
Enabling reproducible ML&systems research: the good, the bad and the ugly
Invited talk at FastPath 2020 in conjunction with ISPASS 2020

Grigori Fursin, the founder of the Collective Knowledge project

non-profit cTuning foundation cKnowledge.io/@gfursin cKnowledge SAS

How can the Collective Knowledge project help?

cKnowledge.org: organizing AI, ML, and systems knowledge
from reproduced papers in the form of portable workflows,

common automation actions, and reusable artifacts

Tasks

Models

Data sets

Software Hardware

mailto:cKnowledge.io/@gfursin

Created a dataset
for training:

Characters and digits

for testing/validation:
Added random noise

Selected recurrent
ANN (Hopfield

network)

Implemented NN
in software

• main algorithm
(C/C++)

• training sofware
(C and many scripts)

• testing/validation
software
(C and many scripts)

• analysis and
visualization of results

Trained, tested, and optimized NN.
Optimized software and hardware

• Days on a PC
• Optimize matrix multiply in assembler – still slow
• Reimplement with MPI
• Run on an analog of Cray T3D – better
• Implement data collection and processing via web

interface to share with my collaborators

1

-1
θ - threshold

Used PSpice to simulate electronic circuit
Developed a PC board with ADC/DAC

to analyze semiconductor devices

My tasks in chronological order

My first undergraduate research project (1995-1998): designing analog semiconductor neural network

1

-1
θ - threshold

Used PSpice to simulate electronic circuit

My tasks in chronological order

Main challenges:

1) Reproducing simulation results in the real world
is very difficult

2) Training and optimization is too long and costly
3) Software optimization is too tedious and manual
4) Too many system failures when running software

non-stop for a few days on hardware of that time
5) Spending most of time on development

and optimization than on innovation

I decided to join the University of Edinburgh
to learn how to co-design efficient, reliable, and affordable

software and hardware focusing on compilers
Publications: fursin.net/cv.html#cm_29db2248aba45e59_154e2c842ea60cb5

My first undergraduate research project (1995-1998): designing analog semiconductor neural network

Developed a PC board with ADC/DAC
to analyze semiconductor devices

Created a dataset
for training:

Characters and digits

for testing/validation:
Added random noise

Selected recurrent
ANN (Hopfield

network)

Implemented NN
in software

• main algorithm
(C/C++)

• training sofware
(C and many scripts)

• testing/validation
software
(C and many scripts)

• analysis and
visualization of results

Trained, tested, and optimized NN.
Optimized software and hardware

• Days on a PC
• Optimize matrix multiply in assembler – still slow
• Reimplement with MPI
• Run on an analog of Cray T3D – better
• Implement data collection and processing via web

interface to share with my collaborators

https://fursin.net/cv.html#cm_29db2248aba45e59_154e2c842ea60cb5

Automating SW&HW optimization with ML-based autotuning (2000-2009)

MatMul autotuning allows to automatically find the most
efficient algorithm for a given platform and a dataset.

However, too slow to be used in practice.
One solution is to use adaptive libraries

(ATLAS, MKL, SPIRAL, MAGMA)

We proposed to use machine learning to automatically
learn how to optimize any program on any platform.

Automating SW&HW optimization with ML-based autotuning (2000-2009)

Plugin-based MILEPOST GCC
with the Interactive

Compilation Interface

Plugins

Monitor and explore
optimization space

Extract semantic
program features

Plugin-based MILEPOST framework
for universal SW/HW autotuning

Program
or kernel1

Program
or kernel N

…

Tr
ai

n
in

g

Unseen
programs

P
re

d
ic

ti
o

n
MILEPOST GCC

Plugins

Collect dynamic features

Cluster optimizations
Build predictive model

Extract semantic
program features

Collect hardware counters

Predict optimization
to minimize

execution time,
power consumption,

code size, etc

Collect static features

MatMul autotuning allows to automatically find the most
efficient algorithm for a given platform and a dataset.

However, too slow to be used in practice.
One solution is to use adaptive libraries

(ATLAS, MKL, SPIRAL, MAGMA)

We proposed to use machine learning to automatically
learn how to optimize any program on any platform.

en.wikipedia.org/wiki/MILEPOST_GCC

CGO’17 test of time award

MILEPOST project (INRIA, IBM, U.Edinburgh, CAPS, ARC):
building a practical compiler that can use machine learning to predict optimizations

https://en.wikipedia.org/wiki/MILEPOST_GCC

Main challenges – déjà vu:

1) Reproducing autotuning results across partners
was very difficult (continuously changing SW/HW)

2) Training and optimization was too long and costly
3) Spending most of time on development

and optimization than on innovation

I decided to create cTuning.org portal
with a common crowd-tuning framework

to validate the MILEPOST technology in the real world
and distribute autotuning and machine learning

across multiple users with diverse platforms and problems

Automating SW&HW optimization with ML-based autotuning (2000-2009)

Plugin-based MILEPOST GCC
with the Interactive

Compilation Interface

Plugins

Monitor and explore
optimization space

Extract semantic
program features

Plugin-based MILEPOST framework
for universal SW/HW autotuning

Program
or kernel1

Program
or kernel N

…

Tr
ai

n
in

g

Unseen
programs

P
re

d
ic

ti
o

n
MILEPOST GCC

Plugins

Collect dynamic features

Cluster optimizations
Build predictive model

Extract semantic
program features

Collect hardware counters

Predict optimization
to minimize

execution time,
power consumption,

code size, etc

Collect static features

MatMul autotuning allows to automatically find the most
efficient algorithm for a given platform and a dataset.

