Cool Context’, Cool'Common’, Cool’Inequality’, Cool Graphics’,

Cool'Compatibility’, System’, Global’, ComputationalGeometry'Surface'}

Economics [DataFile, Print - False]

Economics[LP, Print - False]

3.5.2. The survival packages

For documentation, see:

ToFileName [ {$TEPDirectory[], "Applications",
"Economics", "Documentation", "English", "LifeSciences"}]

C:\Users\Eigenaar\AppData\Roaming\Mathematica\Applications\Economics\Documentation\English\

LifeSciences\

Economics [Survival]
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The following packages concern the area of survival statistics and epidemiology:

Symbol

Survival 'CEA™: cost—effectiveness analysis in epidemiology
Survival'Common': terms for the life table and its functions

Survival BioStatistics': calculate m or q from observations

Survival'Criteria': life gain, time trade off, patient cost
Survival'Data’: see ??DataSymbols

Survival Disease': survival in health or disease state
Survival Epidemiology": test statistics

Survival Graphics': plotting routines
Survival'JointTest : test that consists of two other tests
Survival LifeTable': life table construction and listing
Survival ' LifeTableByChiang': idem, method Chiang
Survival' MetaAnalysis': pooled Relative Risk
Survival'Screening: detection phases and lead times
Survival TreatmentControl': a.k.a. case—control studies
Survival' BMI': body mass index example

Survival 'SIA': SI(EY)A(CD) version of S(E)IR(D)
Survival' ApplySIA’: record keeping of such application

SurvivalPackages|] gives an overview of the packages in survival statistics and epidemiology.

These packages aren't supported with palettes yet.

Mathematica's | is the imaginary number (complex operator), but the String "I" may be used for Incidence

v

$ContextPath

3.5.3. ApplySIA™ (not documented)

Economics ["Survival ApplySIA™ "] (*SIABasicTablex)

+v Cool Survival’ ApplySIA®

CalendarTimelLine SEYCDBasic SIABasicRun

DateOfOnset SEYCDBasicRun SIABasicTable

SARSCov2NLTimeli-

ne

SlIABasic SICDBasic

SICDBasicRun

UpdateSEYCDBasic-
Run

UpdateSIABasicRun

UpdateSICDBasicR-

un
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SetOptions [PutGetDefinition, Directory ->

ToFileName [ {$TEPDirectory[], "Applications", "Economics", "Data"}]];
PutGetDefinition[Get, SIABasicRun]; (* used in the above x)
PutGetDefinition[Get, SEYCDBasicRun]; (* used in the above x*)
PutGetDefinition[Get, SIATimeAsFunctionOfRO]; (* used in the above x)
PutGetDefinition[Get, SEYCDTimeAsFunctionOfR@]; (* used in the above x*)
NgSeed = 17.4 < 10°6;

SetOptions [SetDatabank, Databank -> SEYCD];

SIABasicTable [SEYCDBasicRun, 100, { Sp, Ip, Dp, Cp, Np, Ap}]

Date Day Sp Ip Dp Cp Np Ap

Onset 2020-02-23 0 100.0 0.0 0.0 0.0 100 0.0

1st Death 2020-03-06 12 100.0 0.0 0.0 0.0 100.0 0.0

1st Intervention 2020-03-18 24 99.9 0.1 0.0 0.0 100.0 0.0
Top if free 2020-04-21 58 25.0 40.3 0.5 34.1 99.5 34.7

Ap =50% 2020-04-25 62 13.5 36.5 0.7 49.2 99.2 50.0

95% Ap[eo] 2020-05-22 89 2.4 45 1.4 91.7 98.6 93.1
Limit if free oo o 2.0 0.0 1.5 96.5 98.5 98.0

4. Compartments

4.1. Principle

Principles for this chapter are:

(1) (Public health) compartments appear to be relevant for quarantine controls. The following is a
suggestion for such compartments.

(2) The SARS-CoV-2 pandemic requires clear communication in and over a variety of cultures in the
world. We should use as much common ground as possible.

(3) One common ground is the human sensitivity to colours. Colour coding seems rather important

for effective communication. Humans are sensitive for very subtle differences in colours, but, while

the rainbow shows all frequencies, or colours ordered by hues, there is a tendency to see only some
10 hues, differing by about 0.1 degrees.

4.2. The meaning of red for regulation

Like with traffic lights, we need colours to manage not only people but also locations. It is insuffi-
cient to paint “dangerous cars” red and “safe cars” green. Red is the general colour for alert status
(likely because blood is red), and it is best to use red for the barrier between any quarantine group
rather than for a particular group.

The basic idea is that red identifies a barrier.

The following suggested colour scheme uses identifiable patterns in the hue or RGB schemes.
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Rainbow

05506 0.65 07
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0. 1.

In the RGB rainbow:

- B goes from 0 (uninfected) to 1 (infected) (uphill only).

- R has the path 1-0-1 (valley).

- G has the path 0-1-0 (up and down a hill).

However, the rainbow is subsequently rearranged, namely to put red between the vulnerable and
less vulnerable quarantine classes.

The interpretation is: the further a quarantine class is away from the barrier, the more extreme the
position will be: either uninfected (B is 0) and more vulnerable, or infected (B is 1) and getting sicker.
PM. The colour of DeeperPink for the ICU has an infringement upon the B=0 or B =1 dichotomy.

4.3. Suggested colour scheme

The colours might also be used for SI(EY)A(CD)-type of modeling with more compartments. The
scheme allows that SI(EY)A(CD) is used for both infections and symptomatic disease. The “bluepu-
rple” group was included for symptomatic disease. For quarantine it would likely be joined with
“freshpurple”.

QuarantineColours|]

Colour Name RGB Colour scheme of combined Hue (no Venn diagram)
Hue R G B

Yellow 016 1. 1. O Uninfected and vulnerable (elderly or diseased)

Orange 0091 05 0 Uninfected, less vulnerable (young & no disease), preferably not ir
| Red 00 1. 0. O Barrrier between quarantine zones

Green 03 0. 1. 0. Immune:curedfrom an infection, and tested to be no longer a car

Cyan 0.48 0. 1. 0.88 Unsymptomatic or untested, not in the vulnerable group, infectabl
[ Skyblue 059 0. 0461 Unsymptomatic, latency or incubation (modeling)
[ Blue 0670. 0. 1 Infected, (possibly) sick, and less vulnerable (modeling infectious)
[ BluePurple 0.72 0.32 0. 1 Symptomatic (modeling), or infected (tested), likely self-quarantir
| FreshPurple 0.77 0.62 0. 1 Infected, (likely) sick, and vulnerable
| Magenta 083 1. 0. 1. Hospitalised
| DeeperPink 0.91 1. 0. 0.54 Intensive care unit, complications comorbidity

For SI(EY)A(CD) modeling, mortality can be indicated by dashed Black / White lines, which fits
European / Chinese conventions on these “colours”.

We can put the RGB combinations in the familiar RGB-plot reminding of a Venn-diagram. (PM.
Deeper pink is not shown here.)

(a) The larger disks give a Venn diagram indeed. For example, the yellow group is safe because they
are protected by a quarantine barrier. For example, the blue group is infected but it is unknown
whether they will become immune (green) or have to be hospitalised (magenta).

(b) The smaller disks do not form a Venn diagram. They highlight special conditions. For example,
for “fresh purple”, the barrier is breached, and those of the vulnerable group must be hospitalised.
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(Hospitalisation itself shows that the barrier was crucial for them.)

QuarantineColours [RGBColor]

4.4. Use of these colours in the SI(EY)A(CD) plots

These colours will also be used for plotting the SI(EY)A(CD) graphs. For the Acquitted, the combina-
tion of Cleared (Green) and Deceased (Black and White) results into some brownish colour.

The SI(EY)A(CD) model, while officially named for infections, is also used by researchers for symp-
tomatic disease. Instead of the “exposed” there is “incubation”, and instead of “infectious” there is
“symptomatic”. In itself this is not so strange, see Chapter 10 about the distinction between the
“generation interval” and the “serial interval”. For the SARS-CoV-2 virus, it appears that both such
applications are used indeed. These models however have different assumptions, and there is
some risk of confusion. Thus it is necessary to have legends that fit the type of modeling assump-
tions. These are the two sets of categories, and the symptomatic case tends to be a bit darker or up
in the rainbow than the infections.

The command PlotLegendsSIA[SEYCD] sets the legends and colour schemes for the standard
interpretation of SIA, SICD and SEYCD for infections. PlotLegendsSIA[“Symptoms”] sets those for
symptomatic disease.

PlotLegendsSIA[Show, All] (* dashing statement deliberate x)

m Susceptible ] Susceptible
| Exposed | Incubating
| Infectious | Symptomatic
{Dashing[{Small, Small}], @}  Infected {Dashing[{Small, Small}], g}  Diseased
m Cleared | Remissed
{Dashing[{Small, Small}], @} Deceased {Dashing[{Small, Small}], @}  Deceased
| Acquitted | Acquitted
| Population | Population

4.5. When in lack of colours

These ten or eleven “identified possible quarantine groups” and their colours will not be enough to
serve the large variety of cases. However, it is always possible to combine codes. We could show
colours in bands, and not blend the hues.



88 | 2020-08-29-Didactics-SIEYACD.nb

For example, an icon that shows both magenta and freshpurple indicates that a hospitalised person
belongs to the vulnerable group, and if this is clear, then we might add a little bit of yellow to
indicate that the origin is from the elderly and comorbidity group or a little bit of orange for the
younger group of vulnerables. In a graphical plot we could have a line dashed with those colours
(except that this hasn’t been implemented yet).

{colourBand[{{Magenta, 1}, { FreshPurple, 1}, {Yellow, 1//4}}, 3],
ColourBand [ {{Magenta, 1}, { FreshPurple, 1}, {Orange, 1/4}}, 3]}

‘N .

PM 1. There is a curious effect. In everyday life, when we use colors red and green, we do not neces-

sarily think of traffic lights. With above colour scheme for infection status, the colours in a graph on

another subject may cause the question whether that other subject concerns infection status or not
... Itis something to get used to.

PM 2. It would be fortunate if Mathematica adapts a notion of "generalised colour" that includes
such band-dashing in different normal colours, so that the options for Mesh and Legend can be
combined. Now a trick is to plot a function twice, in both a base colour and a dashed other, but this
means that one also gets a double legend.

5. SIA

Clear

Clear all relevant variables since we may do different runs.
SIA[Clear] (* not Clear[SIA] ! =x)

SetOptions [SetDatabank, Databank - SIA]; (» for Explain x)

5.1. Basic model in standard formulas

The classic SIA model has time-dependent variables S, I and A, their derivatives, their starting
values S[to], I[to] and A[t,], and parameters. The sum of the three variables is the population N. It
will be convenient for Options[SIA] to include the starting values as parameters without brackets
too. The starting value of the infectious compartment I[t,] will be called the Seed. A[to] will get
parameter Aqgt0. And S[to] will not need a parameter since it can be determined as Nqt0 - Seed -
Aqto.
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ReadMeSIA[SIA]
S'=-pST

Al=yrI

I'=-A"-5'

S(t0) = -Aqt0 - Seed + N(t0)
7(t0) = Seed

A(t0) = Aqt0

PM 1. Itis logical to state S’and A’ first and subsequently derive I’, as Smith & Moore (2001, 2004)
do.

PM 2. B* = B/ N[to]. This gives a tiny value for 8* but simplifies the model. Below we immediately
drop this simplification.

PM 3. Above model is in levels (q). Division by N[t,] or setting N[t;] = 1 gives proportions (p) (and B* =
B.

5.2. Computable format

The above is pleasing for the human mind but potentially less reliable for computer algebra and
computable publications.

The model is best treated in symbolic manner.

(1) Some discussions use proportions (p) in terms of N[0]. At base, it is more natural to use levels
(q). The SIA model has population N[0] =S +/+A. In SICD the surviving population is N[t] = N[0] - D,
so that over time the proportions in terms of N[t] change even more, and it is important to keep the
proportions w.r.t. N[0]. The actual model concerns population densities, with probabilities of con-
tacts. Standard discussions of SICD thus properly normalize for N = N[0], but working in proportions
can hide changes in normalisation (e.g. changing to another year), and it is better to emphasize the
notion of density from the start.

(2) Conventional presentation seems to be oriented at solving the differential equations by hand, at
least as far as possible. That is, the conventional equation for I’ actually writes out S’ fully again.
For computer algebra we can use the simplified form, like Smith & Moore (2001, 2004) do.

(3) The routines are served by symbolic expressions while readability is served by single and Greek
letters. There is no fundamental difference, except that single and Greek letters are used for multi-
ple purposes, while computer algebra expressions better be unique over a wide range. With x, = x, /
Ng[0] we can use Script for levels (q) (e.g. S=ESC scS ESC) and Formal (with dots below) for propor-
tions (S = ESC.S ESC). Using different fonts will prevent conflicts with default use in Mathematica of
N, E, I, C and D. The derivative prime has been enlarged for readability.

(4) Conventional discussions assume a start at t =0 and Sp[0] = 1, but for combining modeling
outcomes with interventions on the parameters it is useful to have formal parameters for the values
at to. Lin et al. (2010) show a simulation with N =100 and Ip[0] = 1, and then it is important to take
Sp[0] = 99.

(5) Conventional discussions have a “basic reproduction number” Ry. The use of R is confusing in
the standard SIR formulation, while R is already used confusingly for both Removed and Recovered
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compartments. Eric Weisstein (2020a) at Mathworld states: “Note that the choice of the notation
R_0is a bit unfortunate, since it has nothing to do with R.” We avoid this by usingA=C+ D. There
remains a lingering question on Ry though. See Heesterbeek (2002) for a brief history, where the
notion itself was started without its own symbol. Delamater et al. (2019) clarify that George MacDon-
ald introduced the notion of an own symbol in the epidemiological literature in the 1950s, using Zj.
The term Ry is so fundamental to the literature that it would be wrong to consider changing the
symbol. (However, for programming, when we replace R in SEIR(D) by A and C, there might still be
confusion whether we should not also replace Ry, since confusion might still arise when readers
also refer to other publications in this kind of modeling. For the computing environment below we
should avoid needless confusion and computing error. On occasion within (hidden) programming
we may use the neutral notion of a “factor” F[t] with F[0] a value at t; or a constant. There appears
to be little need for it actually. With the use of Aand C it should be much less confusing to use Ry.
Perhaps the following might be a test for this.)

Subsequently, there is the issue of a time-varying factor, for example when the quarantines are
installed so that the original outbreak with R[0] has a different path than the new situation with
R[t], for time-dependent measures. The Ry actually is time-dependent, with Ry[t] = B[t] / y[t] as the
dynamic factor, and thus also Ry[0]. The literature is obviously aware that Ry is dependent upon
time and region, but for modeling it makes no sense to keep a subscript zero in all expressions.
Subsequently, there is also the effective reproduction factor R[t] that corrects Ry[t] for Sp[t]. We will
be using:

Ro[t] = B[t] / yIt] = RO[t] dynamic reproduction factor (with influence by
interventions)

R[t] = RO[t] S[t] / N[to] orin short R=R0 S, effective reproduction factor (idem)

Roo = ROg = RO[0] =R[0] =Ry basic reproduction factor Ry (commonly no
interventions)

In SIA the infection top is given by R[t] = 1.

5.3. The different formats
An overview of the combinations of traditional / simplified and computable / readable formats is as
follows (dropping ).

symbolic = {SIA[Equations, t@, t],
SIA[Equations, TraditionalForm, t@, t]} // Transpose // TableForm

/(4) — _ BetaSIA() Iq(t) Sq(t) /() — _ BetaSIA() Iq(t) Sq(t)
9 = -—q0 Sa'(t) Nqto
Ag’(t) = GammaSIA() lq(t) lg’(t) = Iq(t) (masl\:/:# - GammaSIA())
Ig’(t) = -Aq’(t) - Sq’(t) Aq’(t) = GammaSIA() lq(t)
Sq(t0) = —AqgtO + NqtO — Seed Sq(t0) = —AqtO + NqtO - Seed
1q(t0) = Seed Iq(t0) = Seed

Aq(t0) = AqgtO Aq(t0) = AqtO
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symbolic // SEYCDLettersOnly (x without beta-star x)

Al =yI I’ =1(#£3-v)
I'=-a"-5' A =yI

S(t0) = -Aqt0 - Seed + N(t0) S(t0) = -Aqt0 - Seed + N(t0)
I(t0) = Seed I(t0) = Seed

A(t0) = Aqt0 A(t0) = Aqt0

5.4. Model formulation, choice of Ry =4 and acquittal period of 10 days

To be able to run the model, we must set parameters and starting values. For the model formula-
tion, we would prefer to use constant parameters.

See the discussion above for the choice of Ry = 4 and the mean acquittal period of 1/y = 10 days.

In general there is the time-dependent (dynamic) transmission or reproduction factor Ry[t] = B[t] /
y[t] = BetaSIA[t] / GammaSIA[t]. At the beginning, or for a constant: R[0]=6/y=8dwith6=(1/y)
the mean acquittal period (duration).

Recall the Introduction, section 1.4.1, and let us now insert the dimensions: [#] for number, [#/#=1]
for factor, and [P] for period. Ry [1 = #/#] is a factor since it gives a (new) number of infected units
per (old, single) number of infected units. A linear calculation defines the (linear) growth rate as r=
(Ro-1)/ 6[1/P],inwhich Ry - 1 [#/#] is the increase of the next generation compared to the single
originator, and 6 [P] is the duration over which this increase happens. Then Rg=1+0r[1=1+P*
1/P]. Then we may take y=1/6[1/P] as the rate per time, and rework Ry = (y +r) / y and define B=y
+r[1/P=1/P+1/P], and thenfind Ro=8/y[1=1/P/(1/P)] and r= - y. (PM. Frits de Jong
(1918-1976) advised dimension analysis in economics; he was the thesis supervisor of Wim Duisen-
berg (1959-2005), the first president of the ECB.)

In this format, the model formulation should actually not use B or B[t] but rather Ry[t] / O[t], since
Ro[t] and 6[t] are the independent parameters, while Sis only a result of those two. In our case
there are 4 / 10 infections per unit period. When the situation is changed, e.g. by an intervention,
then Ro[t] and O[t] change, with B as a result, and it would be unwise to attach much value to S or
think that it ought to remain constant in some way (unless a reason is provided). The assumption is
that we can do little about the biological process of clearing and recovery to health, or the path
towards death, and that O[t] is rather the relevant observation period.

