
Vibration Protection of the Robotic Arm 

from External Effects on the Base 

Sergei Ivanov, Tatiana Zudilova       
Lubov Ivanova 

ITMO National Research University (ITMO University) 
Saint Petersburg, Russian Federation 

serg_ie@mail.ru, zudilova@ifmo.spb.ru, ln2305@yandex.ru 

Zoia Meleshkova, Tatiana Voitiuk 
ITMO National Research University (ITMO University) 

Saint Petersburg, Russian Federation 
3645744@gmail.com, tanya_4ever@mail.ru 

Abstract—The paper considers the topical problem of robotic 
arms protection from small base vibrations. To derive dynamic 
equations, the matrix method and the matrix Lagrange equations 
are used. A mathematical model of the movement of the 
manipulator with small vibrations of the base is presented. The 
solution was obtained by the method of polynomial 
transformations. A motion model of a manipulator mounted on 
shock absorbers consisting of elastic elements and dampers is 
presented. The shock absorber allows you to completely absorb 
small vibrations of the base of the manipulator. Dependences of 
the depreciation coefficient on the vibration frequency of the base 
and the coefficient of vibration protection on the damping 
coefficient are presented. In this case, the depreciation coefficient 
is significantly less than unity and the shock absorber effectively 
dampens small vibrations of the base. The method of model 
development and the method of transformations presented in this 
work for a qualitative and quantitative analysis of the 
effectiveness of vibration protection can be used to study the 
vibration protection of a wide class of manipulators with many 
degrees of freedom. 

I. INTRODUCTION 

 The problem of vibration protection of robotic arms from 
external influences on the base is considered. Small vibrations 
can be caused by fast-rotating elements such as flywheels, 
rotor systems, and electric motors. The main reason for small 
fluctuations is the residual imbalance of the elements and their 
wear. This leads to the effect of periodic inertia forces 
proportional to the square of the angular velocity of rotation. 
For robotic manipulators, this effect leads to stresses in the 
elements of robots and inaccuracy in the performance of 
production tasks. 

A lot of modern scientific works are devoted to the 
problems of robotics and vibration protection of robotic 
manipulators. 

In [1], the effect of joint flexibility on the vibrational 
characteristics of a composite box-shaped manipulator is 
researched. The theoretical results obtained using finite 
element analysis are compared with experimental results. 

The study [2] considers the problem of dynamic modelling 
and the task of developing active vibration control for a 
flexible robot manipulator Tymoshenko. For a practical robot 
manipulator, the dynamic characteristic is studied taking into 
account the shear strain and the elastic beam deflection. A 

flexible system is described using a coupled partial differential 
equation and a model of ordinary differential equations. 

In [3], modelling and analysis of vibration of a parallel 
manipulator with two degrees of freedom in a hybrid machine 
with five degrees of freedom are performed. The model is 
obtained using the connection graph, and the elastic beam 
deflection with the lowest stiffness is taken into account in the 
simulation. An approach is proposed for studying the 
interaction between the mechanical subsystem and the control 
subsystem in the frequency domain. Based on the interaction 
between the mechanical subsystem and the control subsystem, 
forced oscillations are investigated. 

In [4], dynamic modelling is performed to control vibration 
in a three-dimensional flexible manipulator. A flexible 
manipulator is described by a system of distributed parameters 
with partial differential equations and ordinary differential 
equations. 

The study [5] considers the vibrational characteristics of a 
space manipulator with flexible connections. The vibration of 
the manipulator, caused by flexibility, not only reduces the 
efficiency of the manipulator but also affects the accuracy. 
The flexibility of the space manipulator is due to the structural 
flexibility of the links and the flexibility of the transmission of 
the harmonic gearbox in the joints. The vibrations created by 
these two types of flexibility are interconnected, which 
complicates the dynamic characteristics of the space 
manipulator system. The article defines the dynamic equations 
of a multi-link flexible manipulator with several degrees of 
freedom. In this work, the vibrational characteristics of the tip 
were studied for various moduli of elasticity, damping, and 
joint stiffness. 