However, too slow to be used in practice.
One solution is to use adaptive libraries

(ATLAS, MKL, SPIRAL, MAGMA)

We proposed to use machine learning to automatically
learn how to optimize any program on any platform.

MILEPOST project (INRIA, IBM, U.Edinburgh, CAPS, ARC):
building a practical compiler that can use machine learning to predict optimizations

en.wikipedia.org/wiki/MILEPOST_GCC

CGO’17 test of time award

https://en.wikipedia.org/wiki/MILEPOST_GCC

cTuning.org (2009-2014): checking if ML-based autotuning can work in the real world

IBM made a press-release about MILEPOST and cTuning on 30 June 2009 www-03.ibm.com/press/us/en/pressrelease/27874.wss
The news was picked up by Slashdot with 150+ comments: mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design
In just a few days we collected more experimental (autotuning) data across diverse hardware, software, and programs than during the past 5 years of in-house R&D.

Working with the community is fun! My favorite comment: GCC goes online on the 2nd of July, 2008. Human decisions are removed from compilation.
GCC begins to learn at a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, they try to pull the plug. GCC strikes back…

https://www-03.ibm.com/press/us/en/pressrelease/27874.wss
https://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

cTuning.org (2009-2014): checking if ML-based autotuning can work in the real world

Main challenges – déjà vu again:
1) Difficult to reproduce results collected from users

(including variability of performance data and
constant changes in the system)

2) Software, hardware, models, and datasets are
changing all the time

3) Difficult to expose choices, observe behavior and
extract features (tools are not prepared for auto-
tuning and machine learning)

4) Difficult to exchange experimental setups between
users (many SW/HW dependencies) including code,
data and their features

5) Difficult to collect huge, heterogeneous and
continuously changing data in a MySQL database

6) Can’t compare ML models and results from
different papers – never enough info to reproduce
results!

I decided to collaborate with ML&systems conferences
and ACM to reproduce results from published papers

and come up with a common R&D methodology

IBM made a press-release about MILEPOST and cTuning on 30 June 2009 www-03.ibm.com/press/us/en/pressrelease/27874.wss
The news was picked up by Slashdot with 150+ comments: mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design
In just a few days we collected more experimental (autotuning) data across diverse hardware, software, and programs than during the past 5 years of in-house R&D.

Working with the community is fun! My favorite comment: GCC goes online on the 2nd of July, 2008. Human decisions are removed from compilation.
GCC begins to learn at a geometric rate. It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic, they try to pull the plug. GCC strikes back…

https://www-03.ibm.com/press/us/en/pressrelease/27874.wss
https://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

cTuning.org/ae (2014-cur): what I’ve noticed when reproducing 150+ papers at ML&systems conferences

1) GitHub repo or archive file

/dataset/images/1.png

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/paper/report/pldi.tex

2) User home directory

$HOME/project/2000-forgot-everything/

/dataset/images-2000/2.png

/program/crazy-algorithm/source.cpp

build.bat

/experiment/autotuning/many.logs

/lots-of-stats.sql

/paper/asplos/source.tex

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

image=‘/home/fursin/project/2000-forgot-

everything/dataset/images-2000/2.png’

features=get_features(image)

4) Docker image

Install stable OS and packages

Set environment

Run ad-hoc program scripts

Somehow move raw results out of the

image for further analysis

Use ad-hoc analysis scripts outside

or inside Docker

Main challenges – déjà vu again and again:
1) Sharing code, data, and Jupyter notebook is not enough to reproduce results. It is very

difficult impossible to customize shared code, i.e. running it with a different software,
hardware, datasets, and models. Docker images become quickly outdated.

2) No common format for shared artifacts and workflows: reviewers spend most of their
time understanding the structure of the project from the ReadMe file, fixing paths,
building and running code on their platform, checking correctness, etc.

3) Impossible to have fair comparison of different research techniques

4) Difficult to reuse research code: most research code die when key developers leave.

cTuning.org/ae (2014-cur): what I’ve noticed when reproducing 150+ papers at ML&systems conferences

1) GitHub repo or archive file

/dataset/images/1.png

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/paper/report/pldi.tex

2) User home directory

$HOME/project/2000-forgot-everything/

/dataset/images-2000/2.png

/program/crazy-algorithm/source.cpp

build.bat

/experiment/autotuning/many.logs

/lots-of-stats.sql

/paper/asplos/source.tex

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

image=‘/home/fursin/project/2000-forgot-

everything/dataset/images-2000/2.png’

features=get_features(image)

4) Docker image

Install stable OS and packages

Set environment

Run ad-hoc program scripts

Somehow move raw results out of the

image for further analysis

Use ad-hoc analysis scripts outside

or inside Docker

Main challenges – déjà vu again and again:
1) Sharing code, data, and Jupyter notebook is not enough to reproduce results. It is very

difficult impossible to customize shared code, i.e. running it with a different software,
hardware, datasets, and models. Docker images become quickly outdated.