Section 1.4.4 stated: The growth of the infected = infectious in SIA can be found in r=dLog[/]=/"/ I =
{=BSp-y,seealso Section 5.7. It will be useful to identify the dynamic reproductive factor Ro[t] =
Blt] / y[t] and the effective reproductive factor R[t] = Ro[t] Sp[t], where the latter corrects for the
influence of the declining share of susceptibles. In SIA thus r=(Ry Sp - 1) / 6, for y = 1/6, which gives
an effective version of the above. Here Sp would be a dimensionless number, as units of suscepti-
bles per units of the base population.

SI(EY)A(CD) models are conventionally defined in terms of Band y and notin Ry and . Convention-
ally, the following decomposition is given to explain that Ry[t] is a dimensionless number. In mea-
surement, the number of contacts can be tallied, including the share of infectious contacts.
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ok Kk infectiousy * /4 contact, « period
RO[t]_T k1= (# contact) (# period) (#infectious)'

Unchanged is that Ro[t] = B[t] / y[t], so that B[] = (f 1iectious) « (g contacty "y gry) - (glinfectious) \ye can

contact period period

skip the reference to the infectious since it actually is a compartment, and the unit of account still is

the population unit. Measuring by means of an intermediate step on contacts does not change the
final result that the dimension of Bis [1/P], as used in above growth accounting w.r.t. the renewal
equation. The contacts are an element in the statistical measurement of 8 but are not part of its
dimension; its dimension is [1/P] like y.

This can also be shown by looking at the growth equations for S and / in the SIA model, that have
the term / * Sp. This term can be seen as an indicator for the number of contacts. It becomes prob-
lematic when it is argued that only Bis the factor that translates such contacts into a rise of /and a
waning of S. Assume that 8 has the dimension [1/c/P] = [1/(c P)]. With a dimension analysis we get:
S’[changein#S/P]=-B[1/c/P]l[c/ (#I #S/#N)] I Sp. We might assume [c / (#] #S/#N)] = [1]. How-
ever, [#S / #N] =[1] since these are both population units, and [#1] is needed for S’. Thus a contact
dimension for B hangs in the air.

It is best to think of y as a normalisation parameter, to allow that measurements for different
regions can be compared. It is rather not seen as a policy variable. This was already mentioned in
the Introduction. See Section 12.10 on estimation. For our case of 8=Ry y=4/10= 0.4, suppose
that an intervention on (self-) quarantine reduces the “real infectious period” from 10 to 5 days. So
we may want to use a new value of y = 1/5=0.2. However, this means that the number of acquitted
rises much faster, and also the number of deaths contained in them. A simulation run might cause
the paradoxical result of increased death in the short run. Instead, since the argument is that the
number of infections is reduced, the reduction of Ry may also be modeled by a lower S. In fact,
given that mostly the infected are put in quarantine, 8 might reduce by more. Thus, for modeling
such a case of quarantine, it would be wiser to drop the idea that 1/y is really associated with some
“real infectious period”, and we better regard it as a normalising constant.

The package includes this equation but it is only used as a reminder.

SIA["RO[t]"]
BetaSIA(t)

RO(t) = —— 8
GammasSIA()

Solve[SIA["RO[t]"] //. {R@[t] - 4, GammaSIA[] - 1/10}, BetaSIA[t]]

2
{{BetaSlA(t) - E}}
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?R
Symbol

R[t] = (& infectious / contact) » (H contact / period) * (& period / infectious), which is a dimensionless
number. It is the time-dependent reproduction factor. R[0] = RO. The literature has R also
for R = Recovered and/or R = Removed. We resolve the latter by taking A = Acquitted

and C = Cleared, and thus can use R and RO unambigously for the reproduction factor.

Tau = infectious / contact = the transmissibility (probability of contact)
Kappa = contact / period = the average rate of contact between Igq and Sq

lota = period / infectious = duration of infectiousness

SIA assumes that the acquittal period is also infectious.
BetaSIA[t] = 1/ period, or the inverse of the period between contacts
Likely the best reading is that b = RO «+ g = RO/ (1/g), or that gamma

disperses an already given number of infections RO over the 1/gamma period

? RO
Symbol

RO[t] = BetaSIA[t] / GammaSIA[t] dynamic reproduction factor

RO[] = RO[0] = R[0]. The value at t = 0, or a constant. It is called the xbasicx reproduction factor. The
number of new cases per old case (also allowing the identification of the (mean) period over which
this happens). It is the number of new infections on the brink of the first day by a single infectious
seed in an otherwise fully susceptible population. See Heesterbeek (2002), Jones (2007) and
Delamater et al. (2019). (The R stands for "reproduction” and not for "Recovered" or "Removed".)

RO[] = BetaSIA[] * 1 / GammaSIA[]

Probably the best way to understand RO is to replace BetaSIA[] ->
RO[] * GammaSIA[] with the latter also RO[] / (1/GammaSIA[]), so that RO[] are the

**% given =x* number of infectious cases that are spread of period 1/GammaSIA[]

? BetaSIA
Symbol

BetaSIA[t] is the transmission factor per period, at time t
BetaSIA[] is a symbol in the options for a constant value

v
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? GammaSIA
Symbol

GammaSIA[] is a constant rate of the Infectious who will be acquitted
per day, i.e. be no longer infectious. (But might later die from pneumonia ...)
1/ GammaSIA[] is the mean acquittal period (a unit can only be acquitted once).
NB. SIA assumes that the acquittal period is also the infectious period.
PM. Since the number of infections has been given by RO[], and RO[] determines

all properties, 1/GammaSIA[] only spreads the given number of infections

5.5. Fast-track run and plot

This section directly runs the model and plots the results. The next section does the same in steps,
so that the user might adapt steps and take more advantage of the environment in Mathematica.

The default options apply to Holland of February 23 2020 onwards. The Dutch population in 2020 is

about 17.4 million people. Let us set NqSeed = 17.4 * 10”6, and subsequently use the rule Nqt0 -

NgSeed, for the formal parameter Nqt0 in the equation Ng[t0] = Nqt0. NgSeed is not a parameter in

the model, and only a handy variable at the user level.

NgSeed = 17.4 <10"6;

SetOptions [SIA, Nqt@ - NqgSeed]

{Ath -0, Cqt0 > 0, DataMold - {S, I, A}, Dqgt0 - 0, Iqt0 — Null, Ngt0 - 1.74x 107, Onset - 0, Seed - 100,
Yqt0 - 0, AlphaSEYCD() -» 1., BetaSIA() » 0.4, GammaSIA() - 0.1, PhiSICD() » 0.015, RO() » NuII}

The infections are driven by the equation Iq[t0] == Seed. (Seed is parameter in the model.) The
carnival festivities in the South of Holland were on February 23 2020. It is not unlikely that some 100
infections were seeded by people having returned from Italy and Austria from work and ski holi-
days. The options already have default Seed —» 100. When we use a different value of Seed, then this
is “baked” into this model solution, and we must take heed of routines that rely upon Options[SIA]
for the value of Seed in these options. We can mention the parameter here so that the user can
check more easily that model solutions change when adapting the Seed value.

When the equations are set with particular parameter values, we can use an arbitrary label, in the
case “newModel” to identify the particular setting. Then newModel[t] would show the chosen
model.

SIA[Run, Pr, newModel, t, 150, Seed - 100];

The variables are now available in levels and proportions. The label “store” is arbitrary. The present
assignment allows us to later refer to this particular outcome.

store[SIA] = SIA[75] (% SIA[t] calls levels x)

{415556., 738924., 1.62455x 107}
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SIA[Pr, 75] (* SIA[Pr, t] calls proportions =x)

{0.0238825, 0.0424669, 0.933651}

It is useful to have plots that show both levels and proportions. The axes assume that it is obvious
what are levels and what are proportions.

SIA[Plot, ©, 150]

1.0t 11.74x107
0.8F 11.392x107

i R Susceptible
06j 41.044 x 107 —— |Infectious
0.4] l6.96x108 ~ — Acquitted

I ] (Cleared or
0.2 : 13.48x108 Deceased)

O f et T ————— (),
0 50 100 150
Day

5.6. Interpretation of the result and finding crucial moments of the path

We can read values from the graph but numerical outcome is more useful.

Let us calculate the day when 95% of the Dutch population would have been acquitted from the
pandemic, given the parameters and without the intervention of March 15-19. (It so happens that
the Ry is high enough so that this level can be reached.)

t95PercentOfN = FindRootee {@.95 == Aq[t] / NqSeed, {t, 100}} // Quiet

{t > 79.7353}

DayPlus[ {2020, 02, 23}, Round[t /. t95PercentOfN ]]

Day: Wed 13 May 2020

Above moment in time is relevant because Ry = 4, with a high prevalence in the limit. For lower
values, the limit value will be lower than 95%.

Itis better to define tgs as the time when 95% of Ap[] is reached.

The following routines find some crucial moments on the path. When we round the days from onset
then we can determine the calendar date.

NB. These dates use SIA and not SEYCD shown in the Introduction. (Check that a = 1 per generation
adds up over time.)
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{TforTopIq[], TforAp50[], TforAp95[4 1} // Quiet (x RO = 4 x)

{44.3682, 48.3071, 74.4295}

SIABasicTable[SIABasicRun, 100] (* from another package and another run: locked x*)

Date Day Sp Ip Ap

Onset 2020-02-23 0 100.0 0.0 0.0

1st Death 2020-03-06 12 100.0 0.0 0.0

1st Intervention 2020-03-18 24 99.0 0.8 0.3
Top if free 2020-04-07 44 25.0 40.3 34.7

Ap =50% 2020-04-11 48 13.5 36.5 50.0

95% Ap[od] 2020-05-07 74 2.4 4.5 93.1
Limit if free o o0 2.0 0.0 98.0

The above becomes more acute when we can also print the mortality levels, which requires SICD.

The latter table assumed no interventions. Before modeling interventions, it is better to first
develop SICD and SEYCD. And before doing the latter, it is better to first understand more about SIA.

The SIA model gives particular estimates for the days of particular events. The SEYCD model will
give another estimate, normally a later date because of the delay caused by latency.

ApByROPlot[] (* using the days of the SIA model x)

A=1-S-I
1.0¢
0.8
060 —— Aattop |
I ——— Alo]
o4k fi 1 48days 95% Aloo]
0.2}
0

5.7. Growth rates of SIA

5.7.1. Formal
The growth rate of function fis: g = Log[f]’ =/ f. Fully g[t] = dLog[f[t]] / dt. Shortest dLog[f].

A constant growth rate gives exponential growth.

The SIA equations relate their derivatives to their levels. Division by the levels gives the growth
rates.

Using above numerical approximation, it is also straightforward to plot these growth rates.
The SIA equations give these growth rates.

§=8/S gives s=-B1,

(=11 givesi=BS,-y

a=A/A gvesa=y I,/ A,
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An alternative but less elegant relation of / is:

(=I'|T=(S-A)]IT=-5(5/1p)-a(Ap/Ip)

5.7.2. An important analytical result for the long term limit values

An important relation is S= Sy Exp[- Ro (Ap- Apl0])], e.g. useful for the limit values.

Taking derivatives gives S’ = Sy Exp[- Ro (Ap- Apl0])] (-Ro Ap’) = -ReS Ap’. Thens=8 / Sgivess =
-Ro Ay’ too. Comparing the latter with the above s, we only recover already known A, =y I,,.
Taking the steps back however proves the important key relation.

5.7.3. Plotting numerical results

We use the variables Sg, /g and Ag now.

SIA[GrowthRate, Equations, Hold, t]
_ GammasSIA() lq(t) }]

_W' le(t) = W - GammaSIA(), Ag(t) =
- NGt Aq(t)

Hold[{Sg(t) =
SIA[GrowthRate, Set];

SIA[GrowthRate, 30] (* check that there are numbers =x)
{-0.0171973, 0.276838, 0.288342}

For plotting, avoid division by 0 at t =0 when A=0.
sirplotoptions = SIA[Plot, Options, PlotRange - All];

Plot ee@ {SIA[GrowthRate, t], {t, 3, 100},
AxesLabel - {"Day", "Growth rate"}, sirplotoptions}

Growth rate

0.5

0.4

0.3r Susceptible
r — Infectious
0.2F :
r — Acquitted
0 3 (Cleared or
[ Deceased)
L : ‘ ———_ Day
i 20 40 Q 80 100
-0.1F

L —

(1) When the growth rate of / intersects with the horizontal axis, with / = 0, then the infections reach
their Top.

(2)The graph confirms that especially / has a long period (25 days) with a fairly constant exponential
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growth rate of /= 3- y=0.3. In percentages this is Exp[0.3] - 1 = 35%. Towards the end it has such
growth at (= -y.

(3) We may now be better aware that the decline of the susceptible has most negative growth at s’ =
0 which gives I’=0. This conforms with the top of the infectiousness. The most negative growth is at

- B IpTop'
(4) In terms of growth, S and / have more regular patterns, and A indeed follows as a remainder. This

is somewhat remarkable, since the level and share plots suggest that S and A are dominant and that
l'is the remainder.

5.7.4. Difference between SIA and exponential functions

SIA has exponential phases but differs from the exponential process. There is no need for another
method for numerical approximation of these equations, since we already have a good approach
above. However, it helps to understand the growth rates by looking at the equations from numeri-
cal approximation too.

Let us use the notation }p for the time dependent variable that in a numerical simulation is held
constant for the short moment of updating. When exponential relations do not hold exactly there
can be a dynamic approximation with locally held constant shares. A stepwise simulation is: (a)
start with t =0 and calculate the shares, (b) calculate S and I from the exponential expressions,
while holding the shares .%p and 3‘,, constant, (c) find A as the remainder, (d) update the shares, (e)
increase time with a small increment and return to (b). Since this method has not been tried (here),
itis unclear whatits value is. There is no need to try.

s=8/S givess=-BI, whichgives S= 3’0 Expl - ,B}p t] inlocal approximation, e.g. when
Ip=c

(=1"]I givesi=BS,-y whichgives If“-'.%o Exp[(,Bép - y) tlin local approximation, e.g.
when S, = ¢

a=A/A gvesa=y I,/ A, while A=N,-S-T
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5.8. How to use the SIA routine

? SIA
Symbol

The Susceptible-Infectious—Acquitted model. (We avoid the term SIR.)

Options[SIA] has values for Onset time, Nqt0O, Seed,

BetaSIA[], GammaSIA[] and also AqtO (e.g. for combinations of models).
SIA[Run, (Pr,) model_Symbol, t_Symbol, tmax, opts] makes a numerical model[t] by

substituting the parameters, solves this with NDSolve from Onset to tmax, and makes the three

variables available, also jointly as SIA[t]. If Pr is included, then also the proportions are set.

SIA[t] gives {Sq[t], Iq[t], Aq[t]}.
SIA[Pr, t] gives {SpI[t]. Ip[t], Ap[t]} (set by above Run or by SIA[Set, Pr])
SIA[Plot, SIA[t], {t, t0, tmax}, opts] uses Frame.
The usage statement is so large that it has been cut into

Subjects. Rather than have subroutines with own names, they are collected under:
SIA[subject, ..] for subject in SIA[Explain, List] = {Run, Plot, GrowthRate, Limit, Top, Exp}:
SIA[Explain, subject] explains subroutines of SIA[subject, ...].

SIA[Explain, All] := SIA[Explain, H#]& /@ SIA[Explain, List]

SIA["RO[t]"] = (RO[t] == BetaSIA[t] * 1/ GammaSIA[), may

help setting parameters, while 1/ GammaSIA[] is the (mean) acquittal period

SIA[Clear] clears variables Sq, Iq, .... Sp, Ip, ...
SIA[ListOfSymbols] is the latter list, in strings

SIA["p-and-q"] are equations Vp = Vq / Nq[0]
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Appendix: In steps (for more control of details)

Meaning of this appendix

Above routines took big steps in calculating the variables and plotting them. For applications it
tends to be necessary to know how this can be done by steps.

Setting the size of the population and other options

The default options apply to Holland of February 23 2020 onwards. The Dutch population in 2020 is
about 17.4 million people. Let us set NqSeed = 17.4 * 10”6, and subsequently use the rule Nqt0 -
NgSeed, for the formal parameter Ngt0 in the equation Ng[t0] = NqtO.

NgSeed = 17.4 <10"6;

SetOptions [SIA, Nqt@ - NgSeed]

{Ath - 0, Cqt0 - 0, DataMold - {S, |, A}, Dqt0 - 0, Iqt0 - Null, Nqt0 - 1.74x 107, Onset - 0, Seed - 100,
Yqt0 - 0, AlphaSEYCD() - 1., BetaSIA() » 0.4, GammaSIA() - 0.1, PhiSICD() - 0.015, RO() » NuII}

Choosing a model with formal ¢, or with the Onset from the options

We set the values of the parameters, so that we get equations that we can submit to NDSolve. The
symbols in SI(EY)A(CD) are cleared and can be used as symbols again. We put the model equations
into Hold, so that the symbols remain unevaluated when we assign values later on.