A hybrid control for a system of elastic electro-hydraulic 
manipulators with a variable stiffness drive was presented in 
[6]. The system includes a sequential elastic manipulator, an 
adjustable stiffness mechanism and an electro-hydraulic 
system. This system can provide quick stiffness control over a 
wide range. The study examines the new design of the 
adaptive fuzzy sliding control mode. 

The article [7] presents experimental studies on the control 
of active vibrations of a two-link flexible manipulator using a 
generalized self-tuning scheme with minimal dispersion and 
fuzzy neural network control schemes based on the Takagi-
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Sugeno model. Experimental results show that the developed 
controller can damp the vibrations of both large and small 
amplitudes of a two-link flexible manipulator faster than a 
traditional linear controller. 

To improve the control accuracy of industrial robotic 
manipulators, an adaptive control method based on a system of 
recurrent fuzzy wavelet-neural networks was proposed in [8]. 
The parameters of the neural network system are configured 
online using an adaptive learning algorithm. Online adaptive 
control laws are determined by the Lyapunov stability 
theorem. 

In the study [9], the problem of vibration during the 
operation of industrial robotic manipulators is considered and 
iterative learning control is proposed to suppress vibration. A 
simulation study is performed and the method is applied to a 
system with two degrees of freedom. 

A new manipulation system is being developed for 
industrial robotic manipulators based on wireless 
communications and a tablet PC [10]. The developed graphical 
interface allows the operator to perform manipulator control 
tasks more efficiently. 

In [11], an adaptive controller based on neural networks 
with a radial basis function is proposed to increase the 
accuracy of control of industrial robotic manipulators in 
uncertain dynamic environments. The parameters of the 
control system are determined by the Lyapunov stability 
theorem and are tuned online using an adaptive learning 
algorithm. 

In the above works on the vibration protection of 
manipulators, all studies were carried out by numerical 
methods, and quantitative results were obtained. The use of 
numerical methods for the analysis of nonlinear vibration 
protection systems does not fully allow obtaining qualitative 
characteristics of vibration protection. In our work, for the 
study of nonlinear models of manipulators, the analytical 
method of polynomial transformations is applied, which 
allows one to obtain qualitative and quantitative characteristics 
of the vibration-proof system. 

In Section 2, we obtain a mathematical model of a 
manipulator with six degrees of freedom under the action of 
small vibrations of the base. The model is represented by a 
nonlinear system of six second-order differential equations. 
Non-linearity for the system under study is presented to the 
fourth degree, relative to phase variables. To solve the system 
of nonlinear differential equations, the method of polynomial 
transformations is applied. 

Section 3 presents the polynomial transformation method 
for solving a nonlinear system of m differential equations. 
Theorems on finding a stationary solution to a system of m 
differential equations by the transformation method are 
presented. In the case of nonlinearities in the system to the 
fourth degree, the system of linear m algebraic equations is 
obtained by the method of transformations, which determines 
the stationary motion of the system. In the case of sixth-degree 
nonlinearities, a system of m quadratic algebraic equations is 
obtained by the method of transformations. 

Section 4 presents a vibration-proof model for a 
manipulator with six degrees of freedom under the influence 
of small vibrations of the base. The model is represented by a 

nonlinear system of six second-order differential equations. 
Non-linear shock absorbers and dampers are used in the 
vibration protection system. Using the method of 
transformations, nonlinear characteristics of the vibration 
protection system, the coefficient of vibration protection, and 
the dependence of the coefficient of vibration protection on the 
damping coefficient are obtained. The use of a vibration 
protection system allows you to completely damp out small 
vibrations of the manipulator. 

II. RESEARCH OF ROBOT-MANIPULATOR WITH EXTERNAL 

PERIODIC INFLUENCE ON THE BASIS 

Consider a mathematical model of a manipulator with six 
degrees of freedom with small vibrations of the base without a 
shock absorber and with a shock absorber. 

Degrees of freedom provide a unique orientation of the 
manipulator in three-dimensional space. The kinematic 
diagram of the manipulator has the form of an open spatial 
lever mechanism, the links of which form rotational and 
translational pairs. The links of the manipulator are modelled 
by rod elements connected by the scheme. In the model, we 
assume that low friction in the links of the links does not affect 
the movement of the manipulator.  