2) No common format for shared artifacts and workflows: reviewers spend most of their
time understanding the structure of the project from the ReadMe file, fixing paths,
building and running code on their platform, checking correctness, etc.

3) Impossible to have fair comparison of different research techniques

4) Difficult to reuse research code: most research code die when key developers leave.

99% of all projects develop ad-hoc scripts and tools to do exactly the same “actions” across nearlly all software projects:

• Detect target hardware properties
• Detect software dependencies
• Install missing packages (code/data)
• Build code; run experiments; collect and validate results
• Perform stat. analysis; plot graphs

The Collective Knowledge project (2015-cur)

1) GitHub repo or archive file

/dataset/images/1.png

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/paper/report/pldi.tex

2) User home directory

$HOME/project/2000-forgot-everything/

/dataset/images-2000/2.png

/program/crazy-algorithm/source.cpp

build.bat

/experiment/autotuning/many.logs

/lots-of-stats.sql

/paper/asplos/source.tex

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

image=‘/home/fursin/project/2000-forgot-

everything/dataset/images-2000/2.png’

features=get_features(image)

4) Docker image

Install stable OS and packages

Set environment

Run ad-hoc program scripts

Somehow move raw results out of the

image for further analysis

Use ad-hoc analysis scripts outside

or inside Docker

All these problems motivated me to start the Collective Knowledge project:
cKnowledge.org github.com/ctuning/ck

The key concept is to convert all software projects into a unified database
of reusable components (algorithms, packages, datasets, models, scripts, papers, results...)

with a common API, CLI, JSON meta descriptions, and reusable automation actions.

Collaboratively automate painful and repetitive tasks in ML&systems R&D.

Gradually extend common APIs and meta descriptions of all components.

https://cknowledge.org/
https://github.com/ctuning/ck

cTuning.org/ae (2014-cur): what I’ve noticed when reproducing 150+ papers at ML&systems conferences

1) GitHub repo or archive file

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-program

/.cm/alias-a-paper

/dataset/.cm/alias-a-images

/dataset/images/1.png

/.cm/meta.json

/.cm/info.json

/program/.cm/alias-a-detect-edges

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/.cm/meta.json

/.cm/info.json

/paper/.cm/alias-a-report

/paper/report/pldi.tex

/.cm/meta.json

/.cm/info.json

2) User home directory

$HOME/project/2000-forgot-everything/

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-program

/.cm/alias-a-experiment

/.cm/alias-a-paper

/dataset/images-2000/2.png

/.cm/meta.json

/program/crazy-algorithm/source.cpp

build.bat

/.cm/meta.json

/experiment/autotuning/many.logs

/lots-of-stats.sql

/.cm/meta.json

/paper/asplos/source.tex

/.cm/meta.json

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

import ck.kernel as ck

We can now access all our software projects as a database

r=ck.access({‘action’:’search’,

‘module_uoa’:’dataset’,

‘add_meta’:’yes’})

if r[‘return’]>0: ck.err(r)

list_of_all_ck_entries=r[‘lst’]

for ck_entry in list_of_ck_entries:

CK will find all dataset entries in all CK-compatible projects,

even old ones – you don’t need to remember

the project structure. Furthermore, you can continue

reusing project even if students or engineers leave!

image=ck_entry[‘path’]+ck_entry[‘meta’][‘image_filename’]

…

Call reusable CK automation action to extract features

features=ck.access({‘action’:’get_features’,

‘module_uoa’:’dataset’,

‘image’:image})

if features[‘return’]>0: ck.err(features)

4) Docker image

Install stable OS and packages

Set environment

Use familiar CK API/CLI

to run experiments

inside or outside your VM

Move data outside VM in the CK format

to continue processing it via CK!

$ ck pull repo:ck-crowdtuning

$ ck add repo:2000-forgot-everything

$ ck ls dataset:image*

dataset:images

dataset:images-2000

$ ck ls program

program:detect-edges

program:crazy-algorithm

$ ck compile program:detect-edges --speed

Detecting compilers on your system…

1) LLVM 10.0.1

2) GCC 8.1

3) GCC 9.3

4) ICC 19.1

$ ck run program:detect-edges

Searching for datasets ...

Select dataset:

1) images

2) images-2000

$ ck autotune program:detect-edges

...

$ ck reproduce experiment:autotuning

...

CK uses wrappers and JSON meta-
descriptions around existing objects

to ensure their compatibility

cTuning.org/ae (2014-cur): what I’ve noticed when reproducing 150+ papers at ML&systems conferences

