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ABSTRACT

In this paper, we propose a novel sensor selection scheme for net-
works equipped with energy harvesting sensing devices. Ultimately,
the goal is to minimize the reconstruction distortion at the fusion
center by selecting a reduced (i.e., sparse) yet informative enough
subset of sensors. The solution must also fulfill the causality con-
straints associated to the energy harvesting process. For a clas-
sical formulation, the optimization problem turns out to be non-
convex. To circumvent that, we promote sparsity directly in the
power allocation vector by introducing a log-sum penalty term in
the cost function. The problem can be iteratively solved by resort-
ing to majorization-minimization procedure leading to a stationary
point of the solution. Numerical results reveal that, by using a log-
sum penalty term, the sensor selection scheme outperforms others
based on the ¢; norm while making an effective use of the harvested
energy.

Index Terms— Sensor selection, energy harvesting, sparsity.

1. INTRODUCTION

A Wireless Sensor Network (WSN) is typically composed of spa-
tially distributed sensor nodes acquiring information of a phe-
nomenon of interest and conveying such information to a Fusion
Center (FC) for reconstruction. With current technological advances
making feasible the deployment of small and inexpensive sensor
networks in large numbers, the problem of selecting which sub-
set of them should transmit at a given time naturally arises. This
often stems from resource (e.g., bandwidth), interference level or
energy consumption constraints, which make massive sensor-to-FC
communications barely recommended (or simply not possible). For-
mally, the problem is that of selecting the best subset of sensors such
that a certain optimality criteria is satisfied. In the literature, this is
referred to as the sensor selection problem and it naturally arises in
applications, such as robotics, target tracking, smart grids and others
(see [1] and references therein).

While the sensor selection problem is combinatorial in nature,
Joshi and Boyd studied in [1] a convex relaxation allowing to (ap-
proximately) solve the problem with a reasonable computational
cost. More recent approaches have relied in sparsity-promoting
techniques for a wide range of scenarios. For instance, the authors
in [2] investigate—both from centralized and distributed stand-
points—strategies aimed to minimize the number of selected sensors
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subject to a given Mean Square Error (MSE) target. Non-linear mea-
surement models (such as those in source localization and tracking
problems) have been considered in [3], also in a sparsity-promoting
framework. Nonetheless, such techniques might lead to situations
where only the most informative sensors are being selected. Given
the scarce nature of the energy supply of the sensor nodes, such sce-
narios are undesirable. In order to alleviate this problem, the authors
in [4] use an sparsity-promoting penalty function to discourage the
repeated selection of the most informative sensor nodes. By doing
S0, uneven battery drainage can be prevented. Likewise, the same
authors propose in [5] a periodic sensor scheduling strategy which
limits the number of times that a sensor can be selected in a given
period.

Besides, Energy Harvesting (EH) has become a promising tech-
nology capable of extending the operational lifetime (or even allow-
ing self-sustainable operation) of WSNs. Instrumental to that, is the
design of advanced power allocation strategies and sensor schedul-
ing schemes [6—8] making a judicious use of the harvested energy.

In this paper, we study (from an offline optimization point of
view) the sensor selection problem with energy harvesting con-
straints. Our objective is the minimization of the reconstruction
distortion of a source. As in [2-5] we adopt a sparsity-promoting
framework but in addition, we take EH constraints into consider-
ation. Formulating this problem in the classical sensor selection
framework leads to a non-convex optimization problem (with its in-
herent computational complexity) which we studied in [9]. To avoid
this, we propose to promote sparsity in the power allocation using
a log-sum penalty term, this in turn resulting into sparse sensor se-
lection policies. We provide a majorization-minimization algorithm
to find a stationary solution of the problem, which consists in the
iterative minimization of a reweighted ¢; penalty function. Finally,
we compare the resulting power and sensor selection policies of the
reweighted and non-reweighted approaches.

This paper is organized as follows. In Section 2, we introduce
the system model. In Section 3, we formulate the sensor selec-
tion problem with energy harvesting constraints. Next, an sparsity-
promoting approach to the problem is developed in Section 4. In
Section 5, some numerical results are provided. Finally, Section 6
provides some concluding remarks regarding this work.

2. SYSTEM MODEL

Consider a wireless sensor network composed of M energy harvest-
ing sensor nodes (with index set M = {1, ..., M}) and one fusion
center deployed to estimate an underlying source x € R™, with
x ~ N(0,3;). We consider a time-slotted system with T' time
slots indexed by the set 7 £ {1,...,T} of duration Ts. In time
slot ¢, the stationary source x generates an independent and identi-



cally distributed (i.i.d.) large sequence of n samples {x*®)[t]}7_, =
{x(l)[t], . ,x(”)[t]}‘ As in [1], source samples and sensor mea-

surements are related through the following linear model:
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where {wgm [t]}%—; stands for i.i.d., zero-mean Gaussian observa-

tion noise of variance o2 ; vector a; gathers the known coefficients of
the linear model at the i-th sensor; and Z; C M denotes the subset
of active (selected) sensors in time slot ¢, with cardinality | Z;|. The
ultimate goal is to reconstruct at the FC the sequence {x*)[t]}7_;
in each time slot.