Electric motors for manipulator drives are located on the 
base and can be a source of small base vibrations. This can lead 
to significant errors when positioning the grip of the 
manipulator. 

Suppose that the base of the manipulator, the circuit of 
which is shown in Fig. 1, experiences vertical vibrations 
according to the law   AZ ASin wt . 

In this case, the portable inertia force can be applied in the 
centre of mass of each link of the manipulator 

 2  iz iF m Aw Sin wt  .  

After that, the reference system associated with the base of 
the manipulator 0O  can be considered motionless. 

To obtain the dynamic equations of the manipulator, we 
apply the matrix method [12] and the matrix dynamic Lagrange 
equations. 

Define the coordinate system relative to the links of the 
manipulator at points 1 2 3 4 5 6, , , , ,O O O O O O . The initial 
coordinate system is connected with the base of the 
manipulator at a point 0O .  

We take as generalized iq  the coordinates of the 
manipulator with six degrees of freedom: the angle of rotation 
around the rack, the angle of inclination of the rack, the length 
of the arm, the angle of rotation of the arm, the angle of 
rotation and inclination of the grip. Here the angles are 
measured in radians and lengths in centimetres. 

We introduce the notation of periodic functions: 

   Cos , Sin ,i i i iC q t S q t          

     2 7 2 7 2 4 8Sin 2 ,Cos 2 ,Sin 2 ,q S q C q q S     
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   2 4 8 2 4 9Cos 2 ,Sin 2 ,q q C q q S        

     2 4 9 2 4 10 2 4 10Cos 2 ,Sin ,Cos ,q q C q q S q q C        

 

 
Fig. 1. Scheme of the manipulator 

Grip coordinates in the coordinate system 0O  have the 
form: 

 
 

6 3 2 1 4 2 1 3 1 5 2 4 1 1 2 4

6 2 4 1 1 2 4 ,

x a C S a C S q S a C C S S S S

a C C S S S S

       

 
  

 
 

6 3 1 2 4 1 2 1 3 5 1 2 4 1 2 4

6 1 2 4 1 2 4 ,

y a C C a C C C q a C C C C S S

a C C C C S S

     


  

 
 

6 1 3 2 4 2 5 4 2 2 4

6 4 2 2 4

z a a S a S a C S C S

a C S C S

     


.  

We determine the total kinetic energy of all links: 

6

1
i

i

T T


    

We determine the total potential energy of all links: 

    
   

     

2
1 1 2 3 4 5 6

4 4 5 6 3 3 4 5 6

4 5 5 5 6 6 2 2 6 6 5 5 6 4

   (

(

) )

P g Aw Sin wt a m m m m m m

a m m m a m m m m

C a m a a m S C a m a m m S

         

      

    

  

We compose a system of dynamic equations of motion of 
an industrial manipulator using the Lagrange equation in matrix 
form: 

0i
i i i

d T T P
Q

dt q q q

   
       

  

where  iQ  – generalized forces created by the electric link. 

We substitute the kinetic, potential energy and generalized 
forces into the Lagrange matrix equations, we obtain the 

system of equations of motion of the industrial manipulator 
with six degrees of freedom. 

 2 2 2 2 2 2 '' ''
20 1 1 2 2 3 3 4 4 5 5 6 6 1 31 3 1

' ' ' ' ' ' ' ' ' '
12 1 2 13 1 3 14 1 4 312 3 1 2 313 3 1 3 1

0.5 k m i m i m i m i m i m i q k q q

k q q k q q k q q k q q q k q q q Q

       

    

 
     

2 2 2 2 2 '' ' '
22 2 2 3 3 4 4 5 5 6 6 2 24 2 4

2'
21 1 1 2 0 2

0.5

Sin Cos

k m i m i m i m i m i q k q q

k q p tw p tw p Q

      

   
  

 
 

2'' '
3 4 5 6 3 33 1

2'
2 3 4 5 6 3 1 3

( )

( )

m m m m q k q

m m m m m q q Q

    

    
 

     
   

2 22 2 2 '' ' '
40 4 4 5 5 6 6 4 41 1 42 2

41 42 40 4

0.5

Sin Cos

k m i m i m i q k q k q

p tw p tw p Q

     

  
  