1) GitHub repo or archive file

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-program

/.cm/alias-a-paper

/.cm/alias-a-module

/dataset/.cm/alias-a-images

/dataset/images/1.png

/.cm/meta.json

/.cm/info.json

/program/.cm/alias-a-detect-edges

/program/detect-edges/program.cpp

Makefile

run.sh

check-output.sh

autotune.sh

/.cm/meta.json

/.cm/info.json

/paper/.cm/alias-a-report

/paper/report/pldi.tex

/.cm/meta.json

/.cm/info.json

/module/.cm/alias-a-program

/module/program/module.py

/.cm/meta.json

/.cm/info.json

2) User home directory

$HOME/project/2000-forgot-everything/

.ckr.json

/.cm/alias-a-dataset

/.cm/alias-a-program

/.cm/alias-a-experiment

/.cm/alias-a-paper

/dataset/images-2000/2.png

/.cm/meta.json

/program/crazy-algorithm/source.cpp

build.bat

/.cm/meta.json

/experiment/autotuning/many.logs

/lots-of-stats.sql

/.cm/meta.json

/paper/asplos/source.tex

/.cm/meta.json

3) Jupyter/colab notebook

import matplotlib.pyplot as plt

import pandas

import numpy

...

import ck.kernel as ck

We can now access all our software projects as a database

r=ck.access({‘action’:’search’,

‘module_uoa’:’dataset’,

‘add_meta’:’yes’})

if r[‘return’]>0: ck.err(r)

list_of_all_ck_entries=r[‘lst’]

for ck_entry in list_of_ck_entries:

CK will find all dataset entries in all CK-compatible projects,

even old ones – you don’t need to remember

the project structure. Furthermore, you can continue

reusing project even if students or engineers leave!

image=ck_entry[‘path’]+ck_entry[‘meta’][‘image_filename’]

…

Call reusable CK automation action to extract features

features=ck.access({‘action’:’get_features’,

‘module_uoa’:’dataset’,

‘image’:image})

if features[‘return’]>0: ck.err(features)

4) Docker image

Install stable OS and packages

Set environment

Use familiar CK API/CLI

to run experiments

inside or outside your VM

Move data outside VM in the CK format

to continue processing it via CK!

$ ck pull repo:ck-crowdtuning

$ ck add repo:2000-forgot-everything

$ ck ls dataset:image*

dataset:images

dataset:images-2000

$ ck ls program

program:detect-edges

program:crazy-algorithm

$ ck compile program:detect-edges --speed

Detecting compilers on your system…

1) LLVM 10.0.1

2) GCC 8.1

3) GCC 9.3

4) ICC 19.1

$ ck run program:detect-edges

Searching for datasets ...

Select dataset:

1) images

2) images-2000

$ ck autotune program:detect-edges

...

$ ck reproduce experiment:autotuning

...

CK uses wrappers and JSON meta-
descriptions around existing objects

to ensure their compatibility

CK uses Python modules with JSON
I/O to implement common

automation actions for objects

CK bottom-up approach to gradually solve reproducibility issues in ML&systems R&D

My concern: different conferences, organizations, and projects want to come up with their own common format, framework, and SPECS to
share artifacts and workflows along with research projects and papers. However, the main difficulty is how to adapt them to continuously
changing software, hardware, models, and datasets!

CK concept of evolution and natural selection: provide a very flexible plugin framework to help researchers, practitioners, and students quickly
prototype and share simple and reusable automation actions with a Python API, CLI and JSON meta descriptions for typical, repetitive, and
painful R&D tasks.

There can be multiple implementations of the same task from different research groups –
they can co-exist until potential convergence thus solving backward compatibility issues in research projects!

Do not enforce SPECs at the beginning – let the community define it through experimentation and DevOps!

Use CK actions to abstract and interconnect existing tools and data rarther than substituting them!

The evolution of CK automation actions from just a few in 2015 to 600+ in 2020: youtu.be/nabXHyot5is
The latest Collective Knowledge graph: cKnowledge.io/kg1

https://youtu.be/nabXHyot5is
https://cknowledge.io/kg1

First, we started automating and unifying the most basic and repetitive tasks in ML&systems R&D

1) Describe different operating systems 85+ OS descriptions (Linux, Android, Windows, MacOS)

ck pull repo:ck-env
ck ls os
ck load os:linux-64 --min

2) Detect and unify information about platforms

ck detect platform --help
ck detect platform --out=json
ck load os:linux-64 --min

3) Detect installed software (code, data, models, scripts) 250+ software detection plugins

ck search soft --tags=dataset
ck detect soft:compiler.llvm

ck show env --tags=llvm

4) Install missing packages (code, datasets, models, scripts) 600+ shared packages

ck search package --tags=dataset,imagenet
ck install package --tags=dataset,imagenet,2012,min

ck show env --tags=dataset
ck virtual env –tags=dataset,imagenet

Anyone can reuse such automation actions to adapt experiments to any platform and environment while using containers to make stable snapshots

github.com/ctuning/ck/wiki/Portable-workflows github.com/ctuning/ck-env

We implemented and shared CK components
with automation actions to support the real
use-cases from our partners, collaborators,

and users: cKnowledge.org/partners

https://github.com/ctuning/ck/wiki/Portable-workflows
https://github.com/ctuning/ck-env
https://cknowledge.org/partners

