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1. Executive Summary 
BigDataStack aims to deliver a complete stack including an infrastructure management 
solution that drives decisions according to live and historical data, thus being fully scalable, 
runtime adaptable and highly performant. The overall objective is for BigDataStack to address 
the emerging needs of big data operations and data-intensive applications. The solution will 
base all infrastructure management decisions on data aspects (for example the estimation 
and provision of resources for each data service based on the corresponding data loads), 
monitoring data from deployments and logic derived from data operations that govern and 
affect storage, compute and network resources. On top of the infrastructure management 
solution, “Data as a Service” will be offered to data providers, decision-makers, private and 
public organisations. Approaches for data quality assessment, data skipping and efficient 
storage, combined with seamless data analytics will be realised holistically across multiple 
data stores and locations. 
 
To provide the required information towards enhanced infrastructure management 
BigDataStack will provide a range of services, such as the application dimensioning 
workbench, which facilitates data-focused application analysis and dimensioning in terms of 
predicting the required data services, their interdependencies with the application micro-
services and the necessary underlying resources. This will allow the identification of the 
applications data-related properties and their data needs, thereby enabling BigDataStack to 
provision deployment with specific performance and quality guarantees. Moreover, a data 
toolkit will enable data scientists to ingest their data analytics functions and to specify their 
preferences and constraints, which will be exploited by the infrastructure management 
system for resources and data management. Finally, a process modelling framework will be 
delivered, to enable functionality-based modelling of processes, which will be mapped in an 
automated way to concrete technical-level data analytics tasks.  
 
The key outcomes of BigDataStack are reflected in a set of main building blocks in the 
corresponding overall architecture of the stack. This deliverable reflects the final version of 
the key functionalities of the overall architecture, the interactions between the main building 
blocks and their components. Comparing to the previous version of the architecture, several 
changes have been introduced referring both to the overall architecture (Section 5) as well as 
to the description of the main components of the architecture: the orchestration approach 
and the interactions with the CEP and the database, the realization engine, the data quality 
assessment mechanism, and the real-time CEP. Moreover, a new chapter has been introduced 
for the adaptable distributed storage approach. Additional information has also been 
provided regarding the main interactions (Section 7), reflecting the data as a service 
adaptations and new functionalities, as well as the runtime adaptations for several 
BigDataStack components. It should be noted that further design details and evaluation 
results for all components of the architecture will be delivered in the corresponding follow-
up (WP-specific) deliverables addressing the user interaction block, the data as a service block 
and the infrastructure management block.   
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2. Introduction 
The new data-driven industrial revolution highlights the need for big data technologies, to 
unlock the potential in various application domains (e.g. transportation, healthcare, logistics, 
etc). In this context, big data analytics frameworks exploit several underlying infrastructure 
and cluster management systems. However, these systems have not been designed and 
implemented in a “big data context”. Instead, they emphasise and address the computational 
needs and aspects of applications and services to be deployed.  

BigDataStack aims at addressing these challenges (depicted in Figure 1) through concrete 
offerings, that range from a scalable, runtime-adaptable infrastructure management system 
(that drives decisions according to data aspects), to techniques for dimensioning big data 
applications, modelling and analysing of processes, as well as provisioning data-as-a-service 
by exploiting a seamless analytics framework. 

 
Figure 1 - Technical challenges 

2.1. Terminology 
The following table summarises a set of key terms used in BigDataStack, not regarding 
acronyms but regarding actual usage, given the large number of concepts and technologies 
addressed by the envisioned stack. 

Term Description 
Application services Components/micro-services of a user’s application 
Data services  “Generic” services such as cleaning, aggregation, etc. 
Dimensioning  Analysis of a user’s application services to identify the data and 

resources needs/requirements 
Toolkit Mechanism enabling ingest of data analytics tasks & setting of 

requirements (from an end-user point of view) 
Graph An overall graph including the application services and the data 

services  
Process modelling “Workflow” modelling regarding business processes 
Process mining Analytics tasks per process of the “workflow” 
Process mapping Mapping of business processes to analytics tasks to be executed 
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Interdependencies between 
application / data services 

Data flows between application components and data services 

Table 1 - Terminology 

2.2. Document structure 
The document is structured as follows:  

• Section 3 provides an overview of the capabilities offered by the BigDataStack 
environment, including the key offerings and the main stakeholders addressed by 
each offering.  

• Section 4 introduces the identified main phases, to showcase the interactions 
between different key blocks and offerings of the stack.  

• Section 5 presents the overall project architecture.  

• Section 6 provides descriptions of the main architecture components. 

• Finally, in Section 7, a detailed sequence of events depicting the information flows is 
provided. It should be noted that these sequence diagrams capture the interactions 
on the overall architecture level and are not supposed to provide details of the 
interactions on lower levels given that these are provided by the corresponding design 
and specification reports of the work package deliverables. 
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3. BigDataStack Capabilities 
This section provides an overview of the capabilities that will be offered by BigDataStack, in 
terms of offerings towards an extensive set of stakeholders. The goal is to present a set of 
“desired” capabilities as the key goals of BigDataStack. The components providing and 
realising these capabilities are thereafter described in the overall architecture. 

3.1. Key offerings 
BigDataStack offerings are depicted through a full “stack”, that aims not only to facilitate the 
needs of data operations and applications (all of which tend to be data-intensive), but also 
promote these needs in an optimized way.  
 
As depicted in Figure 2, BigDataStack will provide a complete infrastructure management 
system, which will base the management and deployment decisions on data from current and 
past application and infrastructure deployments. A representative example would be that of 
a service-defined deployment decision by a human expert (current approach), where he 
chooses to deploy VMs on the same physical host, to reduce data transfer latencies over the 
network (e.g. for real-time stream processing). On the other hand, the BigDataStack approach 
instead will base the decision making according to information from current and past 
deployments (e.g. generation rates, transfer bottlenecks, etc.), which may result in a superior 
deployment configuration. To this end, the BigDataStack infrastructure management system 
would propose a data-driven deployment decision resulting in containers/VMs placed within 
geographically distributed physical hosts. This simple case shows that the trade-off between 
service and data-based decisions on the management layer should be re-examined nowadays, 
due to the increasing volumes and complexity of data. The envisioned “stack” is depicted in 
Figure 2, which captures the key offerings of BigDataStack. 
 

 
Figure 2 - Key offerings 

The first core offering of BigDataStack is efficient and optimised infrastructure management, 
including all aspects of management for the computing, storage and networking resources, 
as described before. 
 
The second core offering of BigDataStack exploits the underlying data-driven infrastructure 
management system, to provide Data as a Service in a performant, efficient and scalable way. 
Data as a Service incorporates a set of technologies addressing the complete data path: data 



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 10 of 141 bigdatastack.eu 

quality assessment, aggregation, and data processing (including seamless analytics, real-time 
Complex Event Processing - CEP, and process mining). Distributed storage is realised through 
a layer, enabling data to be fragmented/stored according to different access patterns in 
different underlying data stores. A big data layout and data skipping approach is used to 
minimize the data that should be read from the underlying object store to perform the 
corresponding analytics. The seamless data analytics framework analyses data in a holistic 
fashion across multiple data stores and locations and operates on data irrespective of where 
and when it arrives at the framework. A cross-stream processing engine is also included in the 
architecture to enable distributed processing of data streams. The engine considers the 
latencies across data centres, the locality of data sources and data sinks, and produces a 
partitioned topology that will maximise the performance. 
 
The third core offering of BigDataStack refers to Data Visualization, going beyond the 
presentation of data and analytics outcomes to adaptable visualisations in an automated 
way. Visualizations cover a wide range of aspects (interlinked if required) besides data 
analytics, such as computing, storage and networking infrastructure data, data sources 
information, and data operations outcomes (e.g. data quality assessment outcomes, 
application analytics outcomes, etc.). Moreover, the BigDataStack visualisations will be 
incremental, thus providing data analytics results as they are produced.  
 
The fourth core offering of BigDataStack, the Data Toolkit, aims at openness and extensibility. 
The toolkit allows the ingestion of data analytics functions and the definition of analytics, 
providing at the same time “hints” towards the infrastructure/cluster management system for 
the optimised management of these analytics tasks. Furthermore, the toolkit allows data 
scientists to specify requirements and preferences as service level objectives (e.g. regarding 
the response time of analytics tasks), which are considered by infrastructure management 
both during deployment time and during runtime (i.e. triggering adaptations in an automated 
way).  
 
The Process Modelling offering provides a framework allowing for flexible modelling of 
process analytics to enable their execution. Process chains (as workflows) can be specified 
through the framework, along with overall workflow objectives (e.g. accuracy of predictions, 
overall time for the whole workflow, etc) that are considered by mechanisms mapping the 
aforementioned processes to data analytics that can be executed directly on the BigDataStack 
infrastructure. Moreover, process mining tasks realize a feedback loop towards overall 
process optimisation and adaptation.  
 
Finally, the sixth offering of BigDataStack, the Dimensioning Workbench aims at enabling the 
dimensioning of applications in terms of predicting the required data services, their 
interdependencies with the application micro-services and the necessary underlying 
resources. 

3.2. Stakeholders addressed 
BigDataStack provides a set of endpoints to address the needs of different stakeholders as 
described below: 
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1. Data Owners: BigDataStack allows to obtain both streaming and stored data from data 
owners and record them in its underlying storage infrastructure that supports SQL and 
NoSQL data stores. 

2. Data Scientists: BigDataStack offers the Data Toolkit to enable data scientists both to 
easily ingest their analytics tasks and to specify their preferences and constraints to 
be exploited during the dimensioning phase regarding the data services that will be 
used (for example response time of a specific analytics task). 

3. Business Analysts: BigDataStack offers the Process Modelling Framework allowing 
business users to define their functionality-based business processes and optimise 
them based on the outcomes of process analytics that will be triggered by 
BigDataStack. Mapping to specific process analytics tasks will be performed in an 
automated way. 

4. Application Engineers and Developers: BigDataStack offers the Application 
Dimensioning Workbench to enable application owners and engineers to experiment 
with their application and obtain dimensioning outcomes regarding the required 
resources for specific data needs and data-related properties.  

These actors interact with the corresponding offerings and provide information that is 
exploited thereafter by the infrastructure/cluster management system of BigDataStack. It 
should be noted that on top of these offerings, the Visualization Environment is also an 
interaction point with end users, providing the outcomes of analytics as well as the monitoring 
results of all infrastructure and data-related operations.  



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 12 of 141 bigdatastack.eu 

4. Main phases 
The envisioned operation of BigDataStack is reflected in four main phases as depicted in 
Figure 3 (and further detailed in the following sub-sections): Entry, Dimensioning, 
Deployment and Operation. 
 

 
Figure 3 - BigDataStack Main Phases 

 
During the entry phase, data owners ingest their data. Analysts design business processes by 
utilising the functionalities of the Process Modelling framework in order to describe the 
overall business workflows, while data scientists can specify their preferences and pose their 
constraints through the Data Toolkit.  
 
During the dimensioning phase, the individual processes / steps of the overall process model 
(i.e. workflow) are mapped to analytics tasks, and the graph is concretized (including specific 
analytics tasks and application services to be deployed). The whole workflow is modelled as 
a playbook descriptor and is passed to the Dimensioning Workbench. In turn, the 
Dimensioning Workbench provides insights regarding the required infrastructure resources, 
for the data services and application components, through an envisioned elasticity model that 
includes estimates for different Quality of Service (QoS) requirements and Key Performance 
Indicators (KPIs).  
 
The goal of the deployment phase is to deliver the optimum deployment patterns for the data 
and application services, by considering the resources and the interdependencies between 
application components and data services (based on the dimensioning phase outcomes).  
 
Finally, the operation phase facilitates the provision of data services including technologies 
for resource management, monitoring and evaluation towards runtime adaptations. 

4.1. Entry phase 
During the entry phase, data is introduced into the system, the Business Analysts design and 
evaluate their business processes, and the Data Scientists specify their preferences and 
constraints through the Data Toolkit. Thus, the Entry Phase consists of three discrete steps: 

• Data owners ingest their data in the BigDataStack-supported data stores, through a 
unified gateway. They can directly choose if they want to store (non-) relational data 
or use the BigDataStack’s object storage offering. The seamless analytics framework 
brings together the LeanXcale database and the Object Store into a new entity, 
permitting the definition of rules for automatic balancing of datasets between these 
two basic data storage components (e.g. data older than 3 months should be moved 



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 13 of 141 bigdatastack.eu 

to the object store), as well as to describe and use a dataset, which may be spread 
over the two data storage components seamlessly. Streaming data can also be 
processed, leveraging the BigDataStack’s CEP implementation. 

• Given the stored data, Business Analysts can design processes utilising the intuitive 
graphical user interface provided by the Process Modelling framework, and the 
available list of “generic” processes (e.g. customer segmentation process). Overall, 
they compile a business workflow, ready to be mapped to concrete executable tasks. 
These mappings are performed by a mechanism incorporated in the Process 
Modelling framework, the Process Mapping component. 

• Based on the outcomes of process mapping, the graph of services (representing the 
corresponding business workflow) is made available to the Data Scientists through the 
Toolkit. The scientists can specify preferences for specific tasks, for example, what the 
response time of a recommendation algorithm should be or ingest a new executable 
in case a task has not been successfully mapped by the Process Mapping mechanism. 

The output of the Entry Phase is a Kubernetes-like configuration template file describing the 
graph/workflow (which includes all relevant information for the application graph with 
concrete “executable” services). We refer to this as a BigDataStack Playbook. This is passed 
to the dimensioning phase in order to identify the resource needs for the contained services. 

4.2. Dimensioning phase 
The dimensioning phase of BigDataStack aims to optimize the provision of data services and 
data-intensive applications, by understanding not only their data-related requirements (e.g. 
related data sources, storage needs, etc.) but also the data services requirements across the 
data path (e.g. the resources needed for effective data storage, analytics, etc.), and the 
interdependencies when moving from an atomic / single service to an application graph. In 
this context, dimensioning includes a two-step approach that is realised through the 
BigDataStack Application Dimensioning Workbench: 

• In the first step, the input from the Data Toolkit is used to define the composite 
application (consisting of a set of micro-services) needs with relation to the required 
data services. The example illustrated in Figure 4 shows that 3 out of the 5 application 
components require specific data services for aggregation and analytics.  

• The second step is to dimension these identified/required data services, as well as all 
the application components, regarding their infrastructure resource needs. That is 
achieved by exploiting load injectors generating different loads, to benchmark the 
services and analyse their resources and data requirements (e.g. volume, generation 
rate, legal constraints, etc.). 

 

 
Figure 4 - Dimensioning phase 
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The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that 
describes the mapping of the input parameters (such as workload and Quality of Service - 
QoS) to needed resource parameters (such as the bandwidth, latency etc.). 

4.3. Deployment phase 
The deployment phase of BigDataStack aims at determining the optimum deployment 
configuration and deployment resources for the application and data services in terms of 
cluster resources. The need for such configuration emerges from the fact that to deploy the 
application and data services in a way such that it will meet the user’s needs, BigDataStack 
needs to account for the application and data services complexity/efficiency, the workload 
(e.g. requests per second) and the user-defined quality of service requirements/preferences 
(e.g. <100ms response time).  
 
To this end, the deployment phase of BigDataStack includes a four-step process: 

• In a first step of the deployment phase, the application and data services compositions 
(as represented by a BigDataStack playbook) is analysed, and the independent sub-
structures comprised of application and data services are identified. Structures that 
require non-negligible resources are selected, i.e. those that generate Kubernetes 
“pods”. These are stored separately as service templates.  

• Second, a set of resource templates are used to convert each service template into a 
series of candidate deployment patterns (CDPs), where each CDP is comprised of a 
service and resource template pair.  

• Third, for each CDP, performance estimations are obtained from the Dimensioning 
phase (based on prior application benchmarking and analysis) given expected data 
and application workload or workloads. 

• Finally, each CDP is scored with respect to the user’s quality of service requirements 
and/or preferences to determine the suitability of each. The best configuration for 
each service template is then selected and stored with it, enabling subsequent 
deployments using that service template with the specified resources.  
 

 
Figure 5 - Deployment phase 

4.4. Operations phase 
The operation phase of BigDataStack is realised through different components of the 
BigDataStack infrastructure management system and aims at the management of the 
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complete physical infrastructure resources, in an optimised way for data-intensive 
applications. 
 
The operation phase includes a seven-step process as depicted in Figure 6: 

• Based on the deployment phase, each service template that is part of the deployment 
is used to reserve and allocate computing resources (based on the resource 
configuration contained within). 

• According to the allocated computing resources, storage resources are also reserved 
and allocated. It should be noted that storage resources are distributed. 

• Data-driven networking functions are compiled and deployed to facilitate the diverse 
networking needs between different computing and storage resources. 

• The application components and data services are deployed and orchestrated based 
on “combined” data and application-aware instantiations of the aforementioned 
service templates. An envisioned orchestrator mechanism compiles the 
corresponding orchestration rules according to each service instantiation, as well as 
the associated reserved compute, storage and network resources. 

• Data analytics tasks will be distributed across the different data stores to perform the 
corresponding analytics, while analytics on top of these stores is performed through 
the seamless analytics framework. 

• Monitoring data is collected and evaluated for the resources (computing, storage and 
network), application components and data services and functions (e.g. query 
execution status). 

• Runtime adaptations take place for all elements of the environment, to address 
possible QoS violations. These include resource re-allocation, storage and analytics re-
distribution, re-compilation of network functions and deployment patterns. 
 

 
Figure 6 - Operations phase 
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5. Architecture 
The following figure presents the overall conceptual architecture of BigDataStack, including 
the main information flows and interactions between the key components.  

 
Figure 7 - BigDataStack architecture model 

 
First, raw data are ingested through the Gateway & Unified API component to the Storage 
engine of BigDataStack, which enables storage and data migration across different resources. 
The engine offers solutions both for relational and non-relational data, an Object Store to 
manage data as objects, and a CEP engine to deal with streaming data processing. The raw 
data are then processed by the Data Quality Assessment component, which enhances the 
data schema in terms of accuracy and veracity and provides an estimation for the 
corresponding datasets in terms of their quality. Data stored in the Object Store are also 
enhanced with relevant metadata, to track information about objects and their dataset 
columns. Those metadata can be used to show that an object is not relevant to a query, and 
therefore does not need to be accessed from storage or sent through the network. The 
defined metadata are also indexed, so that during query execution objects that are irrelevant 
to the query can be quickly filtered out from the list of objects to be retrieved for the query 
processing. This functionality is achieved through the Data skipping component of 
BigDataStack providing the relevant data skipping objects. Moreover, slices of historical data 
are periodically transferred from the LeanXcale database to the Object Store, to free-up space 
for fresh tuples. Furthermore, during the last period of the project, the overall storage engine 
of BigDataStack has been enhanced to enable adaptations during runtime (i.e. self-scaling) 
based on the corresponding loads. 
 
Given the stored data, decision-makers can model their business workflows through the 
Process Modelling framework that incorporates two main components: the first component 
is Process modelling, which provides an interface for business process modelling and the 
specification of end-to-end optimisation goals for the overall process (e.g. accuracy, overall 
completion time, etc). The second component refers to Process Mapping. Based on the 
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analytics tasks available in the Catalogue of Predictive and Process Analytics and the specified 
overall goals, the mapping component identifies analytics algorithms that can realise the 
corresponding business processes. The outcome of the component is a model in a structural 
representation e.g. a JSON file that includes the overall workflow, and the mapped business 
processes to specific analytics tasks by considering several (potentially concurrent) overall 
objectives for the business workflow.  
 
Following, through the Data Toolkit, data scientists design, develop and ingest analytic 
processes/tasks to the Catalogue of Predictive and Process Analytics. This is achieved by 
combining a set of available or under development analytic functions into a high-level 
definition of the user’s application. For instance, they define executables/scripts to run, as 
well as the execution endpoints per workflow step. Data scientists can also declare 
input/output data parameters, analysis configuration hyper-parameters (e.g. the k in a k-
means algorithm), execution substrate requirements (e.g. CPU, memory limits etc.) as service 
level objectives (SLOs), as well as potential software packages / dependencies (e.g. Apache 
Spark, Flink etc.). The output of the Data Toolkit component enriches the output of the 
previous step (i.e. Process Modelling) and defines a BigDataStack Playbook.  
 
The generated playbook is sent to the Realization Engine, and more specifically the 
Realization API for persistent storage (backed by the Realization State DB). At this step, the 
playbook is deconstructed to form a series of templates that can be used to deploy each 
application or data service, as well as extract other definitions that are relevant to those 
services like metrics or service level objectives.  In the case where a service template lacks a 
resource definition then the Deployment Pattern Recommender can be utilised to rectify this. 
This component creates different arrangements (i.e. patterns / configurations) of deployment 
resources for a service (template) and produces a recommended configuration based on 
available past performance data about that service. In particular, upon triggering of the 
deployment pattern recommender, a set of candidate deployment patterns (CDPs) are 
generated and passed to the Application Dimensioning Workbench, along with an end-to-end 
optimization objective and the information on the available resources. The application 
dimensioning workbench then produces an estimate for resource usage and QoS 
performance using an elasticity model, which defines the mapping of the input QoS 
parameters to the concrete resource needed (such as the number of replicas, bandwidth, 
latency etc.). These decisions depend on data-defined models. Finally, based on the obtained 
dimensioning outcomes, deployment patterns are ranked by the Deployment Patterns 
Recommender and the optimum pattern is selected and stored along with the associated 
service template, making the concluding arrangement of that service data-centric. Once 
configured, service templates can be directly instantiated to form a physical deployment 
either via the Realization API, Realization UI or Realization Command-Line Client. Additionally, 
instantiation and configuration of multiple service templates can be grouped together into 
sequence templates, enabling complex applications to be deployed with a single command. 
 
During runtime, the Triple Monitoring engine collects data regarding resources, application 
components (e.g. application metrics, data flows across application components, etc.) and 
data operations (e.g. analytics / query progress, storage distribution, etc.). An advancement 
comparing to the previous version of the architecture is that these metrics are not predefined, 
and instead are identified during runtime so as to optimize which metrics should be collected 
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and thereafter their evaluation. The collected data are evaluated through the QoS Evaluation 
component to identify events / facts that affect the overall quality of service (in comparison 
with the SLOs set in the toolkit). The evaluation outcomes are utilised by the Runtime 
adaptation engine, which includes a set of components (i.e. cluster resources re-allocation, 
storage and analytics re-distribution, network operators and policies enforcement, 
application and data services re-deployment, and dynamic orchestration patterns), to trigger 
the corresponding runtime adaptations needed for all infrastructure elements to maintain 
QoS. It should be noted that the dynamic orchestration employs a reinforcement-based logic 
that leads to cross-layer orchestration and optimization addressing both the resources and 
the data services. 
 
Moreover, run-time monitoring also utilises several functions of the Realization Engine. In 
particular, all application and service state changes, as well as manually or automatically 
orchestrated alterations are stored centrally in the Realization State DB. In particular, 
application alteration requests are processed centrally by the Realization API service, which 
performs record keeping for those changes. Meanwhile, individual service state tracking for 
an application is enabled through the Realization Monitoring service. Other optional 
realization services can also be enabled if needed. For instance, the Realization Events service 
provides a way for other BigDataStack components or user services to stream events into the 
Realization State DB, while the Realization Cost Estimator can produce monetary costs for 
active services in cases where cost is a desired service level objective. 
 
Finally, the architecture includes the Adaptive Visualisation environment, which provides a 
complete view of all information, including raw monitoring data (for resource, application and 
data operations) and evaluated data (in terms of SLOs, thresholds and the evaluation of 
monitoring in relation to these thresholds). Moreover, the visualization environment acts as 
a unique point for BigDataStack for different stakeholders, actors, thus, incorporating the 
process modelling environment, the data toolkit and the dimensioning workbench. These 
accompany the views for infrastructure operators (e.g. regarding service templates). 
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6. Main architectural components 
Based on the overall architecture presented in the previous chapter, this chapter provides 
additional information regarding the individual components of the BigDataStack architecture. 

6.1. Resources Management 
The Resource Management sub-system provides an Enterprise grade platform which 
manages Container-based and Virtual Machine-based applications consistently on cloud and 
on-premise infrastructures. This sub-system makes the physical resources (e.g. CPUs, NICs 
and Storage devices) transparent to the applications. The application’s requirements will be 
computed based on the input from the Realisation Engine and by a constant monitoring using 
the Triple Monitoring Engine. The applications’ required resources are automatically 
allocated from the available existing infrastructures and will be dismissed upon execution 
completion. Thus, the Resource Management sub-system serves as an abstraction layer over 
today’s infrastructures, physical hardware, virtual hardware, as well as private and public 
clouds. This abstraction allows the developing of compute, networking and storage 
management algorithms which can work on a unified system, rather than dealing with the 
complexity of a distributed system. 
 
BigDataStack will build on top of the open source OpenShift Kubernetes Distribution (OKD) 
project [1] for its Resource Management sub-system. The OKD project is an upstream project 
used in Red Hat’s various OpenShift products. It is based and built around Kubernetes and 
operators and is enhanced with features requested by commercial customers and Enterprise 
level requirements. According to Duncan et al. [2] ODK is “an application platform that uses 
containers to build, deploy, serve, and orchestrate the applications running inside it”. OKD 
simplifies the whole process [3] of the deployment of a “fine-grained management over 
common user applications” and management of the containerized software (the lifecycle of 
the applications). Since its initial release in 2011, it has been adopted by multiple 
organizations and has grown to represent a large percentage of the market. According to IDC 
[4], OKD aims at accelerating the application delivery with “agile and DevOps methodologies”; 
moving the application architectures toward micro-services; and adopting a consistent 
application platform for hybrid cloud deployments. 
 