We might define the model with an arbitrary &.
model[t0 , t ] = SIA[N, t@, t, Seed -» 100]

Hold[{Sq'(t) = —2.29885x 1078 Iq(t) Sq(t), Aq’(t) = 0.1 lq(t),
Iq'(t) = —Aq'(t) - Sq'(t), Sq(t0) = 1.73999x 107, Iq(t0) = 100, Aq(t0) = 0}]

MatrixForm @@ TheFormer

Sq'(t) = —2.29885 x 1078 Ig(t) Sq(t)
Ag’(t) =0.11q(t)
lg’(t) = -Aq'(t) - Sq'(t)
Sq(t0) = 1.73999 x 107
Iq(t0) = 100
Aq(t0) =0
The choice of ty is not arbitrary however. All parameters are determined by the Onset t; in the
options. At a different moment, the population and the seed may have changed, and the Sand y
may have been subject to interventions. The options must be consistent on this. The structure now

is that the model has ty and that NDSolve does the actual substitution.
We can also drop the arbitrary t; in the model, and adopt the Onset from the Options[SIA]
model[t_] = SIA[N, t, Seed - 100]

Hold[{Sq'(t) = -2.29885 x 10~ Iq(t) Sq(t), Aq'(t) = 0.1 1q(t),
lg'(t) = -Aq'(t) - Sq'(t), Sq(0) = 1.73999x 107, Iq(0) = 100, Aq(0) = 0}]



2020-08-29-Didactics-SIEYACD.nb | 101

MatrixForm @@ TheFormer

Sq'(t) = —2.29885 x 1078 Iq(t) Sq(t)
Ag'(t) =0.11q(t)
lg’(t) = -Aq'(t) - Sq'(t)
Sq(0) = 1.73999 x 107
Ig(0) = 100
Aq(0) =0
In either format, solving the model requires a time window, for which we need t; as well.
onset = Onset /. Options[SIA]

0

Solving and approximating by NDSolve for a specified time window

We solve and find a numerical approximation by SIA[NDSolve, ....] for a specified time window.

sol = SIA[NDSolve, model[onset, t], {t, onset, 150}]

{Sq—)InterpolatingFunction[ L ORI, U, ],

Output: scalar
. . Domain: (0. 150.)
lg- InterpolatmgFunctlon[ \ i sk ],

Aq—)InterpolatingFunction[ _/_ Sl (8, 150 ]}

Output: scalar

Making the variables directly available

We want to be able to call Sq[t], Iq[t] and Aq[t] separately, and SIA[t] = {Sq[t], Iq[t], Aq[t]} jointly and
directly. We use above “sol” to set these functions.

SIA[Set, sol];

After this setting, we can call the functions directly for different moments in time. We arbitrarily
select day 75.

SIA[75]

{415556., 738924., 1.62455x 107}

Plotting in levels and proportions

Plotting of outcomes of SIA[t] is served by colour-coding and legend. The following uses Plot and
not SIA[Plot ....].

sirplotoptions = SIA[Plot, Options, PlotRange - All];
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Plot ee {SIA[t], {t, @, 150}, sirplotoptions}

Units

1.5x107 -

1.0x107 -

5.0x108+

L 1

1

20 40 60 80 100

120

140

Susceptible
— Infectious

— Acquitted
(Cleared or
Deceased)

Day

PM. When using SetOptions[Plot] then other analyses have to unset those options again. Alterna-

tively, new options can be put into a variable. The standard Plot routine can be used, but the input

must be evaluated before Plot can access it. (Default ImageSize - Full to make plots fit the PDF,

even though they might be overly large on screen.)

Given the earlier setting of NqSeed, it is easy to plot the proportions.

Plot @@ {SIA[t] / NgSeed, {t, @, 150}, sirplotoptions}
Units

1.0F

0.8+

0.6+

0.4+

0.2+

i . . I

I

L 20 40 60 80 100 120

PM. Separate levels and proportions

The following selects the equations, and solves only for the levels.

140

Susceptible
— Infectious
— Acquitted

(Cleared or

Deceased)

Day
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SIA[Run, newModel, t, 150]

{InterpolatingFunction[ L ngpi{?;‘cg‘laj“’-’ ](tS), InterpolatingFunction[ JL gj[”pi‘;?;‘cjlajs"" ](tS),

InterpolatingFunction[ f_ Bj'[;jijs(c‘;a,“‘)" ](tS)}

Not surprisingly, the model and the outcomes are the same as above.
newModel [t]
Hold[{Sq'(t) = —2.29885x 1078 Iq(t) Sq(t), Aq’(t) = 0.1 lq(t),

lg'(t) = —Aq'(t) - Sq'(t), Sq(0) = 1.73999x 107, Iq(0) = 100, Aq(0) = 0}]
SIA[75]
{415556., 738924., 1.62455x 107}
This sets the proportions.

SIA[Set, Pr, NqSeed] (* or leaving NgqSeed out, and take the options =*)

{5.74713x10‘8InterpolatingFunction[ _\_ Tl (i) ](t$),

Output: scalar

5.74713x10‘8InterpolatingFunction[ _IL 2o, L) ](tS),

Output: scalar
5.74713x10‘8InterpolatingFunction[ f_ gi:;i':js(cg‘lajso‘) ](t$)}

SIA[Pr, 50]
{0.1068, 0.334003, 0.559197}

Appendix: Comparison with the traditional form for the equations

We might do:

tradmodel[t0_, t_] = SIA[N, TraditionalForm, t@, t, Seed - 100]

Hold[{Sq'(t) = -2.29885 x 108 Iq(t) Sq(t), lg'(t) = lq(t) (2.29885x 1078 Sq(t) - 0.1),
Ag’(t) = 0.1 1q(t), Sq(t0) = 1.73999 x 107, Iq(t0) = 100, Aq(t0) = 0}]

trad = SIA[NDSolve, tradmodel[@, t], {t, O, 150}];

SIA[Set, trad];

After this setting, we can call the functions directly for different moments in time.
store[SIA, tradmodel] = SIA[75]
{415556., 738924., 1.62455x 107}

There is no difference in outcome with the simplified form.
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store[SIA] (* we had stored this outcome of the standard run x)

{415556., 738924., 1.62455x 107}

Appendix: Technical notes
PM 1. We might do a normal call of NDSolve. For this, we must be sure that the variables are
cleared.

Clear[Sq, Iq, Aq]; NDSolve[ReleaseHold[model[@, t]1], {Sq, Iq, Aq}, {t, @, 150}]

{{Sq—)InterpolatingFunction[ L CD)(S?;TI\:ZS(C(;,IM‘ISO‘) ,

Iq—>|nterpo|atingFunction[ JL SRR | |

Output: scalar

Aq—>InterpolatingFunction[ _/_ ngj'{?;(jjlafs‘)" ]}}

The SIA[NDSolve, ....] format has been made simpler: (i) without the need for Clear, ReleaseHold
and the mentioning of the variables, (ii) while the routine also stores the outcome in Results[SIA] so
that we can later retrieve earlier runs if needed.

PM 2. We might solve for the proportions, but division by NqSeed can be simpler (as has been done
above).

SIA[Clear]

SIA["p-and-q"]

Ng(t) Sq(t Eq(t) lq(t) Ra(t)
Np(t) = ——, Sp(t) = ——, Ep(t) = ——, Ip(t) = ——, Rp(t) = ——,
{ p(t) Na(0) p(t) Na(0) p(t) Na(0) p(t) Na(0) p(t) Na(0)
Aq(t) Cq(t) q(t) Yq(t Oq(t)
Ap(t) = ——, Cp(t) = ——, Dp(t) = , = ——, Op(t) = ——
p(t) Na(0) p(t) Na(0) p(t) Na(0) (t) Na(0) p(t) Na(o }

6. Analytical properties of SIA

The SIA model has analytical solutions for some key aspects.

PM. x, = X4 / N[to] is the proportion of x; with respect to the original population.

6.1. Proportionality between numbers and proportions

With x, = x4/ Ng[0] we have g—txp = (%xq) / Ng[0]. The equations are proportional so that the parame-
ters are the same for the model in levels and the model in proportions.
Crucial conditions are derived from the model of proportions, while it still seems more natural to

work with the levels. There is no need to choose since we actually do both anyway. It remains
important to check translations from one format to the other.
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6.2. Exponential phases, doubling period and half-life

When the susceptible would be a constant fraction 3‘,3 then I = 30 Expl ( ,B:S\‘,J - y) t]. Especially at
the beginning of the process 3‘,; = 1,and J grows at rate/ = 3- y. For our parameters this is 0.3 (see
the plot). We can write 7 = Seed * Exp[(B- y) t] in the exponential first phase. For the proportion:

SIA[Ip, Exp, t] (xexponential functionx)
5.74713x107% g03¢

In that phase B> y so it has a doubling period of Log[2] / (B- ).
Log[2] / (BetaSIA[] - GammaSIA[]) /. Options[SIA]
2.31049

At the end, when most infections are over, then I has a half-life of Log[2] / v, i.e. almost a week.
Log[2] / GammaSIA[] /. Options[SIA]

6.93147

When the lockdown in Holland was imposed, it had a relatively fast effect, but there was growing
impatience when it took so long to actually wane.

6.3. Effective reproduction factor R[t], Ro, Roo

6.3.1. Dynamic B[t] / y[t] and effective reproduction factor R[t]
Section 5.2 already stated these definitions.
Rolt] = B[t] / yIt] is the dynamic reproduction factor.

The effective reproduction factor also reckons with the reduction of the compartment of the suscep-
tibles.

Itis R = R[t] = Ro[t] S[t] / N[to], which for constant parameters reduces to (B/ y) S[t] / N[to]l = (B/ y) Sp.

6.3.2. Basic reproduction factor Ry = R[to] = Blto] / yIto] = B/ y (assuming Sp[t,]
->1)

Fort— to (i.e. apart from seeding) S, = 1. Define Ry = R[ty] = B/ y as the basic reproduction factor. It
isin the literature known as the basic reproduction number Ry.

For the SI(EY)A(CD) default of constant parameters, we can also write R =Ry Sp.

The basic reproduction factor is relevant (i) at t = 0 (whether the infection will take off or not) and
(ii) possibly when the infections have a top other than at t =0, (iii) for the values in the limit.

6.4. Growth rate and steady state

6.4.1. Dynamics of infection

Reworking the equation for /’into an expression with R, we find I’=y / (R - 1).
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Observe that %ln[x] =(1/x g—tx) =x’[ xis the growth rate of x.

We have found the growth rate of the infections (B S, - y)=1'/ 1=y (R-1).

(a) If R>1then the number of infections rises. If R < 1 then it wanes. At R = 1 there is a top and
growth is 0. (Instead of inventing calculus, Newton might also have invented growth accounting.)
(b) R eventually gets below 1 by itself.

(c) If prevention is better than cure, then interventions choose B[t+1] < y/ Sy[t+1] as their target.

While we have / - 0 we also have I’=1(B.S, - y) = l[0] (B Sp[0] - ¥) =I[ec] = 0. Thus I has the “asym-
ptotic steady state” towards 0, which actually means that it is not a steady state in proper defini-
tion. The growth rate may still be nonzero, at a limiting value ([eo] = B Sp[oo] - y # 0. Reasons are: (i)
we always divide by a nonzero /, (i) Sp[eo] =1 / Ry only holds when Sp[eo] = 1 which cannot be the
case (see below).

6.4.2. Comparison to a disease with a steady state of inflow and outflow

There is a steady state where inflow = outflow, because otherwise there would be no steadiness. The
SIA model differs from a model with a steady state. It is useful to shortly review a steady state in
another disease than an infection. We might take the incidence quotient as 8/ and the recovery
quotient as y but let us use different symbols because this is another type of situation.

DiseaseBasics[Set]
{Equations - {Population = Diseased + Healthy,

Diseased = Population Prevalence, Cumulatedincidence = Healthy IncidenceQuotient,

CumulatedRecovery = Diseased RecoveryQuotient, Cumulatedincidence - CumulatedRecovery = 0,

1 1
DiseaseDuration = ——, HealthDuration = - . }}
RecoveryQuotient IncidenceQuotient

DiseaseBasics[{DiseaseDuration - "Pinf", IncidenceQuotient - q, Population - N}] //
Last // Last // MatrixForm

Ng
Pinfg+1
Ng
Pinfg+1
N Pinf g
Pinf g+1

CumulatedIncidence -

CumulatedRecovery »

Diseased -
HealthDuration - %

N
Healthy - m

Pinf g

Prevalence -» —
Pinf g+1

RecoveryQuotient » ﬁ
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? DiseaseBasics
Symbol

DiseaseBasics[{x___Rule}, elims___List, opts] is a SolveFrom application of the

basic Disease equations, for the steady state when there is no disease-specific death.

By definition Prevalence == Diseased / (Healthy + Diseased).

In the steady state, the outflow from the healthy

must also be equal to the recovery outflow from the diseased. Then also:

Prevalence == IncidenceQuotient / (IncidenceQuotient + RecoveryQuotient);

where IncidenceQuotient and RecoveryQuotient

are measured as (perunage) fractions of the relevant subpopulations.

Implied are also durations. With d = DiseaseDuration

= 1/ RecoveryQuotient, and A = IncidenceQuotient, we find:

Prevalence=Ad/(Ad + 1)

The latter notation may be more acceptable when there are

deaths involved and the 'cure’ is rather the replacement with newborns. The

screen detected duration concerns a prevalence screen with 100% sensitivity.

Options[DiseaseBasics] contains the equations.

DiseaseBasics[Set] sets Equations —> DiseaseBasics[Equations] (default).

DiseaseBasics[Set, n] sets Equations —> DiseaseBasics[Equations, n] such that aggregate Healthy and

Diseased are decomposed in n subgroups that have the same (mutual) steady state properties.

See also ToDiseaseSymbols and SteadyStateFlows

v
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6.5. Maximal infections at the origin or later in the process

6.5.1. Amaximum at the seed when S,[0] <1/ R, and thereafter decay
At the first seed, S,[0] = 1. IfR<10or Ry <1/ Sp[0] (conventionally Ry <1 <1/ S,[0]) then the infec-
tion does not develop into an epidemic.

PM. When S,[0] =1/ Ro: when Ry <1 then S, > 1, which isimpossible for a share. For Ry <1 we
already have at the start Sp[0] <1/ Ry so that the infection dwindles down.

6.5.2. Amaximum after the seed when S,[0]>1 /Ry

The traditional model format directly shows that the infections find their top (other than at the
origin) when:

(I'=0&I#0) & (BS/N[to] - y=0) < (Ro Sp-1=0) & (R=1) & (S, =1/ Ro)

6.6. Later in the process, consequences of Ry > 1/ S,[0], “the” top of
infections

The following assumes that at the origin Ry > 1/ S,[0] = 1.

6.6.1. The values of the shares at the top

For SARS-CoV-2, the top of I, for Ry =4 lies at S, = 1/4.
SpTop == GammaSIA[] / BetaSIA[] /. Options[SIA]
SpTop =0.25

What about the other two variables ?

Above we mentioned that S =Sy Exp[- Ry (Ap- Ap[0])], e.g. useful for the limit values. At the top of
infections:

Sp=v/B=Exp[- By (Ap,1op - Ap[0]) ]

Sp =1/Ro =Exp[ - Ro (Ap, op - Ap[0]) ]

-Log[Ro] = - Ro (Ap, Top - Apl0])

HAp, op = LOg[Ro] / Ro + Ap[0].
Values of the proportions thus are, and we cannot neglect Aqt0:

{Sp, Ip, Apb1op=7 {1, Ro- 1-LoglRol, LoglRol} + {0, -FA[0], FA,[0]}
The normal case has H#A,[0] =0, and check that Ry = 1 causes the point {1, 0, O}:

{Sp, Zp, Apttop=7 {1, Ro- 1-LogRol, Log[Rol} + {0, 0, 0}

{Sp, Zp, Apttop=7 {1, Ro- 1-LoglRol, LoglRo]}
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SIA[Ip, Top, Re] == SIA[Ip, Top, 4.]
{ 1 Ro-log(Ro) -1 |08(R0)}

= {0.25, 0.403426, 0.346574}

’

Ry Ro Ro

SIA[Explain, Top]
SIA[Ip, Top, f, atq0:0] gives the top of Ip for f = RO formally: {1, f — 1 - Log[f], Logl[f]} / f + {0, —atqO, atq0}
A related routine is:
Toplq[SIA, ...] for the t when Iq has its top when RO > 1 (inverse problem)
with comparison of theoretical values and those generated by the interpolation run

TforToplq]...] applies FindRoot to the equation Sp[t] == 1/R0

For SARS-CoV-2 with Ry =4 and y = 1/10, remarkably T, 1op = 8 but the above shows that this is not
exactly so. We can solve y= 8/ Ro =TI p10p / Ro for those values of y that cause such outcome, and it
just so happens that we selected values close to that contour.

Plot[ (f - Log[f] - 1) / f~2, {f, 1, 8}, AxesOrigin - {0, 0},
AxesLabel -» {R@, "y that causes I, 1, = B"}, BaseStyle » {FontSize - 13}]

y that causes T, 10p = B

0.10
0.08¢
0.06
0.04}

0.02}

6.6.2. The value of trop

(1) Let us calculate trop using above solution of SpTop for the equations SIA[t]. Given that the value
of Sp at the top of Iq follows from Ry and is not affected by Aq[0], the fast calculation is - and this
only works when the model has been run and Sq[t] has values:

SIA[30] / NgSeed (* arbitrary point to check that this gives numbers =x)
{0.942096, 0.0429933, 0.0149105}

FindRoot[1/ 4 == Sq[t] / NqSeed, {t, 50, 100}] // Quiet
{t > 44.3682}
It will be useful to have this available under its own function call.

TforTopIq[] (* not Quiet =)

InterpolatingFunction: Input value {-114.655} lies outside the range of data in the interpolating function. Extrapolation will

be used.

44.3682

(2) When we have found trop then there are two estimates for the proportions of the variables at the
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top.
(2a) The theoretical values directly from Sand y above.
(2b) Those calculated from the numerically approximated equations, that allowed us to find trop.

The numerical approximation might cause a difference. The following routine prints the difference
and checks whether the sum of the absolute differences is larger than (default) 0.0001.

Check that the top for Ry =4 lies at S, = 1/4 indeed.
res = TopIq[SIA, t]

InterpolatingFunction: Input value {-84.1178} lies outside the range of data in the interpolating function. Extrapolation will

be used.
Sp Ip Ap
. From Band y 0.25 0.403426 0.346574
{t"44'3682' Proportion = ¢ - ations 025  0.403428 0.346572 '
(1)-(2) 0 -1.39436x107° 1.39436x107°
NqgtO - 1.74x 107, Seed —» 100, Aqt0 - 0,
0.25 0.403426 0.346574
List—»| 0.25 0.403428 0.346572 ), AcceptableErrorQ - True}
0 -1.39436x10"® 1.39436x107°

(3) Relating the top to real world events.
tTop =t /. res;

Above, we mentioned the carnival festivities in the South of Holland of February 23 2020. It is not
impossible that some 100 infections were seeded. Taking the daycount, we can determine the
expected day of the calendar when the top of infections would have been, had there been no
intervention in the mean time.