  2 2 ''
5 5 6 6 5 50.5 i m i m q Q   , 2 ''

6 6 6 60.5i m q Q   

We integrate the fifth and sixth equations of the system:  

 
2

5
5 2 2

5 5 6 6

;
0.5 0.5

t Q
q t

i m i m



  

2
6

6 2
6 6

;
0.5

t Q
q t

i m
   

 To solve the remaining four differential equations of system 
(4), we apply the polynomial transform method [13-16] with 
the following parameters: 

1 2 3

4 5 6

200 , 60 , 30 ,

20 , 20 , 20 ,

m kg m kg m kg

m kg m kg m kg

  
  

 

1 2 3 46000, 60000, 0.01, 20000,Q Q Q Q      

5 60.01, 0.01,Q Q    

1 2 3 430 , 20 , 20 , 30 ,a cm a cm a cm a cm      

5 630 , 20 ,a cm a cm    

The base makes small vertical vibrations   0.1 30Sin t .  

The transformation method allows you to build a solution 
taking into account all the nonlinear components of the original 
system. The solution of the system of three differential 
equations is obtained by the method of transformations: 

   
    
    

1 0.0005 0.0009 0.008

0.0002 0.0002 0.00003 Cos 30

0.0004 0.0005 0.0001 Sin 30

q t t t

t t t

t t t

    

   

  

 ,  

   
    

    

2 0.0004 0.04 0.012

0.0002 0.0001 0.00002 Cos 30

0.001 0.0004 0.00008 Sin 30

q t t t

t t t

t t t

    

   

 

 ,  

   
    
    

3 0.06 0.13257 0.0498

0.0186 0.01455 0.0024 Cos 30

0.029 0.031 0.0065 Sin 30

q t t t

t t t

t t t

    

   

  

 ,  

A Sin(wt) 
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   
    

    

4 0.0009 0.072 0.032

0.0004 0.0003 0.00005 Cos 30

0.0019 0.001 0.0002 Sin 30

q t t t

t t t

t t t

    

   

 

  

  2
5 0.025q t t ,   2

6 0.05q t t  ,  

Fig. 2 shows the calculation of the generalized coordinates 
for the manipulator. 

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

1.2

q

 
Fig. 2. The coordinates of the links of the manipulator  

Fig. 3 shows the trajectory of vertical movements of the 
grip of the manipulator relative to the z-axis.  

The figure shows the vertical oscillations of the grip of the 
manipulator with small vibrations of the base of the robot. 

1 2 3 4 5
t

30
35
40
45
50
55
60

z

 
Fig. 3. The trajectory of the vertical movement of the capture of the 
manipulator 

 Consider the transformation method [15,16] used to 
construct an analytical stationary solution to the system of 
nonlinear differential equations of motion of the manipulator. 

III. TRANSFORMATION METHOD FOR SOLVING 

DIFFERENTIAL EQUATIONS OF MANIPULATOR MOTION 

The transformation method [15,16] allows us to build a 
stationary analytical solution and includes an exponential 
change, linear and polynomial transformation. 

By the method of polynomial transformations, the system 
is reduced to an autonomous form. For autonomous 
differential equations, the solutions asymptotically approach 
the stationary state. For the stability of stationary systems, all 

the roots of the characteristic equation must have negative real 
parts. 

As a result of polynomial transformations, we obtain a 
system of algebraic equations, the solution of which 
determines a stationary solution. We consider theorems on 
determining the stationary state of a system by the method of 
transformations. 

Theorem 1 Given the existence of a stable stationary state 
for a system m of second-order differential equations in the 
non-resonant case with small nonlinear parts in the form of 
polynomials of fourth degrees, there exists a system m of 
linear algebraic equations with real coefficients, obtained as a 
result of polynomial transformations, which determines the 
stationary state of the system. 

The proof. 

Assuming the existence of a stable stationary state in the 
non-resonant case, for a system of m nonlinear second-order 
differential equations, we determine the solution by the 
polynomial transformation method. We assume that for the 
system of differential equations the conditions of Picard's 
theorem on the existence and uniqueness of a solution to the 
Cauchy problem are satisfied, the characteristic matrix 
equation for the system has complex conjugate roots with 
small negative real parts. The right-hand side of the system is 
defined, continuous, and satisfies the Lipschitz condition. 