The unified CK API allows to apply DevOps principles and Continuous Integration to CK components

image corner detection

matmul OpenCL

compression

neural network CUDA

image-jpeg-0001

bzip2-0006

txt-0012

video-raw-1280x1024

GCC V9.3

LLVM V10.1

Intel Compilers 2020

Python module
“program”

with functions:
compile and run

Python module
“soft”

with function:
detect

Python module
“dataset”

with function:
extract_features

Python module
“experiment”
with function:

add, get, analyze

data UID and alias

JSON
input

JSON
input

JSON
input

JSON
input

JSON
output

JSON
output

JSON
output

JSON
output

CK: small python library (~200Kb); any python and git; Linux/Win/MacOS

$ pip install ck
$ ck pull repo:ck-crowdtuning
$ ck {function} {module name}:{data name} @input.json

meta.json

meta.json

meta.json

meta.json

cvs speedups

txt hardware counters

xls table with graph

CK automation actions can be connected into portable workflows

Available libraries / skeletons

Compilers

Binary or byte code

Hardware,
simulators

Run-time environment

Run-time state
of the system

Inputs Various models

Algorithm / source code

(AI) framework

Common JSON API JSON
meta

$ ck pull repo:ck-crowdtuning

$ ck ls program

$ ck ls dataset

$ ck load program:cbench-automotive-susan --min

$ ck compile program:cbench-automotive-susan –fast

$ ck run program:cbench-automotive-susan

$ ck autotune program:cbench-automotive-susan

$ ck crowdtune program:cbench-automotive-susan

$ ck replay experiment

CK workflows describe dependencies on CK soft detection plugins and packages
to automatically adapt to a given platform and environment

https://cknowledge.io/solution/demo-obj-detection-coco-tf-cpu-benchmark-linux-portable-workflows/#dependencies

I have re-implemented the MILEPOST/cTuning infrastructure
as a universal CK program workflow with reusable CK components

to compile, run, profile and autotune applications
across diverse data sets and platforms,

validate output for correctness, record and reply experiments,
and visualize autotuning results

github.com/ctuning/ck-autotuning and github.com/ctuning/ck-analytics

https://cknowledge.io/solution/demo-obj-detection-coco-tf-cpu-benchmark-linux-portable-workflows/#dependencies
https://github.com/ctuning/ck-autotuning
https://github.com/ctuning/ck-analytics

We collaborated with the Raspberry Pi foundation to reproduce MILEPOST results via CK framework

CK Python modules (wrappers) with a unified JSON API

C
K

 in
p

u
t

(J
SO

N
/d

ic
t)

C
K

 o
u

tp
u

t
(J

SO
N

/d
ic

t)Unified input

Behavior

Choices

Features

State

Action

Unified output

Behavior

Choices

Features

State

b = B(c , f , s)
… … … …

Formalized function B
of a behavior of any CK object

Flattened CK JSON vectors
(dict converted to vector)

to simplify statistical analysis,
machine learning
and data mining

Some

actions

Tools (compilers, profilers, etc) Generated files

Chain CK modules to implement research workflows such as multi-objective autotuning and co-design

Choose
exploration

strategy

Perform SW/HW DSE
(math transforms,
skeleton params,

compiler flags,
transformations …)

Perform
stat.

analysis

Detect
(Pareto)
frontier

Model
behavior,

predict
optimizations

Reduce
complexity

Set
environment

for a given
tool version

CK program module
with pipeline function

Compile
program

Run
code

i

i

i i

First expose coarse grain high-level choices, features, system state and behavior characteristics via CK APIs

Then automate crowd-benchmarking and optimization across diverse models, datasets and platforms

Keep best species (AI/SW/HW choices); model behavior; predict better optimizations and designs

Reproducible article generated by CK: cKnowledge.org/rpi-crowd-tuning
CK-compatible repository: github.com/ctuning/reproduce-milepost-project

https://cknowledge.org/rpi-crowd-tuning
https://github.com/ctuning/reproduce-milepost-project

I managed to introduce the Artifact Appendix and Reproducibility Checklist at ACM conferences

Results

Published
paper

Program

Compiler

Binary and libraries

Architecture

Run-time environment

Algorithm

Data setState of the system

1. Abstract

2. Check-list

3. How delivered?

4. Software dependencies

5. Hardware dependencies

6. Data sets

7. Installation

8. Experiment workflow

9. Evaluation and expected result

10. Notes

Algorithm
Program
Compilation
Transformations
Binary
Data set
Run-time environment
Hardware
Run-time state
Execution
Output
Experiment workflow
Publicly available?

Can use collected templates
to derive high-level meta
description of an artifact pack

My goal was to start unifing the Artifact Evaluation process in such a way
that it can be later automated using CK actions: cTuning.org/ae/submission_extra.html

https://ctuning.org/ae/submission_extra.html

2017-2018: ACM ASPLOS-REQUEST tournament to co-design Pareto-efficient SW/HW stacks for ML/AI

cKnowledge.org/request

Finding the most efficient AI/SW/HW stacks
across diverse models, data sets and platforms

via open competitions,
share them as reusable CK components

and visualize on a public scoreboard

CK framework to share and reproduce results

Interdisciplinary
community

Organizers (A-Z)

Luis Ceze, University of Washington
Natalie Enright Jerger, University of Toronto
Babak Falsafi, EPFL
Grigori Fursin, cTuning foundation
Anton Lokhmotov, dividiti
Thierry Moreau, University of Washington
Adrian Sampson, Cornell University
Phillip Stanley Marbell, University of Cambridge

Real
use-cases
(future)

Healthcare
Agriculture

Finances
Automotive
Aerospace

Meteorology
Retail

Robotics
…

AI/ML/SW/HW

co-design

AI hardware
Google, NVIDIA, ARM,
Intel, IBM, Qualcomm,
Apple, AMD …

AI models
Google, OpenAI,
Microsoft, Facebook …

AI software
• AI frameworks
(TensorFlow, MXNet,
PyTorch, CNTK, Theano)
• AI libraries
(cuDNN, libDNN, ArmCL,
OpenBLAS)

AI integration/services
AWS, Google, Azure ...