DayPlus[ {2020, 02, 23}, tTop // Round]

Day: Tue 7 Apr 2020

(4) Use of this function.
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? TopIq
Symbol

Toplg[SIA || SICD, t] is a more involved routine than TforToplg, and not only finds the
time but also compares numerical approximations with the theoretical outcomes at the
top of Iq. If you have SICDI[t] or SEYCDIt] available, then you might choose SIA or SICD.

There are no parametric outcomes for E and Y in SEYCD, and thus there is no comparison

Toplq[SIA, t] assumes that SIA[t] gives {Sq, Ig, Aq} as functions of t (which will also happen when SICD[t]
and SEYCD][t] have been set), and uses FindRoot to find t from Sq[t] == Nqt0 / RO, i.e. when the
infections reach their top (assuming that RO > 1). Options for Nqt0, BetaSIA[], GammaSIA[] and Aqt0
can be supplied or are taken from Options[SIA]. Default search startvalues for t are SIA[Ip, Exp, Top]
and 3 Log[beta/gamma] / beta for Ip = 1/3. Output gives both t and the {Sp, Ip, Ap} at the top, both
theory = SIA[lp, Top, beta/gamma (, aqt0)] and calculated (from the Equations / interpolations).

Options[Toplqg] have Max —-> 10”-4 to give a message when Total[Abs[theory - calculated]] > max
Toplqg[SIA, {t, tmin, tmax}] uses FindRoot for that window.
Toplq[SICD, t] similar, allocates {c, d} = {labda, mu} / (labda + mu) Ap.
Toplg[SICD, {t, tmin, tmax}] similar
Legacy:
Toplq[SIA, NSolve, t] uses NSolve
Toplq[SIA, NSolve, Sq[t], t] only solves for t

Toplq[SIA, NSolve, Sq[t], Ngt0, RO, t] solves directly without options

v

(5) PM. Toplq uses FindRoot. NSolve does not always generate outcomes.

nsol = NSolve[Sq[t] == NqSeed / 4, t] // Quiet

{{t—) InverseFunction[InterpolatingFunction[ L gj’t‘;fj:;‘c‘;lajso‘) ], 1, 1][4.35x106]}}

SIA[t] / NgSeed /. nsol[[1]]; (* show if there is a numerical outcome =)

InverseFunction: Inverse functions are being used. Values may be lost for multivalued inverses.

| 111
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6.7. The exponential growth phase revisited

Above we discussed exponential growth. Now that we have discussed the top, we can include the
following comment.

The infections have a first phase of exponential growth. The growth slows down because the
lowering number of susceptibles reduces the impact of 8. The phase is interesting for us for two
reasons. A comparison may give us information when the true SIA path starts deviating, perhaps
because of intervention. Secondly, rather technically, the exponential outcome provides a starting
point for the FindRoot routine above.

Since we know the proportion Ip at the top, we can calculate how long it would take to get there if
the exponential phase had continued. This routine does this calculation for us.

tExp = SIA[Ip, Exp, Top]

37.1968

Thus, the SIA-properties cause a delay of the top of infections with some 7 days. With above dou-
bling time of about 2.3 days, the difference is close to 8 times the size.

tTop - tExp

7.17132

SIA[Explain, Exp] (* also relevant for finding starting values for FindRoot x)

SIA[lp, Exp, t] gives Ip for the first exponential phase

seed / NqtO Exp[(beta — gamma) t], with the values taken from the options
SIA[Ip, Exp, t, beta, gamma, ntg0, seed] takes values

SIA[Ip, Exp, Top] calculates the time for Ip to reach the top if it were using

exponential growth only (but falling Sp causes delay), with values taken from options

SIA[lp, Exp, Top, ntq0, seed, beta, gamma, a0:0] takes values
6.8. Exponential growth and exponentially distributed acquittal periods

6.8.1. One function for two purposes: probability and dynamics

Appendix A contains the fundamental “success and failure” model of exponential decay of Success,
with Failure collecting the decay. While this is a dynamic growth process, the shapes of the functions
are such that we can interprete the proportion of failure as the cumulative probability (CDF) of the
random variable “whether the event of failing will take a particular duration”. The population is
homogeneous and we do not know which event of decay will take what duration. The model
assumes a constant rate of decay A which happens to conform with the exponential distribution.
The PDF of Failure then is the exponential density, with PDFg,jiure = A Success. See Appendix Afor a
short review of the Success and Failure model, and the distinction between calendar time (with
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prevalence) and duration (age). (Events at different calendar times might be presented in an age
distribution.)

6.8.2. Plotting with mean acquittal period 1/ y

For SARS-CoV-2, the Success / Failure plot with y=0.1is as follows. The plot gives the proportions
of Success and Failure, with Success having exponential decay and Failure = 1 - Success. The com-
partment of the infected is taken as the Success category, and acquittal is counted as “failure”:
acquittal means a decay of Success. Thus if S, = 0 (e.g. they are quarantined or flee the country)
and there is no new inflow of infectiousness, then the remaining pool shows exponential decay as I
=T Exp[- y t]. The mean acquittal period is y=1/ y and it is no surprise that 10% of the patients
may take more than 25 days to exit from the scheme.

The half-life can be found at the intersection of Success = Failure = 1/2. Clearing has a half-life of h =
Log[2] / y=pLog[2] = 0.7 Y. Thus = 1.4 h. In this case y=10is easy to spot. PM. The plot uses S for
Success and not for Susceptible, and uses A= y.

SuccessFailurePlot[0.1, E -» False]

1.0f

0.8}

0.6

5
o
(]
[0}
©
é: SuccessPr=S
§ CT T T {HalfLife, 1/2} FailurePr = 1-S
£ 04 ' — — FailureRate = A
g I : PDF[Faill=A S
g — 1
a “I“I“‘““"."""““Duration

5 10 15 20 25 30

6.8.3. Interpretation of the mean acquittal period 1/ y in SIA

We can interprete y as a rate (always a mean) and 1/ y as a mean duration.

For SIA, 1/ yis best interpreted as the "mean acquittal and infectious period", to express its dual
effect.

(1) SIA makes the additional assumption that the acquittal period is also the "mean infectious
period". This does not hold by identity. (The birth certificate of Paul does not state that he and Mary
later married, though he still is Paul who did so.)

(2) Apart from this assumption on the acquittal period, there are processes of clearing and returning
to health, or the path towards death. Those concern the medical circumstances of the persons
involved, and those are not directly relevant for the process of infecting other people. A part will be
relevant for hospital costs. Such elements thus can be used for additional modeling on those
aspects.

The model formulation that A’ = y I still is correct for the rate of acquittal (removal) from its
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source,i.e.y= A’/ I.

The SIA assumptions obviously remain relevant for the first steps in modeling. It is remains impor-
tant to be aware of more complex models and such discussions in the literature. The SEYCD model
already modifies the infectious period by including the Exposed.

There is no assumption of a constant acquittal period, e.g. two weeks for everyone.

For SARS-CoV-2, it now has been reported in Holland that some 200 patients have been in the ICU
for longer than 30 days. Note that a patient who is released from the ICU may take a year to recover
from ICU (with the deterioration of muscles etc.).

6.9. The limit with the Lambert W or ProductLog function

6.9.1. Finding the limit values

SIA has the property that / - 0 but never becomes zero. We write the limit of / as Iq[eo] = 0, a value
never reached. Thus we have Sp[eo ] + Ap[oo] = 1. For SIA this can be solved by the Lambert W or the
ProductLog function.

As said, the relation S = Sg Exp[- R (Ap- Ap[0])] is useful for the limit values.

The outcome depends upon Ry and the starting values Sp[t0] and Ap[t0]. The latter have defaults 1
and 0, but might be different after an intervention.

The following generates the three proportions {Sp[ec], Ig[eo], Ap[ec]}, using the default option
settings.

SIA[Limit]

{0.0198273, 0, 0.980173}

We may also insert unevaluated parameters, and the discussion below provides an explanation.

SIA[Limit, BetaSIA[] - RO GammaSIA[]]

{ 1. W(-0.999994 e~1-R° RO) 0 1. W(-0.999994 e~1-R% RO) 1}
- r +
RO RO

6.9.2. Difference between top and limit outcomes

The following gives the difference in shares between the limiting values and those at the top of
infections. Notice the value for Ap, meaning that many units still have to end their infectious period,
including those who are infected after the top.

TopSIA = SIA[Ip, Top, (BetaSIA[]/GammaSIA[] /. Options[SIA])];

Thread[ {Sp, Ip, Ap} - (SIA[Limit] - TopSIA)]
{Sp - -0.230173, Ip » —-0.403426, Ap - 0.633599}

6.9.3. Deduction

As said, the relation S =Sy Exp[- Ro (Ap- HAp[0])] is useful for the limit values. At the limit we have
{Sple], 0, Ap[oo] = 1 - Sp[eo]}.
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Solving vor Sp[eo], and substituting the symbols for the limiting values, and taking Aqt0 zero, we get:
SpLimit == SIA[ProductLog, RO]
W(-e~"% RO)

RO

SpLimit =

SpLimit = SIA[ProductLog, (BetaSIA[] / GammaSIA[]) ] /. Options[SIA] // N
SpLimit = 0.0198274

The number of units (supposedly living till eternity, in an eternal population of 17.4 million):
Last[TheFormer] » NqSeed
344997.

In practice, we cannot simply assume that Aqt0 is zero. Hence, the routine allows for the appropri-
ately full input.

SIA[Explain, Limit]
SIA[Limit (, opts)] uses opts or default Options[SIA] to determine the infinite

values. The default options have the Iq seed and n = Nqt0 and Aqt0, so that it follows
that Sqt0 = n — seed - AqtO; then it calls SIA[ProductLog, b/g, Sqt0 / n, Aqt0 /n];

SIA[ProductlLog, RO, Spt0:1, Apt0:0] = Sp[eo] is the ProductLog finding for Sp[inf] on RO and those

proportions. With the limit of Iq zero, the counter part of the limit of Sp is the limit of Ap
SIA[Sp, Limit, x__] uses the productlog with such values of x, finds s = Sp[inf], and returns {s, 0, 1-s}
See TforAp95

6.10. The importance of t50 and t95

The following provides additional explanation for the figure already shown above.

For SIA, we have two phenomena that directly depend upon Ry, namely the top and the limit. Let us
look now at Ap, since this determines the eventual burden of disease. The two equations are (with
some blanks between them):

1 f-lo -1 lo
PointAtTop = {?, f gl) , g(f)} PointAtLimit = {— , 0, + 1}

f f f f

Both the top of infections and the limit values are determined by Ry. The overall burden of disease is

W-e75) ~ W(-e7f)

determined by the limit value. The top of infections says rather little about the overall burden of
disease, which only appears in the limit. The limit is a long way off. Thus it seems useful to compare
also some other values than the top only:

(1) tso when A, reaches 50% of the population
(2) tos when A, reaches 95% of A..

These durations give us a sense how the burden of disease is spread over time. Observe that the
indicators relate to different bases: (i) for tso we do a numerical approximation based upon the
parameters, (ii) for tos we directly use the parameters to find the Ry value. Obviously, t - oo cannot
be calculated anyway.



116 | 2020-08-29-Didactics-SIEYACD.nb

Thus we find these special moments in time. They all require Ry but the first ones include it in the
numerical approximations and the latter ones allow a parametric solution, whence we insert the
numerical value of our choice for Ry.
pnts = {TforTopIq[],

TforAp50[],

TforAp95[4],
1 - SIA[ProductLog, 4.1} // Quiet

{44.3682, 48.3071, 74.4295, 0.980173}

We already showed the following plot twice, and there is adequate reason to plot it again, here. The
horizontal axis shows the different values of Ry with a vertical dashed line at the value 4. For tsq
there is no contour in the legend but we still get a dot.

ApByROPlot [ ]

A=1-S-1
1.0¢
0.8}
06l —— Aattopl
i — Alod]
04r S 148days 95% Aleo]

0.2}

L L L L L R
6 g 0

For the contour of Ap at the top of Ip, a higher value of Ry will cause a higher infection level for Ip at
the top, and then there will be a lower value for Ap.

It is surprising that the dynamics of the process can be caught in one parameter. The word of
caution of course is that we may be assuming a constant value of this parameter, while it actually
changes.

The explanation of the plot is straightforward:
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? ApByROPlot
Symbol

ApByROPIlot[ROchosen:4, ROmax:8] plots Ap[RO]

for {RO, 0, ROmax}, with RO the basic reproduction factor. Plotted are:

(1) The limit value of Ap[Infinity]
(2) Ap95 = 95% of Ap[Infinity], and the days t95 to get there
(3) Ap50 = 50% of Population, and the days t50 to get there

(4) ApTop, i.e. at the top of Ig, and the days tTop to get there

PM. Options Text and Line (defaults True) control plotting of text and lines
PM. The plot requires numerical proportions, e.g. SIA[Set, Pr, (, Ng[0])]
NB. The graphs are fully determined by RO

on the horizontal axis. See TimeByRO for time as a function of RO

ApByROPlot["HerdImmunity", fmax:8] gives the plot with the Apl[infinity] and
the claimed ApHI = 1 - 1/R0: the difference between the lines times population times

the Infection Fatality Factor is the overshoot in deaths not accounted for by ApHlI

6.11. Attack rate vs force of infection

Breda et al. (2012:105): “the force of infection is, by definition, the probability per unit of time that a
susceptible becomes infected.” For the SIA model, this appears to be the (absolute value of the)
growth rate -s = 8 I,. Authors are free to define terms of course, but the association with the term
“force” does not seem to enhance clarity. It suffices to identify this expression as the growth rate or
the rate of decline of the remaining susceptible compartment.

The growth rate s =- 8 I, can also be related to the value of S, itself via s =- 8.S, ¢ with now the
(cumulated) “attack rate” =1,/ Sp, i.e. the number of infectious units encircling the susceptible.
The term “attack rate” seems also to be used for Ip[t] itself, but we already have a name for Ip.
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AttackRate[Plot, t, @, 150, BaseStyle - {FontSize - 14}]
Iq/ Sq
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6.12. Herd protective effect, resistance and intervention

A core point of this section is that the term “herd immunity” is better replaced by the term “herd
resistance”. The term “herd immunity” has technical meanings that are clear to specialists in
epidemiology but the term “herd immunity” itself causes confusion for policy makers and the
general public. The reference to immunity suggests protection but “herd immunity” does not mean
protection for all members of the herd. It only indicates a protective effect by a decline in the
epidemic so that the herd itself survives, but potentially in a (much) smaller size and at the cost of
still many more members.

6.12.1. Individual and population, immunity and protection

Some elementary definitions are in order. Protection is more general than immunity.

- Immunity for an unit protects the unit against an infection (at a normal dose): it means that an
infection does not apply.

- When an infection might apply then protection may be provided by an endogenous response or an
intervention like quarantine that causes that the effective reproduction factor R=0 or when the
virus has been eradicated (e.g. by draining swamps and burning clothes).

Let us also distinguish protection (dichotomy: yes or no) and a protective effect (continuous probabil-
ity):

- Protection is a protective effect of 100%. When protection fails then it actually wasn't given, and it
was wrong to call it “protection” in the first place.

- When a protective effect was provided and fails then it still was given though it did not result into
protection.

A protective effect for a person differs from a protective effect at the population level, since a
population can survive even when some units perish, and since what some units do has effects on
other units. A unit might seek protection from infection by quarantine. A surviving unit that recov-
ers from an infection has gained protection by immunity. At issue in this section is what a popula-
tion can do to get the best protective effect.

The definition for “population immunity” is that I = 0, i.e. that everyone is protected because there
are no infections. This end state is not reached in the SIA model, because it has only the limiting
process / = 0, which we may also denote as Ig[eo] = 0. SIA has no steady state (in its strict defini-
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tion); there is only an asymptotic state. However, SIA uses a continuous approximation to a discrete
problem, and perhaps it is better to say that the infection becomes extinct when /q drops below 0.5
(rounding down).

6.12.2. Avenues for a protective effect
The SIA limiting values give 1 = Sp[co] + Iq[oo] + Ap[oo] and 1 = Sp[eo]+ Ap[oo] because Iq[eo] = 0.
Of interest are the following avenues for a protective effect:

(1) When the effective reproduction factor R = Sp Ry < 1, then the epidemic wanes, and eventually a
susceptible fraction Sp[eo] = 1 - Ap[eo] would no longer be at risk of that particular epidemic. This
can be called a “herd protective effect” or “herd resistance”. We better use the term “protective
effect” rather than “protection”, since the latter might cause a false sense of security. For example,
when an infection has run its course till 99% Ap[oo] then we might assume a high protective effect,
but when new infectious seeds are introduced (e.g. by foreign travellers) then those may still cause
a new (small) epidemic, especially when Ap[oo] << 1, so that the protective effect is not 100% (which
is required for the definition of “protection”).

(2) The latter herd protective effect can be enhanced by deliberate intervention at the personal
level, in particular by vaccination or social distancing (reduction of contacts and potentially also
the infectiousness of contacts).

(3) There are other measures like eradication of the virus (e.g. by draining swamps or burning
clothes and the like). In practice it might be difficult to prove that a virus has been eradicated
though. (PM. A virus needs a host for reproduction. When hosts clear and the virus cannot find new
units to infect, then basically the virus becomes extinct. Potentially, a virus might persistin a
“repository” (a location or carrier animal) but this would not pose a threat if it is at adequate
distance of the susceptible units.)

Interventions under (2) apply to the same mechanisms as are involved in the natural process of an
infection under (1), they thus involve the same mathematical structure and formulas, and thus it
becomes near to impossible to discuss (1) and (2) separately. We will not say much on (3).

6.12.3. Better use the term “herd resistance” than “herd immunity”

The above three avenues can be compared to the notion of “herd immunity” as this is used in the
literature in epidemiology.

This notion of "herd immunity" seems to allow for a deviation of population immunity, presumably
to make up for the notion that population immunity is unattainable in reality. However, some key
papers and a deconstruction of their definitions show that "herd immunity" appears to be a cre-
ative but confusing linguistic expression for a situation (i) when there is some herd protective effect,
see above under (1), but (ii) without the protection as suggested by the word "immunity". A herd
can survive as a herd by sacrificing many members, and humanity with 7 billion people may survive
as humanity when 6 billion perish, and perhaps history shows that humanity survived in the past in
similar ways, but there is no need to create confusion about this by using a confusing term. We can
assume that experts in epidemiology know that “herd immunity” does not imply such protection,
but the term will create confusion when it is used in communication with the general public, like in
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the speech by the Dutch Prime Minister Rutte (2020), see section 1.5.6.