As a base technology, OKD uses CRI-O for containerization and Kubernetes [5] for the core 
pods orchestration. It also includes packaging, instantiation and running the containerized 
applications. On top of the above described technologies, OKD adds [8]: 

• Source code management, builds, and deployments for developers 
• Managing and promoting images at scale as they flow through your system 
• Application management at scale 
• Team and user tracking for organizing a large developer organization 
• Networking infrastructure that supports the cluster 

 
OKD integrates in the DevOps and users’ operation following a hierarchical structure, as 
shown in Figure 8. A master node centralizes the API/authentication, data storage, 
scheduling, and management/replication operations, while applications are run on Pods 
(following the Kubernetes philosophy). 
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Figure 8 - OKD architecture overview inside the DevOps operation [8] 
 
Following this layered architecture, users access the API, web-services and command line 
directly from the master node, while the applications and data services are accessed through 
the routing layer where the services are located, that is, in the physical machine the pod was 
deployed. Finally, the integrated container registry includes the set of container images which 
can be deployed in the system. 
 
Another important point for the project is the protection of security and privacy of the user. 
On top of the security provided by Kubernetes, OKD also offers granular control on the 
security of the cluster. As shown in [4], users can choose a whitelist of cipher suites to meet 
security policies; and share PID between containers to control the cooperation of containers.  
 
By building on top of OpenShift, we ensure that BigDataStack components are easily portable 
to different cloud offerings, such as Amazon, Google Compute Engine, Azure, or any On-
Premise deployment based on OpenStack, since OpenShift can easily be installed in any of 
those platforms – for instance, Amazon will soon offer “Amazon Red Hat OpenShift”, a fully 
supported Red Hat OpenShift natively integrated with AWS services: 
https://www.openshift.com/products/amazon-openshift/faq 
 
In the BigDataStack context, and to ensure a more transparent and simple resource 
management we are working on several fronts that will be developed/integrated on our 
architecture: 

• Kuryr: Network speed up by better integrating OpenShift on top of OpenStack cloud 
deployments. Working on Kuryr OpenStack upstream project to integrate OpenShift 
SDN networking into OpenStack SDN networking, simplifying the operations, as well 
as achieving remarkable performance boost (up to 9x better). By using Kuryr at the 

https://www.openshift.com/products/amazon-openshift/faq
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OpenShift level we connect the containers directly into the OpenStack networks, 
instead of having 2 different SDNs and the performance problem of double 
encapsulation. In addition, it allows the connectivity between VMs and Containers, 
enabling extra options for deploying applications – in case not all the components 
can/should be containerized or if specific VMs functions must be used 

• Ovn loadbalancer integration into OpenShift through Kuryr and Octavia: When using 
Kuryr, Kubernetes services are implemented through Octavia LoadBalancers (instead 
of kube-proxy and iptables rules). However, the only Octavia provider existing was the 
“Amphora” provider. This means that for each service an amphora VM needed to be 
created, with the consequent resource consumption problem as well as delay in terms 
of provisioning services. To overcome these problems we have worked on the 
integration of the distributed ovn loadbalancer (fully managed by OpenFlow rules 
instead of VMs running ha-proxies)  both in Octavia and Kuryr upstream projects. By 
doing this, there is no need to create a VM per Kubernetes/OpenShift service, and 
there creation time is much faster (from minute(s) to second(s)). In addition, the data 
plane performance is also boosted due to not having to do an extra hop in the network 
to reach the loadbalancer VM when accessing the services endpoints. 

• NVMe Kernel Driver: New (NVMe) Kernel driver that speeds up access to NVMe 
devices from VMs without guest image modification, achieving up to 95% of native 
performance – compared to standard 30% with existing VirtIO drivers.  

• Kuryr Network Policies: Network Management through declarative API. As part of the 
Kuryr upstream work, we have also extended its functionality to support Kubernetes 
Network Policies, which allows a user to define the access control to the different 
components of their applications in a fine grained manner. These policies are defined 
in a declarative way, i.e., by stating the desired status, rather than the steps to 
accomplish it. Then Kuryr will make sure that the isolation level desired at the 
OpenShift (pods) level is translated and enforced through OpenStack Security Group 
rules. 

• Operators: Development of operators for easy life cycle management of 
infrastructure and applications. In addition to the performance improvements, we are 
also pursuing the use of the operators design pattern. This entails the use and 
development of certain operators (containers) which have their business logic 
integrated and react to the current status of the system/applications until they match 
the desired status. This helps to install the applications in an easy/reproducible 
manner, as well as to deal with day two operations, such as scaling or upgrades. In this 
regard we worked on: 
◦ Kuryr SDN operator (as part of the Cluster Network Operator) that allows easy 

installation and scaling of the OpenShift cluster on top of OpenStack 
environments. This network operator takes care of creating everything needed on 
the OpenStack side, as well as installing anything required by Kuryr both at the 
initial deployment time and upon OpenShift cluster scaling actions. In addition, it 
enables transparent upgrades, allowing the use of newly added Kuryr 
functionality. For instance, making use of the ovn-octavia benefits. 

◦ Manilla Operator: another problem of supporting OpenShift on OpenStack was 
the lack of standard write/read many option for volumes. In OpenStack, the Cinder 
component is the one in charge of providing volumes to VMs. However, if used for 
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pods, depending on the Cinder backend, attaching the same volume to different 
pods is not allowed. In order to have a solution for it, the Manila OpenStack 
component may be used instead (enabling a shared file system as a service). We 
have worked to integrate the usage of Manila at OpenShift as a new option for 
volume sharing between different pods. Additionally, we have built the needed 
operators so that installation and usage of the new Manila volumes is easy to 
consume. 

◦ Spark Operator: Another example of operators being used are the Spark Operator 
and the Cluster Monitoring Operator. We are not developing those operators, but 
we are making use of them and extending then with the required functionality for 
BigDataStack components. For instance, Spark clusters scaling operations may be 
decided by editing the proper ConfigMaps, as well as the Spark cluster is made 
reachable from outside the OpenShift cluster by creation of OpenShift resources 
(such as NodePort services). 

• OpenShift on OpenStack integration (with Kuryr): We have worked on the installer 
as well as a few OpenShift operators to enable OpenShift Clusters on top of OpenStack 
Clouds. This includes work on the networking (Kuryr) and storage (Manila, Cinder, 
Swift) but also in automation (operators), security (certificates management) or 
testing (ensuring CD/CI). As a result of the work, we also published a guide with the 
best practices/recommendations for such types of environments: 
https://www.openshift.com/blog/ocp-4-on-osp-ra-blog-post 

• Infrastructure API: Unified API for infrastructure resources to make infrastructure 
management easy, and abstracted from the real infrastructure. To achieve this, the 
upstream community created the Kubernetes Cluster API project. We have been 
working on the support for the OpenStack abstraction together with its 
operator/actuator: Cluster API Provider OpenStack. This allows us to automate the 
creation/scaling actions regarding OpenShift nodes when running on top of OpenStack 
too. Thus, we can easily extend an OpenShift cluster as needed, just by modifying an 
object in Kubernetes/OpenShift: Similarly, this gives us further advantages regarding 
resource management, e.g., if any of the VMs where our OpenShift is running dies (or 
the physical server that has it dies), the developed operator/actuator will 
automatically recreate the needed Nodes/VMs in a different compute node, 
automatically recovering the system until it maps the desired status. In addition, 
thanks to managing the infrastructure through declarative APIs, automatic auto-
scaling of the cluster may be enabled by setting desired CPU/memory thresholds by 
using this Cluster/Machine API implemented for OpenStack. We have implemented 
and tested that for the OpenShift on OpenStack use case that BigDataStack relies on: 
https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack 

 
Note that while the first three points are related to infrastructure performance, the rest are 
key points for managing infrastructure as code, as well as to enable easy 
configuration/adaptation by upper layers, such as the Data-Driver Network Management or 
the Deployment Orchestration components.  
  
 

https://www.openshift.com/blog/ocp-4-on-osp-ra-blog-post
https://www.openshift.com/blog/autoscaling-with-openshift-on-openstack
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Figure 9 - OKD architecture overview in the users operations 

6.2. Data-Driven Network Management 
The Data-Driven Network Management component will efficiently handle network 
management and routing introspection, computing and storage resources, by collectively 
building intelligence through analytics capabilities. The motivation is to optimise computing 
and storage mechanisms to improve network performance. This component can obtain data 
from different BigDataStack layers (i.e. from storage layer to applications layer) and will be 
used to extract knowledge out of the large volumes of data to facilitate intelligent decision 
making and what-if analysis. For example, with big data analysis, the data-driven network 
management will know which storage or computing resource has high popularity. Based on 
the analysis result, the component will be able to produce insights on how to redistribute 
storage and/or computing resources to reduce network latency, improve throughput and 
satisfy access load and thus response time. 
 
Monitoring mechanisms over the storage layer will provide information to adjust the network 
parameters (e.g. by enforcing policies to achieve a significant reduction in data retrieval and 
response time). Also, monitoring mechanisms over the computing layer will enable the 
development of functionalities and trigger policies that will satisfy users’ requirements 
regarding runtime and performance.  
 
To serve data-driven network management, we will analyse the data coming from storage 
and computing resources within a workflow which is depicted in Figure 10. The workflow is 
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composed of three components namely: ingest, which consumes network data, process, 
which computes network metrics and analyse, which produces network insights. The lifecycle 
of the analysis task includes a set of algorithms which enable computational analytics over 
the data, conduct a set of control mechanisms and infer knowledge related to resources 
optimisation. Taking advantage of data-driven network management, big data applications 
will be able to access the global network view and programmatically implement strategies to 
leverage the full potential of the physical storage and computing resources. 

 
 

Figure 10 - Data-Driven Network Management components 

6.3. Dynamic Orchestrator 
The Dynamic Orchestrator (DO) assures that scheduled applications conform to their Service 
Level Objectives (SLOs). Such SLOs reflect Quality of Service (QoS) parameters and might be 
related to throughput, latency, cost or accuracy targets of the application. For example, to 
generate recommendations for online customers of an e-commerce website, the 
recommender has to analyse the customer profile and provide the recommendation in a 
limited amount of time (e.g., 1 sec.), otherwise, the page load will be too slow and customers 
might leave the website. If the number of online customers increases, then the recommender 
will need to improve its recommendations throughput in order to keep up serving the 
recommendations in less than 1 second. The DO will then modify the deployment in order to 
improve throughput, so that the recommender does not violate the corresponding SLO. 
The DO assures conformation to SLOs by applying various dynamic optimisation techniques 
throughout the runtime of an application at multiple layers across various components of the 
data-driven infrastructure management system. As such, the DO knows about the changes in 
the deployment that can be carried out for an application and when these changes should be 
carried out, i.e. what changes will affect each SLO. 
 
Figure 11 depicts the high-level interactions of the DO with other components. Newly 
scheduled applications are deployed through the components of the Realization Engine. In 
particular, the user’s playbook is registered with the Realization API, which decomposes and 
stores it. The user may then opt to deploy that application, which will in turn create an 
Operation or Operation Sequence pod on the cluster that operationalizes that deployment. 
This process may include other BigDataStack services as required, such as ADS-Ranking, which 
scores different possible deployment patterns/configurations (CDPs) and selects the one 
which it predicts to best satisfy the application SLOs. After an application is deployed, the DO 
monitors its performance through the Triple Monitoring Engine (TME). In case any SLO 
violations occur, the QoS component sends a message with the violation to the DO, which has 
two choices: (i) Initiate a re-deployment of the application through the Realization API (this 
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choice will be made when SLOs can only be reached with major deployment changes, e.g., 
selecting another ADS ranking option), (ii) Performing more fine-grained adaptations at 
different components of the system via the ADS-Deployment (e.g., the DO might perform 
“small” changes in the deployment configuration such as the number of replicas). 
 

 
Figure 11 - High-Level Interaction with other Components 

 
Note, that each of the other components also have their internal control loop and their 
internal logic for performing (high-responsive) actions, independently of the DO or any of the 
other components. The primary challenge of the DO is to reach a (close-to) optimal 
adaptation decision in little time for a newly deployed application. This is a difficult goal, 
because application tasks will be distributed and adaptation can be achieved through 
different components (application, platform, network). The relationship between an 
adaptation technique and how it affects an SLO is not clear in advance and two adaptation 
techniques at different components might lead both to conformation of an SLO. Likewise, two 
adaptations at two components, might also conflict with each other.  As such, the main 
challenges of the dynamic orchestrator are: 

• Balancing conflicting adaptations in different components 

• Overhead of adaptation decisions in terms of computation resources and time 

• Finding the optimal adaptation for a given SLO and application 

 

6.3.1. Orchestration Logic 
We have implemented the orchestration logic using a novel approach based on 
Reinforcement Learning (RL) we have called Tutor for Reinforcement Learning (T4RL). RL 
allows the DO to dynamically change its adaptation logic over time based on the outcome 
(feedback) from previous decisions, while being “guided” by general heuristics and safety 
constrains provided by the Tutor, that improve performance and robustness when compared 
to a plain RL approach. We describe T4RL in detail in deliverable 3.2: WP 3 Scientific Report 
and Prototype Description. 

In RL, an agent interacts with an environment in discrete time (i.e., steps), in each step the 
agent observes the state of the environment, executes an action that affects the environment 
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and receives a reward that tells the agent if that action was “good” or “bad”. In our setting 
we define the RL elements as: 

• Environment: the BigDataStack platform and the current application, which state is 
represented by its system and application metrics (e.g., CPU usage, throughput, 
response time) and SLOs metrics. 

• Agent: the Dynamic Orchestrator. 

• Actions: changes in deployment (e.g., add/remove a replica). 

• Reward: a value that is positive and inversely proportional to resource utilization if 
SLOs are met, negative otherwise. With this reward function we aim to avoid 
overprovisioning of resources so when as the resource utilization grows, the positive 
reward decreases and vice versa. The agent, will then try to satisfy all the SLOs using 
as little resources as possible. 

Figure 12 depicts a more detailed view of the DO and its functioning. Each application has its 
own BigDataStack application, RL Agent, RL Environment and set of guide and constrain 
functions; while the Manager is unique for all applications. The Manager is in charge of the 
communication with other components, receiving the Playbook, receiving the monitoring 
data and passing them to the corresponding BigDataStack application, and receiving the 
action to be taken from the RL Agent and sending it to the Realization API or the ADS-Deploy. 

 
Figure 12 - Dynamic Orchestrator Detailed View 

 
Moreover, Figure 13 depicts the different classes of the DO. Their inner working, step by step, 
is the following: 

1. The Manager handles the communication with all the other components, using 
RabbitMQ and creates one instance of BigDataStackApplication for each application 
to be monitored. 

2. The BigDataStackApplication creates the RLEnvironment, with its actions and state 
spaces, and the RLAgent that will be in charge of learning and deciding the best 
adaptation actions to take when an SLO is violated. 
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3. Each time a new message comes in, the Manager sends the information to the 
corresponding BigDataStackApplication, which updates the RLEnvironment state. 

4. If a message with an SLO violation comes in, the Manager triggers the RLAgent, to 
decide which action should be taken according to the current RLEnvironment state. 

1. The RL Agent interacts with the RL Tutor for deciding the best action. If 
uncertainty is high, i.e., the Agent is still inexperienced, the Agent queries the 
Tutor by sending the state of the RLEnvironment and its reward. 

2. The Tutor feeds the state and reward to all of its guide functions and combines 
the output of the functions in an array ensemble with a value for each action. 
The higher the value, the higher certainty that the action in that position 
should be executed. 

3. Whether the Tutor was queried or the Agent used its internal policy to 
generate the action vector, the Agent sends the action vector to the Tutor so 
the Tutor applies a mask on the action vector, produced by the ensemble of 
the constrain functions. This mask disables actions that must not be taken and 
therefore add a layer of safety to the DO. 

4. Finally, the Tutor returns this action vector to the Agent that chooses the best 
action to perform by applying an argmax operation to it. 

5. Then, the Manager sends a message to the Realization API requesting the 
identification of a new deployment configuration or to ADS-Deploy to directly change 
the deployment. 

 
Figure 13 - High-level class diagram of the Dynamic Orchestrator 

 

6.3.2. Interactions with other components: CEP and LXS 
The DO also monitors the performance and alters the deployment and configuration of two 
components from the BigDataStack platform: the real-time CEP and LeanXcale (LXS). These 
two components are important for the performance of applications that depend on them and 
can also be dynamically scaled when necessary, therefore, the interaction between these 
components and the DO offers several benefits to the platform and its users. 
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LXS has already implemented scaling mechanisms as described in the section Adaptable 
Distributed Storage, but works with the DO to improve even further its decisions. While LXS 
already counts with its internal knowledge and data, the DO has a global view of resources, 
applications and components in the platform. As such, LXS provides information to the DO 
that are included in its GRL approach as guide and constrain functions, guiding the DO 
decisions in situations when uncertainty is high (i.e., states that have not been seen before by 
the DO) and avoiding decisions that might be harmful to the performance of LXS. As the DO 
gathers more experience, it will improve upon these guides provided by LXS, optimizing the 
scaling decisions by considering a broader view of the resources, components and 
applications currently running in the platform. 
The CEP can also scale up when a sub-query experiences a high memory or CPU usage or when 
its queue is chronically growing due to a high rate of incoming messages, in this case, the CEP 
scales up the sub-queries relieving the bottleneck in any of the three previously described 
situations. The DO will monitor the CEP metrics as well as the application metrics and SLOs 
that use the CEP to decide when scaling up or down can be beneficial for the performance of 
the applications in the case of scaling up decisions, or beneficial towards resource utilization 
in the case of scaling down decisions when this scaling down does not impact on the 
application SLOs fulfilment. 
 

6.4. Triple Monitoring and QoS Evaluation 
The Triple Monitoring and QoS Evaluation are two closely related components with clearly 
separated responsibilities:  

• The objective of the Triple Monitoring is to collect, store and serve metrics at three 
levels of the platform: application, data services and infrastructure (cluster) resources.  

• The goal of the QoS Evaluation is to continuously evaluate those metrics against 
constraints (thresholds) or objectives imposed by certain BigDataStack platform users. 

6.4.1. Triple Monitoring 
The monitoring engine manages and correlates/aggregates monitoring data from different 
levels to provide a better analysis of the environment, the application and data; allowing the 
orchestrator to take informed decisions in the adaptation engine. The engine collects data 
from three different sources: 

• Infrastructure resources of the compute clusters such as resource utilisation (CPU, 
RAM, services and nodes), availability of the hosts, data sources generation rates and 
windows. This information allows the taking of decisions at a low level. These metrics 
are directly provided by the infrastructure owner or through specific probes, which 
track the quality of the available infrastructures. In the context of BigDataStack, the 
infrastructure’s metrics are collected by Kubernetes. Those metrics will be ingested to 
the triple monitoring engine by federating Prometheus instances. 
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• Application components such as application metrics, data flows across application 
components, availability of the applications etc. This information is related directly to 
the data-driven services, which are deployed in the infrastructure. These metrics are 
associated with each application, and they should be provided by those applications. 
For applications related to BigDataStack infrastructure, the most suitable method is to 
embed a Prometheus exporter into each of those applications. In this case, use case 
metrics for an application are exposed via an http end-point. 

 
• Data functions/operations such as data analytics, query progress tracking, storage 

distribution, etc. This is a mix of data and storage infrastructure information providing 
additional information for the “data-oriented” infrastructure resources. 

The component will cover both raw metrics (direct measurements provided by the 
infrastructure deployed sensors or external measurement systems like the status of 
infrastructure) and aggregated metrics (formulas to exploit metrics already collected and 
produce the respective aggregated measurements that can be more easily used for QoS 
tracking). The collection of metrics will be based on both solutions: the direct probes in the 
system that should be monitored and the direct collection of the data from the monitoring 
engine.   
 

• The probe approach will cover the information systems, where the platform will be 
able to deploy and collect direct information. In this case, the orchestration engine 
must manage the deployment of the necessary probes. This approach can cover other 
cases, where the probe is included directly in the application, and the orchestration 
only needs to deploy the associated application, which can provide the metric 
information to the monitoring engine. 

• The direct collection will cover the scenarios where the platform cannot deploy any 
probe, but the infrastructures or the applications expose some information regarding 
these metrics. In this case, the monitoring engine will be responsible for collecting the 
metrics data that are exposed by a third party via a REST_API (Exporter). 
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After collecting and processing the data, the monitoring engine will be responsible for 
notifying other components when an event happens based on the metrics that it is tracking 
and specific attributes such as computing, network, storage or application level. Moreover, it 
will expose an interface to manage and query the content. This functionality is implemented 
in the QoS Evaluator (SLA Manager). Figure 14 depicts the Triple Monitoring Engine and their 
components. 
 

Figure 14 - Triple Monitoring Engine architecture diagram 
 
The Triple Monitoring Engine will be based on the Prometheus monitoring solution (see [9] 
for more details) and is composed of the following components: 

• Monitoring Interface: This is responsible for exposing the interface to allow other 
components to communicate. The interface will manage two ways of interaction with 
other components: i) exposing a REST API (outAPI, Figure 14) that will enable other 
components to know specific information, for example, if another component wants 
to know more details about one violation, to take the correct decision, or if they need 
to configure new metrics to collect directly by the monitoring engine. Therefore, the 
interface will consist of both a REST interface and a publish/subscribe notification 
interface. The publish/subscribe mechanism is implemented with RabbitMQ. This 
allows any components to consume in real-time information. 

• Monitoring Manager: This component handles subscriptions by storing the queue, the 
list of metrics and metadata related to the subscription. The manager consumes all 
metrics collected by Prometheus. Based on the subscriptions list, they are redirected 
to the component subscribed by the queue declared. 

• Monitoring Databases: ElasticSearch is currently used as the metrics database. 
MongoDB is also used to store all metrics requested via the outAPI in order to keep a 
track of metrics’ utilization. 
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• PrometheusBeat: Since Prometheus has a small retention period, BigDataStack 
optimization loops in various components (e.g. deployment patterns generation) 
raised the need for a solution that would allow accessing and holding the collected 
metrics. To this end, this component receives the metrics collected by Prometheus, 
and ingests them to a pipeline (Logstash) for being stored. 

• Optimizer: Since the Triple Monitoring Engine of BigDataStack collects monitoring 
data from different sources and all those data are utilized at specific time periods by 
different BigDataStack architecture components, storage optimization is required. 
Based on the information stored in the MongoDB (metrics utilization) this component 
decides about the time period for which the monitoring data should be kept. 

• Push gateway: The push gateway is a Prometheus exporter. It is used in BigDataStack 
specially for collecting monitoring data obtained after each Spark driver execution. 

• Collector Layer: This component is responsible for obtaining the data to be moved to 
the Monitoring manager. There are two ways to collect the data, either through a 
probe or through direct collection: 

o Probe API exposes an interface to allow different kinds of probes to send the 
monitoring data to the monitoring engine. 

o Direct collection is realized through a component that collects directly the 
monitoring data, by invoking other systems or components. For example, it 
receives the data directly from the Resource management engine or invoke 
the third-party libraries to obtain the state of the application and data services. 

Integration with resource management engines 
The Triple Monitoring Engine provides APIs for receiving metrics from different sources 
(infrastructure, application and data services) and exposes them for consumption. Although 
different APIs will be available due to the great diversity of monitoring data sources, the 
recommended API is the “Prometheus exporters” model. Some of the technologies that are 
being considered for BigDataStack are already integrated within Prometheus, as shown in 
Table 2. 

Technology component Monitoring aspect Prometheus 
exporter availability 

Method  

Kubernetes Computing infrastructure Yes  Federation 
OpenStack Computing infrastructure Yes Exporter 
Spark/Spark SQL Data 

functions/operations 
Yes Exporter 

(SparkMeasure) 
IBM COS (Cloud Object 
Store) 

Data infrastructure No  

LeanXcale database Data infrastructure For some metrics Federation 
CEP  Data Infrastructure Yes Federation 

Table 2 - Prometheus integration 
 
Federation of Prometheus instances 
Federation is used to pull monitoring data from another Prometheus instance. This model is 
introduced in the BigDataStack Triple Monitoring Engine for two main reasons. Firstly, the 
platform uses Kubernetes as the container orchestrator, which has embedded by default in it 
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a Prometheus (prometheus-ks8) instance. This instance collects monitoring data related to 
the cluster, nodes and services running. For security reasons it is not efficient to use this 
prometheus-k8s for collecting application- and data- related monitoring data. Instead, it is 
envisioned that users will have a Prometheus instance serving as the metric store for each 
namespace/project they own, thereby isolating metrics by owner and project.  Secondly, the 
LeanXcale database and the CEP are independent systems and have their own Prometheus 
instances. For reusability reasons and improvement (e.g. to collect only monitoring data 
directly used by BigDataStack components) the proposed federation model is the most 
suitable method to achieve this requirement.  
 
In the federation mode, the master instance should be configured appropriately by specifying 
the interval of time where metrics will be collected, the source job also if needed, and the 
metrics to collect. 

Figure 15 - Triple Monitoring Engine Federation Model 
 

6.4.2. QoS Evaluation 
The Quality of Service (QoS) Evaluation component uses data from the Triple Monitoring 
Engine to evaluate the quality of the application and data services deployed on the platform. 
To do so, it compares multiple service metrics (key performance indicators) with the 
objectives set by the owner of the service and thus imposed over the BigDataStack platform 
when this was deployed. The QoS Evaluation component is also responsible for notifying if 
the quality objectives are not met during the service lifetime. Therefore, the component is 
not responsible for obtaining the metrics (delegated to the monitoring engine), but to apply 
evaluation rules upon those metrics and notify when quality of service failures occur. 
 
The main entities within the QoS Evaluation are the following: 

• Agreement: it is a description of the QoS requirements of a specific service. It describes 
the lifecycle of the task, the provider and consumer of the service, and the list of QoS 
constraints or guarantees to be evaluated. 

• SLO (Service Level Objective) or QoS guarantee: it represents a high level view of the 
requirements of a service, representing, for each requirement, different levels of 
criticality. A given requirement shall always be met to its expected level of service but, 
upon a violation of such a requirement, different levels can be set according to their 



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 33 of 141 bigdatastack.eu 

definition. The last threshold is always the last limit or final objective to be met. The 
other thresholds are used as checkpoints to better understand and control the 
dynamics of the indicator.  

• Violation: it is generated when the value of a the QoS metric trespasses any of the SLO 
thresholds. The QoS Evaluation component notifies each violation to other 
components of the platform subscribed to the event; perhaps the most important of 
the subscribers is the Dynamic Orchestrator, which is responsible for the service 
deployment adaptation decisions and uses such violations as adaptation triggers. 