In the sequel, we assume separability of source and channel cod-
ing. As far as source coding is concerned, we adopt a rate-distortion
optimal encoder. Assuming a quadratic distortion measure at the FC,
the encoded measurements at the sensor nodes can be modeled as a
sequence of auxiliary random variables {uEM [t]}r=y [10]:
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with ¢'[t] ~ N (0,02 [t]) modeling the i.id. encoding noise.

The average encoding rate per sample R;[¢] must satisfy the rate-
distortion theorem [11], that is,
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for all ¢ € Z;. Further, we assume that each active sensor encodes
its observations at the maximum channel rate which is given by the
Shannon capacity formula'. Hence we have R;[t] = 1log(1l +
h;[t]pi[t]), where p; [t] and h;[t] stand for the average transmit power
and channel gain, respectively. From this and (3), the variance of the
encoding noise reads
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Finally, by means of a Minimum Mean Square Error (MMSE) esti-
mator [12] the FC reconstructs {x*)[t]}7_, from the received code-

words {u£k> [t]}i=1, ¢ € Z¢. The average (MSE) distortion in time
slot t € T is given by [12]
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where tr(-) denotes the trace operator. By substituting expression
T /52
(4) in (5) and defining &;[t] 2 ( 2l Beai/oy+1

0 ), we can rewrite the
distortion expression (5) as
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IFor simplicity, we let the number of channel uses per sensor be equal to
the number of samples in a time slot.

3. SENSOR SELECTION WITH ENERGY HARVESTING
CONSTRAINTS

Since sensor nodes are capable of harvesting energy from the envi-
ronment, the transmit power is necessarily constrained by the scav-
enged energy. Thus, at time slot ¢ € T we have
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where F;[t] denotes the energy harvested by the i-th sensor node at
time slot £. We aim to minimize the sum distortion over all time slots
(6) subject to the energy harvesting constraints (7). Accordingly, the
optimization problem reads
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where p[t] = [pi[t],...,pm[t]]” stands for the power allocation
vector in a given time slot; O denotes the all-zeros vector (of appro-
priate dimension); and vector inequality (8c) is defined elementwise.
By, introducing the the auxiliary vector s[t] = [s1[t], ..., sam[t]]”,
the problem above is equivalent to
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This is a convex program. Hence, this problem has a global min-
imizer [13] and can be efficiently solved by optimization packages
such as CVX [14]. However, since there are no restrictions regard-
ing the selection of sensors, the optimal solution tends to select all
the available sensors available at each time slot so as to minimize the
resulting distortion.

Usually (due to constraints such as bandwidth, signaling, inter-
ference or complexity), one should attempt to select only a small yet
informative subset of sensors at each time slot. In a classical formu-
lation of the sensor selection problem (without energy harvesting),
this is done by first introducing a boolean selection variable z; [t] for
each sensor and then relaxing the problem (to render it convex) by
letting z;[t] take values in the real interval [0, 1] [1].

4. SPARSITY-PROMOTING SENSOR SELECTION

In (9), due to the dependence of the distortion on the power allo-
cation p;[t], introducing a selection variable z;[t] would lead to the



bilinear form p;[t]z;[t] in constraint (9b), thus turning (9) into a non-
convex optimization problem. To circumvent that, we promote spar-
sity in the power allocation vector p[¢] itself. The resulting optimiza-
tion problem thus reads
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where f : R™ — R is a sparsity-inducing penalty function and X is
the corresponding sparsity parameter. For the ease of notation, in the
sequel we will denote the constraints (10b)-(10e) by the convex set
C. Three common penalty functions are illustrated in Figure 1 for the
scalar case. Namely, the £p norm, the ¢; norm and the log-sum func-
tion. Function fo = ||p[t]||o merely counts the non-zero elements of
the input vector p[t], which leads to an optimization problem which
is combinatorial in nature (and thus intractable). The most common
convex (and thus tractable) approximation of fy is given by the ¢;
norm f1(p[t]) = ||p[t]||1, which has been shown to provide good
performance [15]. In our scenario, however, this results in an ho-
mogeneous penalization of the allocated power. That is, an increase
in power allocation in an already selected sensor will be penalized
the same way as an increase in power allocation in a non-selected
sensor. This leads to scenarios where only a small subset of the most
informative sensors are repeatedly selected without using their total
available energy. To circumvent that, we need a better approxima-
tion of fo. In particular, we adopt the well known log-sum penalty
function fiog(p[t]) = S, log(|pi[t]| + €), which promotes spar-
sity more efficiently than the ¢; norm (see e.g., [16,17]).