 Consider a system m of second-order differential equations 
with small nonlinear parts in the form of polynomials of fourth 
degrees. 

 In the absence of resonances, the autonomous transformed 
system has the following form: 

  3 4 2 1 2 2

4

3 2 1
2

... ,m mS
S S S mq    




       




     

 3 4 2 1 2 2

4

3 2 1
2

... .m m S
S S m p   




      




    

To determine the special indices, we have the matrix forms 
for 3,..., 2 1s m    

3 3

0 0 1 0 0 0 1 1

0 0 1 0 1 1 0 0

0 0 2 1 0 0 0 0

1 1 1 0 0 0 0 0

I IM M I  

 
  
         
  
  

 ,  

  2 12 1

0 0 0 0 0 0 2 1

0 0 0 0 1 1 1 0

0 0 1 1 0 0 1 0

1 1 0 0 0 0 1 0

I mI m
M M I    

 
  
         
  
  

 .  

 

q1

q2

q3

q4

q5

q6
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Each row of the matrix represents a special vector index. 

For the sum of special indices, the equalities are satisfied: 

2 2

3

3, 
m

i
i






 1 2 0   ,
2 2

3

1
m

i
i






 , 1 2 1   .

Given that the sum of the special indices determines the 
degrees of monomials in the transformed system of differential 
equations and the equalities 1 2

1 2 1 2 1        , in each 
equation of the transformed system, there are only monomials 
of the first and third degree of the desired variables. 

To determine the stationary solution, we divide by S  the 
first equation of the transformed system, we equate the right-
hand sides to zero, we obtain a system of m algebraic 
equations: 

  3 4 2 1 2 2

4
1

3 2 1
2

... 0m mS
S m Sq    




      




   ,  3,..., 2 1s m  .  

When divided by S  degrees of the monomials have 
decreased by one and in the equation, there are only 
monomials of zero (free terms) and second degree of the 
desired variables. 

After a quadratic change of variables 2
S Sr  , we obtain a 

linear system m of algebraic equations 3,..., 2 1s m   with the 
following real coefficients: 

  3 5 2 11
3 5 2 1

3

0S mS
S S mq r r r r   




 




     ,  3,...,2 1s m    

In the linear system of algebraic equations, only 
monomials of degree zero and first degree will be present, in 
accordance with the equalities for special indices: 

3 5 2 11 1, S m          for 1 2 0   ,

3 5 2 11 0,S m          for 1 2 1   .

 Thus, a system of linear algebraic equations is obtained, 
and the theorem is proved for the system m second order 
differential equations. 

 Thus, a stationary solution is determined for a system of m 
differential equations of the second order with nonlinear parts 
in the form of polynomials of fourth degrees in the 
nonresonant case. 

 We give a theorem for the case of a polynomial of sixth 
degrees.  

Theorem 2: Given the existence of a stable stationary state 
for a system of m second-order differential equations in the 
non-resonant case with small nonlinear parts in the form of 
polynomials of sixth-degree, there exists a system of m 
algebraic equations in the form of polynomials of the second 
degree with real coefficients, obtained as a result of 
polynomial transformations, which determines the stationary 
state of the system. 

The proof. 

Assuming the existence of a stable stationary state in the 
non-resonant case, for a system of m nonlinear second-order 
differential equations, we determine stationary solutions by the 

method of polynomial transformations. We assume that for the 
system of differential equations the conditions of Picard's 
theorem on the existence and uniqueness of a solution to the 
Cauchy problem are satisfied, the characteristic matrix 
equation for the system has complex conjugate roots with 
small negative real parts. The right-hand side of the system is 
defined, continuous, and satisfies the Lipschitz condition. 

 Consider a system m of second-order differential equations 
with small nonlinear parts in the form of polynomials of fourth 
degrees. 