 
The QoS Evaluation is made of the following components: 

• Interface component (REST API): It is used to feed agreements into the QoS Evaluation 
component. The Dynamic Orchestrator is the main client of this API, as this component 
determines the lifecycle of the services. 

• QoS databases: They are responsible for storing all the relevant QoS information in 
the system. On the one hand, the QoS evaluator uses an internal database to store its 
active agreements. In parallel, the violations are stored in the Realization State DB. 

• Evaluator: it is responsible for performing QoS evaluation. A periodic thread is started 
to check the expiration date of agreements. For each enabled agreement, it starts a 
task to check each active agreement, using the metrics gathered from the adapter.  

• Adapter: it is responsible for retrieving the metrics provided by the Triple Monitoring 
Engine.  

• Notifier: It is responsible for notifying to third parties, namely the Dynamic 
Orchestrator and the Realization Events service,  whenever something happens in the 
defined agreements, so that corrective actions can be taken. 

In the BigDataStack platform, application and data services’ QoS constraints (are specified by 
the Data Scientist through the Data Toolkit (see Section 6.13) together with the rest of the 
information describing the application to be deployed. This is compiled in the so-called 
BigDataStack Playbook, which serves as the specification for the BigDataStack platform to 
deploy and operate the application. The following table shows an example of the QoS 
constraints imposed over the response time of an online service called “recommendation-
provider”. Notice that the Data Scientist can specify not only required response times but also 
describe a recommended response time1: 
 
- name: recommendation-provider 
  metadata: 
    qosRequirements: 
    - name: "response_time" 
      type: "maximum" 
      typeLimit: null 
      value: 900 
      higherIsBetter: false 
      unit: "miliseconds" 
    qosPreferences: 
    - name: " response_time" 

                                                 
1 Notice this is an extract of a v1 format playbook showing just one of the QoS constraints imposed on one 
service. The playbook may define QoS constraints on any DeploymentConfig, Job or Pod object defined by an 
application. 
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      type: "maximum" 
      typeLimit: null 
      value: 300 
      higherIsBetter: false 
      unit: "miliseconds" 

 
When a service deployment is requested, The Dynamic Orchestrator (i.e. the component in 
charge of making deployment adaptation decisions which satisfy the QoS constraints) breaks 
down the QoS objective into thresholds of increasing levels of criticality. Depending on the 
nature of the QoS metric (indicator) to control both the recommended and required values, 
the Dynamic Orchestrator may produce a number of thresholds between the first (related to 
recommended value) and last (related to the required value) thresholds.  
 
With every deployment, the Dynamic Orchestrator will provide the QoS Evaluation 
component with a description of the service, that includes the QoS thresholds, using the 
interface component. In the previous example, the Dynamic Orchestrator may send a service 
description including the following message to the QoS Evaluation2: 
 
"qosIntervals": { 
  "reponse_time": [ 
    ">300", 
    ">500", 
    ">700", 
    ">900" 
  ] 
} 

 
The QoS Evaluation component incorporates the thresholds or intervals to be monitored 
(requested by the Dynamic Orchestrator) as a guarantee object in the agreement for the 
actual service deployment. In that way, all the QoS constraints to be evaluated and 
guaranteed for the same service deployment are maintained together. In the previous 
example, the agreement and guarantee created from the Dynamic Orchestrator request may 
resemble the following: 
 
{ 
  "id": "TEST-ATOSWL-NormServ-19022019-1", 
  "name": "TEST-ATOSWL-NormServ-19022019-1_agreement", 
  "details": { 
    "id": "TEST-ATOSWL-NormServ-19022019-1", 
    "type": "agreement", 
    "name": "TEST-ATOSWL-NormServ-19022019-1_agreement", 
    "provider": { 
      "id": "a-provider-01", 
      "name": "ATOS Wordline" 
    }, 
    "client": { 
      "id": "a-client-01", 
      "name": "Eroski" 
    }, 
    "creation": "2019-05-30T07:59:27Z", 

                                                 
2 Notice this is an extract of the enhanced playbook showing the QoS thresholds (intervals) for the evaluation 
of just one of the metrics (indicators) of one service. 
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    "expiration": "2020-01-17T17:09:45Z", 
    "guarantees": [ 
    { 
      "name": "response_time", 
      "constraint": "[response_time>50]", 
      "importance": [ 
      { 
        "Name": "0", 
        "Type": "warning", 
        "Constraint": ">300" 
      }, 
      { 
        "Name": "1", 
        "Type": "warning 2", 
        "Constraint": ">500" 
      }, 
      { 
        "Name": "2", 
        "Type": "warning 3", 
        "Constraint": ">700" 
      }, 
      { 
        "Name": "3", 
        "Type": "error", 
        "Constraint": ">900" 
      } 
    ]} 
  ]} 
} 

 
The QoS Evaluation component will continuously assess all the guaranteed QoS attributes 
(metrics or indicators) and detect violations, that is, when the value trespasses the different 
thresholds that have been specified. QoS violations are notified to any interested component 
of the BigDataStack platform through a publisher/subscriber mechanism implemented as a 
topic within the RabbitMQ service (which acts as the message broker between BigDataStack 
components). Following the previous example, the following violation notifications may be 
published3: 
 
{  
  "Application": "TEST-ATOSWL-NormServ",  
  "Message: "QoS_Violation",  
  "Fields": { 
    "IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",  
    "Guarantee": "response_time",  
    "Value": "351",  
    "ViolationType: { 
      "Type": "warning",  
      "Interval": "0" 
    }, 
    "ViolationTime": { 
      "ViolationDetected": "2019-06-30T07:59:27Z",  
      "AppExpiration": "2020-01-17T17:09:45Z" 
    } 
  } 

                                                 
3 Notice that the first violation notification example is that of the lowest level of criticality (meaning a simple 
warning) while the second example if that of the highest criticality (meaning an error). 
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} 
{  
  "Application": "TEST-ATOSWL-NormServ",  
  "Message: "QoS_Violation",  
  "Fields": { 
    "IdAggrement": "TEST-ATOSWL-NormServ-19022019-1",  
    "Guarantee": "response_time",  
    "Value": "920",  
    "ViolationType: { 
      "Type": "error",  
      "Interval": "3" 
    }, 
    "ViolationTime": { 
      "ViolationDetected": "2019-06-30T09:34:21Z",  
      "AppExpiration": "2020-01-17T17:09:45Z" 
    } 
  } 
} 

 
Perhaps the most important of the subscribers is the Dynamic Orchestrator itself, which will 
respond to different violation alerts depending on the criticality of the threshold trespassed.  
 
The QoS Evaluation displays the warning (lowest criticality) and error (highest criticality) 
thresholds on the interface of the Triple Monitoring Engine, superimposed over the metrics 
evolution graphs. The following figure is an example of the Response Time evolution graph on 
the Triple Monitoring Engine. 

 

 
Figure 16 - SLO thresholds over the Response Time (left) and Throughput (right) metrics graphs: 

warning (lowest criticality) and error (highest criticality) thresholds as orange and red lines 

6.5. Applications & Data Services / Realization Engine  
The Application and Data Services, or ‘Realization Engine’ is a grouping of components of the 
BigDataStack platform, as defined in the central architecture diagram (see Section 5). It is 
concerned with how best to deploy and manage the user’s application in the cluster/cloud, 
based on information about the application and cluster characteristics. From a practical 
perspective, its role is to enable the transition of a user’s application from a definition 
provided in a playbook into an actual running deployment and then provide the tools to 
manage it during operation. This involves the following functionality, which has been 
significantly expanded since the previous version: 

• Registration of a user application and its internal components, as well as the persistent 
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storage of that information. 
• In cases where required resource information is not provided for a service, the 

provision of this missing information based on available stated (hard) requirements 
and other desirable characteristics (e.g. low cost or high throughput). 

• Operationalize the deployment of the user’s application based on the selected option. 
• Monitor the state of the application at run-time and persistently storing that state. 
• Enable alterations to the application at run-time. 
• Storage and linking of events generated by other BigDataStack or external 

components about an application to that application. 
• Generation of run-time cost estimates for an application. 
• Provision of a graphical user interface for monitoring and managing user applications.  

 
Before discussing the components, it is important to highlight the core change to the design 
of the Realization Engine that has occurred since the previous version of this deliverable 
(D2.5). In particular, the original design of the Realization Engine included a component 
referred to as the Global Decision Tracker, which was envisioned as a central storage location 
for application-related information. However, based on subsequent analysis of usage 
patterns for the pilot use-cases and other applications deployed in our managed Openshift 
testbeds, it became clear that a more comprehensive centralised run-time application 
management solution was needed. As a result, the functionality previously provided by the 
Global Decision Tracker was separated into three services (the ADS-API, ADS-EventStreams 
and ADS-StateDB), meanwhile three additional components were added (ADS-Monitor, ADS-
GUI and ADS-CostEstimator). 
 
As a result, the current version of the Realization Engine is comprised of five main 
components, namely: ADS-API,  ADS-Ranking; ADS-Deploy; ADS-Monitor; and ADS-GUI, as 
well as three support components, namely: the ADS-StateDB, ADS-EventStreams and ADS-
CostEstimator. Note that elsewhere in this deliverable, for conciseness, we typically refer to 
these components under the ‘Realization’ heading rather than ‘Application and Data 
Services’. For example, the Application and Data Services API is referred to as the Realization 
API elsewhere in this deliverable. We summarize each component below: 
 
Primary Components: 

• Application and Data Services/Realization API (ADS-API): This is the central 
management component of the Realization Engine. It enables programmatic access to 
storage of information about the different user applications, their running state and 
any run-time changes made about them. It also allows for both users and other 
components within BigDataStack to request alterations to the applications, i.e. acts as 
a control end-point. 

• Application and Data Services/Realization Monitor (ADS-Monitor): This is a light-
weight component that synchronises the state of running applications between 
Kubernetes/Openshift and the ADS-StateDB. 

• Application and Data Services/Realization Ranking (ADS-Ranking): This is dedicated 
to the selection of the best deployment option. Note that this component is 
sometimes referred to as the ‘deployment recommender service’, as from the 
perspective of a BigDataStack Application Engineer, it produces a recommended 
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deployment configuration for them on-demand.  
• Application and Data Services/Realization Deployment (ADS-Deploy): This is 

concerned with the physical scheduling/deployment of the application for the 
selected deployment option via Openshift. 

• Application and Data Services/Realization GUI (ADS-GUI): This component provides a 
graphical user interface that exposes the functionality of the ADS-API to the user. 

 
Support Components: 

• Application and Data Services/Realization State DB (ADS-StateDB): This is the 
underlying service that provides the physical storage that backs the ADS-API. Any SQL 
database with a supported JDBC driver can be used for this.  

• Application and Data Services/Realization Event Streams (ADS-EventStreams): This 
component is responsible for monitoring a RabbitMQ exchange server to collect 
events generated by other BigDataStack components or external services that are 
relevant to one or more of the user’s applications. For example, this is used to collect 
QoS violations generated by the Triple Monitoring Engine and link them to the 
associated user applications. 

• Application and Data Services/Realization Cost Estimator (ADS-CostEstimator): This 
component is responsible for monitoring running applications and producing cost 
over time estimates from them based upon their resource usage. 

 
The interactions between these components are illustrated in Figure 17. Primary components 
are represented by green rectangles, while support components are represented by blue 
rectangles. In the remainder of this section we describe the primary components of the 
realization engine. Additional details on both the primary and support components can be 
found in the associated WP3 deliverables (D3.2 and D3.3). 
 

 
Figure 17 - Interactions between components within the Realization Engine 

 
 
 
Application and Data Services/Realization Ranking (ADS-Ranking) 
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ADS-Ranking is considered an independent service that can be called by the user during the 
realization process (the steps the user takes to trigger application deployment). It is used in 
cases where the specification of resources for the different components within a user’s 
application are incomplete. More precisely, any object definition that when instantiated 
would result in a physical pod being created (typically ‘Job’ or ‘DeploymentConfig’ objects) 
need to have resource requests (and possibly limits) given to enable the cluster/cloud to 
allocate the needed resources at deploy-time, as well as determine the deployment cost. 
However, BigDataStack Playbooks do not require that this information is provided. Hence, we 
need a mechanism to set this prior to deployment. 
 
ADS-Ranking is related to another component of BigDataStack, namely the Application & Data 
Services Dimensioning (ADS-Dimensioning) component of BigDataStack that sits above it. The 
main output of ADS-Dimensioning is a series of candidate deployment patterns (ways that the 
user’s application might be deployed) including resource usage and quality of service 
predictions. It is these deployment patterns that ADS-Ranking takes as input (see REQ-ADSR-
01 [10]) and subsequently selects one or more ‘good’ options for the Application Engineer. 
Each candidate deployment pattern represents a possible configuration for one ‘Pod’ in the 
user’s application (a logical grouping of containers, forming a micro-service) [11]. User 
applications may contain multiple pods. 
 
 
ADS-Ranking is triggered after the ‘Instantiate’ operation of a typical deployment but prior to 
the ‘Apply’ operation (see ADS-API for more information on operations). It takes as input an 
instantiated object of type ‘Job’, ‘DeploymentConfig’ or ‘Pod’ and inserts a resource definition 
for that object. To achieve this a four-step process is followed: 

1. The instantiated object is passed to the ADS Pattern Generation component to 
create a range of candidate deployment patterns for that object (representing the 
different ways it could be deployed). 

2. Each of those patterns are passed to the ADS Dimensioning Core component that 
assigns estimated performances for each. 

3. The resultant patterns are ranked based on estimated suitability with respect to the 
user’s requirements and preferences. At this stage some patterns may also be 
filtered out that either do not meet the user’s requirements, or that are otherwise 
predicted to provide unacceptable performance. 

4. A single pattern is selected to return. 
 

Figure 17 illustrates the data flow between the components around ADS-Ranking. As we can 
see, the data scientist first interacts with the Data Toolkit to create the BigDataStack 
Playbook, which is uploaded to the ADS-API (registering that application). The application 
engineer next interacts with the Realization GUI to instantiate a copy of the application (an 
application instance). If the resource definitions are missing at this point, then ADS-API will 
call ADS-Ranking to recommend a setting for the missing resource definitions within that 
instance. ADS-Ranking first contacts ADS Pattern Generation to produce the different 
candidate deployment patterns. Once those have been retrieved, they are forwarded to ADS-
Dimensioning to add the performance estimates for each. Finally, ADS-Ranking ranks and 
filters those patterns, selecting one per-pod, which is predicted to efficiently and effectively 
satisfy the user’s requirements. These top patterns are aggregated and sent back to the ADS-



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 40 of 141 bigdatastack.eu 

API, where the application engineer can accept those patterns and use them directly for 
deployment, or otherwise customise them first. Once the application engineer is happy with 
the configuration of the instance, they can then trigger the sending of it to ADS-Deploy, which 
will schedule deployment on OpenShift.  
 

 
Figure 18 - Process Flow for the Realization Engine during First Time Deployment 

 
Internally, ADS-Ranking supports two central operations: 1) the first-time ranking/filtering of 
CDPs; and 2) re-ranking of CDPs in scenarios where the previous deployment is deemed 
unsuitable. The first operation (CDP ranking and filtering) is comprised of three main 
processes. These three processes are: 

• Pod Feature Builder: This takes as input a set of CDPs, and for each CDP in that 
package, it builds a single vector representation of that CDP, which combines all the 
information provided by dimensioning. It can also filter out CDPs that do not meet 
minimal Quality of Service (QoS) requirements, saving computation time later in the 
process. The output of this component is the (filtered) list of CDPs along with their 
new vector representations. This process targets REQ-ADSR-02 [10]. 

• Pod Scoring: This process takes the CDPs and vector representations as input and ranks 
those CDPs based on their predicted suitability, with respect to the user’s desired 
quality of service. To achieve this, it uses either a rule-based model or a supervised 
model [12] trained on previous CDP deployments and their observed fitness. The 
output of this process is a ranking of scored CDPs. This process targets REQ-ADSR-03 
and 04 [10]. 

• Pod Selection: This process takes as input the ranking of CDPs and selects one of these 
CDPs. This may be a simple process that takes the top CDP by score and filters out the 
rest. However, it may include more advanced techniques to better fit with user needs, 
such as making sure the selected CDP will provide sufficient extra processing capacity, 
in the case of applications that process data streams with fluctuating data rates. The 
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output of this process is a single CDP (per-pod), which is the recommended 
deployment that is shown to the user. This process targets REQ-ADSR-05 [10]. 

If the user’s application is comprised of multiple pods, then the recommended CDP for each 
pod are then collected and aggregated together to form a recommendation for the entire 
application. The aforementioned processes are implemented using Apache Flink [13] to 
facilitate low-latency real-time processing.  The overall flow for first-time ranking/filtering of 
CDPs is shown in Figure 18. In this simplified example, three CDPs are used as input for a single 
application (A1), which is comprised of two pods (P1 and P2). Pod 1 has two CDPs (A1-P1-1 
and A1-P1-2), while Pod 2 has one CDP (A1-P2-1). As we can see from Figure 18, these CDPs 
are first grouped by pod, to create parallel processing streams for each. For each CDP, these 
are then subject to feature extraction, to create the representation vectors. In this case, 
features from the overall pod (e.g. total cost) and features from each container (e.g. container 
latency) are extracted here. These CDPs and feature vectors are sent to pod scoring, to 
produce a numerical estimate of overall suitability of the CDP. The best CDP per-pod (A1-P2-
2 and A1-P2-1 here) are then grouped by application (A1) and then output (to the visualisation 
environment for viewing by the application engineer).  

 
Figure 19 - ADS-Ranking, First Time Deployment Internal Process Flow 

 

The second function (CDP Re-Ranking) is similar to the primary function, with the exception 
that it takes in a CDP that has been deemed to have failed the user in terms of quality of 
service along with context about that CDP (e.g. why it failed), and it introduces an additional 
‘Failure Encoding’ process: 

• Failure Encoding: This process examines the context of a failed CDP and encodes that 
failure into the CDP structure as features, such that they can be used by the Pod 
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Feature Builder when generating the CDP vectors. In this way, properties that promote 
other CDPs that will not suffer from the same issues as the failed CDP can be 
upweighted during ranking. This process targets REQ-ADSR-07 [10]. 

Figure 19 illustrates the main processes and data flow within ADS-Ranking. In this case, re-
ranking is triggered by sending a set of CDPs representing a quality of service (QoS) failing 
user application deployment to ADS-Ranking. For this example, the application has two pods 
and hence two CDPs (A1-P2-2 and A1-P1-1), where a QoS failure has been detected for A1-
P1-2 (denoted by ). The first step that ADS-Ranking takes is to collect all the alternative CDPs 
that were not selected from the user’s application. These were stored in ADS-GDT (Global 
Decision Tracker), which will be described later. Once these CDPs have been collected, any 
CDPs for pods that were not subject to QoS failures are discarded, as these do not need to be 
considered for re-deployment (A1-P2-1). The remaining CDPs are then subject to failure 
encoding, which converts the failure information into a feature vector that can be used during 
ranking (<x>). The CDPs are then sent to the Pod Feature Builder in a similar manner to first-
time ranking, where the normal process is followed, with the exception that the additional 
features obtained from the failure encoding are used to enhance ranking effectiveness. 
  

 
Figure 20 - ADS-Ranking, Re-Ranking Internal Process Flow 

 
Application and Data Services/Realization Deployment (ADS-Deploy)  
This component is triggered by ADS-GDT at the behest of the user as part of the ‘Apply’ 
operation, and takes as an input the selected CDP(s). The aim of this component is to use the 
given CDP(s) to launch the user’s application pods on the cloud infrastructure. To achieve this, 
the ADS-Deploy component interacts with a container orchestration service (e.g. OpenShift), 
translating the CDP into a sequence of deployment instructions.  
 
This task is divided into the following steps: 

1. Receive and check CDP. The component checks that the CDP triggering the 
deployment process is structurally correct. 
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2. Translate CDP. The CDP is translated to an ontology that the orchestrator will 
understand. 

3. Interpretation and deployment. The orchestrator interprets the file received and starts 
the containers and rules. 

 
Application and Data Services/Realization API (ADS-API) 
This component provides the functionality originally enabled by the Global Decision Tracker 
that came before it, i.e. it keeps track of any state or decisions made about a user’s application 
related to its deployment or run-time performance. However, the ADS-API’s  remit is 
significantly larger, encompassing a wider range of application monitoring and management 
capabilities, as these were identified as a gap in the BigDataStack platform offering. Hence, 
the ADS-API currently has the following roles in the platform related to application realization: 
 

• Data Storage 
o Stores each user’s application definitions. 
o Stores supplementary configurations or definitions needed by the platform. 
o Stores definitions for non-atomic operations that can be triggered for a user 

application, referred to as Operation Sequences. 
o Stores the list of events associated to each application. 

• Logic 
o Provides in-built logic for translating common tasks into re-usable operations, 

such as Instantiate, Apply, Wait-For, etc. 
o Provides the capability to deploy an Operation Sequence as an independent 

container, in a similar way to a Kubernetes Operator 
o Implements standardised data storage clients. 
o Implements a standardised event broadcast mechanism. 

• Interaction Mechanisms 
o Hosts a REST API for retrieving information and state of applications. 
o Hosts a REST API for triggering operations/adaptations to applications. 

 
Figure 20 shows the high-level architecture of the ADS-API before considering in-built 
operations (which are discussed later). Each box that is connected by arrows is a separate 
container. The arrows indicate communication flows. As we can see from Figure 20 the ADS-
API itself is a container which has multiple sub-components within it. First, it has a database 
client (DB Client), this provides an abstraction layer for committing the definitions and state 
of the different user applications to persistent storage, as well as providing easy search 
operations over the stored data. Second, it contains an OpenShift Client, which is responsible 
for performing lower level operations on the cluster itself (this is used to launch other services 
or Operation Sequences). Third, it contains an Event Client, this provides a standard way for 
reporting/broadcasting information about changes in a user’s application (either in its 
configuration or running state). When an event is generated, it is both persistently stored (via 
the DB Client) and broadcast on the Event Exchange (a publisher/subscriber service). Finally, 
it exposes a REST API that provides both data access to application state (i.e. querying upon 
the State Database) and the ability to trigger operations on each application, which is 
discussed next. 
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Figure 21 - Realization API (ADS-API) Architecture 

 
One of the main functionalities provided by the ADS-API is the ability to trigger ‘Operations’ 
associated to the user’s application, or in more advanced scenarios sequences of operations 
(known as Operation Sequences). To understand what an operation might consist of, we first 
must introduce how user applications are represented internally. A user ‘Application’ is now 
a high-level construct that can contain multiple 'Objects' (such as Jobs, DeploymentConfigs, 
Services, and so on). Objects can be either templates or instances (where instances are 
created from templates). When a user registers a new application via a playbook, internally it 
creates an application object and a series of object templates representing the different parts 
of the application. Object templates can be cloned/instantiated to form object instances. 
Operations are then actions that can be performed that interact with either an application’s 
object templates or instances. 
 
Example common Operations include: 

• Instantiate: Takes an Object template and generates a corresponding Object 
instance. 

• SetParameters: Alters an Object instance, replacing placeholder values with defined 
parameters. 

• RecommendResources: Calls ADS-Ranking to produce resource request and limit 
information for an Object Instance. 

• Apply: Uses either the Openshift Client or ADS-Deploy to deploy an Object instance.  
 
Operations can be triggered individually for a user’s application, however this can be unwieldy 
in practice and is not recommended. Instead the ADS-API provides the ability to pre-define 
sequences of operations that form a coherent task or alteration to a user’s application, where 
the stages of that sequence can depend on the application state at evaluation time. For 
example, we might include a WaitFor operation in a sequence, which waits until an object 
reports ‘Completed’ state.  
 
In a similar way to objects, operation sequences can then be either templates or instances. 
When first defined, an operation sequence is registered as a template with a unique id. A user 
can then trigger a sequence by id, which automatically instantiates the referenced template 
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and begins processing each operation contained within. Note that sequence templates 
internally support parameterization, and there are also a range of supported operations that 
can alter the configuration of the sequence based on the application or cluster state. As a 
result, sequence templates can be a powerful and re-usable tool. It is also worth noting that 
sequence template instances are not run by the ADS-API itself. Instead, once the sequence 
template instance is created, a new container is launched (via the Openshift Client) that 
independently performs each stage defined within the sequence (while also reporting events 
as they are encountered). 
 
A typical application deployment pattern is then to use a pre-defined operation sequence 
template to orchestrate the deployment (if it is suitably complex). In this case, the operation 
sequence template is used to create an operation sequence instance, which then runs in its 
own container. That operation sequence instance will then generate one or more object 
instances from the available templates and use those instances to create the associated 
objects on the cluster.  
 
 
Application and Data Services/Realization Monitor (ADS-Monitor) 
During the development of ADS-API, a need for a component to synchronise the state of a 
user’s application between Kubernetes and the ADS-StateDB was identified. This involves first 
periodically looking-up the state of any object instance that can have an associated state in 
Kubernetes, e.g. DeploymentConfigs or Jobs, and updating the state field for those objects in 
the ADS-StateDB. Then, if associated Pods are detected for that object, then the state of those 
pods will also be retrieved and recorded within the ADS-StateDB. If any state changes are 
detected, then associated events should also be broadcast. Hence, a separate component 
named ADS-Monitor was created to achieve this.  
 

 
Figure 22 - Architecture of the Realization Monitor (ADS-Monitor) 

  
Figure 21 illustrates the architecture of ADS-Monitor. As we can see from Figure 21, ADS-
Monitor shares the support clients with ADS-API. The core difference is that instead of being 
responsible for exposing a REST API, ADS-Monitor is only responsible for updating the back-
end state of the applications. ADS-Monitor is deployed automatically for a specified 
namespace by the ADS-API. 
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Application and Data Services/Realization GUI (ADS-GUI) 
The ADS-GUI is a dashboard-style graphical user interface that aims to provide access to the 
functionality exposed by the ADS-API in a user-friendly manner. In particular, it provides 
visualizations for registered applications, their component object templates and instances, as 
well as associated metrics and service level objectives. It also allows the user to alter 
registered templates, enabling customisation directly prior to deployment. It also visualises 
pre-registered operation sequences for a user’s application and enables users to construct 
new operation sequences using existing object templates and built-in operations. Users can 
also trigger application deployment and adaptation via this interface. Finally, for running 
applications, it provides a visualisation of the application state, associated events/alerts and 
tracked metrics. 
 