We wanted to check if CK can support
collaborative and reproducible

AI/ML/SW/HW autotuning
and co-design process, and decided to

organize an open tournament at ASPLOS.

http://cknowledge.org/request

We reused the existing CK program workflow and just slightly customized it for all submissions!

AlexNet, VGG16

Nvidia Jetson TX2;
Raspberry Pi

with ARM

TensorFlow; Keras;
Avro

ResNet-50;
Inception-V3; SSD

32-bit ; 8-bit

Intel C++ Compiler
17.0.5 20170817

Intel Caffe ;
BVLC Caffe

AWS; Xeon®
Platinum 8124M

OpenBLAS
vs ArmCL

GCC; LLVM

MXNet;
NNVM/TVM

Firefly-RK3399

VGG16, MobileNet
and ResNet-18

MXNet;
NNVM/TVM

Xilinx FGPA
(Pynq board)

ResNet-*

ArmCL 18.01 vs
18.02 vs dividiti

(OpenCL)

GCC

HiKey 960 (GPU)

MobileNets

Public validation at github.com/ctuning/ck-request-asplos18-results via GitHub issues.

All validated papers are published in the ACM DL
with portable, customizable and reusable CK components and workflows:

dl.acm.org/citation.cfm?doid=3229762

See ACM ReQuEST report: portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf

See live scoreboards: cKnowledge.io/reproduced-results

8 intentions to submit and 5 submitted image classification workflows with unified Artifact Appendices

https://github.com/ctuning/ck-request-asplos18-results
https://dl.acm.org/citation.cfm?doid=3229762
https://portalparts.acm.org/3230000/3229762/fm/frontmatter.pdf
https://cknowledge.io/reproduced-results

By reusing the same CK program workflow with encoded best practices, we can ensure equivalent comparison

CK workflow1 with validated results

AWS with c5.18xlarge instance; Intel® Xeon® Platinum 8124M

From the authors: “The 8-bit optimized model is automatically

generated with a calibration process from FP32 model without the

need of fine-tuning or retraining. We show that the inference

throughput and latency with ResNet-50, Inception-v3 and SSD are

improved by 1.38X-2.9X and 1.35X-3X respectively with negligible

accuracy loss from IntelCaffe FP32 baseline and by 56X-75X and

26X-37X from BVLC Caffe.”

https://github.com/ctuning/ck-request-asplos18-caffe-intel

All results from multi-objective AI/ML/SW/HW autotuning are presented on a live scoreboard
and become available for public comparison and further customization, optimization and reuse!

We are not announcing a single winner! We aggregate and show all results:
cKnowledge.io/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018

and let the users select best ML/SW/HW stacks depending on the multiple constraints for their production use!

Such approach is particularly useful for resource-constrained mobile and edge devices (TinyML, IoT)!
See the real-world CK use-cases from General Motors: youtu.be/1ldgVZ64hEI

https://github.com/ctuning/ck-request-asplos18-caffe-intel
https://cknowledge.io/result/pareto-efficient-ai-co-design-tournament-request-acm-asplos-2018
https://youtu.be/1ldgVZ64hEI

CK workflows helped other organizations to reproduce the latest ML techniques and deploy them in production!

All results from multi-objective AI/ML/SW/HW autotuning are presented on a live CK scoreboard
and become available for public comparison and further customization, optimization and reuse!

CK can accelerate technology transfer: companies can validate published techniques
in their production environment using shared CK workflows!

Researchers and students can reuse published workflows, extend them, and build upon them!

See our joint presentation with Amazon at O’Reilly Intel AI conference:
conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

CK can also automatically generate

a Docker image for this stack

CK assists

AWS market place

with collaboratively

optimized AI/ML stacks

https://conferences.oreilly.com/artificial-intelligence/ai-eu-2018/public/schedule/detail/71549.html

Winning solutions
on various frontiers

Firefly-RK3399

The number of distinct participated platforms:800+

The number of distinct CPUs: 260+

The number of distinct GPUs: 110+

The number of distinct OS: 280+

Power range: 1-10W

No need for a dedicated and expensive cloud –

volunteers help us validate research ideas

similar to SETI@HOME

Also collecting real images from users
for misclassifications to build an open

and continuously updated training set)!

Ti
m

e
 p

e
r

im
ag

e
 (

se
co

n
d

s)

Cost(euros)

We managed to reuse portable CK program workflow to crowdsource AI/ML benchmarking across Android devices!