 In the absence of resonances, the autonomous transformed 
system has the following form: 

  3 4 2 1 2 2

6

3 2 1
2

... ,m mS
S S S mq    




       




  

 3 4 2 1 2 2

6

3 2 1
2

... .m m S
S S m p   




      




 

To define special indices 2,3,4   we write matrix forms 

for 3,..., 2 1s m   

3 3

0 0 1 0 0 0 1 1

0 0 1 0 1 1 0 0

0 0 2 1 0 0 0 0

1 1 1 0 0 0 0 0

I IM M I  

 
  
         
  
  

 , 

  2 12 1

0 0 0 0 0 0 2 1

0 0 0 0 1 1 1 0

0 0 1 1 0 0 1 0

1 1 0 0 0 0 1 0

I mI mM M I    

 
  
         
  
  

 . 

Each row of the matrix represents a special vector index. 

For the sum of special indices, the equalities are satisfied: 

2 2

3

3, 
m

i
i






 1 2 0   ,
2 2

3

1,
m

i
i






   1 2 1   .

Given that the sum of the special indices determines the 
degrees of monomials in the transformed system of differential 
equations and the equalities 1 2

1 2 1 2 1        , in each 
equation of the transformed system, there are only monomials 
of the first and third degree of the desired variables. 

To define special indices 5,6   we write the matrix form 

s 3,..., 2 1m   . 

For 3s   matrices for determining special indices:  

 1,2 2 2 1 0MJ   , 1k  ,  
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2,4

0 0 3 2 0 0

1 1 2 1 0 0
MJ

 
   

, 2k  ,  

3,6

0 0 1 0 2 2 0 0

0 0 2 1 1 1 0 0

1 1 1 0 1 1 0 0

MJ

 
   
  

, 3k  ,  

4,8

0 0 1 0 0 0 2 2 0 0

0 0 1 0 1 1 1 1 0 0

0 0 2 1 0 0 1 1 0 0

1 1 1 0 0 0 1 1 0 0

MJ

 
  
 
  

, 4k  ,  

,2 2 ,2 2 3

0 0 1 0 0 0 2 2

0 0 1 0 1 1 1 1

0 0 2 1 0 0 1 1

1 1 1 0 0 0 1 1

k m k kMJ J I   

 
  
         
  
  

 , 1 k m  .  

For 2 1s m   we obtain matrices for determining special 
indices:  

 1,2 2 2 0 0  1    0MJ   , 1k  ,  

2,4

0 0 2 2 0 0  1    0

1 1 1 1 0 0  1    0
MJ

 
   

, 2k  ,  

3,6

0 0 0 0 2 2 0 0  1    0

0 0 1 1 1 1 0 0  1    0

1 1 0 0 1 1 0 0  1    0

MJ

 
   
  

, 3k  ,  

4,8

0 0 0 0 0 0 2 2 0 0  1    0

0 0 0 0 1 1 1 1 0 0  1    0

0 0 1 1 0 0 1 1 0 0  1    0

1 1 0 0 0 0 1 1 0 0  1    0

MJ

 
  
 
  

,

       4k  ,  

,2 2 ,2 2 2 2

0 0 0 0 0 0 3 2

0 0 0 0 1 1 2 1

0 0 1 1 0 0 2 1

1 1 0 0 0 0 2 1

k m k k mMJ J I    

 
  
         
  
  

 , 1 k m  .  

Each row of the matrix ,2k kMJ  represents a special vector 

index. For special indices 3,5, ,2 1s m    the equalities are 
satisfied:  

2 2

3

5, 
m

i
i






   1 2 0   , 
2 2

3

3,
m

i
i






   1 2 1   ,  

2 2

3

1,
m

i
i






   1 2 2   ,  

Given that the sum of special indices 
2 2

3

m

i
i





  determines the 

degree of monomials in the transformed system of differential 
equations and equality 1 2

1 2 1 2 1        , each 
differential equation of the transformed system contains only 
monomials of the first, third, and fifth-degree of the desired 
variables. 

 To determine the stationary solution, we divide by  S  the 
first equation of the transformed system, equate the right-hand 
sides to zero, and obtain the system m of algebraic equations: 

  3 4 2 1 2 2

6
1

3 2 1
2

... 0m mS
S m Sq    




      




   , 3,...,2 1s m  .  

When dividing by S  the degrees of the monomials 
decreased by one and in the equation, there are only monomials 
of zero (free terms), second and fourth degrees of the desired 
variables. 