Itis inadvisable that the literature in epidemiology uses a creative linguistic expression that creates
a false sense of security, which term is also used in communication with the general public, and
which term does not convey a proper message to an audience that is not familiar with the true
meaning of the term. The term “herd (infection) resistance” is better, also because the general
public might also mistake the “herd protective effect” for “herd protection”.

Define ApPHerd, def Ap[eo]. We might consider the idea that this herd "protects" the still susceptible
SPHerd, o def Sp[eo]. However, this is a wrong use of the word “protects”. Ap[eo] is only a limiting
value. In the process Sp[t] & Sp[eo] there are still units infected. For some units there is not the
promised protection. It might be someone dear to you. The problem with the use of the limiting
values is that one must specify when the "herd immunity" is reached and for limits to infinity this is
impossible.

ApLimit == 1 - SIA[ProductLog, BetaSIA[] / GammaSIA[]] /. Options[SIA] // N
ApLimit = 0.980173

Alternatively, we might use a criterion like 95% of the limit value, and take Apherd, 95 def 95% Ap[oo].
We discussed in section 5.6 at what moment in time this level is reached for our combination of
parameter values.

t95 = TforAp95[4]
74.4295

Thus we can describe this situation (of “an increased protective effect to 95% of the limit value”)
without using, or trying to save, the term “herd immunity” with its implied false sense of security.
Below in subsections 6.12.7-9 we will consider some alternative efforts at definition (notably based
upon a notion of a steady state) that turn out to have drawbacks too. Before discussing this, it is
better to first look into interventions like vaccination and social distancing, since the mathematics
is so close to this notion of herd resistance.

Different authors may introduce different particulars when they use the term “herd immunity”.
Some definitions are:

- “the resistance of a group to attack by a disease to which a large proportion of the members are
immune, thus lessening the likelihood of a patient with a disease coming into contact with a suscep-
tible individual” (Dorland’s Illustrated Medical Dictionary 1965 quoted by Fox et al. (1971)). (PM. The
“resistance” apparently is a degree. Note that the term “herd infection resistance” could also have
been adopted in 1971.)

- Fox et al. (1971) criticise the assumption of homogeneity and argue for heterogeneity and clusters:
that “open populations are made up of innumerable definable but often interlocking subgroups
which differ in respect to proportions of immunes and intimacy of contacts”. They do not question
that there can be a protective effect. The authors develop a view on the level of vaccination - but
this is something else than providing a sound definition for “herd immunity” (which is our focus of
interest in this subsection).

- Fine, Eames & Heymann (2011) refer to a “variety of meaning” (with 7 references). Their abstract:
“Some authors use it to describe the proportion immune among individuals in a population. Others
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use it with reference to a particular threshold proportion of immune individuals that should lead to
a decline in incidence of infection. Still others use it to refer to a pattern of immunity that should
protect a population from invasion of a new infection. A common implication of the term is that the
risk of infection among susceptible individuals in a population is reduced by the presence and
proximity of immune individuals (this is sometimes referred to as “indirect protection” or a “herd
effect”).”

Heesterbeek et al. (2015) define "herd immunity" as "state of the population where the fraction
protected is just sufficient to prevent outbreaks (R < 1)". (We write R instead of R..) This takes an
"outbreak" as R 2 1. However, protection (in general) is more than “preventing an outbreak”, while
we also would want to see reference to the particular effect of immunity of units within the herd. It
is also possible that this formulation may confuse “protection” with “protective effect” (i.e. as in
the definitions above). The core notion rather is not that a fraction is protected (has become
immune) but that their immunity has a protective effect, like preventing an outbreak, which how-
ever should not be confused with “immunity of the herd” so that there would be no more infections
(because of an overshoot).

In section 1.5.6 we already stated that the effective reproduction factorR=Sp Ry =(1-Ilp-Ap) Ro <1,
iff Ip+Ap>1-1/Ry. When Ip >0, this still means that infections continue. The literature calls this
"overshoot". When an epidemic is raging and Ip >> 0 then the epidemic still has quite an impact.
The definition by Heesterbeek et al. (2015) thus cannot convince.

This deconstruction of key papers establishes (i) that there is no useful definition of “herd immu-
nity” and (ii) that the use of this term only contributes to confusion. Let us define “pseudo herd
immunity” when R>1andAp>1-1/R.Since R=Sp Ry and Sp <1 (with nonzero seed), it may
suffice that Ap>1-1/Ry. This particular formula, that neglects the role of Ip, will be discussed
below but can best be mentioned here at the outset. Authors writing about “herd immunity” might
intend the herd protective effect, and when they refer to this formula then they would be advised to
speak about “pseudo herd immunity” since there is no immunity of the herd and there is no reason
to suggest that there is such (other than that the herd may survive as a herd and avoid extinction
perhaps even when 99% succombs).

In the following, we will first discuss vaccination and social distancing before we return to the issue
concerning the confusion as has been generated by the term “herd immunity”. When there is
confusion, it may remain vague what the confusion actually is or what causes it. Speculation about
what a confusion is might be even more confusing. Thus it is better to first present a proper analysis
and then secondly perhaps indicate what possible confusions might be.

6.12.4. Burden of disease, sacrifice ratio and intervention

Let the disease have a (monetised) burden b per infected unit. The total burden of disease is b
Aq[eo]. An example is the loss of income over the disease period. The risk of death, with the infec-
tion fatality factor (IFF), may cause different considerations and decisions than about money. Here
for the SIA model we first assume IFF = 0, then we might generalise to b=bm + bd IFF for a pure
monetary component bm and the monetary aspects bd for IFF # 0, and later for the SICD model we
focus on fatalities.
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The share of the infected itself is already an indicator of the burden of disease. By setting norms, we
may formulate an acceptable burden of disease (ABD). We can reduce the burden of disease b
Ag[eo] by an intervention. The advantage of monetisation is that we can now relate the benefits of
the intervention to the costs of the intervention. The total cost in level (q) is:

TCq = b Aq[eo | Intervention] + Cost[Intervention] < ABD

With ABD the acceptable level of the burden of disease for the whole population then a = ABD / N[0]
is the per unit value. The goal can be reformulated in proportions (p) as:

TCp = b Ap[eo | Intervention] + Cost[Intervention] / N[0] £ a

When the acceptable level is determined per infected unit, then this causes us to consider policy
intervention that are directed at the units, e.g. on treatment or on the duration of the disease. When
the acceptable level is determined for the whole population, then the burden of the infected is
dispersed over the wider population, which may be regarded as an element of insurance. A reduc-
tion of the number of infected doesn't change the burden per infected but does change the burden
on the population.

In the following we will look only at the burden for the population and at the reduction of the
number of infected. A further simplification is possible by dividing by the burden per unit.

UnitCost[/ntervention] = Cost[Intervention] / (b N[0])
TCpb = Ap[eo | Intervention] + UnitCost[Intervention] <a / b

The latter a / b will be called the sacrifice ratio. For example, a disease might cost one month of
illness and recovery from illness, valued at an average salary of EUR 2000 per infected person. When
society deems a = EUR 100 per inhabitant acceptable, then the sacrifice ratioisa /b =100 /2000 =
5%. Conceivably 19 persons might offer EUR 100 each so that the diseased also has EUR 1900. It
might also be that the diseased units remain dependent upon both own savings and charity so that
the “cost for society as a whole” is calculated only in abstract manner.

The effect of the intervention can be measured as Ap[eo] - Ap[oo | Intervention] in non-monetary
units, but also as Ap[eo] - TCpb = Ap[eo] - (Ap[eo | Intervention] + UnitCost[/ntervention]) in monetary
format that also accounts for the cost of the intervention. A maximal effect means a minimal TCpb,
given that Ap[eo] is constant.

These relations provide an inspiration to derive a rule for a. Namely, when TCpb is minimal then
costs cannot be reduced further, and society would certainly regard unavoidable minimal costs as
minimally acceptable, i.e. a/b = Minimum[TCpb | Intervention]. Society may of course prefer a higher
value for ABD, which value might be attained by more but also less intervention. For equal costs it
may be possible to save more or less units from an infection.

There are at least two ways to reduce the number of infected units: (i) vaccination, i.e. a pharmaceu-
tical intervention, (ii) reducing contacts, i.e. a behavioural or non-pharmaceutical intervention.
Above condition on TCpb must be refined in order to account for the particulars of these two
different methods. Potentially these methods might be mathematically equivalent e.g. when Ry, yvac
= (1-Vv) Ry = Ry, int, for vthe degree of vaccination, but the methods could still differ because of the
cost structure.
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6.12.5. Vaccination

6.12.5.1. It is possible to avoid a separate compartment

We assume that vaccination is fully effective and results into immunity directly. A way to model
vaccination is to introduce a new compartment Vso that N=V+S+/+A. We can avoid the introduc-
tion of a new compartment by accounting the vaccinated as “having been infected” (and thus
immune). Then we take Aq[0] = v Nq[0] and Ap[0] = v. By consequence Sp[0] = (1 - v) - Seed / Nq[0],
in which I1g[0] = Seed. Vaccination then results into the limit value Ap[eo | Ap[0] = V], see our discus-
sion of the limit values.

The first infectious unit (the seed) has an offspring of Ry units, via direct infection of its contacts.
When those contacts have been vaccinated with degree v in the range [0, 1], then this means that v
Ro would not be infected and (1 - v) Ry would still be infected. The infection will remain constant
when (1 -v) Ry =1; it will grow then (1-v) Ry > 1; and it will reduce when (1 - v) Ry < 1. The latter can
be rewritten into a condition for the degree of vaccination to warrant that the infection will be
reduced:v>1-1/R,.

6.12.5.2. Acceptable and minimum overall costs

Above cost-benefit calculation must be adapted for the particulars of vaccination. The vaccinated
units do not suffer the burden of disease. Thus this burden has been reduced to b (Ap[eo | v] - v).

Vaccination comes with a cost ¢ per unit. The total cost (TC) is, in level (g) and proportion (p):
TCq =cvNq[0] + b (Ag[ee | v] - vNg[0]) <ABD
TCp=cv+b (Ap[eo|V]-v) <a

TCpb=c/bv+ (Ap[eo | V]-V)=(p-1) v+Ap[eo |v] <a/b (i.e. normalised with b, using p =
c/b)

6.12.5.3. Cost-benefit table

Before discussing details, the main result can be presented upfront.
(i) The proportion of units saved from an infection is v + (Ap[eo] - Ap[eo | V]).
(ii) The proportion of units not saved is Ap[oo | V] - v.

(iii) The sacrifice ratio is TCpb = p v + (Ap[oo | V] - v). The latter can be multiplied by b N[0], with b the
burden of disease per unit, to find the aggregate "acceptable burden of disease" (ABD).

(iv) The gain is the reduction of per unit costs, given as Ap[oo] - TCpb, which consists of the reduc-
tion in Ap corrected for the normalised costs p per vaccination.

For example, if we vaccinate 50% of the units at a cost of p = 1/10, then the costs and benefits can
be tabulated as follows.
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SIA["Vaccination", Table, .5, 1/10]

Population Proportion
Ap[oo] = Ap[eo | RO = 4.] 17.1x10° 0.980173
Vaccination (v) 8.7x10°8 0.5
Ap[eo | V] 15.6x 106 0.898408
Ap[eo | V] -V  (not saved) 6.93x10° 0.398408
Ap[oo] = Ap[oo | V] 1.42x106 0.0817647
Ap[oo] = Ap[eo | V] + v (saved) 10.1x 106 0.581765
TCpb =p v+ Ap[eo | V] -V 7.8x10° 0.448408
Ap[oo] - TCpb 9.25x10° 0.531765

Minimising TCpb gives the following level of vaccination:
SIA["Vaccination", NMinimize, 1/10] [[3]]

Vaccination (v) (min TCpb) - 0.753497

SIA["Vaccination", Table, 1/10]

Population Proportion
Ap[oo] = Ap[eo | RO = 4.] 17.1x10° 0.980173
Vaccination (v) (min TCpb) 13.1x10° 0.753497
Ap[eo | V] 13.1x108 0.753886
Ap[eo | V] =V  (not saved) 6767 0.000388901
Ap[oo] = Ap[oo | V] 3.94x108 0.226287
Ap[oo] - Ap[eo | V] + v (saved) 17.x10° 0.979784
TCpb =p v+ Ap[eo | V] -V 1.32x108 0.0757386
Ap[e] - TCpb 15.7x108 0.904434

SIA[Explain, "Intervention"]

SIA["Vaccination", v, p] for numerical values gives TCpb = p v + (Ap[inf | v] - v) /.
(Sp0 —> 1 - v - seed). This value of the sacrifice ratio can be multiplied by b Nqg[0],
for b the burden of disease per unit. Output is stored in Results[SIA, "Vaccination"]
SIA["Vaccination", NMinimize, p] finds v by minimizing over TCpb
SIA["Vaccination", Table, (v, ) p] presents the outcome both in levels and proportions. The proportion of
units saved from an infection is v + (Ap[inf] = Ap[inf | v]). The proportion of units not saved is Ap[inf |

v] = v. The costs and benefits can be evaluated in both units and money (units minus cost of change)

SIA["ROintervention", ROint, p] for numerical values gives TCpb = p (RO
- ROint)"2 + Ap[inf | ROint]. The sacrifice ratio can be multiplied by b Nqg[0], for b
the burden of disease per unit. Output is stored in Results[SIA, "ROintervention"]
SIA["ROintervention", NMinimize, p] finds ROint by minimizing TCpb
SIA["ROintervention", Table, (v,) p] presents the outcome in levels and proportions. The proportion
saved from an infection is Ap[inf | RO] — Ap[inf | ROint]. The proportion not saved is Ap[inf | ROint].

The costs and benefits can be evaluated in both units and money (units minus cost of change)

6.12.5.4. Minimisation

The following discusses how to find a/b = Minimise[TCpb | v] subject to vin [0, 1]. We look at the
shape of the cost function and check whether we can use algebraic or numerical methods.
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apinf = 1 - SIA[ProductLog, RO, Spo, V]
W(RO SpO (-eR0 (-1))
RO

+1

TCpb = pv + (apinf-v) /. (Sp8 -> 1 - v - seed)

W(RO (-e%° (1) (-seed - v + 1))
pv+ R0 -v+1

An example is that the cost of a vaccination is p = 1/10 of the cost of the disease, or that vaccinating
10 units is as costly as letting one unit suffer the disease (and asking 19 other units for help with
compensation). For a single unit there is the choice of either vaccination at the cost of EUR 200 or
taking the risk of the infection and disease at the cost of EUR 2000. The risk is determined by how
many would be vaccinated.

TCpbnum[v_, p_] = TCpb /. {R@ - 4, seed » 100 / NgSeed}

1
" W(-4e*-1 (0.999994 - v)) +pv-v+1

This cost function is nonlinear due to the term Ap[oo | v]. When the function would be smooth and
convex to the origin then we can find a minimum from the first order conditions. In other cases we
may use a numerical approach.

Mathematica cannot solve the first order condition.
Solve[D[TCpb, v] == 0, V]
Solve: This system cannot be solved with the methods available to Solve.
e R0(-1) (RO R0 (1) - RO @R0 (") (—seed - v + 1)) W(RO (-e"0(""V)) (-seed - v + 1))
RO? (-seed - v + 1) (W(RO (-e"0(""V)) (-seed - v + 1)) + 1)

Solve[p - -1=0, v]

A plot for numerical values is:

Plot ee@ {TCpbnum[v, #] & /e {0, 1/5,1 /10, 1/20}, {v, @, 1}, AxesOrigin » {0, 0},
AxesLabel - {"v", "p v + Ap[w | V] - v"}, BaseStyle » {FontSize - 13}}

pVv+Ap[eo|V]-V
1.0¢
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0.6
0.4}

0.2}
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Remarkably, the normalised total cost reaches a minimum aroundv=1-1/R.

Substitution of v— 1 - 1/R0 gives:
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nc = TCpb /. v > 1-1/R0

p(1-1)+_%'m) 1

-+ —
RO RO RO

Observe that when seed =0, then we get:
ProductLog[-1/ e]

-1

When seed =0 (no need for vaccination) then the normalised cost atv=1-1/ R, reduces to:

nc /. seed » 0

[

Numerical minimisation generates proper values.
fmsol = NMinimize @e {TCpb /. {R@ » 4, seed » 100 / NgSeed, p » 1/ 10}, v}

{0.0757386, {v - 0.753497}}

The extreme value of seed = 0 would generate a situation without infections, but the minimum of
this particular function still gives the expected outcome.

fmsol = NMinimize ee {TCpb /. {R@ - 4, seed > 0, p - 1/ 1e}, v}
{0.075, {v—0.75)}

Conclusions are:

(i) the infection will be reduced whenv>1-1/Rg

(i) for some cost functions it would also be possible to attain minimum costs

(iii) in this particular example (with Ry =4, IFF = 0, etcetera) a sacrifice ratio of 0.075386 would be
minimally acceptable (since it forms an overall minimum) and it is attained for the value v=
0.753497>1-1/Rg

(iv)vaccination is also possible at levels v<1-1 /R, but then there will be a higher burden of
disease and costs would not be minimal

(v) let us not forget that it was assumed that all units are equal so that it does not matter which unit
is vaccinated and which is not.