However, the log-sum penalty function fiog is concave (see Fig.
1), thus turning the objective function of the optimization problem
(10) into a difference of convex functions. Though a global mini-
mizer of this problem cannot be expected to be found without re-
sorting to an exhaustive search, we can find a local minimum of the
problem by resorting to a Majorization-Minimization (MM) algo-
rithm [16]. In doing so, we can converge to a stationary solution of
the problem (10) by iteratively minimizing a surrogate optimization
problem in which, at iteration k, we approximate f(p[¢]) in (10a) by
its linearization around p*~ Y [¢], that is,
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with fiog(P[t]) = 32, log(|p:[t]] + €) and removing the constant
terms
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Fig. 1. Sparsity-promoting penalty functions.

Algorithm 1 Reweighted ¢; minimization algorithm.
1: Initialize: {w;[t]} := 1, set A and e.
2: Step 1: Solve reweighted ¢1 problem:
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4: Step 2: Update weights:
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6: Step 3: Go to Step 1 until convergence.

which can be more conveniently expressed by the diagonal matrix
W® ] = diag(w{F[1], . .. ,wx}) [t]), we can then interpret this as
the following reweighted ¢, penalty function

Ak
e (BI1) = W™ (], (14)
where at each iteration, we solve the optimization problem (10), with
the penalty function given by (14), and the weights are updated after
each iteration according to (13). This procedure is summarized in
Algorithm 1.

5. NUMERICAL RESULTS

In this section we assess the performance of our proposed sensor
selection scheme. For this purpose, we consider a wireless sensor
network composed of M = 100 sensors measuring an uncorrelated
source (i.e., 3, = I) of length m = 5. We have T' = 20 time slots
of duration 75 = 1 each. The linear combination coefficients are
given by a; ~ N(0,I/4/m) and the variance of the measurement
noise by o2, = 0.01. The harvested energies E;[t] are modeled by
means of Poisson processes of common intensity rate 1+ = 1.Further,
we assume non-fading communication channels.

In Figure 2, we compare the resulting distortion of our proposed
scheme when using the /1 norm as a penalty function (f1) and the
reweighted ¢; penalty function (fiog). Two different scenarios are
compared, consisting of energy arrivals of low and high harvested
energy E. As the sparsity parameter A is not comparable between
the two algorithms, we solve the optimization problem (10) for dif-
ferent values of A and map the resulting distortion to the average
number of selected sensors. As expected, the distortion monotoni-
cally decreases as the average number of selected sensors increases.
More importantly, the reweighted ¢; penalty function clearly outper-
forms the non-reweighted /1 norm. Also, note that the gap between
the solutions of the two penalty functions becomes broader for sce-
narios with larger amounts of harvested energy. This is due to the
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Fig. 2. Distortion vs. Average number of selected sensor for high
and low energy scenarios.

linear nature of the ¢; norm and its impact on the resource alloca-
tion, as discussed in the next paragraph.

In Figure 3, we depict the power allocation of an individual sen-
sor. This sensor is taken from the selection of approximately 30
sensors and E/ = 0.1 (this scenario is marked in Fig. 2). We observe
that, in the solution obtained when using the ¢; penalty function, the
sensor node still has a considerable amount of unused energy at the
end of the observation period (¢t = 20). A solution leading to lower
distortion and the same sensor selection schedule can be found by
simply increasing the transmit power during time slots 5 to 20 so as
to consume all the available energy by the deadline. On that account,
we confirm that the ¢; norm does not lead to good solutions. Also,
note how the sensor is selected during most of the time, with the ex-
ception of time slots 3 and 4, which is not a very sparse schedule. In
contrast, when using the reweighted ¢, penalty function, the sensor
allocates all of its available energy by the last time slot and exhibits
a more sparse sensor selection schedule, being selected only 6 out of
the 20 total time slots.

6. CONCLUSIONS

In this paper, we have investigated the sensor selection problem with
energy harvesting. Due to the non-convexity of the classical for-
mulation in this scenario, we have adopted an sparsity-promoting
approach to solving this problem. This has been accomplished by
introducing a regularization term that promotes sparsity in the power
allocation, which in turn leads to sparse sensor selection schedules.
Further, we have found that strictly concave penalty functions are
desirable in order to ensure the proper consumption of the harvested
energy. Specifically, we have proposed the use of a log-sum penalty
function, which can be interpreted as a reweighted ¢; norm. Numer-
ical results show that the proposed solution rapidly approaches the
asymptotic distortion, by just selecting 20% of the available sensors
in average.
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Fig. 3. Power allocation for a single sensor.
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