 After a quadratic change of variables, 2
S Sr   is done, we 

get a system m of algebraic equations in the form of 
polynomials of the second degree 3,...,2 1s m   with the 
following real coefficients: 

 

 

3 5 2 1

3 5 2 1

1
3 5 2 1

3

1
3 5 2 1

5

0

S m

S m

S
S S m

S
S m

q r r r r

q r r r r

   




   




 













   

  




,  3,...,2 1s m    

The system of algebraic equations will contain only 
monomials of degree zero, first and second degree, in 
accordance with the equalities for special indices: 

3 2 1 1 21 1, 0, 3S m            , 

3 2 1 1 21 0, 1S m          , 3  , 

3 2 1 1 21 2, 0S m          , 5  , 

3 2 1 1 21 1, 1S m          , 5  , 

3 2 1 1 21 0, 2S m          , 5  . 

 Thus, a system of algebraic equations in the form of 
polynomials of the second degree is obtained, and the theorem 
is proved for a system of m differential equations of the second 
order. The solution to the system of algebraic equations is 
obtained by the Newton method.  

 Thus, a stationary solution to the system of m differential 
equations of the second order with non-linear parts in the form 
of polynomials of six degrees in the non-resonant case is 
determined. 

 The transformation method is applicable to solve the 
practical problem of vibration protection of manipulators. 

IV. VIBRATION PROTECTION OF THE MANIPULATOR 

To reduce vibrations, shock absorbers are installed between 
the base and the arm of the manipulator, consisting of an elastic 
element, stiffness Ac  and a damping device that creates a drag 
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force proportional to the speed of action. The damping device 
creates a resistance force, consumes energy of oscillations and 
leads to their damping. 

The vertical force acts on the base:   AZ ASin wt . 

As a result of the installation of the shock absorber, the 
resistance force acting on the base consists of the force 
transmitted by the elastic element and the damper. 

     z A A A AR c Z b Z A c Sin wt b wCos wt    ,  

where Ab  – is the damping coefficient of the shock 
absorber. 

We apply the matrix equations of Lagrange, we obtain a 
system of equations of motion of the manipulator with a shock 
absorber. 

 2 2 2 2 2 2 ''
20 1 1 2 2 3 3 4 4 5 5 6 6 1

'' ' ' ' ' ' ' ' '
31 3 1 12 1 2 13 1 3 14 1 4 312 3 1 2

' '
313 3 1 3 1

0.5 k m i m i m i m i m i m i q

k q q k q q k q q k q q k q q q

k q q q Q

      

    



   

 
     

2 2 2 2 2 '' ' '
22 2 2 3 3 4 4 5 5 6 6 2 24 2 4

2'
21 1 1 2 2

0.5

Sin Cos

k m i m i m i m i m i q k q q

k q h tw h tw Q

      

  
 

 
 
 

2'' '
3 4 5 6 3 33 1

2'
2 3 4 5 6 3 1 3

( )

( )

m m m m q k q

m m m m m q q Q

    

    
  

     
   

2 22 2 2 '' ' '
40 4 4 5 5 6 6 4 41 1 42 2

41 42 4

0.5

Sin Cos

k m i m i m i q k q k q

h tw h tw Q

     

 
  

 2 2 ''
5 5 6 6 5 50.5 i m i m q Q   , 2 ''

6 6 6 60.5i m q Q   

To solve the system of differential equations, we apply the 
polynomial transform method with the following parameters: 

1 2 3

4 5 6

200 , 60 , 30 ,

20 , 20 , 20 ,

m kg m kg m kg

m kg m kg m kg

  

  
 

1 2 3 46000, 60000, 0.01, 20000,Q Q Q Q      

5 60.01, 0.01,Q Q    

1 2 3 430 , 20 , 20 , 30 ,a cm a cm a cm a cm      

5 630 , 20 ,a cm a cm    

 The base makes small vertical vibrations   0.1 30Sin t . 

For the installed shock absorber, the stiffness coefficient c = 
0.1, the damping coefficient b = 0.01. 