6.12.5.5. Implied RO (1 - v)

A way to imagine the impact of vaccination is that the original Ry is reduced to Ry, vac = Ro (1 - V).
When we check what the implied Ap[oo | Rg vac] is, then we find a slight difference with the propor-
tion as calculated above for those who were not saved by the vaccination. In levels, the below gives
7046.79 units instead of 6767 units above that are not saved from infection, starting with the Seed =
100. It is tempting to attribute the difference to numerical precision, but given the general precision
of Mathematica it may be better to regard the use of this Ry vac = Ro (1 - v) as a (very decent) approxi-
mation only.
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vac = "Vaccination (v) (min TCpb)" /. Results[SIA, "Vaccination"]

0.753497

impliedROv = BetaSIA[] / GammaSIA[] (1 -vac) /. Options[SIA]
0.986012

impliedApinf = 1 - SIA[ProductLog, impliedROv, 1 - Seed / Nqt@ ] /. Options[SIA]
0.000404988

TheFormer NqtO /. Options[SIA]
7046.79

6.12.5.6. PM. 1. Vaccination and Options[SIA] for running the model

For running and plotting of the model, we can handle vaccination and Ap[e | v] by setting Aqt0 - v
NgSeed in the Options[SIA]. In the SIA model, Sq[0] = N[0] - Aq[0] - Seed. The SIA[Limit, ...] state-
ment uses the same relations on the ProductLog as used above. Perhaps it is useful to show this.

ResetOptions [SIA]; SetOptions[SIA, Aqt@ - v NgSeed]

{Aqt0 » 1.74x 107 v, Cqt0 - 0, DataMold - {S, I, A}, Dqt0 - 0, Iqt0 - Null,
NqgtO - 1.74x 107, Onset - 0, Seed - 100, Yqt0 — 0, AlphaSEYCD() - 1.,
BetaSIA() » 0.4, GammaSIA() - 0.1, PhiSICD() » 0.015, RO() » NuII}

explv =
(Explain[SIA[Limit, BetaSIA[] - RO GammaSIA[]], SIA] /. {1. -» 1, -1. » -1} //
Simplify) /. 1.” - 1
W(RO (v - 0.999994) g0 (v-1)) W(RO (v - 0.999994) ef%(v-1)) + RO

{s->- — 150, A — }

Above expression generates Ap[e | v] - v as follows:

("A" - v) /. explv /. RO » 4 // Simplify

1
" (W(0.0732626 6" (v - 0.999994)) - 4 v + 4)

While above we used:

(apinf- v) /. (Spe -> 1 - v - seed) /. {R@ - 4, seed -» 100 / NgSeed} // Simplify

1
; (W(0.0732626 6% (v 0.999994)) - 4v + 4)

Thus, setting the options in above manner: (i) generates the situation for the vaccination as we
have discussed in the above, and (ii) allows to run the model and plot the course of the infection.
SetOptions [SIA, Aqt@ - vac NqSeed] (* the value of vac was set above x)

{Ath - 1.31108x 107, Cqt0 - 0, DataMold - {S, I, A}, Dqt0 - 0,
Igt0 - Null, Ngt0 - 1.74x 107, Onset - 0, Seed - 100, Yqt0 — 0, AlphaSEYCD() - 1.,
BetaSIA() - 0.4, GammaSIA() - 0.1, PhiSICD() - 0.015, RO() - Null}

SIA[Run, Pr, newModel, t, 150, Seed - 100] ;
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SIA[Plot, @, 150]
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Day

ResetOptions [SIA];

6.12.5.7. PM. 2. When the sacrifice ratio is determined exogenously

Society can determine the sacrifice ratio directly. In that case, more than minimal costs can be
made by vaccinating more or less units.
eqval[p_] =
sacrificeratio = pv + (apinf-v) /. (Sp@ -> 1 - v - seed) /. {seed -» 100 / NgSeed}
W(RO (0.999994 - v) (-e"0("-1)))

sacrificeratio = +pv-v+1
RO

For example, when p =1/10 and Ry = 4 and society accepts a sacrifice ratio of 0.9 which is much
higher than above 0.0757386, then (see above plot) there are two solutions for the degree of vaccina-
tion, one to the left of 1- 1/ Ry and one to the right. The two values can be found by using different
starting values. It depends upon society whether the low v or the high v solution is chosen.

FindRoot ee {eqval[1l/18] /. {R@ - 4, sacrificeratio - .9}, {v, .5}}

{v-0.0823181}

FindRoot ee {eqval[1/18] /. {R@ - 4, sacrificeratio - .9}, {v, 1}}
{v>9.}
PM. In some cases we can solve the equation to find an explicit expression for v. Apparently, Mathe-

matica does not solve for nonzero values of p = ¢/b, but a solution appears to be possible when p =
0, i.e. when the cost of vaccination is neglected.
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sol = Solve[eqval[l/ 10], V]

. Solve: Solve was unable to solve the system with inexact coefficients or the system obtained by direct rationalization of
inexact numbers present in the system. Since many of the methods used by Solve require exact input, providing Solve
with an exact version of the system may help.

W(RO (0.999994 - v) (-ef(-1))) gy

Solve[sacrificeratio = -—+1, v]
RO 10

sol = Solve[eqval[@] , V]
0.999994 RO g1 ROsacrificeratio 4 1 RQ sacrificeratio — 1. RO
{{v- 1}

RO 6_1' RO sacrificeratio _ 1.RO

A maximum-condition prevents negative outcomes.

vaccination[RO_, sacrificeratio_] = Max[@, v /. sol[[1l, 1]]]

0.999994 RO g1 ROsacrificeratio 4 1 RQ sacrificeratio — 1. RO)

max| 0, ———
RO 6_1' RO sacrificeratio _ 1.RO

For example, with Ry =4 and an acceptable sacrifice ratio of 1/4 =0.25 (much higher than above
minimum 0.0758), and neglecting the cost of vaccination, then vaccination of 60% means that 15%
less units are vaccinated. The higher accepted cost arises because of the (individual) burden of
disease b (and it is not said that society compensates the infected).

vaccination[4, 1/4]

0.604509

The following contour plot indicates the general shape of the curves. The plot relates to what has
been plotted for “herd immunity”.
ContourPlot [Evaluate [vaccination[re, val]l,

{r0, .5, 8}, {val, @, 1}, FrameLabel -» {"RO", "a / b"},
BaseStyle -» {FontSize - 13}, AspectRatio - 1/GoldenRatio]
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ApByROPlot [ "HerdImmunity"]
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6.12.6. Social distancing, reducing contacts and their infectiousness

A behavioural intervention reduces both contacts and the infectiousness of contacts, so that Rg is
adapted to Ry int. The impact is measured by comparing the two final states, in this case Ap[eo] =
Ap[oo | Ro] and Ap[eo | Ro,int]. This comparison can be done directly in terms of units but also in
monetary form when we also subtract the cost of the intervention.

6.12.6.1. Acceptable and minimum overall costs

Above cost-benefit calculation must be adapted for the particulars of the non-pharmaceutical
intervention. The crucial question is what costs might arise when Ry is adapted. A much used
format in cost minimisation is quadratic costs. Let us assume that the reduction of contacts has
quadratic costs ¢ (Ro - Ro,int)*2 per unit.

The total cost (TC) is, in level (g) and proportion (p):
TCq = (Ro - Ro,int)*2 Nq[0] + b Aq[eo | Ro,int] <ABD
TCp =c (Ro - Ro,int)*2 + b Ap[oo | Ro,int] <a
TCpb=c/b (Ro - Ro,int) 2 + Ap[eo | R int] <a/b (i.e. normalised with b, using p = c/b)

6.12.6.2. Cost-benefit table

Before discussing details, the main result can be presented upfront.
(i) The proportion of units saved from an infection is Ap[oo] - Ap[eo | Rg int]-
(i) The proportion of units not saved is Ap[eo | Ro, int]-

(iii) The sacrifice ratio is TCpb (see above). The latter can be multiplied by b N[0], with b the burden
of disease per unit, to find the aggregate "acceptable burden of disease" (ABD).

(iv) The gain is the reduction of per unit costs, given as Ap[oo] - TCpb, which consists of the reduc-
tion in Ap corrected for the quadratic costs of the behavioural adjustment.

For example, if we target a Ry int = 0.80 while the quadratic cost parameter is p = 1/10, then the costs
and benefits can be tabulated as follows, indicating that monetary costs will be higher than the
burden of disease itself.
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SIA["R@intervention”, Table, .8, 1/10]

| Population Proportion
Ap[eo] = Ap[eo | RO = 4.] 17.1x10° 0.980173
Ap[e | ROint = 0.8] (not saved) 500 0.0000287337
Ap[eo] — Ap[eo | ROIN]  (saved) 17.1x108 0.980144
TCpb = p (RO-R0Oint)"2 + Ap[eo | ROINt] 17.8x10° 1.02403
Ap[eo] — TCpb -763095 -0.043856

Minimising TCpb gives the following Ry int.
SIA["R@intervention”, NMinimize, 1/19] [[311]

Ap[e | ROint = 0.998526] (not saved) (min TCpb) - 0.00222168
Results[SIA, "ROintervention"”, NMinimize][[2, 1, 2]]

0.998526

SIA["R@intervention”, Table, 1/10]

Population Proportion
Apleo] = Ap[eo | RO = 4.] 17.1x10° 0.980173
Ap[e | ROint = 0.998526] (not saved) (min TCpb) 38657 0.00222168
Ap[oo] - Ap[eo | ROINt]  (saved) 17.x 108 0.977951
TCpb = p (RO-R0Oint)"2 + Ap[eo | ROINt] 15.7 x 10° 0.903107
Ap[e] - TCpb 1.34x10° 0.0770662

SIA[Explain, "Intervention"]

SIA["Vaccination", v, p] for numerical values gives TCpb = p v + (Ap[inf | v] - v) /.
(Sp0 —> 1 - v - seed). This value of the sacrifice ratio can be multiplied by b Nqg[0],
for b the burden of disease per unit. Output is stored in Results[SIA, "Vaccination"]
SIA["Vaccination", NMinimize, p] finds v by minimizing over TCpb
SIA["Vaccination", Table, (v, ) p] presents the outcome both in levels and proportions. The proportion of
units saved from an infection is v + (Ap[inf] — Ap[inf | v]). The proportion of units not saved is Ap[inf |

v] — v. The costs and benefits can be evaluated in both units and money (units minus cost of change)

SIA["ROintervention", ROint, p] for numerical values gives TCpb = p (RO
— ROint)"2 + Ap[inf | ROint]. The sacrifice ratio can be multiplied by b Ng[0], for b
the burden of disease per unit. Output is stored in Results[SIA, "R0Ointervention"]
SIA["ROintervention", NMinimize, p] finds ROint by minimizing TCpb
SIA["ROintervention", Table, (v,) p] presents the outcome in levels and proportions. The proportion
saved from an infection is Ap[inf | RO] — Ap[inf | ROint]. The proportion not saved is Ap[inf | ROint].

The costs and benefits can be evaluated in both units and money (units minus cost of change)

6.12.6.3. Minimisation

We now focus on finding a/b = Minimize[TCpb |Ry,int] Subject to Ry int in [0, Ro].

apinf = 1 - SIA[ProductLog, ROint, 1 - seed, 0]

W(-e~Ront ROint (1 - seed))
ROiInt

+1
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TCpb = p (R@ - Reint)~2 + apinf

W(-eR0nt ROint (1 - seed))
p (RO - ROInt)? + +1
ROint

Below we will consider values for p of 0, 1/5, 1/10 and 1/20.

TCpbnum[R@int_, p_] = TCpb /. {R@ - 4, seed - 100 / NqSeed}

W(-0.999994 e-RCInt ROInt)
p (4 — ROint)? + +1
ROint

Special cases are (a) Ro,int = 1 with no adaptation costs (p =0), and (b) Ro,int = Ro for any p. In the first
case, the Seed = 100 number of infections is continued till eternity, and we tend to expect that
eventually still all susceptible units will be infected, but eventually there are two effects: (i) the
reduction of the effective reproductive number, (ii) the seed appears to be a smaller fraction of the
acquitted with exponential decay that may also take a very long duration.

{TCpbnum[1, O], TCpbnum[4, p]}

{0.00338649, 0.980173}

TheFormer * NgSeed
{58925., 1.7055x 107}

This cost function is nonlinear. When the function would be smooth (“well-behaved”) and convex to
the origin then we can find a minimum from the first order conditions. In other cases we may use a
numerical approach.

Mathematica cannot solve the first order condition.
Solve[D[TCpb, ROint] == @, ROint]
Solve: This system cannot be solved with the methods available to Solve.
W(-eR0nt ROint (1 - seed))
ROint? B
eRoint (g=R0Int RQint (1 - seed) — R0t (1 — seed)) W(-e~RO"t ROint (1 - seed))
ROInt? (1 - seed) (W(-e~R0t ROint (1 - seed)) + 1)

SoIve[—Z p (RO - ROint) -

=0, Romt]

Recall that the function for Ap rises sharply from Ry = 1 (see below plot for p = 0). When this format is
combined with quadratic costs then we get a special form. A plot for numerical values p in {0, 1/5,
1/10, 1/20} is:
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Plot ee {TCpbnum[R@int, #] & /e {0, 1/5, 1 /10, 1/20},
{ROint, @, 6}, AxesOrigin - {@, 0}, PlotRange - {@, 2}, AxesLabel -
{"ROint", "p (RO-ROint)"2 + Ap[ew | ROint]"}, BaseStyle -» {FontSize - 13}}

p (RO=R0Int)"2 + Ap[eo | ROINt]
2.0;

1.5}
1.0}
0.5\/

0 1 2 3 4

ROint
6

Some conclusions are:

(i) Given the notion of quadratic costs of adjustment and the special format of other costs b Aq[eo |
Ro,int] we may accept that a local minimum may be found around Ry int = 1. Thus, we can accept that
values around Ry int = 1/2 cannot be generated by this form of the cost function.

(ii) The value of p apparently has a switching effect on the global minimum. For a particular p = peit,
that local minimum will have the same value as for the original reproduction number. Alternatively
put: TCpb[Ro,int, Perit] = Aploo | Ro]. For p > perit it is better to leave Ry like it is, and for p <pgit it is
better to switch to the value around 1. Given the interventions for SARS-CoV-2 apparently the latter
is the case.
TCpbnum[ROint, pcrit] == TCpbnum[4, p]

W(-0.999994 e~Ro"t ROiNt)

pcrit (4 — ROInt)? + +1=0.980173
ROint

Numerical minimisation of TCpb generates proper values.

fmsol = NMinimize[TCpbnum[R@int, 1/ 10], Reint]

{0.903107, {ROint - 0.998526}}

The cost reduction would be:

TCpbnum[4, p] - fmsol[[1]]

0.0770662

Scaled up to the aggregate level, this amounts to a sizeable sum, of 7.7% of the population with
each a burden of disease of b.

TheFormer » b » NqSeed
1.34095x 10° b

6.12.6.4. PM. When the sacrifice ratio is determined exogenously

Society can determine the sacrifice ratio directly. In that case, more than minimal costs can be
made by saving more or less units.
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equal[p_] = sacrificeratio == TCpb /. {seed - 100 / NgSeed}

W(-0.999994 e~ROint RQint)
sacrificeratio = p (RO - ROint)? + +1
ROint

On occasion it appears that more than one solutions is possible - see the plot. It depends upon
society what point is selected. (When the infected are compensated by society then it would make
sense to select the minimum number of infected units.) An example is:

FindRoot ee {eqval[1/18] /. {R@ - 4, sacrificeratio - 1}, {Reint, .5}}
{ROint - 0.837778}

FindRoot ee {eqval[1l/18] /. {R@ - 4, sacrificeratio - 1}, {Reint, 2}}
{ROInt - 3.37532}

PM. Apparently, Mathematica does not solve for nonzero values of p. A solution appears to be
possible when p =0, i.e. when the cost of change is neglected. This appears to be none other than
the relation for Ap[eo | Ro] itself.

sol = Solve[eqval[1/ 10], Reint]

Solve: Solve was unable to solve the system with inexact coefficients or the system obtained by direct rationalization of
inexact numbers present in the system. Since many of the methods used by Solve require exact input, providing Solve

with an exact version of the system may help.
W(-0.999994 e~Roint RQint)
ROint

1
Solve[sacrificeratio = B (RO - ROiINt)? + +1, ROint]

sol = Solve[eqval[@] , ROint]

. -1. log(1.0000000000 - 1.0000000000 sacrificeratio) — 5.74714x 107°
{{ROlnt - }}

sacrificeratio

TheFormer /. x_?NumberQ :» (Chop[x +1] - 1)
-log(1.0000000000 - sacrificeratio) — 5.74714 x 107® }}

sacrificeratio

{{roint >

sol = TheFormer /. y_?NumberQ :» (Chop[y -1] + 1)

) —log(1 - sacrificeratio) - 5.74714 x 1076
{{ROlnt - }}
sacrificeratio

ROintervention[sacrificeratio_] = R@int /. sol[[1, 1]]

-log(1 - sacrificeratio) — 5.74714 x 107°

sacrificeratio

This appears to be none other than the inverse of the plot for Ap[eo | Ro].
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Plot [R@intervention[val], {val, @, 1},
AxesOrigin -» {0, @}, AxesLabel -» {"a / b", "Required RO"},
PlotRange -» {0, 8}, BaseStyle -» {FontSize - 14}]

Required RO
8 -

. . . 1 . . . 1 . . . 1 . . . [ . . 1 a / b
0.0 0.2 0.4 0.6 0.8 1.0

PM. Compare.
ApByROPlot [ "HerdImmunity" ]

Ay called Herd Immunity

1.0;
0.8
0.6} — Aleo]
04l — Am=1-1/Ry
0.2}

0

6.12.7. The problematic term “herd immunity” - continued

In subsection 6.12.1 we mentioned (1) “population immunity”, and in subsection 6.12.3 we men-
tioned (2) ApHerd, « def Ap[eo] and (3) ApHerd, 95 def 95% Ap[oo]. To prevent confusion, it appeared
useful to first discuss intervention on vaccination and social distancing. We now continue in listing
other options for what authors might mean by the term “herd immunity”.

(4) Other models may have a steady state, meaning that/=c so that/’=0.

A “steady state” for infections is defined as follows. Ry are the victims of an infectious unitin a
situation without immunity. When only 1 contact results into a new infectious unit when there is
immunity, then Ry - 1 end up nowhere because of immunity. The ratio (Ro- 1) /Ro=1-1/ R, gives
the same notion as stated above. However, this also means that infections continue.