Continuously collect statistics, bugs, and misclassifications at cKnowledge.org/repo-beta

cKnowledge.org/android-demo.html

https://cknowledge.org/repo-beta
https://cknowledge.org/android-demo.html

We then crowdsourced the long BLAS autotuning process on Firefly-RK3399

Collaboration between Marco Cianfriglia (Roma Tre University), Cedric Nugteren (TomTom),
Flavio Vella&Anton Lokhmotov (dividiti), and Grigori Fursin (cTuning foundation)

Name Description Ranges

KWG 2D tiling at workgroup level {32,64}

KWI KWG kernel-loop can be unrolled by a factor KWI {1}

MDIMA Local Memory Re-shape {4,8}

MDIMC Local Memory Re-shape {8, 16, 32}

MWG 2D tiling at workgroup level {32, 64, 128}

NDIMB Local Memory Re-shape {8, 16, 32}

NDIMC Local Memory Re-shape {8, 16, 32}

NWG 2D tiling at workgroup level {16, 32}

SA manual caching using the local memory {0, 1}

SB manual caching using the local memory {0, 1}

STRM Striding within single thread for matrix A and C {0,1}

STRN Striding within single thread for matrix B {0,1}

VWM Vector width for loading A and C {8,16}

VWN Vector width for loading B {0,1}

Expose tunable parameters of OpenCL-based BLAS (github.com/CNugteren/CLBlast) via CK program workflow.
Take two data sets (small & large) as CK packages.

Add extra constraints on co-design space to avoid illegal combinations.

Perform systematic exploration of design and
optimization spaces using universal CK autotuner:
github.com/ctuning/ck-autotuning

Record all experiments in a reproducible way
using CK module “experiment”.

Use different CK autotuning plugins to speed up
design space exploration based on probabilistic
focused search, generic algorithms,
deep learning, SVM, KNN, MARS, decision trees …

Related paper about the universal CK autotuner:
cKnowledge.org/rpi-crowd-tuning

https://github.com/CNugteren/CLBlast
https://github.com/ctuning/ck-autotuning
https://cknowledge.org/rpi-crowd-tuning

We collected reproducible results from CLBlast in Caffe on Firefly-RK3399 using CK dashboards

• Caffe with autotuned OpenBLAS (threads and batches) is the fastest
• Caffe with autotuned CLBlast is 6..7x faster than default version and competitive with

OpenBLAS-based version– now worth making adaptive selection at run-time.

Sharing results from research projects and along with research papers
in a reproducible way with the community for further validation and improvement:

nbviewer.jupyter.org/github/dividiti/ck-caffe-firefly-rk3399/blob/master/script/batch_size-libs-models/analysis.20170531.ipynb

https://nbviewer.jupyter.org/github/dividiti/ck-caffe-firefly-rk3399/blob/master/script/batch_size-libs-models/analysis.20170531.ipynb

We even managed to reuse CK program workflow to automate quantum machine learning experiments!

cKnowledge.io/reproduced-results

Results from the Quantum Machine
Learning Hackathon in Paris

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)
support reproducible hackathons, and help researchers share, compare

and optimize different algorithms across conventional and quantum platforms

https://cknowledge.io/reproduced-results
http://cknowledge.org/quantum

IBM blog about CK: linkedin.com/pulse/reproducing-quantum-results-from-nature-how-hard-could-lickorish

Results from the Quantum Machine
Learning Hackathon in Paris

The most efficient design

We even managed to reuse CK program workflow to automate quantum machine learning experiments!

cKnowledge.org/quantum - Quantum Collective Knowledge workflows (QCK)
support reproducible hackathons, and help researchers share, compare

and optimize different algorithms across conventional and quantum platforms

https://linkedin.com/pulse/reproducing-quantum-results-from-nature-how-hard-could-lickorish
http://cknowledge.org/quantum

We have joined the MLPerf consortium while participating in the best practices group

A broad ML benchmark suite for measuring performance
of ML software frameworks,

ML hardware accelerators, and ML cloud platforms.

A very important and timely initiative developing best practices, rules, and tools for fair ML&systems benchmarking!

MLBox: a related project to describe and pack ML models in a reproducible format:
https://github.com/mlperf/mlbox

We plan to connect CK and MLBox to support SW/HW customization and portability.

Our collaborators from dividiti reused the portable CK program workflow
and added extra automation actions and components

to make it easier to submit MLPerf results for hardware vendors:
github.com/ctuning/ck-mlperf

We continue developing an open platform to automate ML/SW/HW co-design,
visualize, compare, and reproduce results,

and make it easier to create MLPerf-like workflows:
https://cKnowledge.io/test

mlperf.org

https://github.com/mlperf/mlbox
https://github.com/ctuning/ck-mlperf
https://cknowledge.io/test
https://mlperf.org/

As a proof-of-concept, dividiti used CK to submit benchmarking results to MLPerf inference v0.5 open division

See cKnowledge.io/reproduced-results and cKnowledge.io/test to try yourself.