The transformation method allows to build a solution taking 
into account all the nonlinear components of the original 
system. The solution of the system of three differential 
equations by the transformation method is obtained: 

  2
1 0.005 0.0096 0.011q t t t    ,  

  2
2 0.0043 0.0085 0.0142q t t t    ,  

  2
3 0.0776 0.1665 0.0598q t t t   ,  

  2
4 0.01 0.021 0.038q t t t     

  2
5 0.025q t t ,   2

6 0.05q t t  ,  

Fig. 4 shows the generalized coordinates for the 
manipulator. 

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

1.2

q

 
Fig. 4. Coordinates for the manipulator 

Fig. 5 shows the trajectory of the spatial movements of the 
capture of the manipulator with a shock absorber in the 
conditions of small base vibrations. 

15 10 5 0

x

70

80

90

100

y

40

60

80

z

 
Fig. 5. Manipulator trajectory 

As a result of installing the shock absorber, the vertical 
vibrations of the gripper are effectively suppressed. 

To determine the characteristics of the damping device, a 

logarithmic attenuation decrement is used 
2

2

1







 .  

q1

q2

q3

q4

q5

q6
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Here   –is a damping coefficient. 

Fig. 6 shows the dependence of the logarithmic damping 
decrement on the damping coefficient.  

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

6

 
Fig. 6. Dependence of the logarithmic attenuation decrement on the damping 
coefficient. 

To assess the degree of vibration protection, we consider 
the coefficient of vibration protection  . The vibration 
protection coefficient is equal to the ratio of the amplitude of 
the oscillations of the links of the manipulator to the amplitude 
of the vibrations of the base.  

 
2 2

22 2 2

1

1

 
  




 
 ,  

Here  0


  is the ratio of the vibration frequencies of the 

base and the vibration frequencies of the links of the 
manipulator. 

 Fig. 7 shows the dependence of the vibration protection 
coefficient on the damping coefficient at  0 0.8  . 

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 
Fig. 7. Dependence of vibration protection coefficient on the damping 
coefficient. 

Vibration protection condition 1   is provided when 

2  .  

To assess the effectiveness of the shock absorber, consider 
the depreciation rate  . The depreciation coefficient is equal to 
the ratio of the maximum acceleration of the system with a 

shock absorber to the maximum acceleration of the system 
without a shock absorber.  

To effectively reduce vibrations, it is necessary to have 
damping factor value be significantly less than one 1  . 

For a robot manipulator, Fig. 8 shows the dependence of the 
depreciation coefficient on the vibration frequency. 

 For the manipulator's shock absorber to work effectively 
for given characteristics, the depreciation coefficient must be 
significantly less than one. In this case, the depreciation rate 

0.01   and shock absorber effectively reduce vibration.  

0.5 1.0 1.5 2.0 2.5 3.0
w

0.5

1.0

1.5

2.0

 
Fig. 8. Dependence of the depreciation coefficient on the vibration frequency. 

V. CONCLUSION  

The work considers the actual problem of vibration 
protection of the manipulator from small vibrations of the base. 
A mathematical model of the movement of the manipulator 
with small vibrations of the base, as well as a model of 
vibration protection of the manipulator is presented. The model 
of vibration protection of the manipulator is presented in the 
form of a nonlinear system of differential equations of the 
second order. The solution is determined by the polynomial 
transform method.  

The method of transformations allows one to obtain an 
analytical solution of a nonlinear system of differential 
equations and to conduct a qualitative and quantitative study of 
the vibration-proof model. Theorems are presented on the 
method of transforming a system of nonlinear equations to a 
system of algebraic equations that determines stationary 
motion. 

Vibration protection is performed using elastic elements 
and dampers. Dependences of the depreciation coefficient on 
the vibration frequency of the base and the coefficient of 
vibration protection on the damping coefficient are presented. 
The dependence of the depreciation coefficient on the 
frequency of external influence is presented. As a result, the 
task of vibration protection of the manipulator against external 
periodic exposure is solved, and the shock absorber effectively 
damps small vibrations of the base. 

Thus, the presented method of constructing a nonlinear 
model of vibration protection of the manipulator and the 
method of analysis of the vibration protection model allows us 
to study the qualitative and quantitative characteristics of 
vibration protection and allows the development of vibration 
protection systems for various manipulators.  

0

0.3

0.5

0.8
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