We can relate to the formulas for a disease with a steady state in section 6.2.4. When we take the
IncidenceQuotient g there as B/ for /= c and the DiseaseDuration as 1/y, then we get the prevalence
=Roc/(Ro c+1).Using factor f=Ry c + 1, the prevalence translates as (f- 1) / f=1 - 1/f, which has the
same structure but f=Ry ¢ + 1. This however reduces to f=Rq if c=1 - 1/Ry, which is the same as the
above.
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(a) If I=c # 0 thenitis dubious to call this “herd immunity” since there will be infections at rate ¢/
Ng[O0].

(b) Such model is not SIA, and we should not mix models.

(5) For the SI(EY)A(CD) family, there is an asymptotic steady state because I’— 0. For SIA we still
have growth ([eo] = B.Sp[e0] - y. This would be zero if Sp[e0] =1/ Ro. The only basic reproduction
factor Rg that allows that Sp[eo] =1/ Rp is Rg = 1. The outcome that Sp = 1 however is incompatible
with the idea that Iq[0] = Seed # 0.

W(-ef)

Sp[ee] == 1/ Ry or —T = solvesinto {{f - 1}}

1
f
For the SI(EY)A(CD) family, the literature still shows discussions that combine these ideas in confus-
. m”
ing manner. It may be thought that Sp[eo] =1/ Ry and then we see the use of the formula Apyerg = 1
- 1/R,.

For SI(EY)A(CD), the latter combines both Ipuerd, « = Ip[oo] =0 and IPwerd, Top = Iprop #0 (see point
(6)). This combination is illogical.

(6) Define Sperd, Top ey / Ro, with the advantage of an identifiable moment in time when this is
reached. This notion of “pseudo herd immunity” is to focus on the idea that the disease gradually
dies out when the effective reproduction factor drops below 1, or R < 1, either at the very start or
after the top of infections.

For SARS-CoV-2 we find the proportions at the top as follows.
SIA[Ip, Top, BetaSIA[] /GammaSIA[]] /. Options[SIA]

{0.25, 0.403426, 0.346574}

However in the downward phase there will still be new infections for Sp,, - Spr,,,. We already

calculated this above. It is a curious form of “herd immunity” when one implies that when this
“immunity” is reached, thereafter still 23% of the susceptibles will be infected. (This percentage
depends upon the Ry, and observe that we cannot take the value from the lockdown period).

TopSIA = SIA[Ip, Top, BetaSIA[] /GammaSIA[] /. Options[SIA]];
Thread[ {Sp, Ip, Ap} - (SIA[Limit] - TopSIA)]

{Sp » -0.230173, Ip - -0.403426, Ap - 0.633599}

(7) The following only gives details about the above basic observation.

6.12.8. Solving for an assumed herd resistance

For SIA, we find Ig[eo] = 0 in above Sp[oo | + Ap[oo] = 1. Thus Ig[t] has a limit value 0 but never
becomes 0.

Let us consider what value of Rg would be relevant as a public health goal. Let us target a value of
Sploo ] = 40%, so that that the proportion of the acquitted (i.e. having had an infection but no longer
infectious) is Ap[oo] = 60%.
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eqSpLimit = 0.4 == SIA[ProductLog, Rg]
W(-e=o Ro)
Ro

0.4=-

res = NSolve[eqSpLimit, Rg] // Quiet
{{Ro -» 1.52715}}

SIA[Limit, BetaSIA[] - (GammaSIA[]Re /. res[[1]])]
{0.399994, 0, 0.600006}

Thus the authorities might intervene to achieve such lower value for Re.

For SARS-CoV-2, Dutch authorities (RIVM) have indicated a herd resistance (so-called “herd immu-
nity”) of 60% of the population. If they used the SIA model and above reasoning then they took
Ap[eo] =40% as in above example, and apparently they used a Ry = 1.5. However, RIVM published a
Ro = 2.5, and it is more likely that they used the steady state formula 1 - 1/R,, which is another
model.

6.12.9. A confusing notion of so-called “herd immunity” from a consideration
of the steady state

In section 1.5.6 we already stated: With Ap the proportion of immune, the effective reproduction (1 -
Ap) Ro < 1ifAp21-1/Ry. Thereis the following type of reasoning in the literature that might
pertain to a model with a steady state, another model than SIA but that has overlapping properties
with SIA, so that the reasoning becomes confusing on different assumptions. The confusion is
about using different models, and making assumptions about a steady state that would not exist in
the SIA model.There is no need to give references.

Consider another model with a steady state, in which I’=0 for t > T means that /, has gotten a
constant value /, = c. Let the proportional variables be 1=S5, + 1, + A,. Assume that the other model
has a similar relation as SIA to the effect that with [, =c *# 0, we have R=10r S, =1/ Ry. Define h=1,
+A, as the herd proportion, of those already acquitted or soon-to-be-acquitted (from infectious-
ness). Conveniently R<1fort>T.

Then1=1/Ry+hwhichgivesh=1-1/R,.
Somehow, there creeps in the assumption that ¢ —» 0 while the assumption for the steady state was
c*0.
This type of reasoning combines the long run Sp[eo ] + Ap[eo] = 1 relation with the assumption that
Sp=1/Ro to generate Sp[eo ] =1/ Ry.
eqSpLimit = (GammaSIA[] / BetaSIA[] == SIA[ProductlLog, Re] /. Options[SIA] )
W(-e=Ro Ro)
Ro

0.25=-

The latter however generates another Ry. Thus curiously, the information about the current repro-
duction factor (0.25 =1/ Ry but holding for the top) is used to determine a result under another
hypothetical reproduction factor.
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res = NSolve[eqSpLimit, Rg] // Quiet
{{Ro —» 1.84839}}

SIA[Limit, BetaSIA[] - (GammaSIA[]Re /. res[[1]])]
{0.249997, 0, 0.750003}

The problem with this "reasoning about the steady state" is:

(i) Unless the constant value of / is 0, there still will be (dwindling) infections, and possible deaths,
so that this herd proportion does not provide the protection which one associates with the notion
of immunity.

(ii) SIA has no steady state, only an approximation in the long run, so that the above assumes other
models.

In the following plot, the area between the curves gives the “overshoot”, which can be multiplied
by 0.015 * the population size to find the death toll of confusion.

ApByROPlot [ "HerdImmunity"]

Ap called Herd Immunity
1.0

0.8+

0.6} — Aleo]

04l — An=1-1/R,

0.2+

6.12.10. In sum

(1) The condition of zero growth of the infections, i = 0, does not only hold for the transient top but
also for a steady state. A steady state in SIA is only possible when 8=0 or when S, or I, are quaran-
tined. For SIA we basically have only limit values when time goes to infinity.

(2) Inthe limit/= B Sp[eo] - ¥y # 0. Sp[eo] =1/ Ry only holds when Sp[eo] = 1, which is illogical since we
seeded the population with an infection.

(3) There may be confusion in the discussion, but also the use of another model.

(4) It seems likely that the notion of “herd immunity” has been used in the epidemiological litera-
ture in well-defined cases, like vaccination for measles, in which discussions the experts know what
they are doing, so that in practice no relevant confusion arose in those practices. However, in the
SARS-CoV-2 pandemic, the term was applied by less-expert people in a situation new to them.

PM. The following is something of a mnemonic summary, that allows the substitution of parameter
values.
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eqgs = {Per‘iodBetweenInfections[t] =1 / BetaSIA[t],
RecoveryPeriod[] = 1 / GammaSIA[],
RO[t] == BetaSIA[t] / GammaSIA[],
HerdImmunity["ConfusionOrUnspecifiedOtherModel"] == 1 - 1/ Ro,
HerdImmunity["Rather misleading: reached R[t] < 1"] == "Sp[t] < 1/ Re[t]",
HerdImmunity [SIA, ApLimit] == 1 - SIA[ProductLog, Re], (* perhaps include 95% %)
"Ro < 1" » (Rp s 1), ( the left does not change when replacing the right «)
TopIq - SIA[Ip, Top, Rel};

eqs /. Options[SIA] // MatrixForm

1

PeriodBetweenlnfections(t) = BerSAD

RecoveryPeriod() = 10.
RO(t) = 10. BetaSIA(t)

Herdlmmunity(ConfusionOrUnspecifiedOtherModel) = 1 - Rl—o
Herdlmmunity(Rather misleading: reached R[t] < 1) = Sp[t] < 1/ Ro[t]
Herdlmmunity(SIA, ApLimit) = W(_%:OR") +1
Ro<1->Rp=1

TopIq N {Rl_OI Ro—loiiRg)—l’ IogR(:?g)}

7.SICD

Clear

Let us first clear all relevant variables, since we may do different runs. When we call a “run” then the
routine does so actually itself too, but it seems to be good discipline not to wait till such routine
guidance.

SIA[Clear]

SetOptions [SetDatabank, Databank - SICD]; (* for Explain =x)

7.1. Fast-track run and plot

This section directly runs the model and plots the results. An appendix to this chapter does the
same in steps, so that the user might take more advantage of the environment in Mathematica.

The Dutch population in 2020 is about 17.4 million people. It will be convenient to use formal

parameter Nqt0 — the size of the population, while Npt0 - 1. Subsequently, for quick calculation

of proportions it will be useful to set NqSeed = Nq[t0] at a numerical value. NqSeed is not a parame-

ter in the model, and only a handy variable name at the user level.

NgSeed = 17.4 < 10"6;

SetOptions [SIA, Nqt@ - NqgSeed]

{Ath - 0, Cqt0 > 0, DataMold - {S, |, A}, Dgt0 - 0, Iqt0 - Null, Nqt0 - 1.74x 107, Onset - 0, Seed - 100,
Yqt0 - 0, AlphaSEYCD() - 1., BetaSIA() » 0.4, GammaSIA() - 0.1, PhiSICD() -» 0.015, RO() » NuII}

The infections are driven by the equation Iq[t0] == Seed. (Seed is parameter in the model.) The
carnival festivities in the South of Holland were on February 23 2020. It is not unlikely that some 100
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infections were seeded by people having returned from Italy and Austria from work and ski holi-
days. The options have default Seed — 100. When we use a different value of Seed, then this is
“baked” into this model solution, and we must take heed of routines that rely upon Options[SIA] for
the value of Seed in these options. We can mention the parameter here so that the user can check
more easily that model solutions change when adapting the Seed value.

SICD[Run, Pr, newModel, t, 150, Seed - 100];

The variables are now available in levels and proportions.

res = SICD[75]

{415556., 738924., 1.60018 x 107, 243 683., 1.71563 x 107, 1.62455 x 107}

Explain[res, SICD]

{s-415556., 1 > 738924., C - 1.60018x 107, D - 243683., N > 1.71563 x 107, A - 1.62455 x 10’}

SICD[Pr, 75]
{0.0238825, 0.0424669, 0.919646, 0.0140048, 0.985995, 0.933651}

Explain[TheFormer, SICD]

{S > 0.0238825, | » 0.0424669, C - 0.919646, D —» 0.0140048, N - 0.985995, A —» 0.933651}

We now have the additional information that by day 75 some 240,000 people would have died, had
the government not intervened.

Itis useful to have plots that show both levels and proportions. The plot axes assume that it is
obvious what are levels and what are proportions.

In the following plot, the population drops by about 1.5% because of the deceased. The difference
between the population (red) and the cleared compartment (green) are the remaining 2% suscepti-
ble (cyan).

SICD[Plot, @, 150]

1.0 11.74x107
0.8+ 11.392x107
i 1 Susceptible

0.6 11.044 x 107 Infectious

6.96x 106 Cleared
----- Deceased

3.48x108 Population
0.
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7.2. Relation to capacity of ICU beds

The national challenge has been for the intensive care units (ICU beds). Assume that there are 1500
beds on the ICU, and that each death, after an infectious period of 1/y, still requires 1/h =10 days in
the hospital. (Admission to a hospital acquits from the infectious stage for the public at large.) The
rate per bed is 3 patients per month or h = 3/30 per day. A good way to look at this is to take a
cohort of 10 beds, with one new patient arriving every day. In a steady state with input = output, the
ICUs can accept only 1500 h = 150 new patients per day, as each new patient takes the open spot in
a cohort of 10 beds. Capacity remains at 1500, and we can plot above graph for a lower range at
that level to show how the ICU system cannot take the new arrivals who are clearly at risk of dying.

sicdplotoptionsICU = SICD[Plot, Options, ICU, PlotRange - {0, 10000}];
Plot ee {SICD[ICU, 1500, t], {t, @, 150}, sicdplotoptionsICU}

People & ICU capacity

10000 . )
| Susceptible
1
8000+ ! Infectious
1
6000L lll Cleared
e Deceased
1
40007 ',' — — ICU capacity
2000} !
— 1— ————————
l'
Lot o : : : : Day

0 20 40 60 80 100 120 140

SICD[Explain, ICU]

SICD plots can be enlightened by including a line for the ICU capacity. This is simple by itself
but becomes a bit more complicated because of the colouring and legend. In this plotting,
the level of population is far out of range, and not included. Two main subroutines are:

SICD[Plot, Options, ICU, opts] combines plotting options and allows user options
SICDIICU, level, t] does Append[Take[SICDIt], 4], level], thus removes N & A, inserts level

Subroutines used by those two main subroutines are:
SICD["Colours", ICU] gives DeeperPink for the ICU capacity
SICD[PlotLegends, ICU] uses the label "ICU capacity"

SICD[Plot, PlotLegends, ICU] puts the labels into a Placed object
SICD[Plot, Options, ICU,"Other"] chooses ImageSize and AxesLabel

SICDI[Plot, SetOptions, ICU, opts] may set Plot options (inadvisable for other Plots)
7.3. Inclusion of Cand D in SIA

7.3.1. Introduction

The Acquitted compartment of SIA can be divided into the compartments of C Cleared and D
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Deceased. The sum of A= C+ D in SICD has the same value as A in SIA.

The SICD model has an endogenous population N[t] = N[0] - D[t]. This endogenous population is
only used for plotting and not for the ratios. The (infectious) contacts between the units depend
upon the population density, normalised for N[to] and not N[t]. For S, we have N[t,] in the denomina-
tor and not N[t]. For, if we would use N[t] in the denominator then a decreasing population due to
deaths would increase the intensity of contacts and thus infections, while actually the population
density decreases. However, including endogenous N clarifies what the outcomes imply.

7.3.2. The traditional format for C and D causes conceptual questions

In the traditional presentation of SICD, the development of the two new compartments is given by:
C’= A |, for those cleared of the infection
D’= |, for the deceased

Then the acquitted are A’= (A + ) /=y /asin SIA, with y = A + p. Conventionally the sum Ais not
mentioned.

This causes conceptual questions about how to calculate the values of A and y. When we have a
variant y[t] e.g. depending upon an intervention, how would we adapt the parameters ? It would be
tempting to keep p constant, and let A take all changes, since the intervention cannot change the
biological death rate. This however can cause inexplicable outcomes.

7.3.3. Aclearer format for C and D but still not perfect

A clearer format is:

D’=y @I, for the deceased

C’=y(1-¢)l, forthose cleared of the infection
A’=ylasinSIA

for @ the Infection Fatality Factor (IFF).

The model has an outcome IFF[oo] = D[oo] / (C[oo] + D[oo]) = D[oo] / A[oo] = Dp[eo] / (1 - Sp[eo]). We can
make the model fit better when we choose ¢ = IFF[co] = IFF[observed]. This presentation of the
model immediately clarifies the meaning of the parameters and the properties at the limit and for
variants. A change of y due to an intervention cannot change the biological IFF and the shares
within the Acquitted department. (Check what keeping 1/ = y[0] @ constant at the cost of A[t] = y[t] -
U would generate.)

In SIA, the assumption was that the duration before acquittal 6s;a =1/ ysia was also the infectious
period. This assumption is not changed here. The population is homogeneous: whether one
belongs to the survivors or deceased cannot be said in advance. The final weights in the population
can only be determined after the whole infection episode is over. The event of death only happens
at the end of the acquittal period. The dying are partaking in spreading the disease thus just as
much as the eventual survivors, at least as long as they are alive (and not quarantined, like being
hospitalised). When we regard C and D as mere proportions of A then they can have the same
infectious period.
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However, in this (still rather traditional) formulation with D’= y ¢, a student might consider that
the mean infectious period for the deceased compartmentis 1/ (y ¢), with a conventional value of
1/0.0015=667 days. This idea arises purely by analogy with A’= y /, and has not been well thought
about, but can arise nevertheless merely because of such thinking by analogy. The proper reason-
ing is that a proportion ¢/ is taken, with a mean period of @/ (y ¢). Nevertheless, given the model
formulation, we cannot immediately reject the possible interpretation that there is a distinction
between the lethal period and the (survivor) clearing period. The traditional formulation invites the
interpretation of exponential decay with different half-lives, at least until we can spot an inconsis-
tency. The 6sia = 1/ ysia acquittal duration could be an average of these two other durations.

This line of thinking opens up a can of worms, with a need for deeper discussion of the assumptions
of the underlying distributions and such. All of this still results in the same finding that we actually
have only proportions D= ¢@/and C=(1- ¢) /, but for a moment we might also have to consider
alternatives.

7.3.4. Didactically clearest format for Cand D

The conclusion is that the above formulations have been inspired by the mathematical elegance of
the use of ordinary differential equations. They have not been targeted at empirical and didactic
clarity.

The didactically best formulation is:

A=yl

D=gl

C=(1-¢)I=A-D

This formulation makes immediately clear that the dynamics of SIA are unchanged and that Cand D
are only proportions, with a clear interpretation of ¢ = IFF. It is also immediately clear that there is

no special new application of differential equations, and that we only apply a little bit of administra-
tion within the compartment of the acquitted.

Analytical clarity requires us to include the expression A= C + D in the differential equations any-
way, because we must clarify the meaning of the variables from the start. This will also reduce
clutter in later routines on programming and runtime calculation of the simple addition. Conven-
tional presentations of the set of equations leave out these administrative equations, apparently
with the objective to enhance clarity by focusing on the core mechanism. This core however is quite
clear, precisely when the administrative equations have been included. The core may be less clear
when there is uncertainty about what the variables actually mean.

When SICD is presented in this didactic form, some readers might think that this would not be the
proper SICD model from the literature. If those readers come from a background of already having
used SI(E)R(D) models, then it would appear that they haven’t quite understood the underlying
mechanism yet, apparently. Nevertheless, the discussion below also provides for the traditional
formulation, and we can easily check that the model outcomes are the same. Other users might
want to present the original form with differential equations merely to show that it results into such
proportions, but having a course on differential equations is a different objective than presenting
SICD. When the model is presented, then it must be presented in its clearest format, and not with
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some additional hidden objectives on education in mathematics.