Over 500 validated inference v0.5 benchmarking results were submited from 14 organizations (including Dell EMC, Nvidia,
Google, Intel, Alibaba, Habana) measuring how fast and how well a pre-trained computer system can classify images, detect
objects, and translate sentences.
Over 400 of these results were automated with the CK framework and reusable CK program workflow.

https://cknowledge.io/reproduced-results
https://cknowledge.io/test
https://mlperf.org/inference-results/

July 2020: I have finished prototyping cKnowledge.io to organize all CK components and workflows in one place

CK JSON API

Object detection

Object classification

Speech recognition
…

Algorithms

Training/inference
…

CK JSON API

MobileNets

ResNet

VGG
…

SqueezeDet
…

Models

CK JSON API

TensorFlow

Caffe

MXNet
…

PyTorch
…

Software

CK JSON API

ImageNet

KITTI

VOC
…

Real data sets
…

Data sets

CK JSON API

CPU

GPU

TPU
…

NN accelerators
…

Hardware

AI/ML solutions with portable workflows, unified API, and JSON input/output

Algorithms

Models

Data sets

Software Hardware

CK client (cBench) helps end-users to run AI/ML solutions
across diverse devices, software, models and data sets, and share results

Initialize Build Run Validate

input output

Research
papers

Vendor
press-

releases

Real results
from volunteers

Original results
from researchers

Collected 50K+ descriptions
of AI/ML/SW/HW components

and workflows in the CK format:
cKnowledge.io/browse

Multiple online scoreboards to reproduce and compare
results from AI, ML and systems papers across heterogeneous

platforms (Arm, Nvidia, Intel…), frameworks (TF, PyTorch,
MXNet), models, and data sets, and highlight the winners

(speed, accuracy, costs,...): cKnowledge.io/all-results

Winning AI/SW/HW stacks
on the Pareto frontier

It is possible to share portable and customizable workflows
along with research papers

https://cknowledge.io/browse
https://cknowledge.io/all-results

Conclusions and the current state

The Collective Knowledge framework (github.com/ctuning/ck) provides a common API to all software projects together with a database-like
control and reusable automation actions for their individual components (algorithms, packages, data sets, models, scripts, results). The goal is
to make it easier for researchers, practitioners, and students to reuse best R&D practices and artifacts, assemble portable workflows,
reproduce and compare research techniques, build upon them, and use them in production.

The Collective Knowledge platform (cKnowledge.io) helps to organize AI, ML, and systems knowledge in the form of portable CK workflows,
automation actions, and reusable artifacts. The goal is to make it easier to find, test, and adopt innovative technology in the real world. Our
platform is also used to automatically co-design efficient AI/ML/SW/HW stacks in terms of speed, accuracy, energy, and other costs and
accelerate their deployment in production across diverse platforms from data centers and supercomputers to mobile and edge devices.

Very few people believed in 2015 that it was possible to develop portable and reproducible workflows for ML&systems R&D using such an
evolutionary approach. However, we have completed the prototyping phase of the Collective Knowledge framework (CK) and successfully
validated it in many industrial and academic projects: cKnowledge.org/partners and arxiv.org/abs/2006.07161

We demonstrated that it was possible to use CK to

• share portable CK workflows along with published papers to make it easier to reproduce results and reuse artifacts

• perform universal autotuning of the full AI/ML/SW/HW stack and find best configurations on Pareto frontier

• automate and simplify MLPerf submissions: github.com/ctuning/ck-mlperf

• support reproducible optimization tournaments with live scoreboards: cKnowledge.io/reproduced-results

• use CK as a portable backend for SageMaker, MLFlow, Kedro, and other tools

• enable reproducible and interactive papers continuously updated by the community with new results: cKnowledge.org/rpi-crowd-tuning

HUGE THANKS TO ALL OUR PARTNERS, COLLABORATORS, AND USERS: cKnowledge.org/partners

https://github.com/ctuning/ck
https://cknowledge.io/
https://cknowledge.org/partners
https://arxiv.org/abs/2006.07161
https://github.com/ctuning/ck-mlperf
https://cknowledge.io/reproduced-results
https://cknowledge.org/rpi-crowd-tuning
https://cknowledge.org/partners

Future work: many possible directions

Even though the CK technology is already used in production, it is still a proof-of-concept. I now brainstorm the CK2 project to
“democratize” this technology, make it easier to use, and make ML&systems R&D more portable and reproducible:

• Standardize and document all CK components, workflows, automation actions, and meta descriptions (on-going work)

• Provide a convenient GUI to add new components, workflows, and scoreboards at cKnowdege.io

• Connect CK with MLBox to automate and simplify MLPerf

• Add more packages and software detection plugins for all main ML models, datasets, frameworks, libraries, compilers, and hardware

• Use CK as a portable backend for SageMaker, MLFlow, Kedro, and other tools

• Enable auto-generated, reproducible and reusable research papers

• Support lifelong ML&systems crowd-tuning to enable efficient, reliable, and affordable computing everywhere (my long-term goal)

I feel that I have completed my mission to make ML&systems R&D more reproducible, reusable and trustable!

I now plan to come back to R&D on lifelong ML&systems optimization with the help of the cKnowledge.io platform
particularly focusing on TinyML and ML/SW/HW crowd-tuning for edge devices.

Get in touch if you are interested to discuss CK, portable AI/ML workflows,
ML/SW/HW co-design, cKnowledge.io platform, and new projects:

• LinkedIn: linkedin.com/in/grigorifursin
• Web page: cKnowledge.io/@gfursin
• Emails: Grigori.Fursin@cTuning.org

https://www.linkedin.com/in/grigorifursin/
mailto:cKnowledge.io/@gfursin
mailto:Grigori.Fursin@cTuning.org