 
Figure 23 - Architecture of the Realization GUI (ADS-GUI) 

 
Figure 22 illustrates the interactions around the ADS-GUI (Realization GUI). As we can see, 
the ADS-GUI sources data primarily from the ADS-API (Realization API), which itself sources 
data either from the ADS-StateDB (Realization State DB) in the case of application 
information, or from the Triple Monitoring Engine for run-time metrics. To provide push-
based reporting of events associated to an application, the ADS-GUI can also subscribe to a 
RabbitMQ Event Exchange to receive events as they are published for display. 
 

6.6. Data Quality Assessment 
The data quality assessment mechanism aims at evaluating the quality of the data prior to 
any analysis, to ensure that analytics outcomes are based on datasets of specific quality. To 
this end, the BigDataStack architecture includes a component to assess the data quality as a 
service. The component incorporates a set of algorithms to enable domain-agnostic error 
detection. The domain-agnostic approach aims at facilitating the goals of data quality 
assessment without prior knowledge of the application domain / context, thus making it 
generalisable and applicable to different application domains, and, as a result, to different 
datasets.  
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While current solutions in data cleaning are quite efficient when considering domain 
knowledge (e.g., when functional dependencies are given), they provide limited results 
regarding data volatility, if such knowledge is not utilised. BigDataStack will provide a data 
quality assessment service that exploits Artificial Neural Networks (ANN) and Deep Learning 
(DL) techniques, to extract latent features that correlate pairs of attributes of a given dataset 
and identify possible defects in it. Furthermore, if discovering dependencies between pairs of 
attributes is not possible (e.g., due to heavy anonymization), the Data Quality Assessment 
component employs techniques that can detect errors within a single column. 
 
The key issues that need to be handled by the Data Quality Assessment service are: 

• Work in a context-aware but domain-agnostic fashion. The process should be 
adaptable to any dataset, learn the relationships between the data points and 
discover possible inconsistencies. 

• Model the relationships between data points and reuse the learned patterns. The 
system should store the models learned by the machine learning algorithms, and 
reuse them through an optimisation component, which checks if the raw data have 
similar patterns, dataset structure or sources. In that case, already existing models 
should be activated, to complete the process in an efficient manner. 

• Fall back to within-column error detection if discovering relationships between the 
data points is not possible for any reason. 

 

6.6.1. Detecting Errors via Pairs of Attributes  
The way to learn and predict the relationships between data points, to discover possible 
deviations, is to exploit the recent breakthroughs in Deep Learning, and the idea of an 
embedding space. Figure 22 depicts a serial architecture, which tries to predict if two entities 
are related to each other. 
 

 
 

Figure 24 - Domain agnostic data cleaning model architecture 
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Given the learned distributed encodings of each entity 𝑥𝑥,𝑦𝑦 or, in our case any data point, we 
can discover if these two candidate entities or data points are related. Thus, considering the 
DANAOS use case, if the temperature sensor emits a value that is illogical given other rpm 
sensor readings, the relationship between these two data points would be associated with a 
low score (or probability). This could provide significant improvements in the results of an 
analytical task that the data scientist wants to execute, and is part of a general business 
process. 
 
To optimize the data quality assessment process, we introduce a subcomponent that 
retrieves previously learned models, when a similar dataset structure arrives in the system, 
or the same data source sends new data. 
 
Data quality assessment component inputs: 

• The raw data ingested by the data owner through the Gateway & Unified API 
• The data model provided by the optimizer if exists 
• User preferences and specifications, ingested through the Data Toolkit 

Data cleaning component outputs: 
• Assessed data, establishing data veracity 

o A probability score for each tuple in the database column 
• Trained, reusable ML models, stored in a repository for later use 

The main structure of the Data Quality Assessment component is depicted in Figure 23. 
Based on this figure the flow is as follows: 

• The Data Pre-processing unit takes raw data and converts them in a form that the 
machine learning algorithms can work with  

• The main pillar of the service is the data cleaning component, which takes the pre-
processed data as input, trains a new model and stores it in the model repository 

• During the assessment phase, a scheduler pulls newly ingested data to be assessed 
• The data quality assessment module retrieves the learned model from the repository 

and makes the necessary predictions 
• The assessed data are updated into the distributed storage 

 
Figure 25 - Data Cleaning Module Architecture 
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6.6.2. Detecting Errors via n-gram Models 
In order to use n-grams to detect format errors in tables, we need a way to generalize raw 
values to patterns. We could also train an n-gram model with the raw values, but the 
complexity of that approach introduces too many degrees of freedom, leading to high 
sparsity. 
 
For example, let v₁ be a raw sequence of numbers expressing a zip code: 15122. Then, let v₂, 
v₃ signify two different codes: 345a7, 47592. Clearly, v₂ is erroneous, but if we pass the raw 
values in an n-gram model we will not get valuable information; see that p(a|5) = p(1|5), thus 
we either miss the error or produce a false positive. But if we could generalize a raw value 
into a pattern, we could get more meaningful representations. 
 
To this end, we use the notion of generalization trees and generalization languages. A 
generalization tree is just a hierarchy like the one in Figure 24, mapping raw values to a 
different representation. 
 

 
Figure 26 - A Generalization Tree 

From that tree, we can derive many languages. An example is given in Figure 25. 
 

 
Figure 27 - A Generalization Language 

 
Using L₁ we can transform v₁, v₂, v₃ into DDDDD, DDDLD, DDDDD. We could also compress 
that pattern to v₁ = D(5), v₂ = D(3)L(1)D(1), v₃ = D(5). Having this representation and a big 
enough dataset to train an n-gram model, we can get that the probability of having a 
letter L in a zip-code format is extremely low. 
 
Using this technique, we introduced a new feature in the Data Quality Assessment component 
that can detect errors within a single column. When applying this technique to the GFT 
insurance data, we discovered several errors. For example, consider Figure 26. 
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Figure 28 - GFT Insurance Dataset 

 
In this table we store the insurance vehicles brand and model. In the top-10 results with the 
highest probability of being “dirty” we come across errors like YHAMAA and YAHAMA instead 
of YAMAHA, or RENAUTL and HIUNDAY instead of RENAULT and HYUNDAI. Thus, a user could 
set a threshold and retrieve only the rows that have probability of being dirty below 0.49 and 
drop those rows. Alternatively, an expert could inspect those rows and correct the errors. This 
is now possible because the user will not have to go through the entire data set, which could 
be millions of rows. 
 

6.7. Real-time CEP 
Streaming engines are used for real-time analysis of data collected from heterogeneous data 
sources with very high rates. Given the amount of data to be processed in real-time (from 
thousands to millions of events per second), scalability is a fundamental feature for data 
streaming technologies. In the last decade, several data streaming systems have been 
released. StreamCloud [14], was the first system addressing the scalability problem allowing 
a parallel distributed processing of massive amounts of collected data. Apache Storm [15] and 
later Apache Flink [13] followed the same path providing commercial solutions able to 
distribute and parallelise the data processing over several machines to increase the system 
throughput in terms of number of events processed per second. Apache Spark [16] added 
streaming capability onto their product later. Spark’s approach is not purely streamed, it 
divides the data stream into a set of micro-batches and repeats the processing of these 
batches in a loop. 
 
The complex event processing for the BigDataStack platform is a scalable complex event 
processing (CEP) engine able to run in federated environments with heterogeneous devices 
with different capabilities. The CEP can aggregate and correlate real-time events with 
structured information stored in the BigDataStack data stores. The CEP takes into account the 
resources of the hardware, the amount of data being produced and the bandwidth in order 
to deploy queries. The CEP also considers redeployment and migration of queries, if there are 
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changes in the configuration, increase/decrease of data, changes in the number of queries 
running or failures.  
 
Data enters the CEP engine as a continuous stream of events, and is processed by continuous 
queries. Continuous queries are modeled as an acyclic graph where nodes are streaming 
operators and edges are data streams connecting them. Streaming operators are 
computational units that perform operations over events from input streams and outputs 
resulting in events over its outgoing streams. Streaming operators are similar to relational 
algebra operators, and they are classified into three categories according with their nature, 
namely: stateless, stateful and data store. 

• Stateless operators are used to filter and transform individual events. Output events, 
if any, only depend on the data contained in the current event. 

• Stateful operators produce results based on state kept in a memory structure named 
sliding window. Sliding windows store tuples according to spatial or temporal 
conditions. The CEP provides aggregates and joins based on time windows (e.g., 
events received during the 20 seconds) and size windows (e.g. the last 20 events). 

• User defined operators. They implement other user defined functions on streams of 
data. 

• Data store operators are used to integrate the CEP with the BigDataStack data stores. 
These operators allow correlation among real time streaming data and data at rest. 

 
The main components of BigDataStack CEP are: 

• Orchestrator: It oversees the CEP. It registers and deploys the continuous queries in 
the engine. It monitors the performance metrics and decides reconfiguration actions. 

• Instance Manager (IM): It is the component that runs a continuous query or a piece of 
it. They are single threaded and run in one core. 

• Reliable Registry: It stores information related to query deployments and components 
status. It is implemented by Zookeeper. 

• Metric Server: It handles all performance metrics of the CEP. The collected metrics are 
load, throughput, latency of queries, subqueries and operators, CPU, memory and IO 
usage of IMs. These metrics are handled by a Prometheus time series database. 

• Driver: The interface between the CEP and other applications. Applications use the 
CEP driver to register/unregister or deploy/undeploy a continuous query, subscribe 
with the output streams of the queries to consume results and mainly to send events 
to the engine. 

 
Figure 27 shows the different components of the CEP and their deployment in several nodes. 
Each node can run several Instance Managers (one per core).  Instance Managers (IM) are 
single threaded and run in a single core. IMs are also assigned a fraction of the RAM at 
deployment time. The registry and metric server are deployed in different nodes although 
they can be collocated in the same node. The client and receiver applications are the ones 
producing and consuming the CEP data (shown as dashed black lines). The rest of the 
communication is internal to the CEP. The Orchestrator communicates with the IMs to deploy 
queries (configuration messages) and registers this information in Zookeeper (Zookeeper 
communication). All components send performance metrics to the metric server (yellow 
dashed lines). 
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Figure 29 - CEP Components and Deployment 

 
Given that the load is subject to changes due to temporal circumstances (e.g., the load is 
lower during night time and weekends) or bursts (e.g., a hot topic) or bandwidth changes 
(common in a wide-area network deployment), the CEP monitors the performance of the 
deployed queries and triggers self-configuration to cope with this type of dynamicity.  The 
CEP can be used as a standalone component that reconfigures itself or with the BigDataStack 
Application Dimensioning Workbench. In the former case the performance metrics of the CEP 
are used to monitor the queries performance and trigger the adaptation actions. On the other 
hand, the CEP has built-in elasticity. 
 
The elasticity in the CEP can be in the form of scale-up, scale-out or system reconfiguration. 
Figure 28 shows a query (SQ1) running at Edge Node 1.  If the query is exhausting CPU or 
memory, the CEP will try to deploy a new Instance Manager (IM) at the same node (scale-up). 
If there are no more resources available at that node or the bottleneck is the bandwidth, a 
new IM will be deployed in a different node (scale-out).  
 
The CEP monitors the resource usage at different levels and stores this information in the 
Metric Server.  Table 3 summarizes the resource consumption metrics. 
  

Table 3 - CEP resource usage 
Metric Name Node IM  Query 
Ingress network bandwidth (Mbps)  √ √ 
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Egress network (Mbps)  √ √ 
Pairwise bandwidth (Mbps) √   
Pairwise latency (ms) √   
Memory usage (MB) √ √  
CPU usage (%)    

 
 

 
Figure 30 - Subquery scale-up, scale-out 

 
Figure 29 shows the reconfiguration process.  The reconfiguration may happen because there 
is a low resource usage (scale down) or the other way around; there is a high resource 
consumption.  If the bandwidth is not fully utilized and the scarce resource is either memory 
or CPU assigned to an Instance Manager then, the system will scale up (if possible). The 
Orchestrator will create a new IM at that node and one of the queries will be migrated to that 
IM. We have implemented this as a first-fit descendent algorithm variant of the bin-packing 
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problem. If the bandwidth is the bottleneck (i.e., the output rate of all queries running on a 
node consume all available bandwidth), scale up will not be possible. The Orchestrator will 
trigger a global reconfiguration in order to find an alternative deployment of the running 
queries. This is modelled as an integer linear programming problem (ILP) that assigns queries 
to IMs with the goal of minimizing latency across nodes. However, this may lead to a complete 
redeployment of the queries, which means stopping query processing and therefore, 
decrease system throughput and availability. The algorithm takes this into account and 
minimizes the number of queries that need to be migrated and the state to be transferred.  

 
Figure 31 - CEP Reconfiguration 
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6.8. Process mapping and Analytics 
The Process mapping and analytics component of the BigDataStack architecture consists of 
two separate sub-components: Process Mapping and Process Analytics.  

• The objective of the Process Mapping sub-component is to predict the best algorithm 
from a set of algorithms available in the Predictive and Process Analytics Catalogue 
and provide a set of values for its respective input parameters given a specific dataset 
D and a specific analysis task T. 

• The goal of the Process Analytics sub-component is to discover Processes from event 
logs and apply Process Analytics techniques to the discovered process models in order 
to optimize overall processes (i.e., workflows). 

6.8.1. Process Mapping 
The inputs of the Process Mapping sub-component consist of: 

• The analysis task T (e.g., Regression, Classification, Clustering, Association Rule 
Learning, Reinforcement Learning, etc.) that the user wished to perform 

• Additional information that is dependent on the analysis task T (e.g., the response – 
predictor variables in the case of Supervised Learning, the desired number of clusters 
in the case of Clustering, etc.). 

• A dataset D that is subject to the analysis task T 

 

The following table provides an overview of the main symbols used in the presentation of the 
Process Mapping sub-component. 

Symbol Description 
T An analysis task (e.g., clustering, classification…) 
D A dataset  
T(D) The analysis task T applied on dataset D 
A(T) An algorithm that solves the analysis task T (e.g., A(T)=K-means for T=Clustering) 
Λ(Α) A set of values for the respective parameters of algorithm A 
A(T,D) An algorithm applied on D to solve the task T 
M(D) A model describing a dataset D 
T An analysis task (e.g., clustering, classification…) 
D A dataset  
T(D) The analysis task T applied on dataset D 

Table 4 - Μain symbols used in process mapping 
 
The output of the Process Mapping sub-component is an algorithm A(T) along with a set of 
values for its respective parameters Λ(A)  automatically selected as the best model for 
executing the data analysis task T at hand. The best algorithm can be based on various 
quantitative criteria, including result quality or execution time, and combinations thereof.  
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Figure 32 - High-level architecture of Process Mapping sub-component 

 
High-level Architecture 
 
Figure 30 provides an overview of the different modules and their interactions. The Process 
Mapping sub-component comprises the following four main modules: 

• Data Descriptive Model: This module takes as input a dataset in a given input form and 
performs automatically various types of data analysis tests and computation of 
different statistical properties, in order to derive a model M(D) that describes the 
dataset D. Based on the relevant research literature, examples of information that is 
typically captured by the model M(D) include: dimensionality and the intrinsic (fractal) 
dimensionality, set of attributes, types of attributes, statistical distribution per 
numerical attribute (mean, median, standard deviation, quantiles), cardinality for 
categorical attributes, statistics indicating sparsity, correlation between dimensions, 
outliers, etc. The exact representation of the model M(D) is going to be presented in 
the following more concretely, but it can be considered as a feature vector. Thus, in 
the following, the terms model and feature vector are used interchangeably. 
Subsequently, the produced feature vector M(D) is going to be used in order to 
identify previously analysed datasets that have similarities with the given dataset. This 
is achieved by defining a similarity function sim(M(D1),M(D2)) that operates at the 
level of feature vectors M(D1) and M(D2). 

• Analytics Engine: The main role of this module is to provide an execution environment 
for analysis algorithms. Given a specific dataset D and a task T, the Analytics Engine 
can execute the available algorithms A(T) on the specific dataset, and obtain its result 
A(D,T). The available algorithms are retrieved from the Predictive and Process 
Analytics Catalogue for algorithms available in BigDataStack. In this way, evaluated  
results of analysis algorithms executed on datasets are kept along with the model 
description of the dataset. Separately, we implement in the analytics engine the 
functionality of computing similarities between models of datasets, thereby enabling 
the retrieval of the most similar datasets to the dataset at hand. 
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• Analytics Repository: The purpose of this repository is to store a history (log) of 
previous evaluated results of data analysis tasks on various datasets. Each record in 
this repository corresponds to one previous execution of a specific algorithm on a 
given dataset. It contains the model of dataset that has been analysed in the past, 
along with the algorithm executed, and its associated parameters. In addition, the 
record keeps one or more quality indicators, which are numerical quantities 
(evaluation metrics) that evaluate the performance of the specific algorithm when 
applied to the specific dataset. 

• Evaluator: Its primary role is to evaluate the results of an algorithm that has been 
executed, and provide some numerical evaluations indicating how well the algorithm 
performed. For example, for clustering algorithms, several implementations of 
clustering validity measures can be used to evaluate the goodness of derived clusters. 
For classification algorithms, the accuracy of the algorithm can be computed. For 
regression algorithms, R-Squared, p-values, adjusted R-Squared and other metrics will 
be computed to evaluate the quality of the result. Apart from these quality metrics, 
performance-related metrics are also recorded, with execution time being the most 
representative such metric. 

Once the Process Mapping sub-component has received the required inputs, the data is 
ingested into the Data Descriptive Model where characteristics and morphology aspects of 
the dataset D are analysed, in order to produce the model M(D). Then, together with user 
requirements are forwarded to the Analytics Engine. At this point a query is made from the 
Analytics Engine to the Analytics Repository, a storage of previously executed analysis models 
and the final algorithms that were executed in each case. We distinguish two cases: 

• No similar models can be found: In this case, the available algorithms from the 
Predictive and Process Analytics Catalogue that match the user requirements are 
executed, and the results are returned and evaluated in the Evaluator (where quality 
metrics are computed for each run depending on its performance). The results are 
stored in the Analytics Repository. 

• A similar model can be found: In this case, the corresponding algorithm (that 
performed well in the past on a similar dataset) is executed on the dataset at hand, 
and the results are again analysed in the Evaluator. The results are again stored in the 
Analytics Repository. In case the result is not satisfactory, the process can be repeated 
for the second most similar model, etc. 

Example of Operation 

The operation of Process Mapping entails two discrete phases: (a) the learning phase, and (b) 
the in-action phase.  

In the learning phase, the system executes algorithms on datasets and records the evaluations 
of the results in the analytics repository. Essentially, the system learns from executions of 
algorithms of different datasets.  
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Figure 33 - Learning phase of Process Mapping: Processing the first dataset D 

 
The learning phase starts without any evaluated results in the analytics repository. As shown 
in Figure 31, when the first dataset D is given as input, the Descriptive Model Generator 
produces the model M(D). In parallel, the available algorithms A1, A2, …, An are executed on D 
and their result is given to the Evaluator, which computes the available metrics M1 and M2. 
Examples of metrics could be accuracy and execution time. Then, this information is stored in 
the analytics repository: the model M(D), the algorithm Ai, and the values of metrics M1 and 
M2. Notice that the actual dataset is not stored, however it is shown in the figure just for 
illustration purposes. 
 
 

 
Figure 34 - Learning phase of Process Mapping: Processing the second dataset D' 

 
Figure 32 shows the processing of a second dataset D’, still in the learning phase. The same 
procedure as described above is repeated, and the results are added to the Analytics 
Repository. 
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The in-action phase corresponds to the typical operation of Process Mapping in the context 
of BigDataStack, namely to perform the actual mapping from an abstract task T (which is 
present as a step of a process designed in the process modelling framework) to a concrete 
algorithm A(T) and a set of values for its parameters Λ(A) that can be executed on the dataset 
D at hand, i.e., A(T,D). The following example aims at clarifying the detailed operation. 

Figure 33 shows a new dataset which is going to be processed based on the specification 
received from the process modelling framework. Next, the Process Mapping automatically 
suggests the best algorithm (A*) from the pool of available algorithms A1, A2, …, An.  

 
Figure 35 - The in-action phase of Process Mapping 

 
As depicted in the figure above, the Descriptive Model Generator produces the model for the 
new dataset, and then this model is compared against all available models in the analytics 
repository in order to identify the most similar dataset. In this example, M(D) is the most 
similar model. Then, the best performing algorithm is selected from the results kept for M(D). 
The values of available metrics (M1 and M2) are used to identify the best algorithm based on 
an optimization goal, which could rely on one metric or a combination of metrics, according 
the needs of the application. In the example, the output of Process Mapping is depicted as 
algorithm A1. 

Technical Aspects of the Prototype Implementation 

The prototype Implementation of Process Mapping covers two of the most known Machine 
Learning Tasks (T), namely Clustering and Classification. Below, we provide the technical 
details and individual techniques used by Process Mapping. 

The Descriptive Model Generator computes and records a wide variety of state-of-the-art 
features used for Algorithm Selection, that can be distinguished into two categories 
depending on the analysis task they are to be used for (Classification or Clustering). All of 
them are presented accordingly in the following tables. 
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Meta Features Used for Classification 
 
 

General 

• Ratio between the number attributes/ categoric and 
numeric features/ No instances and attributes 

•  Relative frequency of each distinct class 
• Number of Numeric/Categorical/Binary Features 
• Number of Classes/instances 

 
 
 

Information-theory 

• Concentration Coefficient between each attribute and 
class 

• Concentration Coefficient between each pair of distinct 
attributes. 

• Joint Entropy between each attribute and class 
• Shannon’s Entropy of target attribute 

 
 
 

Statistical 

• Harmonic Range/Mean/Mean/Median/Variance of each 
attribute 

• No distinct highly correlated pair of attributes 
• No attributes with at least one outlier value/ No outliers 
• Skewness/Kurtosis of each attribute 
• Eigenvalues of covariance matrix from data set 

Table 5 - Features used for algorithm selection in classification 
 
 

Meta Features Used for Clustering 
Information Theory • Mean Entropy of Discrete Attributes 

• Mean Concentration between Discrete attributes 
 

Statistics 
• Mean absolute Correlation between attributes 
• Mean skewness/kurtosis of continuous attributes 
• Log of the number of Attributes/Objects 

 
 
 
 

Distance Based 

• Mean of distances vector 
• Variance of distances vector 
• Kurtosis of distances vector  
• Percentage of distance values in each of ten intervals that 

equally comprise range [0,1] 
• Percentage of distance values with absolute z-score in four 

intervals of range [0,inf) 
Table 6 - Features used for algorithm selection in clustering 

 
The Analytics Engine is implemented in Python 3, a popular selection of a programming 
language for the execution of machine learning tasks. At the time of writing the algorithms 
supported are listed per task as follows: 

• Clustering (8): Agglomerative Clustering, Birch, DBScan, Hierarchical Clustering, 
KMeans, MeanShift, OPTICS, Spectral Clustering 

• Classification (8): AdaBoost (Ensemble Method), Decision Tree, Gaussian Process, 
Naïve Bayes, Nearest Neighbors, Neural Networks (MLP), Random Forest (Ensemble 
Method), SVM 

Last, but not least, the Evaluator uses metrics both for the quality of data analysis as well as 
for performance. The metrics used for evaluation depend on the Machine Learning Task that 
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is executed. For clustering we opt to include six Indexes known as “Internal” (Silhouette, 
Calinski-Harabasz, Dunn, CDBW, SDbw, Davies-Bouldin) that base their scorings on aspects 
such as the inter and intra-cluster density and sparsity of a data set’s records. As a default 
quality measure for indicating algorithm performance we conclude to Calinski-Harabasz due 
to empirical evidence we gained that suggested this index is the one with the best generalized 
applicability across problem instances. For Classification we use the mean Accuracy achieved 
during a 10-fold Cross Validation procedure, a method show to be less prone to overfitting. 
In terms of performance, the Evaluator records the execution time needed by the algorithm 
to produce the results. The application that runs in BigDataStack can select whether algorithm 
selection will be based on optimizing result quality, performance, or an arbitrary (application-
defined) combination of these two. 

 

6.8.2. Process Analytics 
The Process Analytics sub-component comprises the following four main modules: 

• Discovery: The main objective of this component is via a given event log to create 
a process model. 

• Conformance Checking/Enhancement: This component’s role is dual. Firstly, in the 
Conformance Checking Stage a process model is evaluated against an event log for 
missing steps, unnecessary steps, and many more (process model replay). 
Secondly, in the Enhancement Stage user input is considered (e.g. cost-
effectiveness or time effectiveness of a process) to create an according model of 
a process. Also, in this stage dependency graphs will be created and through 
metrics, such as direct succession and dependency measures to be utilized by the 
Predictions component.  

• Log Repository: A repository consisting of any changes to a model during the 
Conformance Checking/Enhancement stage. 

• Prediction: Dependency graphs and weighted graphs of process models, created 
in the Enhancement phase will be used in collaboration with an active event log to 
predict behaviour of an active process. 

• Model Repository: A storage unit of all process models, user-defined or created in 
the Discovery stage. 

The input variables of this mechanism are: 
• Event logs. 
• Process models (not obligatory). 

The output of the mechanism is as follows: 
• Discovered process models. 
• Enhanced process models. 
• Diagnostics on process models. 
• Predictions - Recommendations on events occurring in process models. 

The main structure of the predictive component is depicted in Figure 34: 
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Figure 36 - Internal architecture of the Process Analytics sub-component 

6.9. Seamless Analytics Framework 
A single logical dataset can be stored physically in many different data stores and locations. 
For example, an IoT data pipeline may involve an ingestion phase from devices via a message 
bus to a database and after several months the data may be moved to object storage to 
achieve higher capacity and lower cost. Moreover, within each lifecycle phase, we may find 
multiple stores or locations for reasons such as compliance, disaster recovery, capacity or 
bandwidth limitations etc. Our goal is to enable seamless analytics over all data in a single 
logical dataset, no matter what the physical storage organization details are. 
 