7.4. Basic model

SIA[Clear]

ReadMeSIA[SICD]
S'=-pSTI

Al =yT
=—a’ -5’
D=A¢p
C=HA1-9)

N = N(t0) - D
N(t0) = N(t0)

S(t0) = -Cqt0 - Dqt0 - Seed + N(t0)
I(t0) = Seed

C(t0) = Cqt0

PD(t0) = Dqt0

A(t0) = Cqt0 + Dqt0

PM 1. Itis logical to first state S’and A’ and subsequently derive I’, as Smith & Moore (2001, 2004)
do.

PM 2. B* = B/ N[to]. This gives a tiny value for §* but simplifies the model.
PM 3. Above model is in levels. Division by N[t,] or setting N[t,] = 1 gives proportions (and §* = B).

PM 4. The model might be run for symptomatic disease. Then p =y sCFF and A=y (1 - sCFF), for the
symptomatic case fatality factor (sCFF). Not all infected will develop symptoms, so that sSCFF=D /sC
=(D/1)*(1/sC)=1IFF / (sC/1).

PM 5. It is analytically and didactically relevant, namely for the comparison with SIA, to include A.
This also reduces clutter in subsequent programming and execution (namely to always include
what wasn’t stated at the start).

7.5. Computable format (Copy from SIA)

See the corresponding section in the discussion of SIA.

7.6. The didactic and traditional formats

SIA[Clear]

An overview of the traditional / simplified and computable / readable formats is as follows.
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symbolic = {SICD[Equations, t@, t],
SICD[Equations, TraditionalForm, t@, t]} // Transpose // TableForm

Sq’(t) - _ BetaSIA’E‘)thqo(t) Sq(t)

Aq’(t) = GammaSIA() Iq(t)

lg'(t) = -Aq’(t) - Sq'(t)
Dq(t) = PhiSICD() Aq(t)
Cq(t) = (1 - PhiSICD()) Aq(t)
Nq(t) = Nqt0 - Dq(t)
Ng(t0) = Nqgt0
Sq(t0) = -Cqt0 - Dgt0 + Nqt0 - Seed
1q(t0) = Seed
Cq(t0) = Cqt0
(t0) = Dqt0
Aq(t0) = Cqt0 + Dqt0

symbolic // SEYCDLettersOnly

/I — _BST
S N(t0)

Al =yrI

II — —ﬂ, —S,

D=A¢

C=A(1-9)

N =N(t0)-D

N(t0) = N(t0)

S(t0) = -Cqt0 - Dqt0 — Seed + N(t0)
Z(t0) = Seed

C(t0) = Cqt0

D(t0) = Dqt0

A(t0) = Cqt0 + Dqt0

Options [SIA]

Sq’(t) - _ BetaSIA'El)qlth(t) Sq(t)

I9'(¢) = Iq(t) (%&5‘*“’ — GammaSICD() - MuSICD())

Cq’(t) = GammasICD() lqg(t)
Dq’(t) = MuSICD() Iq(t)
Nq(t) = NqtO - Dq(t)
Aq(t) = Cq(t) + Dq(t)
Ng(t0) = NqtO
Sq(t0) = -Cqt0 - Dgt0 + NqtO — Seed
Iq(t0) = Seed
Cq(t0) = Cqt0

(t0) = Dqgt0

q(t0) = Cqt0 + Dqt0

/I — _BST
S N(t0)

I’ I( “A-pu+ /\f(to))
c'=Ar1

D' =urI

N = N(t0) -
A=C+D

N(t0) = N(t0)

S(t0) = -Cqt0 - Dqt0 - Seed + N(t0)
I(t0) = Seed

C(t0) = Cqt0

PD(t0) = Dqt0

A(t0) = Cqt0 + Dqt0

{Ath -0, Cqt0 > 0, DataMold - {S, I, A}, Dqgt0 - 0, 1qt0 - Null, Ngt0 - 1.74x 107, Onset - 0, Seed - 100,
Yqt0 - 0, AlphaSEYCD() -» 1., BetaSIA() » 0.4, GammaSIA() - 0.1, PhiSICD() » 0.015, RO() » NuII}
TheFormer // SEYCDLettersOnly
{Ath -0, Cqt0 > 0, DataMold - {S, I, A}, Dqt0 - 0, Iqt0 - Null, N(t0) » 1.74x 10,
Onset - 0, Seed - 100, Yqt0 » 0, a— 1., - 0.4, y > 0.1, ¢ - 0.015, RO - Null}
Options [SICD] (* used by Explain on standard output of SICD[t] x)
{DataMold - {S, I, C, D, N, A}}
NB. When running the traditional model forma, its parameters can take values from Options[SIA] by
first doing a substitution using the following rule.
SICD[GammaSIA, Rule]
{GammaSICD() » GammaSIA() (1 - PhiSICD()), MuSICD() -» GammaSIA() PhiSICD()}

TheFormer // SEYCDLettersOnly

A->v(-9), Uy}
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7.7. Choice of Rg =4 and acquittal period of 10 days (Copy from SIA)

See the corresponding section in SIA.

7.8. Infection Fatality Factor (IFF) and symptomatic Case Fatality Factor
(sCFF)

7.8.1. Infections versus symptomatic cases

The Infection Fatality Factor (IFF) is the proportion of who dies after having contacted the infection.

For Holland, a rounded estimate of the Infection Fatality Factor (IFF) of SARS-CoV-2 for the Dutch
population, in its composition of 2020, is 1.5% (at least up to the beginning of April, see Colignatus
(2020d)).

Commonly, it would also be the Case Fatality Rate, but we better distinguish:
(i) (level) factor and (instantaneous) rate (see Appendix A),

(ii) "Cases" are often defined by (flu-like) symptoms, which is the symptomatic rate. Not all infected
develop symptoms.

(iii) To avoid confusion about "cases" and infections, we follow the suggestion of the London
Imperial College to use infections in the denominator. However, there still is the distinction
between rate IFR and factor IFF. (It does not help that the Imperial College calls the factor a rate.)

7.8.2. IFF[t] and the eventual limit value IFF[o]

There is also the distinction between the factor at a point in time and the value in the limit.

ilFF[t] = Dp[t] / (1 - Sp[t]) observed at time t, inclusively counting the haves and hads, influenced by
changing Ip[t]

IFF[t] = Dp[t] / (Cp[t] + Dpl[t]) observed at time t, counting the hads only

IFF[oo] = Dp[oo] / (1 - Sp[oo]) = Dp[eo] / (Cp[eo] + Dp[eo]) the eventual limit value (the key parameter)
(Ip[eo] =0).

7.8.3. Short conversion from IFF (observation) to IFR (model parameter p)

In traditional formulation, the SICD model requires the input of y. The model generates outcome of
a model-IFF that allows to check that the model fits the observed-IFF. The conversion is rather
simple, once we understand the properties of SICD.

When Ap arises because of decay by Ip with rate y = p+ A then it may be assumed now without proof
that Cp and Dp are fractions p/ (L + A) Ap and A/ (u+ A) Ap over the whole range, and thus also in
the limit.

Consider the Acquitted Ap[co] = Cp[oo] + Dp[oo] = 1 - Sp[oo] (since Ip[eo] = 0). These four relations
apply:

A+ == Ysa = 0.1;
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IFF[] == Dp[w] / Ap[»] = ©.015;

Dp[w] / Ap[w] = pu / (A + u) == p / ysin == IFF[w] ;

u == IFF[o] * ¥sia = 0.0015;
Importantly: it is pointless to say that IFF[oo] was found by the model, since it was input, either
directly or via a hidden manner by putting in yand A.

Maugeri et al. (2020) have the elegant formulation that y=y IFF and A= y (1 - IFF) in the model from
the start. This is relevant for model variants, when we adapt y by means of interventions. Since we
can do little about the IFF, the change in y affects both pand A. For Options[SIA] it suffices to use y
and @ =IFF, and we can always calculate y =y @ if we would need it for comparison, e.g. with
publications.

It is possible to call = ¢ y the "infection fatality rate" (IFR) as long as it is clear that this rate has
been calculated with a SICD model, because other models might require other rates. It is a bit
dubious indeed to use the term IFR for such y, since actually y= ¢/ Tinf so that the value is spread
over the infectious period. The discussion about 1/y would be multiplied by a discussion on p. It
seems best to avoid the traditional format overall.

7.8.4. An expected death toll of 250,000, if there had been no endogenous
reaction or intervention

We thus also know the expected death toll when the pandemic is over. The estimate of the final
prevalence is Ap[oo] = 98%. The IFF of 1.5% gives, both as a percentage and in numbers for Holland:
.98 » 0.015 % {1, NgqSeed}

{0.0147, 255780.}

Thus:

(i) Modeling with SIA(CD) helps to identify the limit prevalence given Ry (while the IFF was already
known). It remains important to keep the endogenous reactions with Ry eng and the government
intervention with Rg int in mind.

(i) In this type of research it remains important to consider the toll in terms of (quality adjusted)
life-years lost too.

7.8.5. Traditional limit, IFF (observation) - (model parameter p), starting
values

The discussion about SIA used S=-8S, / to get S=So Exp[- Ry (Ap- Ap[0])] for an analytical result
on the limit outcomes Sp[eo] and Ap[eo].

We can repeat this analysis for the two new compartments C and D, using the conventional formula-
tion with:

C’= A, for those cleared of the infection
D’= 1, for the deceased.
We have /=(Cp'/A)=(D,"/ p) and thus two ways to substitute in the first SICD equation for S,
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giving:

S: ‘ﬁSp(Cp ! / A) = 'BSp(Dp' / IJ).
Instead of using Ry = B/ y and A, we now express:

SZ f[307 B/ A) Cp, Cp[o]]

S= 9[801 ﬁ/ H, Dp7 Dp[o]
Thus the value of S[eo] given by SIA and new S[oo] = f[Cp[o0]] and S[oo] = g[Dp[eo]] allows us to find the
values of Cp[eo] and Dp[eo].
Itis a bit of algebra to show that Cp[eo] and Dp[eo] divide Ap[eo] up into the proportions =/ y
and1-@=A/yfor y=A+ . There will be clutter when Cp[0] and Dp[0] are nonzero. While this
derivation is rather useless when we define C and D as proportions from the start, the derivation
remains useful for an understanding of the influence of the clutter.
We conclude that we have a well-defined and calculable result for the limit value of the IFF accord-
ing to the model. Not writing the clutter:

Dp(eo) Dp(co) H

IFF(o0) = = = =
) o) +Dp(e)  1-Sp)  Asp ¥

It follows that we can set the fatality rate in SICD as = ysia * IFF[oo], using above observation for
IFF[March] = 0.015, and skipping the idea of waiting till eternity. Instead, though, it appears better
to formulate C and D from the outset as proportions. This is the mathematical portent of the model,
and it is better expressed so clearly then.

PM. In SICD we might use death statistics to trace the development of infections, but when we do
not know the level of infections then we cannot determine the IFF, and thus neither y. We might use
the property that infections and thus deaths have exponential growth at the start with rate 8- y.
Then we are still lacking a fundamental piece of information. Using the share of hospital patients
who clear the infection might be dubious when this is no representative sample.

? PhiSICD
Symbol

PhiSICD[] stands for the Infection Fatality Factor (IFF), such that

GammaSIA[] * PhiSICD[] is the rate MuSICD[] of the infectious who decease

? MuSICD
Symbol
MuSICD][] is a symbol, no longer in the options,
for a constant rate of the Infectious who will decease (not in SIA)]

PM. Numerically GammaSIA[] == GammaSICD[] + MuSICD[] means different clearing periods per subgroup

v
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? GammaSICD
Symbol

GammaSICD[] is a symbol, no longer in the options, for a constant
rate of the Infectious per day who will no longer be infectious and not dead
PM. GammaSIA[] == GammaSICD[] + MuSICD[], or MuSICD[] = GammaSIA[] PhiSICD[], with the latter

the Infection Fatality Factor (IFF). GammaSICD[] may be represented by symbol Lambda (life)

7.8.6. A small check on consistency of the starting values

The Band y in the options for SIA apply for SICD as well. We also know the limit properties, since

these are determined by the parameter values (without running the model). The IFF has been put
directly into the parameters as PhiSICD[]. However, the starting values of SICD may still affect the
eventual proportion of the assigned compartments. The basic warning is that model runs should

have consistent starting values.

{spl, ipl, apl} = SIA[Limit]

{0.0198273, 0, 0.980173}

{sp2, ip2, cp2, dp2, np2, ap2} = SICD[Limit, Cqte - 10000.]
(» assume a somewhat larger nonzero starting value x)

{0.0198644, 0, 0.965442, 0.0146934, 0.985307, 0.980136}

dp2 / ap2
0.0149912
dp2 / ap1
0.0149906
PM. SICD[Limit, ...] tests whether the starting values for Cqt0 and Dqt0 are zero, and if so, allocates

the shares {Cp[oo], Dp[oo]} via {1 - ¢, @} Ap[eo] , since there is no need to calculate via the Sp what
already is known.

Thus both models have the same Ap[oo] while IFF[eo] = Dp[oo] / Ap[eo] fits the input parameters.

The following might be different from the input PhiSICD[] when the starting values in the Option-
s[SIA] are nonzero.

SICD[Limit, "IFF"]

0.015

7.8.7. Summary of terms

Our terminology has been:
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ReadMeSIA["Terminology"]

This terminology applies to the SICD model:

SICD improves on SIA by distinguishing A = C + D, for D deceased and C cleared.
(-Sp') is the xincidence= of infections at moment t.
Ip is the xprevalence= of infections at moment t.
1-Sp=1+C+Disthe xcumulated prevalence* at moment t (i.e. the haves and hads).
1 - Sp[eo] = Ap[oo] in both SIA and SICD is the *limit prevalencex, since Ip[e] = 0.
Cp is the cumulated survival factor at moment t (but the Sp also count as living).
Dp is the xcumulated mortality factorx at moment t (mortality ~ population).
Cploo] is the limit cumulated survival, and part of the burden of disease (infection).
Dp[eo] is the *limit (specific) Infection Mortality Factor* (IMF) (prevalence of death).
Dp[eo] / Ap[oo] = Dp[oo] / (Cp[oo] + Dp[eo]) is the *limit Infection Fatality Factor= (IFF).
MusSICD[] is the *(instantaneous) Infection Fatality Rate= (IFR) (fatality ~ infection).
MuSICD[] = GammaSIA[] = PhiSICD[] in the model, with PhiSICD[] the IFF.
In addition for SEYCD:

Ip = Ep + Yp subdivides into Exposed (but not infectious) and Infectious.

7.9. Interpretation of the result and finding crucial moments of the path

The major finding here is the death toll. More sobering is that we put the 1.5% Infection Fatality
Factor into the model and only reproduce it. The key contribution of the modeliis (i) the limit
prevalence Ap[eo] and (ii) that it provides a time-path, how the death toll will be reached over the
course of time. If we have an intervention at a particular moment, there will still be consequences
for who are in the pipeline. (See section 1.4.6 and the intervention and estimation chapters that this
remains complex.)

We already presented the table with the crucial moments along the path. For some persons, a table
with figures might convey the message better than indicating the moments in a graph. For other
persons a graph works best. For a graph, it might be advisable not to use the full vertical axis, since
1.5% might not seem like a large difference. But it is better shown too, precisely for this reason, and
thus SICD is a real improvement over SIA.

Further conclusions are best discussed when we have also looked at the SEYCD model.

7.10. How to use the SICD routine

? SICD
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Symbol

SICD is SIA with A = C + D = Cleared + Deceased.
RO = BetaSIA / GammaSIA remains the same.
New is that D = PhiSICD[] A, and D = A -

C, with phi the Infection Fatality Factor (IFF) = D[Infinity] / A[Infinity]

SICD[(Pr,) t] gives {S, I, C, D, N, A}, with N = N[0] - D and A = C + D. Observe that it is best to include N
and A in the equations from the start, so that their values are directly available via the interpolated
functions, and we do not have to burden later routines and calculations with performing the same
arithmetic. Analytically, the meaning of N and A should also be clear from the start. PM. A DataMold

has been set, so that one can call Explain[lis, SICD] for such output lis (see Databank package)

SICD[Plot, ..] is like SIA{Plot, ....], see there. The routine takes the

first 5 elements of the list. Input of SICDJ[t] is okay, while A is not in the legend.

SICD["Colours"] gives the colours for plotting. The deceased are given
in dashed black and white, for European / Chinese conventions. The remaining

population (after subtracting the deceased) is plotted in red (quarantine barrier).

For traditional form use SICD[Equations, TraditionalForm, ...] and SICD[N, TraditionalForm, ...].
MusSICD[] = GammaSIA][] * PhiSICD[], with the latter the Infection Fatality Factor (IFF).
GammaSICD[] = GammaSIA[] = (1 - PhiSICD[]).
In Greek letters: mu = gamma * phi, labda = gamma (1 - phi).
SICD[MuSICD, gammaSIA, IFF] := gammasSIA = IFF for the

Infection Fatality Factor IFF (limit value), is a reminder, using the limit property

that IFF[inf] = Dpl[inf] / (1 = Sp[inf]) = mu / gammaSIA = mu / (labda + mu).

SICD[Limit] has Ip[inf] = 0, finds s = SIA[ProductLog, b/g, ..], and applies the same reasoning to C and D as
SIA does for A = C+D, so that c = f[s] and d = g[s], and then we easily find {s, 0, ¢, d}. If Cqt0 = Dqt0
=0, then {c, d} = (1-s) {phi, 1-phi}, otherwise there is clutter. SICD[Limit, Differences] shows the
difference between the actual values and the outcome if those starting values were zero. SICD[Limit,

"IFF"] returns d / (c + d) at the limit, expected to be phi but possibly deviating if not Cqt0 = Dqgt0 = 0.

See SICD[Explain, ICU] for plotting with a capacity level of ICU.

v
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7.11. Cost effectiveness and reconsideration of herd resistance

Here we return to the issue of Section 6.12 on policy, intervention like vaccination, and the proper-
ties of herd resist