In the context of BigDataStack, we could imagine a scenario where data would stream from 
IoT devices such as DANAOS ship devices, via a CEP message bus, to a LeanXcale data base 
and eventually, under certain conditions be migrated to the IBM COS Object Store. This flow 
makes sense since LeanXcale provides transactional support and low latency but has capacity 
limits. Therefore, once the data is no longer fresh it could be moved to object storage to 
vacate space for newer incoming data. This approach is desirable when managing Big Data.  
 
The seamless analytics framework aims to provide tools to analyse a logical dataset which 
may be stored in one or more underlying physical data stores, without requiring deep 
knowledge of the intricacies of each of the specific data stores, nor even awareness of where 
the data is exactly stored. Moreover, the framework provides the tools to automatically 
migrate data from the relational datastore to the object store, without the interference of a 
database administrator, with no downtime or expensive ETLs, ensuring data consistency 
during the migration process at the same time. 
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A given dataset may be stored within multiple data stores and the seamless analytics 
framework will permit analytics over it in a unified manner. The LXS Query Engine is extended 
in order to support queries over a logical database that might be split across different and 
heterogeneous datastores. This extended query engine will serve as the federator of the 
different datastores and will a) push down incoming queries to each datastore b) retrieve the 
intermediate results and merge them in order to return the unified answer to the caller. 
Therefore, the data user will have the impression of executing a query against a single 
datastore which hosts the logical dataset, without having to know how the dataset is 
fragmented and split within the different stores. Finally, the federator will provide a standard 
mechanism for retrieving data: JDBC, thus allowing for a variety of analytical frameworks such 
as Apache Spark to make use of the Seamless Analytical Framework to perform such tasks. 
 
The data lifecycle is highlighted in the following figure: 

 
Figure 37 - Seamless Interface 

Data is continuously produced in various IoT devices and forwarded to the CEP engine for an 
initial real-time analysis. This analysis might identify potential alerts or challenges which are 
triggered by submitting specific rules which use data coming from a combination of sources 
and are relevant under a specific time window. CEP later ingests data to the LeanXcale 
relational datastore, which is the first storage point due to its transactional semantics that 
ensure data consistency. After a period, data can be considered historical and are of no use 
for an application. However, they are still invaluable as they can participate in analytical 
queries that can reveal trends or customer behaviours. As a result, data are transferred to the 
Object Store that is the best candidate for such type of queries. Due to this, data is 
continuously migrating between stores, and the seamless interface provides the user with a 
holistic view, without needing to keep track of what was migrated when. 
 
The Seamless Analytical Framework was successfully demonstrated in the scope of the 
DANAOS scenario; however, the scope of the framework was limited: it targeted cases where 
sensor IoT data are stored in data tables, which eventually become obsolete and are moved 
to the object store in order to exploit the capabilities of the latter to perform more efficiently 
analytical queries, by maintaining data consistency and transactional semantics due to the 
operational datastore. This implies that all operations and queries, even if they consist of 
complex analytical aggregations that have been re-designed in order to be executed in a 
distributed manner, they all involve single tables: join operations or queries that consist of 
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nested statements were practically not supported, as this would have required for the whole 
result set of the operand to be fetched in the memory of the query federator. Such an 
implementation would have saturated the resources of the machine and the framework 
would have crashed. During the last phase of the project, we extended the functionalities of 
the Seamless Analytical Framework to support all SQL queries and widen its use. The 
Connected Consumer use case was found ideal to validate the novel functionalities. 
 
The Connected Consumer use case is a typical scenario of an electronic store. It has several 
stores along Spain, that sell a variety of products, and its clients can submit online orders to 
buy specific goods. Moreover, a recommendation engine takes into account various 
parameters such as age, marital status and behavioural habits, in order to recommend new 
products that might be of the client’s interest. The data schema of this application is relational 
and consists of various data tables of average size that are mostly read-only or expect update 
operations and rare inserts (i.e. the number of customers is being increased at low rate), thus 
are not expected to grow in a sense that will require a data warehouse. However, there is a 
specific data table that stores the results of the recommendation engine for all customers 
that is accepting new records at a high rate, and its size is typically higher than 95% of the 
whole database. This data table is only accepting insert operations and it takes part in 
complex analytical queries of the engine to create recommendations based on the historical 
data. Thus, it is a perfect example of a use case where a data table is accepting new records 
that become obsolete and are crucial for the analytical engine. However, the nature of the 
involved queries require join operations and nested SQL statements, thus were not supported 
by the Seamless Analytical Framework delivered in M18. 
 
In order to support such scenarios, we extended the framework to provide these capabilities 
and to additionally increase the efficient execution of arbitrary query statements, without the 
need to pre-configure the object store for appropriate indexing in order to serve specific 
queries. The extensions mainly affected the query federator and the data mover of this 
framework. For the former, the whole engine was re-designed in order to be incorporated 
with the query engine of the operational datastore. Regarding the join operations, 
implementation now takes into account that one of the two operands is targeting a 
fragmented data table.  This implementation retrieves the projection of the columns that 
need to be returned along with the columns that takes part in the join operation, and 
transforms the join instead into an in clause that is pushed down into the object store. This 
technique is widely known as bind join. Due to this, only close to the minimum amount of 
data is being transmitted across the network, and the federator retrieves only the data that 
need to be returned to the data user by the object store. Furthermore, all operations that 
require the retrieval of data of a fragmented dataset have been modified to allow push downs 
of other operations. Thanks to this, the query engine of the federator can incorporate all 
operations into its query planner, and the query optimizer can produce and reason about an 
alternative operation plan that is can deliver better performance. By doing so, now all types 
of queries can be supported, including nested statements that can involve join operations. 
Moreover, the data mover is now capable of retrieving statistical information about the 
submitted queries and the data distribution on the indexes, thus, can create on the fly 
appropriate partitioning on the object store side, that is capable of executing queries even 
faster. 
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6.10. Application Dimensioning Workbench  
The goal of the dimensioning phase is to provide insights regarding the required infrastructure 
resources primarily for the data services components, linking the used resources with load 
and expected QoS levels. To this end, it needs to link between the application/service-related 
information (such as KPIs and workload, parameters of the data service etc.) and the used 
resources to be able to provide recommendations towards the deployment mechanisms, 
through e.g. prediction and correlation models. Benchmarking against these services is 
necessary in order to concentrate the original dataset that is needed in a variety of business 
scenarios, such as sizing the required infrastructure for private deployments of the data 
services or consulting deployment mechanisms in a shared multitenant environment where 
multiple instances of a data service offering may reside.  
 
The main issues that need to be handled by the Dimensioning Workbench are: 

• The target trade-off that needs to be achieved between a generic functionality and an 
adapted operation. For example, benchmarking for each individual application 
request would lead to very high and intolerable delays during the deployment process. 
Thus, one would need to abstract from the specifics of an application instance through 
the usage of suitable workload features, benchmark in advance for a variety of these 
workload features and thus only need to query for the most suitable results during the 
deployment stage. Thus, dual capabilities would need to exist, either benchmarking at 
the service level, ensuring a timely acquisition of a large number of samples, as well 
as benchmarking at the application entry point level, in order to understand how load 
propagates down the service graph and what input loads it generates at the data 
service input level. 

• The achieved abstraction and automation for easily launching highly scalable and 
multi-parameter benchmarks against the data services, with minimal user interaction 
and need for involvement. This would require the rationale of a benchmarking 
framework inside ADW that will be able to capture the needed variations between the 
configuration parameters (workload, resource etc), adapt to the needed client types 
per data service as well as the target execution environment of the tests (e.g. different 
execution platforms such as OpenShift, Docker Swarm, external public Cloud offerings 
such as AWS, etc). 

• The workflow/graph-based nature of the application, which implies that application 
(and data service) structure should be known and taken under consideration by the 
analysis. To this end, needed annotations are required so that the generic structure 
which is provided as input to the Workbench through the Data Toolkit contains all the 
necessary information such as expected QoS levels (potentially for different metrics), 
links between the service components etc. On top of this structure, the workbench 
can quantify the expected QoS per component and then propagate through the 
declared dependencies. 

• While application structure is provided to the workbench, this will often not imply a 
particular deployment configuration for the application (e.g. what node types will be 
suitable for the user’s application). Multiple trade-offs in this domain could also be 
given to the users, enabling them to make a more informed final decision based on 
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cost or other parameters. For this reason, the dimensioning workbench needs to 
receive this input of available deployment patterns from the Pattern Generation in 
order to populate them with the expected QoS, information that is taken under 
consideration in the process for final ranking and selection.  

• Adaptation of benchmarking tests in a dockerized manner in order to be launched 
through the framework in a coordinated and functional manner, based on each test’s 
requirements and needed sequences. 

Dependencies of the dimensioning component especially in the form of anticipated exchange 
of information (in type and form) are presented in the following bullets. Inputs include:  

• Structure of the application along with the used data services is considered an input, 
as concretized by the Data Toolkit component (in the form of a playbook file, the 
BigDataStack Playbook) and passed on to the Dimensioning component, following its 
enrichment with various used resource types from the Pattern Generator, and 
including expected workload levels inserted by the user in the Data toolkit phase. This 
is the structure upon which the Dimensioning workbench needs to append 
information regarding expected QoS per component.  

• Types of infrastructure resources available in terms of size, type, etc (referred to as 
resource templates). This information is necessary at the Pattern Generator side in 
order to create candidate deployments. 

• Different types of Data Services will be provided by BigDataStack to the end users. 
Each of these services may have different characteristics and functionalities, affected 
in a different manner and quantity by the application input (such as the data schema 
used). Consideration of these features should be included in the benchmarking 
workload modelling of the specific service (e.g. number of columns in the schema 
tables, types of operations, frequency of them  etc.), as well as inputs that may be 
received by the application developer/data scientist, such as needed quality 
parameters of the service (such as latency, throughput needed etc.) or other 
preferences declared through the Data Toolkit.  

• Application related current workload and QoS values should be available to enable the 
final creation of the performance dataset, upon which any queries or modelling will 
be performed. This implies a collaboration and adaptation with the used benchmark 
tests and/or infrastructure monitoring components such as the Triple Monitoring 
Engine, in case the used benchmarks do not report on the needed metrics.   

• Language and specification used by the Deployment component, or any other 
provisioned execution environment, given that ADW needs to submit such descriptors 
for launching the benchmarking tests. 

• Exposure of the necessary information, such as endpoints, configuration, results etc 
to the Visualization components of the project, in order to be embedded and 
controlled from that side as well. Thus relevant APIs and JSON schemas need to be 
agreed and implemented based on this feature. 

 
Necessary outputs:  
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• The most prominent output of the Dimensioning phase is the concretized (in terms of 
expected QoS) playbook for a candidate deployment structure for the used data 
services in the format needed by the ADS-Ranking component that utilizes the 
dimensioning outcomes. This implies that the format used by Dimensioning to 
describe these aspects should be understood by the respective components and thus 
was agreed in collaboration, defined currently as a Kubernetes configuration template 
type of file structure called a BigDataStack Playbook. More concretely, this is 
operationalized as a series of candidate deployment patterns (CDPs), which describe 
the different ways that the user’s application might be deployed along with the 
expected QoS levels per defined metric. CDPs are provided in the respective file 
format, such that they can be easily used to perform subsequent application 
deployment. The Dimensioning phase will augment each CDP with estimated 
performance metrics and/or quality of service metrics, providing a series of indicators 
that can be used to judge the potential suitability of each CDP. These estimates are 
used later to select the CDP that will best satisfy the user’s deployment 
requirements/preferences. 

• Intermediate results include the benchmarking results that are obtained through the 
benchmarking framework of ADW. These need to be exposed either to internal ADW 
components for subsequent stages (e.g. modelling or population of the playbook) or 
external such as Visualization panels towards the users for informative purposes. 

The main structure of the Dimensioning is depicted in Figure 36. The component list is as 
follows: 

• Pattern Generation: The role of pattern generation is to define the different ways that 
a user’s application might be deployed. In particular, given the broad structure of a 
user’s application provided by the Data Toolkit, there are typically many ways that 
this application might be deployed, e.g. using different node types or utilizing 
different replication levels. We refer to these different ways that a user’s application 
might be deployed as ‘candidate deployment patterns’ (CDPs). CDPs are generated 
automatically through analysis of the user’s application structure provided in the form 
of a ‘BigDataStack Playbook’ file from the Data Toolkit, as well as the available cloud 
infrastructure. Some CDPs will be more suitable than others once we consider the 
user’s requirements and preferences, such as desired throughput or maximum cost. 
Hence, different CDPs will encode various performance/cost trade-offs. These CDPs 
define the configurations that are used as filters for retrieving the most relevant 
benchmarking results during the Dimensioning phase, producing predicted 
performance and quality of service estimations for each. Even though Pattern 
Generation is part of Dimensioning, it is portrayed as an external component given 
that for each CDP the core Dimensioning block will be invoked. 

• ADW Core: The ADW Core is the overall component that is responsible for the main 
functionalities of Dimensioning. It is split into two main parts, the ADW Core 
Benchmarking, which is responsible for implementing and storing benchmarking runs 
with various setups, and the ADW Core Runtime that is used during the assisted 
deployment phase of BigDataStack in order to populate the produced CDPs with the 
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predicted QoS levels. Following, a highlight of the various functionalities of each 
element is described, split into more fine-grained parts. 

• Bench UI: The Bench UI is used by the Data Service owner or the Application Owner 
in order to define the parameters of the benchmarking process, which is performed 
“offline”, thus not in direct relationship to a given application deployment during 
runtime. It is necessary for these user to investigate the performance considerations 
of their service and proceed with this stage, during the incorporation of their data 
service or application in the BigDataStack ecosystem, in order to have gathered the 
necessary data a priori and not need to benchmark during the actual application 
deployment. The latter would create serious timing considerations and limitations 
that would not be tolerated by the end users. Through the Bench UI, multiple 
parameters can be defined, leading to a type of parameter sweep execution of a test, 
in order to automate and enable an easier result gathering process. The UI includes a 
visual element for selection of the parameters (many of which are obtained through 
a link to an external repository (Gitlab), as well as a relevant REST endpoint in which 
the user can submit a JSON description of the test (thus enabling further automation 
through multiple REST submissions). It can also be used to monitor the progress of 
the test. Result viewing and relevant queries can also be performed via the central 
visualization component of BigDataStack. In Y3 the process has been enriched 
through the incorporation of the Jmeter generic load injector, which enables also the 
execution of the overall application graph and the inclusion of application specific 
workload files. This enables to obtain a more generic view of the overall application 
graph and the stress it creates at a given point of the application structure (e.g. the 
linked data service). 

• Test Control: Test control is used in order to prepare, synchronize and configure test 
execution. A number of steps are needed for this process based on the user’s selected 
options, such as running tests in a serial or parallel manner, preparing shared volumes 
and networks and so on. Test control in Y3 is enriched with two more features, the 
ability to include whether the test should be run in isolation or can be run in parallel 
with other tests and the ability to launch trace driven simulations. The latter is 
necessary in order to include a variable load graph that may be used to compress a 
series of experiments in one description fiile and include a sequential process 
including spike testing, endurance testing etc, breaking point testing etc. 

• Deployment Description Adapter: In order to enable launching of the defined tests in 
an execution platform (such as Openshift, Docker Swarm, external Clouds etc), 
relevant deployment descriptors should be created. For example, for Openshift a 
relevant playbook file needs to be created and populated with the parameters 
selected for the benchmark tests, such as input arguments, selected resources etc 
and then forwarded to ADS Deploy. A playbook template structure is created 
beforehand for each bench test type based on the execution needs of each test (e.g. 
number and type of containers, needed shared volumes and networks etc), necessary 
included data service etc, that is then populated with the specific instantiation’s 
details. Different execution platforms can be supported through the inclusion of 
relevant plugins that implement the according formats of that platform or the 
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relevant API calls to setup the environment (a Docker Swarm version is already 
supported at this time). Through this setup the system under stress (data service) is 
automatically deployed, as well as the necessary number of bench test clients in order 
to cover the desired load levels. 

• Image repository: While this refers to the main image repository across the project, 
its inclusion here is used to indicate the necessary inclusion of the bench tests images, 
appropriately adapted based on the benchmarking framework’s needs, in terms of 
execution, configuration and result storing. 

• Configuration repository:  Existing external repository through which the 
Benchmarking process can be configured through varius means (e.g. workload files, 
startup scripts, settings files etc). This is necessary in order to include the dynamic 
nature of the benchmarking setup and execution, as well as create links between the 
Bench UI and the available options to the user (e.g. UI retrieves list of available 
workload types from respective configuration folder of the external repository). 

• Results/Model repository: This component is intended to hold the benchmarking 
results obtained through the test execution process as well as hold the created 
regression models used during the Result Retrieval queries in the Runtime phase (Y3). 

• Structure Translator: This component acts as an abstraction layer and is responsible 
for obtaining the output of the Data Toolkit containing the application structure in the 
format this is expressed (e.g. playbook service structure) and extracting the 
parameters that are needed in order to instantiate the query towards the result 
retrieval phase. Furthermore, in cases of multi-level applications, it is responsible for 
propagating the process across the service graph. 

• Result Retrieval: This component is responsible for obtaining the specified 
deployment options from the CDPs, the anticipated workload and produce the 
predicted QoS levels of the service. This may happen either through direct querying 
of the stored benchmarked results (y2) or through the creation and training of 
predictive regression models (Y3) that will also be able to interpolate for cases that 
have not been investigated, based on the training of the regressor and the depiction 
of the outputs (QoS) dependency from the predictor inputs (workload and h/w-s/w 
configuration used). 

• Output Adaptor: This component acts as an abstraction layer and is responsible for 
generating the output format needed for the communication with ADS Ranking (in 
the particular case enriching the inputed playbook file with the extra QoS metrics).  
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Figure 38 - Application dimensioning internal structure and link with external components 

6.11. Big Data Layout and Data Skipping 
Here we focus on how to best run analytics on Big Data in the cloud. Today’s best practices to 
deploy and manage cloud compute and storage services independently leaves us with a 
problem: it means that potentially huge datasets need to be shipped from the storage service 
to the micro-service to analyse data. If this data needs to be sent across the WAN then this is 
even more critical. Therefore, it becomes of ultimate importance to minimize the amount of 
data sent across the network, since this is the key factor affecting cost and performance in 
this context. 
 
We refer the reader to the BigData Layout section (8.10) of the D2.1 BigDataStack deliverable 
which surveys the main three approaches to minimize data read from Object Storage and sent 
across the network. We augmented these approaches with a technique called Data Skipping, 
which allows the platform to avoid reading unnecessary objects from Object Storage as well 
as avoiding sending them across the network (also described in D2.1). As explained there, in 
order to get good data skipping it is necessary to pay attention to the Data Layout.  
 
In BigDataStack data skipping provides the following added-value functionalities:  

1. Handle a wider variety of datasets, go beyond geospatial data  
2. Allow developers to define their own data skipping metadata types using a flexible 

API. 
3. Natively support arbitrary data types and data skipping for queries with UDFs (User 

Defined Functions) 
4. Handle continuous streaming data that is appended to an existing logical dataset. 
5. Continuously assess the properties of the streaming data to possibly adapt the 

partitioning scheme as needed 
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6. Handle general query workloads. This is significant because often different queries 
have different, even conflicting, requirements for data layout.  

7. Handle query workloads which change over time.  
8. Build a benefit/cost model to evaluate whether parts of the dataset should be 

partitioned anew (thus rewritten) to adapt to significant workload changes. 
9. Implementation of additional ready indexes types such as the Bloom-filter index 
10. We found out a serious performance problem with Apache Spark SQL which is that it 

requires for each SQL query to discover the dataset schema.  This demands a repeated 
full read of the dataset.  We fixed this with a “database catalogue” which stores the 
data schema and is used as an indirection between SQL queries and the dataset thus 
suppressing this performance problem. 

11. Numerous functional and performance improvements so that this technology can be 
included into IBM products. 

 
Previous research focused on the HDFS, whereas we plan to focus on Object Storage, which 
is of critical importance in an industrial context. Object Storage adds constraints of its own:  
once an object has been put in the Object Store, it cannot be modified, where even appending 
to an existing object is not possible, neither can it be renamed. This means that it is important 
to get the layout right as soon as possible and avoid unnecessary changes. Moreover, it is 
important for objects to have roughly equal sizes (see our recent blog on best practices [17]), 
and we are researching the optimal object size and how it depends on other factors such as 
data format. Moreover, the cost model for reorganizing the data layout is likely to be different 
for Object Storage than for other storage systems such as HDFS. 

6.12. Process modelling framework 
Process modelling provides an interface to business users (e.g. business analysts) to model 
their business processes and workflows as well as to obtain recommendations for their 
optimization following the execution of process mining tasks on the BigDataStack analytics 
framework. The outcome of the component is a model in a structural representation – a JSON 
formatted file. The latter is actually a descriptor of the overall graph reflecting the application 
and data services mapped to specific executables that will be deployed to the BigDataStack 
infrastructure. To this end, the descriptor is passed to the Data Toolkit component and then 
to the Application Dimensioning Workbench to identify their resource requirements prior to 
execution.  
 
The main issues that need to be handled by the Process modeling framework are:  

• Declarative process modelling approach: Processes may be distinguished in Routine 
(Strict) and Agile. Routine processes are modelled with the imperative method that 
corresponds to imperative or procedural programming, where every possible path 
must be foreseen at design time and encoded explicitly. If a path is missing, then it is 
considered not allowed.  Classic approaches like the BPEL or BPMN follow the 
imperative style and are therefore limited to the automation type of processes. The 
metaphor employed is the flow chart. Agile processes are modeled with the 
declarative method according to which declarative models concentrate on describing 
what must be done and the exact step-by-step execution order is not directly 
prescribed; only the undesired paths and constellations are excluded so that all 
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remaining paths are potentially allowed and do not have to be foreseen individually. 
The metaphor employed is rules/constraints. Agility at the process level, entails “the 
ability to redesign and reconfigure Individual business process components, 
combining individual tasks and capabilities in response to the environment” [18]. 
Declarative process modeling or a mixed approach seems to fit well in our 
environment providing the necessary flexibility in process modelling, mapping and 
optimization.   

• Structure to output to the Data Toolkit and subsequently to the application 
dimensioning framework, workflow/reference to executables/execution logic: The 
output of the process modeling framework should be a structure to feed the Data 
Toolkit and later on the dimensioning framework. The structure should provide for 
reproducing the process graph, the tasks mapping to executables and the logic in 
terms of rules/constraints that govern the execution flow and the execution of the 
process tasks. Process Modelling outputs the structure of the developed process 
model to Data Toolkit component. 
 

The main structure of the Process modelling framework is described below. The component 
list is as follows: 

• Modeling toolkit: This component provides the interface for business analysts to 
design their processes in a non-expert way, the interface for developers to provide in 
an easy way predefined tasks and relationship types as selectable and configurable 
tools for business analysts and the core engine to communicate with all the involved 
components towards design, concretization, evaluation, simulation, output and 
optimization of a business process.  

• Rules engine: The engine provides all the logic for defining rules and constraints, 
evaluating and executing them. The aim is the business analyst to be provided with a 
predefined set of rules offered as a choice through the tasks and relations toolbox.  

• ProcessModel2Structure Translator: This component generates the structure from the 
developed model that will feed the Data Toolkit and subsequently the dimensioning 
framework. This structure must be able to instantiate and run as an application. It will 
include the workflow, the logic in terms of relationships and rules regarding the 
execution of process tasks, reference and configuration of the involved analytics tasks 
(contained in the catalogue) and reference to other application tasks and services 
(which are not contained in any catalogue) (i.e. a task that generates a report from 
collected values, a task that finds the maximum value of a set of values, or a task that 
when triggered communicates using an API and turns off a machine (if we consider a 
process that controls the operation of machines). 
 

 
Process Modelling Framework Capabilities 
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Figure 39 - Process modeling framework 

 
The Process Modeler component is the first link in the chain. The Business Analysts have the 
ability to design their processes in a straightforward graphical way by using a visual editor.   
The user can create a graph containing nodes from a list provided and assign options to each 
node. In detail these nodes and their respective options are: 
 

• Data Load 
o Distributed Store 
o Object Store 

• Clean Data 
o Yes 
o No 

• Transform Data 
o Normalizer 
o Standard Scaler 
o Imputer 

• Classification 
o Binomial Logistic Regression 
o Multinomial Logistic Regression 
o Random Forest Regression 

• Regression 
o Linear Regression 
o Generalized Linear Regression 
o Random Forest Regression 

• Clustering 
o K Means 
o LDA 
o GMM 

• Frequent Pattern Mining 
o FP Growth 

• Model Evaluation 
o Binary Classification 
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o Multiclass Classification 
o Regression Model Evaluation 
o Multilabel Classification 
o Ranking Systems 

• Data Filter 
o Yes 
o No 

• Feedback Collector (External Service) 
• Recommendations Calculation (External Service) 
• Collaborative Filtering 

o ALS 
• Update Model 

 
Additionally, the business analyst can define multiple overall objectives of the graph which 
can be an aggregation of the following: 

• Cost  
• Response Time 
• Accuracy 
• Throughput 
 

Finally, the Process Modeller Component provides the capability to import, export, save and 
edit the generated graphs.  

6.13. Data Toolkit 
The main objective of the data toolkit is to design and support data analysis workflows. An 
analysis workflow consists of a set of data mining and analysis processes, interconnected 
among each other in terms of input/output data streams or batch objects. The objective is to 
support data analysts and/or data scientists to concretize the business process workflows 
created through the process modelling framework. This can be done by considering the 
outputs of the process mapping component or choosing among a set of available or under 
development analytic functions, while parametrizing them with respect to the service-level 
objectives defined in the corresponding process. A strict requirement regards the capacity to 
support various technologies/programming languages for development of analytic processes, 
given the existence and dominance of set of them (e.g. R, Python, Java, etc). 
 
Towards this direction, the data toolkit is going to be modelled in a way that will enable data 
scientists to declare and parametrize the data mining/analytics algorithms, as well as the 
required runtime adaptations (CPUs, RAM, etc.), data curation operations associated with the 
high-level workflow steps of the business process model. 
 
At its core, the data toolkit will incorporate an environment which supports the design of 
graph-based workflows, and the ability to annotate/enrich each workflow step with algorithm 
or process specific parameters and metadata, while respecting a predefined set of rules to 
which workflows must conform on in order to guarantee their validity. 
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There is a wide range of versatile flow-based programming tools that fit well the requirements 
for constituting the basis for the data toolkit, such as Node-Red [19]. Also a custom workflow-
design environment tailored for the specific needs of the data toolkit could be developed, 
supported by libraries such as D3.js [20] and NoFlo [21], which will allow for fine-grained 
control over all the elements associated with the data analytics workflow. 
 
Figure 38 depicts the core configuration user interface per functional component and/or 
service in the BigDataStack context. Therefore, the Data Scientist can parameterise her 
components providing details on the elasticity profile, the Docker images, the minimum 
execution requirements, the required environmental variables, the exposed interfaces and 
required interfaces (if any), existing attributes (i.e. lambda functions, etc.) and the 
corresponding health checks regarding the services.  
 

 
Figure 40 - Application configuration per graph components 
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6.14. Adaptable Visualizations 
The adaptable visualization layer has multiple purposes: (i) to support the visualization of data 
analytics for the applications deployed in BigDataStack, (ii) to provide a visual application 
performance monitoring dashboard of the data operations and the applications during 
benchmarking, dimensioning workbench and during operation and (iii) to integrate and 
facilitate various components such as the Process Modeller, Data Toolkit, Benchmarking, 
Dimensioning Workbench, Triple Monitoring Engine, Data Quality Assesment and Predictive 
Maintenance. Importantly, the dashboard will be able to monitor the application deployed 
over the infrastructure. For the visualization of data analytics, it will provide a reporting tool 
that will enable users to build visual analytical reports. The reporting will be produced from 
analytical queries and will include summary tables as well as graphical charts.  
 
The main issues that need to be handled by the adaptable visualizations framework are:  

• User authentication 
• KPIs definition and integration: Definition of a KPI must be possible through the 

framework if not supported elsewhere in the architecture 
• Triggering of events and production of visual notifications. Event handling and 

triggering of alarms or responses to the event must be supported. 
• Different views of the UI platform depending on the user role. 4 roles are defined: 

o Administrator (full UI View) 
o Business Analyst (Process Modeller View) 
o Data Analyst (Data Toolkit View) 
o Application Owner/Engineer (BenchMarking, Dimensioning Workbench, 

Analytics View) 
• Integration of Process Modeller, Data Toolkit and Benchmarking Components. 
• Deployment of playbooks towards the Dimensioning Workbench Component, 

visualization of the configurations recommended and deployment of the selected 
application. 

• Management of the Deployed Applications and handling of the Deployment 
Adaptation Decisions. Decisions are managed via the Realization API. 

• Ability to redeploy applications when QoS Warnings are received and Deployment 
Alterations are considered. 

• Visualisation of the Predictive maintenance for both cases of full datasets and 
exclusively quality assessed data. 

• Visualisation of the Data Quality Assessments in summary customizable tables. 
• Integration of 3rd party generated application monitoring graphs. 
• Visualization of real-time analytics data through graphs and charts responsively. 

 
The foreseen I/O and the structure of the visualization framework in terms of definition of 
the subcomponents and their interactions are listed in the following bullets. 
 
Necessary inputs: 

• Analytic outcomes as input from the seamless data analytics framework 
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• Real-time monitoring data as input from the triple monitoring engine. Data will refer 
Application components monitoring, to Data & Services monitoring and to Cluster 
resources monitoring   

• CEP outcomes as input from the real-time CEP of the Storage engine 
• Input from exposed data sources to facilitate KPIs definitions and event triggering 

rules. 
 

Necessary Outputs: 
• Output of visual reports 

 
The main structure of the Adaptable visualizations framework is depicted in Figure 39. The 
component list is as follows: 

• Visualization toolkit: this component connects all the components (Process Modeller, 
Data Toolkit, Benchmarking, Dimensioning Workbench) and makes available a tool set 
of offered capabilities (e.g. types of graphs, reports, tables) 

• Rights management module (Admin Panel): this component handles the permissions 
to modify views to components, editors and event triggers 

• Data connector: this component makes possible to retrieve data schemas and data 
from the exposed data sources to assist in defining KPIs and set event triggers. 
Furthermore, it could provide in the same way access to historical data or reports 

• Events processing: this component makes it possible to define event triggers that will 
produce visual notifications, warnings or generation of specific reports 

 

 
Figure 41 - Visualization framework building blocks 
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6.15. Adaptable Distributed Storage  
In modern cloud applications, it is expected that they can scale out dynamically in order to 
serve diverse workloads. During the last years, various patterns have been proposed that can 
identify which part of the solution is becoming the bottleneck in terms of performance or is 
close to saturating the resources of the machine that will cause the whole solution to collapse. 
Modern applications consist of a variety of software components and the current trend is the 
use of microservices: small pieces of code that execute one task independently and they are 
usually stateless. However, scaling a stateless component is an easy task: one has to deploy 
an additional instance and balance the incoming workload to all available instances. Scaling a 
stateful component is far more complicated, as the state has to be preserved. Scaling a data 
base, which actually stores data items into the storage, is even more difficult.  
 
During the last decade, novel data store solutions, usually known as NoSQL started to replace 
traditional relational database in cloud environments and multi-tenant applications, due to 
their ability to scale out easily during the runtime. A new data node is being added, and the 
data is being balanced by moving data regions from one node to the other in order to balance 
the data load. During this process however, the data consistency is lost. NoSQL solutions 
sacrifice the consistency for the need of the scalability on the runtime. In other words, they 
switch for the A (Availability) and P (Partition tolerance) of the famous CAP theorem and they 
never promised to provide transactional semantics. On the other hand, traditional relational 
databases ensure the ACID properties for the sake of online scalability. They sacrifice the P 
(partition tolerance)  in the CAP theorem in order to ensure C (Consistency). Scaling out 
needs to be offline (by sacrificing the A-availability- of the CAP theorem) in order to ensure 
data consistency, or in solutions that do support online scalability, the performance is reduced 
to so low levels that the behaviour of the overall system is problematic while the scaling action 
takes place. 
 
In BigDataStack, we developed a novel storage solution that allows for dynamic scalability 
with online data load balancing, where data consistency is ensured and the overall 
performance is not experiencing significant variations. The distributed storage provides its 
own monitoring mechanism that can identify both if the latency of the queries is exceeding 
some thresholds while the workload is being increased due to potential saturation of the 
available resources, or the disk storage will soon run out of space and the overall application 
will be blocked. When this happens, it can request from the infrastructure additional 
resources, and when the latter is granted, it starts the dynamic data load balancing. Data 
tables are being fragmented to regions, and it is an internal monitoring mechanism that 
characterizes them according to the amount of resources they require. By doing this, a 
knapsack-like non polynomial algorithm decides about a solution and redistributes the data 
in that sense that the overall workload will require an equal amount of resources in each 
machine. It is important to highlight here that the mechanism that ensures transactions in the 
data store is lock-free, and isolation is achieved by implementing the snapshot isolation 
paradigm. Due to this, there is no need to hold the locks of a transaction, that will cost the 
block of the data movement while the transaction is still open, rather it can just leave the data 
items in place, while creating replicas in the new machine, and remove them, once all 
transactions are closed. In other words, the adaptable distributed storage can achieve where 
current solutions fail: dynamically move data in order to scale out, without the need to 
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sacrifice data consistency by not having transactions, neither sacrifice availability when 
aborting transactions in order to move a data region. 
 
In the scope of the project, the importance of this mechanism can be validated by the 
DANAOS scenario. In the latter, IoT sensor data coming from the various vessels of the 
organization are being ingested to the data storage via the CEP deployment. As times goes, 
the storage space becomes saturated and additional node must be deployed. This is relevant 
in cases there the deployment of the database is taking place on physical machines that 
comes with their own disks, and the placement of a new disk will require the availability of a 
new machine. Moreover, we’ll increase the number of the vessels that are ingesting data in 
order to increase the incoming workload. This is a valid scenario, as it is common for 
organizations to buy new vessels as they grow and need to serve a bigger market. The 
constant increase of the workload will stress the data store, and will saturate the available 
resources. Its internal monitoring mechanism will identify this and will request from the 
infrastructure additional resources and then dynamically distribute its data load, in order to 
self-adapt. Finally, we will reduce the number of vessels, so that the workload can be 
decreased as well. Again, the monitoring mechanism will identify such constant change, and 
will decide to scale-in, only if the overall data can fit to lesser machines, in order to prevent 
data losses.  
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7. Key interactions 
7.1. User Interaction Layer 

User Interaction within the BigDataStack ecosystem plays an important role in the entire 
lifecycle of a big data application / operation. There exist the following user roles: Business 
Analysts, Data Analysts and/or Data Scientists. 
 
First, the Business Analyst uses the Process Modelling Framework to define the business 
processes and associated objectives and accordingly design a BPMN-like workflow for the 
actualization of the business-oriented objectives and the required analytic tasks to 
accomplish. The analyst is able to design, model and characterize each step in the workflow 
according to a list of predefined rules encapsulated by a rules engine component of the 
modelling framework. The output of this process is a graph-like output (i.e. in JSON format) 
with a high-level description of the workflow from the business analyst’s perspective along 
with the related end-to-end business objectives. The sequence diagram of Process Modelling 
is depicted in Figure 40. 
 

 
Figure 42 - Information flows in Process Modelling 

Figure 41 depicts a high-level application graph designed by the Business Analyst by 
indicatively incorporating within the data workflow four (4) processing steps with editable 
fields by means of drop-down lists, namely data load, data clean, perform analytic task and 
evaluate result. 
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Figure 43 - Example of a high level BRMN-like application graph 

 
Next, the Process Mapping component provides an association of the process steps modeled 
by the Business Analyst with specific analytic tasks, following a set of criteria related to each 
process task, while considering any constraints defined in the business objectives. These 
criteria may contain the characterization of required data, time, resources and/or 
performance parameters need to be concretized to perform the analytic tasks.  The output of 
this step is a workflow graph (i.e. in JSON format) enriched with the mappings of the business 
process steps grounded to algorithms, runtime and performance parameters. 
 
Then, the Data Analyst and/or the Data Scientist uses the Data Toolkit, to perform a series of 
tasks related to the concretization of the analytics process workflow graph produced in the 
process mapping step, as depicted in Figure 42, such as: 

• Concretizing the business objectives in terms of selecting lower bounds for hardware, 
runtime adaptations, performance for which the selected algorithms perform 
sufficiently well. 

• Defining the data source bindings from where the datasets related to the task will be 
ingested. 

• Defining any data curation tasks (i.e. data cleaning, feature extraction, data 
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL) 
operations) necessary for the algorithms and the related steps. 

• Configuring and parametrizing the data analytics tasks returned (i.e. selected) by the 
Processes Mapping component, and additionally providing the functionality to design 
and tune new algorithms and analysis tasks, which are then stored to the Catalogue 
of Predictive and Process Analytics and can be re-used in the future. 

• Selecting and defining performance metrics for the algorithms, along with the 
acceptable ranges with respect to the business objectives and service-level objectives, 
used to evaluate the algorithm/model and resources configurations. 
 

At the end, a Playbook (i.e. in YAML format) representing the grounded workflow for each 
business process will be generated, in the format that further feeds the Dimensioning 
workbench in order to provide the corresponding resource estimates for each node of the 
graph. 
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Figure 44 - Information flows in Process Mapping 

 
The following figure (Figure 43) presents the sequence diagram, which depicts the main 
information flows for the User Interaction Layer of the BigDataStack architecture.  
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Figure 45 - User Interaction Layer Sequence Diagram 
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Example Use Case: Predictive Maintenance 
Regarding the entry phase described above, an example is presented in the following sections 
to link the functionalities of different components to an actual use case. 
 
Business Analyst’s View 
The following figure (Figure 37) shows the perspective of a business analyst in terms of 
Process Modelling, which treats Real-time ship monitoring (RTSM) as a whole. This is expected 
to be the view (not in terms of user interface but in terms of processes and abstraction of 
information) of the Process Modelling Framework. Moreover, through the framework, the 
business analyst will be able to specify constraints (as noted with red fonts in the figure). 
Overall, separate processes, actions and data required to perform RTSM. As shown, the first 
step is the vessel and weather data acquisition. That includes a dataset with granularity down 
to a minute and 2 years timespan for vessel data, along with weather data as provided by the 
National Oceanic and Atmospheric Administration (NOAA), i.e., granularity of weather reports 
up to 3 hours for every 30 minutes of a degree. Past this, given that there are plenty of 
attributes within both datasets, there has to be some attribute selection rule. For example, 
only 190 approximately are required from both datasets, because these are the most reliable 
and important. Following this, the data are imported into two different components. The first 
is the monitoring tool, which simulates and enhances the on-board tools of the Alarm 
Monitoring System (AMS). Given that, if an anomaly occurs a rule-based alert has to be 
produced close-to or in real time. The second component is the Predictive Maintenance Alert. 
This informs the end user that the current data under examination pinpoint a malfunction 
that has occurred in the past. Again, this should work close-to or even better in real-time. 
Consecutively, given that identifying an upcoming malfunction is achieved, spare part 
ordering follows. The ordered spare part has to be delivered at least 1 day before the 
estimated time of arrival, while ordering of spare parts should be performed only by suppliers 
that are to be trusted. Quality of service should not be neglected while cost criteria are also 
taken into account. Finally, given the delivery port of the spare part, re-routing of the vessel 
takes place, where the estimated time of arrival to the closest port is less than 12 hours. 
 

 
Figure 46 - Business analyst view 

 
Data Analyst’s View 
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Following the outcome of the process modelling (previous view), Figure 45 depicts the view 
for the data analyst, that is the view in the Data Toolkit. As shown in the figure, the view is 
different with components that have been mapped automatically from the Process Mapping 
mechanism of BigDataStack (e.g. “CEP monitoring” to enable the “Rule-based alert” process). 
 
Overall the data analyst’s view is a set of system components, in-house or out-sourced 
processes and/or systems, actions and data required to perform RTSM. The Vessel data 
acquisition process is fed from an in-house database (DB) that contains vessel data (power 
consumption related and main engine data) along with Telegrams and past maintenance 
events. Given a total of 10 vessels, this requires up to 40 GB of hard disk storage. Weather 
data are imported from NOAA via FTP, by a weather service that loads hindcasts in GRIB 
format for the whole earth with a 3-hour granularity for every 30 minutes of a degree. GRIB 
files are parsed and stored in a database that requires up to 2.1 TB storage. Given that any 
trajectory of a vessel can be joined with weather data via a REST API that the weather service 
provides. Past this, given that there are plenty of attributes within both datasets, i.e., weather 
and vessel data, there has to be some attribute selection rule. For example, only 190 
approximately are required from both datasets, because these are the most reliable and 
important such as the consumed power (kW), the rotations per minute of the main shaft 
(RPM) etc. In order to avoid feeding the algorithmic components of this architecture with 
false or null data values, a filtering component is in charge of removing null values, preferably 
with average values, smoothing-out the effect of data-loss. Next, given a set of defined rules, 
such as “if the power consumption exceeds a limit and the fuel-oil inlet pressure drops below 
a threshold” the CEP component is in charge to produce an alert, close-to or in-real time. In 
parallel, a pattern recognition algorithm tries to identify patterns on the data that looks like 
a past case where a malfunction occurred in the main engine. If this happens, an alert is 
produced, and given the upcoming malfunction that has been identified a spare-part 
suggestion is made. Given the Danaos-ONE platform, where orders of spare parts are placed 
via a REST API, the order of the suggested spare-part is placed and is accessible from the 
suppliers that are preferred. So, once the order is made to a supplier, a suggested place and 
time are provided, and given this re-routing of the vessel takes place via an external REST 
service provided at a specific IP address and port.  
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Figure 47 - Data analyst’s view 

7.2. Realization & Deployment 
Within the Realization module, there is a series of operationalizable tasks related to 
transitioning an application from a BigDataStack Playbook defined in the Data Toolkit to a 
running series of containers on the cloud/cluster infrastructure. There are four main tasks of 
interest when realizing an application’s deployment: 

• Namespace/Project Initialization: This involves the initialization of the Realization API 
(ADS-API), Realization Monitor (ADS-Monitor), Realization State DB (ADS-StateDB), 
Realization GUI (ADS-GUI) and Realization Deployment (ADS-Deploy) services at 
minimum for a specified Namespace/Project where user application(s) will later be 
deployed. Although this will also likely include deployment of other useful services 
such as the Realization Ranking (ADS-Ranking), Realization Event Streams (ADS-
EventStreams) and/or Realization Cost Estimator (ADS-CostEstimator) services. This is 
accomplished via a command-line tool that bootstraps these services. 

• Registration of a new Application: This involves the registration of an application and 
its contained object definitions with ADS-API. Applications will typically be registered 
by the Data Toolkit, but can be programmatically loaded from other services or from 
a file. 

• First-Time Ranking of Candidate Deployment Patterns: This task aims to select the 
most suitable candidate deployment pattern from a set that has previously been 
generated when the user first requests deployment of their application. This task is 
operationalized in scenarios where a object template does not have a complete 
resource definition and relies on an available ADS-Ranking instance. 

• Application Deployment: This task involves the practical deployment of the user 
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application on the cloud through interaction with Openshift via an instance of ADS-
Deploy. 

Below we discuss each of these tasks in more detail and provide an interaction sequence 
diagram for each. For legibility of the interaction diagrams, we use short names for each 
component. A mapping between components and their short names are shown in the 
following table: 

 

 

 
Full name Sub-component Short name  

(interaction diagrams) 
Application and Data Services 
Dimensioning 

Benchmarking/Core Dimensioning 

Application and Data Services 
Dimensioning 

Pattern Generation Pattern Generation 

Realization Ranking Pod Feature Builder ADS-R Feature Builder 
Realization Ranking Pod Scoring ADS-R Scoring 
Realization Ranking Model ADS-R Model 
Realization Ranking Pattern Selector ADS-R Pattern Selector 
Realization Deploy N/A ADS-Deploy 
Realization Bootstrap Tool N/A CLI 
Dynamic Orchestrator N/A Orchestrator 
Realization API N/A ADS-API 
Realization Monitor N/A ADS-Monitor 
Realization State DB N/A State DB 
Event Exchange N/A Exchange 
Data Toolkit N/A Data Toolkit 

Table 7 - Short-name component mapping table 

 

Namespace/Project Initialization  

The first task is concerned with the preparation of a namespace for deployment of 
BigDataStack Applications. In effect, this involves the deployment of the realization engine 
components into the target namespace/project, enabling monitoring and management of 
that namespace by the engine. The first component launched is ADS-StateDB as this is a core 
dependency for the Realization Engine (to store application data and state). Following this, to 
enable the tracking of application state within the namespace project ADS-Monitor will be 
deployed. Next, to enable user management, the end-points ADS-API and ADS-GUI are 
deployed in addition to ADS-Deploy. Finally, optional services may be added based on 
whether their functionality is needed (at the time of writing, these are ADS-Ranking, ADS-
EventStreams and ADS-CostEstimator). This is triggered by the Application Engineer, or 
potentially some other member of the team responsible for managing the cluster, via the 
Openshift OC tool and a provided command line tool. In particular, they first need to use the 
Openshift OC tool to bring ADS-StateDB to a running state as follows: 

• oc apply -f ads-statedb.yaml 
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Once these have reached a running state, the user can then use a provided command line 
tool for BigDataStack to bootstrap the remaining components into the namespace project as 
follows: 

• java -jar BigDataStack-Realization.jar register namespace <namespaceID> 
• java -jar BigDataStack-Realization.jar bootstrap <owner> <namespaceID> 

Here namespace registration simply enables that namespace to be a valid target for 
subsequent deployment. Meanwhile, the bootstrap process incrementally launches the 
remaining Realization Engine components. Internally, each Realization Engine component is 
defined within its own BigDataStack Playbook, the bootstrap process then is simply 
registering each playbook and triggering it’s in built deployment Operation Sequence, which 
is executed in the background. 

 

 
Figure 48 - Namespace Initialization Sequence Diagram 

Figure 46 illustrates the initialization of a namespace where only ADS-Monitor is deployed 
(the underlying process would be repeated for each component to be launched). In this case, 
when bootstrap is called, the CLI will load predefined default templates for the ADS-Monitor 
and register them in the State DB. This includes both the ADS-Monitor Deployment Config 
and an Operation Sequence for configuring and launching that Deployment Config (denoted 
Monitor Deploy Sequence). Once registered, this will generate an event, reporting the 
creation of these objects. Next, the CLI will request that Openshift create a new pod to 
execute the monitor deploy sequence, which in-turn calls Kubernetes to set up the pod and 
containers.  From the user perspective, the request ends at this point. However, once the pod 
executing the monitor deploy sequence starts, it will retrieve the definition of the monitor 
deploy sequence from the State DB, and will start executing the operations. This involves 
instantiating a new copy of GDT-Monitor and executing the Apply operation to launch it on 
the cluster/cloud. Apply calls Openshift, which in-turn calls Kubernetes. The last action of the 
monitor deploy sequence is to notify the Event Exchange of the success of the deployment. 

 

Registration of a new Application  
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Once a namespace has been initialized, user applications can then be registered targeting that 
namespace. This is performed by calling the ADS-API, sending the BigDataStack playbook. 
Upon receiving the playbook, the ADS-API will store the application and associated object 
templates found within the playbook within the State DB, and then notify the Event Exchange 
of the creation of the new application. This is illustrated as a sequence diagram in Figure 47.  

 

 
Figure 49 - Application Registration Sequence Diagram 

 

First-Time Ranking of Candidate Deployment Patterns 

For some applications, the user will not have provided resource specifications for some or all 
of their object templates (representing the application components that can be deployed). 
Hence, for these applications, before deployment, we need to obtain this information. This 
can be performed using ADS-Ranking to produce a recommended resource definition. In this 
case, the ADS-API requests a resource definition for a specified object instance, by sending 
that object instance to ADS-Ranking. ADS-Ranking then requests a set of candidate 
deployment patterns (CDPs) for that object instance from ADS Pattern Generation. Once 
retrieved, ADS-Ranking sends these CDPs to ADS Dimensioning, such that performance 
estimations can be attached, which will subsequently be used to estimate pattern suitability. 
Within ADS-Ranking, the Feature Builder analyses and aggregates the different quality of 
service estimations into a form that can be used for ranking (referred to as features). Once 
this transformation is complete, the CDPs and aggregated features are sent to the Scoring 
sub-component, which uses a ranking model to score and hence rank each CDP based on its 
suitability with respect to the user’s requirements. Once the CDPs have been ranked, that 
ranking is sent to the Pattern Selection sub-component, which selects the most suitable one. 
This selected CDP is then returned to the ADS-API such that the object instance can be 
updated with the new resource specification (i.e. written to the State DB). 

Figure 48 illustrates the first time ranking of candidate deployment patterns as a sequence 
diagram. Note that we omit the event reporting that occurs at each stage to avoid further 
complicating the diagram. 
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Figure 50 - Interaction Diagram for First-Time Ranking 

 
 
 
Application Deployment 
 
The ADS-Deploy component interacts with Openshift through Kubernetes‘ OpenAPI v1 [1]. 
Once an object instance has been selected for deployment, it is sent to ADS-Deploy, which 
generates a series of independent Openshift-managed objects. These objects are grouped 
into a single logical application, in order to maintain the internal coherence and keep relations 
between the objects. Supported objects include: 

• Pods: A Pod represents an atomic object in Openshift, and includes one or more 
containers. Each pod can be replicated according to the configuration values or due 
to Quality-of-Service requirements. Pods have been represented as 
DeploymentConfig objects in BigDataStack. [11] 

• Services: A Service provides access to a pod from the outside, and is in charge of vital 
actions such as load balancing. Services can also be replicated, so that they are 
scaled in/out independently or together with the pods. ADS-Deploy, creates a 
configuration file for each service and sends it to Openshift. 

• Routes: A route gives a service a hostname that is reachable from outside the 
cluster. Routes are not replicable, but they are closely related with the services. In 
BigDataStack, a configuration file is created for each route, and information on the 
service and application to which they relate is contained in there. 
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Figure 51 - Interaction Diagram for Application Deployment 

 

7.3. Data as a Service & Storage 
The Data as a Service and the Storage offerings of BigDataStack cover different cases. As base 
data stores, the LeanXcale data store and the Cloud Object Storage (COS) are considered as 
depicted in the following figure (Figure 38).  

 
Figure 52 - Architecture of data stores 

 
Note that the IBM COS is only taken as an example of an Object Storage, any Object Storage 
implementing the S3 protocol could fit within the seamless architecture. From the above, it 
can be considered that the two components that are able to persistently store data are: 
LeanXcale’s relational data store, and IBM’s Cloud Object Store. The former is a fully 
transactional database which will serve operational workloads, while in the meantime can 
execute analytical operations on the runtime, providing a JDBC implementation, thus being 
able to execute SQL compliant queries. The latter is a cloud Object Store capable of storing 
numerous terabytes of data but lacking transactional nor SQL capabilities. Fresh data will be 
first inserted in the LeanXcale database (LXS) in order to benefit from its transactional 
capabilities. Once data is no longer considered as fresh, (e.g. several months have passed), 
data will be moved to the Cloud Object Store (COS) while analytical processing over COS is 
provided by Apache Spark. 
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On top of the datastores the Seamless Storage Interface (SSI) provides an entry point for 
seamlessly executing queries over a logical dataset that can be distributed over different 
datastores which themselves may provide different interfaces. The SSI provides a common 
JDBC interface and is capable of executing standard SQL statements. The SQL queries will be 
pushed down to both stores, and retrieved intermediate results will be merged and returned. 
Offering a JDBC interface, SSI can be exploited by data scientists through the usage of well-
known analytical tools such as SparkSQL. As a result, the end-user can write SparkSQL queries 
and have the SSI locate the various parts of the dataset and retrieve the results. Direct 
execution of the queries to a specific data store is also permitted. As a result, we have the 
following five scenarios: 

• Direct access to the LeanXcale database 
• Direct access the Cloud Object Store (COS) 
• Request data using a simple SparkSQL query 
• Insert data to BigDataStack 
• Insert streaming data to BigDataStack 

 

 

 

 

 

 

Direct access the LeanXcale (LXS) database 

 
Figure 53 - Direct access the LXS 

User executes an SQL query, requesting data directly from LXS using a standard JDBC 
interface, and the latter returns the resultSet as the response. 
 
Direct access the Cloud Object Store (COS) 
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Figure 54 - Direct access the COS 

User executes a query from Apache Spark, requesting data directly from COS, using the 
stocator open source connector which permits the connection of Object stores to Spark, and 
the COS returns back the result as the response.  
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Request data using a simple SparkSQL query 

 
Figure 55 - Request data using a simple SparkSQL query  

 
User sends a request for executing an analytical task by writing a SparkSQL query. The SSI, 
which is an extension of the LXS Query Engine provides a JDCB functionality, and as a result, 
is already integrated with SparkSQL. Due to this, SparkSQL will pushdown all operations to be 
executed by the SSI itself. The SSI is aware of the location of the data over the distributed 
dataset that is split into the two different datastores and is integrated with both of them. As 
a result, it translates the query to each data store’s internal language and requests the data 
from both of them. It finally aggregates the results and returns the data back to SparkSQL, 
which returns the results to the user. It is important to notice that the SSI supports various 
query operations such as table scans, table selections, projections, ordered results, data 
aggregations (min, max, count, sum, avg) either grouping them by specific fields or not. From 
the above figure it can be also noticed that steps 4A and 4B might be in parallel according to 
the type of the query operators.  
 
 
The architecture of the seamless analytical framework and the main interactions between its 
components can be shown in Figure 54: 
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Figure 56 - Seamless Analytical Framework 

 
The Data Manager component, as shown in Figure 54, keeps track of the data ingested in the 
framework. For each dataset the data user can configure the period of time after which data 
can be considered as historical and can safely be moved to a data warehouse such as the 
Object Store. When a data movement action is triggered, it first informs the relational 
database that a data slice should be moved to the COS. At this point, LXS gets prepared to 
drop that slice (internally it marks it as read-only and splits it to a data region that can be 
easily dropped later on). The Data Manager then informs the Data Mover to move the slice. 
The latter requests the data slice by executing one or many standard JDCB statements to LXS 
and then uploads the data slice as one or many objects into the objects store. When the whole 
slice is eventually persisted into the Object Store, it informs the Data Manager which forwards 
this acknowledgment to the data Federator. The data Federator internally keeps track of a 
timestamp which records the latest successful data movement. When a query is submitted 
for data retrieval, it creates the query tree and pushes down a selection based on this 
timestamp on each operation for a table scan. Then it rebuilds the query by interpreting it 
according to the target datastore and retrieves the results. Finally, in accordance with the 
query operation, it merges the results and builds the result set. When the Data Manager 
acknowledges a data movement and informs the Data Federator, the Data Federator will 
move accordingly the internal timestamp (the splitting point). At this point, the data 
corresponding to the moved data slice co-exists in both stores. However, the Data Federator 
thanks to the timestamp will hide the replicated data first at the Object Store and after the 
timestamp is updated at the relational store. When it receives the acknowledgement, it 
updates this timestamp (split point) so that the next transactions can scan the tables 
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accordingly. Pending transactions however will continue to scan the tables based on the value 
that they received when the transaction first started. The transactional semantics of LXS 
ensure the data consistency when the split point is updated. When this happens, the Data 
Federator can order the LXS to safely drop the data slice that has now been moved to the 
object store. However, it will wait until all pending transactions have been finished, and thus, 
no scan operation is performed on the data slice that is about to be dropped. By doing so, the 
Data Federator ensures data consistency and the validation of the results during the process 
of data movement: Data will exist either on LXS or the COS, or both, but they will be always 
scanned only once.  
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Insert data to BigDataStack 

 
Figure 57 - Inserting data 

 
An integrated application produces data to be stored in the BigDataStack platform. The data 
are being sent to the Gateway: the entry point of the platform. Its responsibility is to 
transform data coming from external sources in various formats, to the platform’s internal 
schema. Then, it forwards the data to the operational data store to permanently store them. 
The latter periodically moves data that has been inserted from more than a constant period 
of time, to the COS. 
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Insert streaming data to BigDataStack 

 

 
Figure 58 - Inserting streaming data 

In this specific use case, a ship from the DANAOS fleet streams data coming from one of its 
sensors. Data is being first sent to a local installation of the CEP which correlates them and 
identifies possible threats, producing alerts. Then, data is sent to the platform´s Gateway 
which is responsible of transforming the data to the platform’s internal format. A CEP cluster 
inside the platform receives data from the Gateway. It further analyses data to detect possible 
rules infringement. Data coming from all the fleet vessels is merged. This second CEP cluster 
processing involves querying LXS to retrieve data in rest that has been already been stored in 
the data store. Finally, it stores the incoming data to the relational datastore which eventually 
will move the data to the Object Store. 

7.4.  Monitoring & Runtime Adaptations  
When considering the process of monitoring and adapting user applications on the cloud, it 
is useful to divide the discussion into three parts: 1) the interactions required to perform the 
actual monitoring of a running application; 2) how this monitoring process can be used to 
track quality of service; and 3) the interactions needed to adapt the user’s application to some 
new configuration when a quality of service deficiency is identified or predicted. We 
summarize each below. 
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7.4.1. Triple Monitoring Engine 
The triple monitoring system provides APIs for receiving metrics from different sources and 
exposes them for consumption.  Metrics are obtained mainly by exporters and federation. In 
the case of the deployment of an exporter is impossible for some reason, the monitoring 
engine implements a system that can receive metrics by get and post methods and exposes 
them to Prometheus. This component of the triple monitoring engine is expected to behave 
as a REST API and Prometheus exporter. The following diagram describes its functionality. 
 

 
Figure 59 - Prometheus exporters 

An application provider sends its metrics in JSON format by http get or post, the API parses 
the json structure, sanitizes metrics to convert them to Prometheus’s format and saves them 
in a temporary list. A response is then returned to the application provider. The Prometheus 
engine scrapes the REST API by http get metrics, to get available metrics. This scraping 
operation is iteratively performed at intervals based on the amount of time specified in the 
Prometheus configuration. 
The triple monitoring engine implements two different exposition system methods. The first 
is a REST API where applications consumers ask for a metric, the REST API translates this 
request to an Elasticsearch query and returns a result. The following sequence describes this 
process. 
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Figure 60 - Prometheus REST API 
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The second output interface implemented in the triple monitoring system is the 
publish/subscription mechanism.  
 

 
Figure 61 - Publish/subscription mechanism  

An application that needs streaming data can through this component subscribe and receive 
metrics in real-time. Four different types of requests are available. 
  

• The first request type is the “subscription”, the consumer after having created its 
queue will send to the pub/sub system a subscription request that contains the name 
of its queue, its name (application name) and a list a metrics. The consumer sends its 
request in the “manager” queue so that to be consumed by the manager of the triple 
monitoring system. The manager receives the subscription request, creates a 
subscription object and adds it into the subscription list. A confirmation message is 
then returned to the consumer. The manager reads the subscription list each time it 
receives a metric from its queue, it redirects this metric to the declared queue.  

• The second request is the “add_metrics” request type, the consumer sends a message 
that contains its name, queue name and a metric to add to its subscription list, the 
manager verifies the request, updates the subscription and returns a message.  

• The third request type is “my_subscription”, the consumer sends its name and queue 
name. The manager returns the corresponding subscription list. 

• The last request is the heart_beat, the manager has no way to detect disconnection 
by a consumer. The consumer should confirm its presence each specific interval of 
time. The heart_beat interval is declared in the subscription request.  
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7.4.2. Quality of Service (QoS) Evaluation 
QoS properties (parameters) to be evaluated by the QoS Evaluation component should 
correspond to the kind of quality of service (QoS) requirements coming from the 
Application Dimensioning Workbench and defined within the BigDataStack Playbook.  

• An example of a QoS requirement is the “throughput.” 
• There should be a trivial mapping between Playbooks’ KPIs and the “guaranteed” of 

“agreements”. 

The QoS Evaluation component will be responsible for translating the Playbooks’ QoS 
requirements into SLOs (Service Level Objectives). 

 
Figure 62 - QoS Evaluation component 

 
The QoS Evaluation component will periodically query the Triple Monitoring Engine (based on 
Kubernetes) to recover the metrics related to the monitored QoS parameters. 

Once a violation of a given SLO is detected, a notification is sent to the Dynamic Orchestrator 
to trigger the data-driven orchestration of application components and data services. The 
standard sequence of interactions will be the following: 

• Evaluator calls the Adapter to recover a certain set of QoS metrics from Prometheus. 
• The Evaluator calls the Notifier when an SLO violation is detected. 
• Notifier calls the Dynamic Orchestrator passing a message describing the violation 

through the publisher/subscriber mechanism implemented as a topic within the 
RabbitMQ service (which acts as the message broker between BigDataStack 
components) 

The Dynamic Orchestrator communicates with the ADS-Ranking component to trigger the 
dynamic adaptation (re-configuration) of the application or data service deployment 
patterns.  
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Adapting at Runtime 

If a user’s application is identified or predicted to have some deficiency with respect to the 
quality of service targets, then that application’s configuration needs to be altered to correct 
for this. For instance, this might involve moving data closer to the machines performing the 
computation to reduce IO latency, or in more extreme cases it might require the complete re-
deployment of the user’s application on new more suitable hardware.  BigDataStack supports 
a range of adaptations that might be performed , such as Pattern Re-Deployment, where the 
goal is to select an alternative candidate deployment pattern (hardware configuration) after 
the user’s application has been deployed. This is used in cases where the original deployment 
pattern was deemed unsuitable and this could not be rectified without changing the 
deployment infrastructure. In this case, a new candidate deployment pattern will be chosen, 
and the application services will be transitioned to this new configuration. This may result in 
application down-time as services are moved. 

The components involved for this adaptation are the Dynamic Orchestrator (DO) and the 
Triple Monitoring Engine. When a new application is deployed, the Playbook is sent to the DO 
on the queue OrchestratorPlaybook. The DO reads the playbook and enriches it, adding more 
information about the SLOs: it splits the values of the metrics related to SLOs in different 
intervals that the QoS component will monitor, e.g. response time can be divided in the 
intervals 0.5-1s, 1-1.5s, etc. In addition, the DO subscribes to the Triple Monitoring Engine 
and creates a new queue, using which it will consume the metrics from the application. 
 
The Enriched Playbook is sent to the QoS Evaluator on the queue EnrichedPlaybook. The QoS 
registers this and will start monitoring the application to detect when an SLO is violated, and 
in this case, a message will be sent to the DO on the queue OrchestratorQOSFeed. The DO 
will read this message and based on the current state (as defined by the metrics consumed 
from the Triple Monitoring Engine, the QoS information and its experience), will decide what 
is the most likely action to resolve the violation is and subsequently send it to the Realization 
API (ADS-API), which will manage the alteration action. 

In the remainder of this section we provide more detail on how Pattern Re-Deployment is 
operationalized within BigDataStack. 

 
Pattern Re-Deployment  

The aim of the pattern re-deployment task is to facilitate the selection of a new candidate 
deployment pattern (CDP) if a previously selected CDP is no longer considered viable. This 
might occur if a deployed application fails to meet minimum service requirements and this 
cannot be resolved through data service manipulation. In this case, the Realization Ranking 
component (ADS-Ranking) needs to take into account why the current pattern is failing and 
based on that information, re-rank the CDPs for the user application and select a new 
alternative that will provide better performance. This new CDP can then be used to transition 
the user’s application to the new configuration by the Realization Deployment component 
(ADS-Deploy). 

This task is triggered by the Dynamic Orchestrator when the orchestrator detects that an 
application deployment is failing. It sends a notification to the Realization API. At this point, if 
the Dynamic Orchestrator has specified a particular action to be performed, then the 
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Realization API has the power to directly implement that action, so long as that change does 
not violate any pre-defined requirements set by the user. On the other hand, in cases where 
a change request is made, but no rectifying action is specified, then the Realization API will 
contact the Realization Ranking component for a solution. More precisely, this notification is 
processed by the Failure Encoder sub-component. This component first contacts the 
Realization State DB (ADS-StateDB) to retrieve the other CDPs that were not selected for the 
failing user’s application (as it is from these that a new pattern will be selected). These 
patterns are then sent into the same process pipeline as for first-time ranking (see Section 
6.5), with the exception that the previously selected deployment is excluded (we know that 
it is insufficient) and the Pattern Selector sub-component will also consider the reason that 
the previously selected CDP failed.  

When the ADS-Selector chooses the new CDP, this information is sent to the ADS-Deploy, 
together with the instruction to redeploy. Then, the deployment component translates the 
CDP, and communicates it to the container orchestrator using the same process as defined in 
Section 6.5. The orchestrator will then start a re-dimensioning process. If the process is 
successful, then the user’s process continues normally. However, if the re-dimensioning was 
unsuccessful, then the container orchestrator needs to destroy the current deployment, 
stopping the processes and starting a new deployment from scratch. This situation has the 
setback that users have their processes interrupted and/or restarted and ultimately impair 
the availability of application and data services (downtimes). 

 

 
Figure 63 - Interaction Diagram for CDP Re-Ranking 

 

Data Service Re-Deployment 

The re-deployment process of the data services are handled separately to application 
redeployment inside the BigDataStack platform. These services are stateful, meaning that 
given a re-deployment, they might be inside a transaction. If the re-deployment of a data 
service is forced during a transaction, this may lead into an unstable situation. Thus, 
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BigDataStack incorporates a mechanism to ensure that the transactions of data services are 
stopped before starting a re-deployment, as shown in Figure 62. 
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Figure 64 - Data-Service Redeployment triggered from the Data Service 
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Furthermore, data services can trigger their own re-deployment. As shown in Figure 63, this 
process requires for the data service (in the example LXS) to communicate this change to the 
Dynamic Orchestrator, which then starts the process of creating a CDP and communicating it 
to the ADS-Deploy. 

.  

 
Figure 65 - Data-Service Redeployment triggered from the Data Service 
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CEP Re-deployment 

As described in section 6.3.2, the real-time CEP will interact with the DO for its dynamic re-
deployment, that will allow the CEP to scale up and down during runtime to improve 
performance of its queries while optimizing the use of resources in the BigDataStack platform. 
The interaction between the CEP and DO will be structured as shown in the figure below. 

 

 
Figure 66 - Dynamic scaling for CEP 

 

Each query in the CEP can be defined along with SLOs that will be monitored during runtime. 
As for user applications, the TME will periodically inform the QoS about metrics for the CEP 
and the system. Once the QoS detects an SLO is violated, it will trigger the DO, which will 
decide if a re-deployment is necessary for the CEP. If so, the DO will communicate this to the 
ADS-Deploy that will in turn send a request to scale up/down to the CEP. The CEP can reply 
to this request accepting or denying the re-deployment if its affected sub-query cannot be re-
deployed. The ADS-Deploy receives the reply and if the CEP accepted the re-deployment, the 
ADS-Deploy will modify the resources assignment for the CEP and communicate the newly 
assigned resources to the CEP if any, so it performs the actual scaling up. In the end, the CEP 
will confirm the operation to the ADS-Deploy, the ADS-Deploy will forward the message to 
the DO so it updates its internal state and learns from this experience. 

 
LXS Re-deployment 

Apart from the scenarios where the WP3 components take the decision that an application 
component should be scaled, in the case of WP4 components and more precisely the LXS 
datastore and the CEP, they also have their own internal monitoring mechanism and decision 
making and can also request for a scalability action. In general, WP4 components are all 
stateful and their treatment is different from traditional stateless application components 
and microservices. This is due to the fact that they store date and state, so any scalability 
action must take this into consideration. For instance, even if WP3 components might identify 
small peaks of workload that lead to increased resource consumption for a couple of minutes, 
it is not advisable to scale out the database, as this will require moving data from one node 
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to the other in order to achieve data load balancing. If the dataset is very big, this action might 
take more than the time that the peak is observed, so it might be better to scale out a different 
component. Moreover, it might be impossible for the WP4 components to scale out at that 
time, as another action might be occurring at the same time, e.g. online data redistribution 
among the data nodes in order to establish better load balancing. When this action happens 
underneath, LXS datastore will have to reject any actions coming from the infrastructure level 
to scale out, until the data redistribution has been finished. Another common scenario is 
when the infrastructure requests for the data components to scale in, thus shrinking in size 
and releasing resources. This also might be impossible, and the data components must reject 
this request in case the release of a data node will lead to data loss. Finally, as the data 
components have their own monitoring mechanisms, they can decide on their own when 
might be best to scale out.  

 

For all these reasons, in BigDataStack there has been a vice-versa protocol that allows for the 
data repository to request for a scalability action. The sequence diagram of these interactions 
is depicted in Figure 65. 
 

 
Figure 67 - LXS requests to scale out 
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After LXS identifies the need to scale out, either due to computational resource saturation or 
due to lack of storage, it sends a request to the WP3 components with the amount of 
additional nodes it requires. At this point the infrastructure might reject this request due to 
lack of resources, or can confirm it. Upon confirmation, LXS puts this request into a waiting 
state, while WP3 is performing all actions in order to create a new instance, as described in 
the aforementioned sections. It firstly informs LXS that it has started creating the new 
instances. In parallel, LXS can periodically ask for the status of this process. At the end of the 
process, the WP3 components sends a message to LXS that the new pod has been successfully 
created, along with the information that describes that pod, like pod or domain name, etc, or 
an error notification that the creation of the new instance has failed. If everything goes well, 
then LXS confirms to the WP3, and the latter finishes its flow, while LXS start deploying its 
internal components to the newly created instance, while also performing re-distribution of 
the stored data for load balancing. However, there might be a rejection of LXS, even if the 
pod has been created from the infrastructure. Due to the asynchronous nature of 
communication, the creation of the new instance might take some time. LXS, as an 
operational datastore, cannot freeze all its internal process and wait for WP3 to respond. 
Moreover, there might be a failure in some of the WP3 components, which will cause the 
whole process to stall. For all these reasons, LXS will continue proceeding with its internal 
actions. This might have as effect that when the new node is available to the datastore, a data 
redistribution, or the building of a new index might take place by a manual administrative 
operation of the data user. These actions forbid the scaling of LXS in parallel. In order to avoid 
putting requests in a queue, and execute them one by one, LXS will inform the WP3 
components that rejects the new node and WP3 must release these resources. After the 
completion of these actions by LXS, the latter might identify that there is still the need to scale 
out and will send a new request to the infrastructure components, repeating this flow. 
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8. Conclusions 
This document provides the final version of the BigDataStack architecture following the 
previous releases in deliverables D2.4 and D2.5 - Conceptual model and Reference 
architecture I and II. It captures the final version of the overall conceptual architecture in 
terms of information flows and capabilities provided by each one of the main building blocks. 
Additional information for each component is also detailed on the corresponding sections, as 
well as the changes in the interactions between them and the overall flows depicted in Section 
7.  

This report serves as a design documentation for the individual components of the 
architecture (which are further specified and detailed in the corresponding WP-level scientific 
reports) and presents the outcomes (in terms of design) of the final integrated prototypes 
and the obtained experimentation and validation results. 
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Appendix 1 – Real-time Ship 
Management use case dataset 
structure and description 

It should be noted that given the data schemas described below, the DANAOS datasets do not 
have any GDPR-related aspect. 
      
TELEGRAMS table structure (14 attributes) 

id: Telegram id, 

vessel_code: The id of the vessel, 

telegram_date: Telegram timestamp (UTC), 

type: Telegram type: D:Departure, A:Arrival, N:Noon-telegram, 

total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers) 

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers) 

cons_ifo_static_counter: sensor-based measurement TEUs 

cons_ifo_static1_counter: sensor-based measurement of FEUs, 

draft_aft: Vessel draft at stern (m), 

draft_fore: Vessel draft at fore (m), 

sea_temperature: Sea temperature (°C), 

port_name: Current port name, 

next_port: The name of the next port, 

eta_next_port: ETA to the next port 

 

VESSEL_DATA table structure (23 attributes) 

vessel_code: Vessel id, 

datetime: Timestamp of the measurement (UTC), 

power: Consumed power (kW), 

apparent_wind_speed: Wind-speed (kn), 

speed_overground: GPS speed (kn), 

stw_long double precision: Speed through water – longitudinal (kn), 

stw_trans double precision: Speed through water – transverse (kn), 

rpm: rotations per minute of the main shaft, 

apparent_wind_angle: Wind angle (0-359.99 degrees), 
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total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers), 

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers), 

cons_ifo_static_counter: Low-sulfur fuel oil consumption (metric tones), 

cons_ifo_static1_counter: High-sulfur fuel oil consumption (metric tones), 

port_mid_draft: Vessel draft at port-side (left-side looking to the fore) (m), 

stbd_mid_draft: Vessel draft at starboard-side (right-side looking to the fore) (m), 

draft_aft: Vessel draft at stern (m), 

draft_fore: Vessel draft at fore (m), 

stw: Speed through water – calculated by stw_trans and stw_lon (kn), 

equivalent_teus: Total number of containers, 

mid_draft: Vessel draft at mid-line (m), 

trim: The trim of the vessel, calculated by draft_aft and draft_fore, 

latitude: The latitude of the vessel’s position, 

longitude:  The longitude of the vessel’s position, 

 

MAIN_ENGINE_DATA table structure (102 attributes) 

vessel_code: The id of the vessel, 

datetime: Timestamp of measurement in UTC, 

airCoolerCWInLETPress: Air Cooler Cooling Water Inlet Pressure (Pa) 

scavAirFireDetTempNo1: Cyllinder #1 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo2: Cyllinder #2 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo3: Cyllinder #3 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo4: Cyllinder #4 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo5: Cyllinder #5 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo6: Cyllinder #6 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo7: Cyllinder #7 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo8: Cyllinder #8 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo9: Cyllinder #9 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo10: Cyllinder #10 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo11: Cyllinder #11 Scavenge Air Fire Detection Temperature (°C), 

scavAirFireDetTempNo12: Cyllinder #12 Scavenge Air Fire Detection Temperature (°C), 

coolerCWinTemp: Air Cooler Cooling Water Inlet Temperature (°C) 

cfWInPress: Cooling Fresh Water Inlet Pressure (Pa), 
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controlAirPress: Control Air Pressure (Pa), 

cylLoTemp: Cylinder Lube Oil Temperature (°C) 

exhVVSpringAirInPress: Exhaust Valve Spring Air Inlet Pressure (Pa) 

foFlow: Fuel Oil Flowrate (lt), 

foInPress: Fuel Oil Inlet Pressure (Pa), 

foInTemp: Fuel Oil Inlet Temperature (°C), 

hfoViscocityHighLow: Heavey Fuel Oil Viscosity High Low (mm2/s) 

hpsBearingTemp: HPS Bearing Temperature (°C), 

jcfWInTempLow: Jacket Cooling Fresh Water Inlet Temperature Low (°C) 

cylExhGasOutTempNo1: Cyllinder #1 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo2: Cyllinder #2 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo3: Cyllinder #3 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo4: Cyllinder #4 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo5: Cyllinder #5 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo6: Cyllinder #6 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo7: Cyllinder #7 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo8: Cyllinder #8 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo9: Cyllinder #9 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo10: Cyllinder #10 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo11: Cyllinder #11 Exhaust Gas Out Temperature (°C), 

cylExhGasOutTempNo12: Cyllinder #12 Exhaust Gas Out Temperature (°C), 

cylJCFWOutTempNo1: Cyllinder #1 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo2: Cyllinder #2 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo3: Cyllinder #3 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo4: Cyllinder #4 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo5: Cyllinder #5 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo6: Cyllinder #6 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo7: Cyllinder #7 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo8: Cyllinder #8 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo9: Cyllinder #9 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo10: Cyllinder #10 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo11: Cyllinder #11 Jacket Cooling Fresh Water Outlet Temperature (°C), 

cylJCFWOutTempNo12: Cyllinder #12 Jacket Cooling Fresh Water Outlet Temperature (°C), 
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cylPistonCOOutTempNo1: Cyllinder #1 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo2: Cyllinder #2 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo3: Cyllinder #3 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo4: Cyllinder #4 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo5: Cyllinder #5 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo6: Cyllinder #6 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo7: Cyllinder #7 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo8: Cyllinder #8 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo9: Cyllinder #9 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo10: Cyllinder #10 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo11: Cyllinder #11 Piston Cooling Outlet Temperature (°C), 

cylPistonCOOutTempNo12: Cyllinder #12 Piston Cooling Outlet Temperature (°C), 

tcExhGasInTempNo1: Turbo-Charger #1 Exhaust Gas Inlet Temperature (°C) 

tcExhGasInTempNo2: Turbo-Charger #2 Exhaust Gas Inlet Temperature (°C), 

tcExhGasInTempNo3: Turbo-Charger #3 Exhaust Gas Inlet Temperature (°C), 

tcExhGasInTempNo4: Turbo-Charger #4 Exhaust Gas Inlet Temperature (°C), 

tcExhGasOutTempNo1: Turbo-Charger #1 Exhaust Gas Outlet Temperature (°C), 

tcExhGasOutTempNo2: Turbo-Charger #2 Exhaust Gas Outlet Temperature (°C), 

tcExhGasOutTempNo3: : Turbo-Charger #3 Exhaust Gas Outlet Temperature (°C) 

tcExhGasOutTempNo4: Turbo-Charger #4 Exhaust Gas Outlet Temperature (°C) 

tcLOInLETPressNo1: Turbo-Charger #1 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo2: Turbo-Charger #2 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo3: Turbo-Charger #3 Lube Oil Inlet Pressure (Pa), 

tcLOInLETPressNo4: Turbo-Charger #4 Lube Oil Inlet Pressure (Pa), 

tcLOOutLETTempNo1: Turbo-Charger #1 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo2: Turbo-Charger #2 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo3: Turbo-Charger #3 Lube Oil Outlet Pressure (Pa), 

tcLOOutLETTempNo4: Turbo-Charger #4 Lube Oil Outlet Pressure (Pa), 

tcRPMNo1: Turbo-Charger #1 RPMs, 

tcRPMNo2: Turbo-Charger #2 RPMs, 

tcRPMNo3: Turbo-Charger #3 RPMs, 

tcRPMNo4: Turbo-Charger #4 RPMs, 

orderRPMBridgeLeverer: Order RPM (Bridge Lever) 
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rpm: Rotations per minute of the main shaft 

scavAirInLetPress: Scavenge Air Inlet Pressure (Pa), 

scavAirReceiverTemp: Scavenge Air Receiver Temperature (°C), 

startAirPress: Starting Air Pressure (Pa), 

thrustPadTemp: Thrust Pad Temperature (°C), 

mainLOInLetPress: Main Lube Oil Inlet Pressure (Pa), 

mainLOInTemp: Main Lube Oil Inlet Temperature (°C) 

foTemperature: Fuel Oil Temperature (°C) 

foTotVolume: Fuel Oil Total Volume (lt) 

power: Consumed power (kW), 

scavengeAirPressure: Scavenge Air Pressure (Pa) 

torque: Torque of the main shaft (N/m), 

coolingWOutLETTempNo1: Turbo-Charger #1 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo2: Turbo-Charger #2 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo3: Turbo-Charger #3 Air Cooler Cooling Water Outlet Temperature 
(°C), 

coolingWOutLETTempNo4: Turbo-Charger #4 Air Cooler Cooling Water Outlet Temperature 
(°C), 

foVolConsumption: Fuel Oil Consumption (lt/min) 

 

VESSEL_DAMAGES table structure (5 attributes) 

vessel_code: The id of the vessel, 

defect_type: Type of damage (Main Bearing, Crosshead Bearing, Crankpin Bearing) 

defect_details: Short description of damage 

date_of_damage: Date of damage 

cause_of_damage: Short description for cause of damage  
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   Appendix 2 – Connected Consumer 
use case dataset structure and 
description 

Introduction 
This document aims at describing the main entities to be used in the implementation of the 
recommender system that is going to be developed in the retailer use-case of the project 
BigDataStack. 

Having pre-analysed a sample of raw data coming from our partner Eroski, a selection of the 
most relevant attributes that are candidates to be used during the build of the predictive 
model has been done. These selected attributes are the ones contained in this document.  
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Figure 68 - Dataset structure and description 

 
The dataset contains information about EROSKI clients. However, GDPR aspects have been 
taken into account before sharing the data with the consortium. Concretely: 

• The only data that could be used to uniquely identify a person related to the field 
“ID_CLIENTE”. 

• ID_CLIENTE is an internal identifier of the database of EROSKI that is not known by 
the customers. I.e. only a person with access to the database of EROSKI could identify 
the customer from ID_CLIENTE. 

• ID_CLIENTE has been encrypted by EROSKI with an SHA-1 algorithm. Encryption has 
been done before providing the dataset to BigDataStack consortium. A SHA-1 (168 
bits) algorithm has been used for encryption of ID_CLIENTE. 

• For each ID_CLIENTE, SHA-1 has been applied to “string_1”+ID_CLIENTE+”string_2”. 
String_1 and string_2 are alphanumeric that contain capital and non-capital letters, 
numbers and special characters. These 2 values are only known by EROSKI.  



 
 Project No 779747 (BigDataStack) 
 D2.6 – Conceptual model and Reference architecture III 
 Date: 01.07.2020 
 Dissemination Level: PU 

 

 page 120 of 141 bigdatastack.eu 

The attributes for each entity have been included in this section. 
 

CLIENTS table structure (21 attributes) 

ID_CLIENTE: Client id, 

TIPO_CLIENTE_ORO: Type of gold client 

FLG_CLIENTE_APP: Flag if the client is an app client or not, 

FLG_CLIENTE_WEB: Flag if the client is a web client or not, 

FLG_CLIENTE_NUTRICIONAL: Customer shows interest in healthy products 

FRANJA_GASTO_ORO_INICIAL: Initial Range of expenditure 

POSIBLE_VALOR_ORO: Percentage indicating the discount given to the customer for being a 
gold customer 

CLIENTE_1000_ORO: Flag indicating whether the client is 1000 Oro or not 

FRANJA_GASTO_ORO_ACTUAL: Current Range of expenditure 

TIPO_MADUREZ: Type of maturity of the client 

DESC_SEG_C_CLIENTE: Description of the type of maturity of the client 

DESC_SEG_G_FIDELIDAD: Segmentation of the customer according to his loyalty 

DESC_INTERES_AHORRO: Segmentation of the customer according to his interest in 
promotions 

DESC_INTERES_FRESCOS: Segmentation of the customer according to his interest in fresh 
food 

DESC_INTERES_LOCAL: Segmentation of the customer according to his interest in local food 

DESC_INTERES_SALUD: Segmentation of the customer according to his interest in healthy 
food 

DESC_INTERES_SALUD_DETALLE: additional detail on which type of healthy food the 
customer is interested in 

DESC_MISION_COMPRA: description of the purchase mission of the customer 

DESC_SEG_SEC: segment description  

DESC_SEG_SOCIODEMO: Socio-demographic segment of the client. 

COD_LOC: preferred store 
 

TICKETS (36 attributes)  

ID_CLIENTE: Client id, 

COD_LOC: Store’s localization id, 

DIA: Day, 

COD_CAJA: Till id, 
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NUM_TICKET: Ticket number (id), 

NUM_LINEA: Line number (id), 

COD_TIPO_MOVIM: Movement type, 

HORA_EMISION: Timestamp of tickets emission, 

COD_TIPOMARCA_HIST: Type of brand of the product 

COD_F_PAGO_DET -> M_FORMA_PAGO: Type of payment procedure, 

UNID_VENTA_TARIFA: Total amount of items sold in tariff’s type, 

UNID _VENTA_OFERTA: Total amount of items sold in offer’s type, 

UNID _VENTA_COMPETE: Total amount of items sold in competence’s type, 

UNID _VENTA_LIQUID: Total amount of items sold in liquidation’s type, 

UNID _VENTA_CAMPANA: Total amount of items sold in campaign’s type, 

IMP_VENTA_TARIFA: Total economic amount of the items sold by tariff’s type, 

IMP_VENTA_OFERTA: Total economic amount of the items sold by offer’s type, 

IMP_VENTA_COMPETE: Total economic amount of the items sold by competence’s type, 

IMP_VENTA_LIQUID: Total economic amount of the items sold by liquidation’s type, 

IMP_VENTA_CAMPANA:  Total economic amount of the items sold by campaign’s type,  

IMP_DTO_CONSUMER: Discount amount applied for using VISA Eroski, 

IMP_DTO_TRAVEL: Discount amount applied for using loyalty card Travel Club, 

IMP_DTO_COUPON: Discount amount applied for the usage of coupons, 

IMP_DTO_CUOTA: Discount amount applied for being member of EROSKI Club, 

IMP_DTO_ONSITE:  Discount amount applied after redemption of loyalty Travel points,  

IMP_DTO_OTROS: Other discounts, 

IMP_DTO_VALE: Amount of discounts coming from the redemption of a supplier coupon, 

IMP_CONSUMO_RAP: Special discount applied in the shop, 

COD_ART: Article’s id, 

FLG_TECLA: information about whether the product has been sold by a direct key or not 

ANO_OFERTA: year of the offers applied to the order 

COD_OFERTA: offer code 

COD_TIPO_CENTRO: type of shop (primary/secundary) 

FLG_SCANNER: has the product been scanned during the purchase (Y/N) 

IMP_PVP_TARIFA: amount of the order if all of the items had been charged to the customer 
with catalogue prices 
 

CENTERS structure (55 attributes) 
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COD_LOC: Store’s localization id, 

COD_PROVIN: Province id, 

DESC_LOC: Center’s description, 

DESC_PROVIN: Province’s name, 

FLG_PLATAF : Indicator of distribution platform, 

FEC_MODIF: Date of last modification,   

COD_ZONA: Zone id, 

DESC_ZONA: Zone description, 

COD_REGION: Region id, 

DESC_REGION: Region description, 

COD_AREA: Area id, 

DESC_AREA: Area’s description, 

COD_ENSENA: Type of center id, 

DESC_ENSENA: Type of center description (Eroski City, Eroski Center…), 

COD_NEGOCIO: Store’s id, 

DESC_NEGOCIO: Store’s type, 

COD_SOCIEDAD: Type of company, 

DESC_SOCIEDAD: Company’s description, 

COD_GAMA_OBLIG: Code of mandatory catalogue,  

COD_FINANZIA: financing code,  

DESC_DIRECCION: address,  

DESC_POBLACION: location,  

FLAG_CUOTA: quota flag,  

FEC_INI_LOC: opening date,  

FEC_FIN_LOC: closing date,  

NUM_CAJAS: number of boxes,  

NUM_M2: squared meters of the store,  

NUM_M_LINEA: linear meters,  

COD_LOC_AME: store code in AME system,  

COD_TP_LOC: type of location,  

DESC_TP_LOC: description of the type of location, 

COD_LOC_PADRE: father location code,  

COD_MUNICIPIO: location code,  
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COD_TP_POTENCIAL: type of potential code,  

FEC_ULT_APERTURA : last opening date,  

COD_POSTAL: zip code,  

COD_AGR_IMP: grouping code,  

FLG_CECO_MODELO_COSTES: cost model flag,  

LATITUD: latitude,  

LONGITUD: longitude,  

COD_ISLA: ISLA code,  

FLG_LEAN: lean flag,  

FLG_TRANSFORMADO: transformed flag,  

FLG_PUESTA_PUNTO_PLUS: tunning flag,  

COD_NIVEL_ESTR_LOC: code of local structure of sales of the center,  

COD_N1: code of the level 1 of the structure of sales of the center, 

DES_N1: description of the level 1 of the structure of sales of the center, 

COD_N2: code of the level 2 of the structure of sales of the center, 

DES_N2: description of the level 2 of the structure of sales of the center, 

COD_N3: code of the level 3 of the structure of sales of the center, 

DES_N3: description of the level 3 of the structure of sales of the center, 

COD_N4: code of the level 4 of the structure of sales of the center, 

DES_N4: description of the level 4 of the structure of sales of the center, 

COD_N5: code of the level 5 of the structure of sales of the center, 

DES_N5: description of the level 5 of the structure of sales of the center, 
 

PRODUCTS structure (79 attributes) 

COD_ART: product id, 

DESC_ART: product description, 

FLG_TECLA: exists a direct key to sell the product or not, 

COD_TIPOMARCA: type of brand code,  

DESC_TIPOMARCA: description of the type of brand code, 

COD_N1_PPAL: Area’s id, 

DESC_N1: Area’s description, 

COD_N2_PPAL: Section’s id, 

DESC_N2: Section’s description, 
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COD_N3_PPAL: Category’s id, 

DESC_N3: Category’s description, 

COD_N4_PPAL: Subcategory’s id, 

DESC_N4: Subcategory’s description, 

COD_N5_PPAL: Segment’s id, 

DESC_N5: Segment’s description, 

FEC_INI_ART: Article start time, 

FEC_FIN_ART: Article finishes time, 

COD_FORMATO: Format id (KG, Gr, Unities...), 

COD_MARCA: Brand’s id, 

COD_EAN: EAN code,  

COD_TALLA: Size code,  

DESC_TALLA: Size code description,  

COD_COLOR: Colour code,  

DESC_COLOR: Colour code description, 

COD_PACK : Number of items per pack,  

COD_BLOQUEO: has the product blocked for the sales?,  

COD_ENS_EROSKI: commercial codification in the Hypermarket,  

COD_ENS_CONSUM: commercial codification in the SUPERmarket, 

COD_TIPO_FORMATO: unit of measurement (related to COD_FORMATO),  

COD_ART_PRIM: father product code,  

COD_TIPO_MARCA2: code of EROSKI Brand (only for products belonging to a EROSKI brand)), 

DESC_TIPO_MARCA2: description of EROSKI Brand (only for products belonging to a EROSKI 
brand)), 

FEC_ULT_BLOQ: date on which the product was blocked for the sales,  

COD_PORCI_CONS: product has info for the consumer related to the number of portions, 

DESC_PORCI_CONS: indicator about whether the product has a description for the portions, 

CC_CAPRABO: Comercial code of CAPRABO,  

COD_CATEGORI_HIP: Category code hypermarket, 

DESC_CATEGORI_HIP: Description of the Hypermarket Category, 

COD_CATEGORI_SUP: Category code supermarket, 

DESC_CATEGORI_SUP: Description of the supermarket Category, 

COD_SENSIBI_HIP: SENSIBI code hypermarket, 
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DESC_ SENSIBI HIP: Description of the SENSIBIcode of the hypermarket, 

COD_ SENSIBI SUP: Category code supermarket, 

DESC_ SENSIBI SUP: Description of the SENSIBIcode of the supermarket, 

FLG_COMPRA: indicator about whether the product is for purchasing, 

FLG_VENTA: indicator about whether the product is for sales, 

COD_FAMILIA: family of the product,  

DESC_FAMILIA: description of the family of the product,  

COD_AMBITO_EROSKI: Scope code of the product in the hypermarkets,  

DESC_AMBITO_EROSKI: Description of the scope of the product in the hypermarkets,  

COD_AMBITO_CONSUM: Scope code of the product in the supermarkets,  

DESC_AMBITO_CONSUM: Description of the scope of the product in the supermarkets, 

COD_CODMARCA: brand code (related to COD_MARCA) 

FLG_MMPP: Does the product belong to a EROSKI brand?, 

COD_POSICION_MARCA: Maker brand / EROSKI Brand code, 

DESC_POSICION_MARCA: Description of the code of maker Brand / EROSKI Brand code, 

FLG_SALUD_BIENESTAR: health indicator,  

FLG_INNOVACION: innovation indicator,  

FLG_GAMA_TURISTICA: tourism product,  

FLG_PODER_ADQUISITIVO: indicator about product for customer with a high purchasing 
power,  

FLG_BLOQ_DEFINITIVO: Product definitely blocked,  

COD_SUBMARCA: sub-brand code,  

DESC_SUBMARCA: sub-brand description 

FLG_GAMA_LOCAL: local product,  

FLG_GAMA_REGIONAL: regional product,  

FLG_PESO_SGA: flag product by weight,  

FLG_LIQUIDABLE: flag payable,  

FLG_EXDEPRECIACION: depreciation flag, 

COD_TP_ART: product type,  

DESC TIPO_ARTICULO: description of the product type,  

CANTIDAD: number of ítems per lot,  

FEC_LANZAM: launch date, 

PORC_IVA: VAT rate,  
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COD_PROVR_GEN: code of generic supplier,  

COD_PROVR_TRABAJO: code of work supplier,  

NOMBRE: name of the work supplier, 

PESO: weight (in grams),  

PESO_NETO: net weight (in grams),  

VOLUMEN: volume (in cm3) 
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Appendix 3 – Smart Insurance use 
case dataset structure and 
description 

The datasets provided by the Insurance Company (customer of GFT) are described in the 
following in terms of tables and records structure and description. 

Following the GDPR directive, all sensitive information of the datasets have been anonymized. 
For the encryption, we used a cryptographic hash function, the MD5 algorithm. It is a 
unidirectional function different from coding and encryption because it is irreversible. The 
spread of this encryption algorithm is still widespread (just think that the most frequent 
integrity check on file is based on MD5). This function takes as input an arbitrary length string 
and outputs another 128 bit output. The process happens very quickly and the output (also 
known as "MD5 Checksum" or "MD5 Hash") returned is such that it is highly unlikely to obtain 
the same hash value in output with two different input strings. 

We have modeled the length of the encrypted string, based on the length of the field to be 
encrypted. For example, for the tax code the encrypted string is 16 characters, while for the 
license plate it is 8 characters. This eliminates the possibility of tracing back to the initial value. 
We have performed several decrypting tests present on numerous online sites and no one 
has been able to decrypt the string entered. 

Furthermore, we have carried out a univocal check of all the encrypted keys, so that the 
possibility of two different string yielding identical encrypted strings is excluded. 

In the following, the datasets tables and records are described. The fields highlighted in blue 
have been anonymized as explained above. 

 

ana 

************************************************************************ 

id_univoco_anagrafica string   Flow unique identifier: REGISTRY 

id_univoco_master     string                                    

codice_fiscale        string     Subject unique identifier                              

tipo_anagrafica       string   Registry type (P = person, N = company) 

cognome               string   Surname / company name                                

nome                  string   Name                             

sesso                  string   Gender (M=male, F=female, N=company) 

pubblica_amministrazione string                Public Administration  (YES/NO)                 
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ana_ptf 

************************************************************************ 

codice_fiscale       string   Subject unique identifier                                

idpolizza            string  Policy unique identifier                                 

ruolo                 string               Subject role                   

cognome              string  Surname / company name                                   

nome                 string  Name                                 

 

ana_sin 

************************************************************************ 

id_univoco_anagrafica string  Flow unique identifier: REGISTRY                                    

id_univoco_master     string                                    

codice_fiscale        string   Subject unique identifier                                 

idsinistro            string  Claim unique identifier                                  

ruolo                  string               Subject role                  

cognome               string  Surname / company name                                    

nome                  string  Name                                  

 

ana_vei 

************************************************************************ 

codice_fiscale       string        Subject unique identifier                              

targa                 string   License plate                             

cognome              string   Surname / company name                                    

nome                 string   Name                                   

 

anaage 

************************************************************************ 

codice_fiscale       string        Subject unique identifier                              

agenzia              string                Agency ID                 

descrizione          string                Description                   
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anaaia 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

codice_anomalia      string               Anomaly identifier                 

 

anabds 

************************************************************************ 

codice_fiscale       string  Subject unique identifier                                      

bds                   bigint                                    

p1                    bigint                                    

p2                    bigint                                    

p3                    bigint                                    

p4                    bigint                                    

p5                    bigint                                    

p6                    bigint                                    

 

anacci 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

tipo_assicurazione   string               Insurance type                 

ente_comunicante     string               Communicating entity                   

data_infortunio      string               Accident date                  

luogo_infortunio     string               Accident place                  

lesione_1            string               Injury nr 1                     

lesione_2            string               Injury nr 2                     

lesione_3            string               Injury nr 3                     

lesioni_ulteriori    string               Other Injuries                     

percentuale_inabilita double              Disability percentage                  

data_decesso         string               Date of death                  

 

anacnt 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      
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tipo_contatto        string               Contact type                  

contatto             string               Contact                  

 

anacontatori 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

portafoglio          bigint               Total insurance policies number                   

portafoglio_auto     bigint               Auto insurance policies number                     

portafoglio_re       bigint               Elementary branches insurance policies number          

portafoglio_vita     bigint               Life insurance policies number                  

portafoglio_cauzioni bigint               Deposits policies number                   

sinistri_aperti      bigint               Open claims number                     

veicoli_attivi       bigint               Insured vehicles number                    

 

anafid 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

tipo_soggetto        string               Subject type                  

 

anaind 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

comune               string               Subject main address, city                     

provincia            string               Subject main address, province                    

nazione              string               Subject main address, country                    

flag_principale      string                                    

 

analnkcnt 

************************************************************************ 

tipo_contatto        string               Contact type                  

contatto             string               Contact                  

codice_fiscale_a     string               Subject unique identifier a                

codice_fiscale_b     string               Subject unique identifier b                    
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crvdlnk 

************************************************************************ 

partita_iva          string               VAT number                  

codice_fiscale       string       Subject unique identifier                                      

denominazione        string               Subject / company name                   

cognome              string  Surname / company name                                    

nome                 string  Name                                  

 

crvdsem 

************************************************************************ 

codice_fiscale       string       Subject unique identifier                                      

semaforo             string               Traffic light                     

 

ptf 

************************************************************************ 

idpolizza            string  Policy unique identifier                                    

agenzia              string               Agency ID                   

descrizione_agenzia  string               Agency description                   

provincia_agenzia    string               Province of the agency                   

ramo                  string               Policy branch                   

tipo_polizza         string               Policy type (Individual / Collective)                  

stato_polizza        string               Policy state (Active/ Canceled / Suspended)                  

stato_coass          string               No coinsurance / Our delegation / Delegation                 

codice_prodotto      string               Product Code-Product Description                   

prodotto             string               Product                   

data_effetto         string               Policy effective date                  

data_scadenza        string               Policy effective deadline                 

premio               double             Policy premium                   

 

ptf_gar 

************************************************************************ 

idpolizza            string  Policy unique identifier                                    

codice_prodotto      string               Product Code-Product Description                   
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prodotto             string               Product                   

desurec     string               Insurance guarantee description 

garanzia                 string               Insurance guarantee code 

 

sin 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

idpolizza            string  Policy unique identifier                                    

data_sinistro        string               Claim occurrence date (Format: YYYY-MM-DD)               

ora_sinistro         string               Claim occurrence time (Format: HH: MM)                   

tipo_sinistro        string               Accident type (RCA / ARD / RE)                

tipo_danno           string               Damage reported type (1 = THINGS / 2 = PEOPLE / 3 = 
MIXED)                 

tipo_gestione        string               Claim management type                    

flag_autorita_presenti string               Authority flag present (S - Yes, N - No)                   

stato_sinistro        string               Accident status                    

data_definizione_sinistro string               Claim closing date (Format: YYYY-MM-DD)               

numero_veicoli        bigint               Vehicles involved number                    

comune                string               Claim occurrence address, city  

provincia             string               Claim occurrence address, province                   

pagato                double              Paid                   

riservato             double              Reserved                    

data_denuncia         string               Claim complaint date (YYYY-MM-DD) 

 

sinantifrode 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

semaforo             string               Traffic light                     

verifica              string               Verification                     

note_verifica        string               Verification notes                     

approfondimento      string               Deepening                     

note_approfondimento string   Deepening notes                     

antifrode             string   Anti fraud                     
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sinantifrodectl 

************************************************************************ 

idsinistro           string  Claim unique identifier                                    

controllo            string               Check                     

 

 

 

vei 

************************************************************************ 

targa                  string  License plate                                     

marca                 string               Vehicle brand                   

modello               string               vehicle model                   

tipo_veicolo          string               Vehicle type                   

tipo_targa            string               License plate type                 

data_immatricolazione string               Matriculation date                   

 

vei_ptf 

************************************************************************ 

targa                string   Vehicle identifier                                     

idpolizza           string   Policy unique identifier                                    

 

vei_sin 

************************************************************************ 

targa                string   Vehicle identifier                                     

idsinistro          string   Claim unique identifier                                    

  

Open datasets 

 

OD_Caratt_Geo_Morf_Comuni (OD Geo Morphological Municipalities Features) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
comune nvarchar city                     
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aree a pericolosità idraulica bassa (kmq) float 
low hydraulic hazard 
areas 

aree a pericolosità idraulica media (kmq) float 
medium hydraulic hazard 
areas 

aree a pericolosità idraulica elevata (kmq) float 
high hydraulic hazard 
areas 

area di attenzione pai - aa (kmq) float attention area PAI 

area a pericolosità da frana pai moderata - p1 (kmq) float 
moderate landslide 
hazard area PAI - p1 

area a pericolosità da frana pai media - p2 (kmq) float 
medium landslide hazard 
area PAI - p2 

area a pericolosità da frana pai elevata - p3 (kmq) float 
high landslide hazard 
area PAI - p3 

area a pericolosità da frana pai molto elevata - p4 
(kmq) float 

very high landslide 
hazard area PAI - p4 

provincia nchar province 

 

OD_Classificazione_Sismica_Province (OD Province Seismic Classification) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
Regione nvarchar region 
Province nvarchar province 
CodiceIstat float Istat code 
Denominazione nvarchar name 
Classificazione2015 int classification 2015 

 

OD_Codifica_Comuni_Province (OD Coding Municipalities Provinces) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
comune nvarchar city                     
provincia nvarchar province 
sigla nvarchar acronym 

 

OD_Elenco_Cod_Province (OD Province Codes List) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
codreg float region code 
regione nvarchar region 
codice float code 
sigla nvarchar acronym 
provincia nvarchar province 
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OD_Immatricolazioni_Auto (OD Car registrations) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
Provincia varchar province 
Regione varchar region 
Classe di cilindrata varchar displacement class 
Numero veicoli varchar number of vehicles 

 

OD_Inail_Dati_Infortuni (OD Inail Accident Data) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
DataRilevazione varchar Detection Date 
DataProtocollo varchar Protocol date 
DataAccadimento varchar Occurrence date 
DataDefinizione varchar Definition date 
DataMorte varchar Death date 
LuogoAccadimento varchar Occurrence place 
IdentificativoInfortunato varchar Injured ID 
Genere varchar Gender 
Eta varchar Age 
LuogoNascita varchar Place of birth 
ModalitaAccadimento varchar Happening mode 

ConSenzaMezzoTrasporto varchar 
With Without Means Of 
Transport 

IdentificativoCaso varchar Case ID 
DefinizioneAmministrativa varchar Administrative Definition 

DefinizioneAmministrativaEsitoMortale varchar 
Administrative Definition 
Mortal Outcome 

Indennizzo varchar Compensation 

DecisioneIstruttoriaEsitoMortale varchar 
Investigative Decision 
Mortal Outcome 

GradoMenomazione varchar Degree of impairment 
GiorniIndennizzati varchar Compensation Days 
IdentificativoDatoreLavoro varchar Employer ID 

PosizioneAssicurativaTerritoriale varchar 
Territorial Insurance 
Position 

SettoreAttivitaEconomica varchar Economic Activity Sector 
Gestione varchar Management 
GestioneTariffaria varchar Tariff management 
GrandeGruppoTariffario varchar Large Tariff Group 
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OD_Istat_Dati_Incidenti_Stradali (OD Istat Road Accident Data) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
Provincia nvarchar province 
conducente morto float dead driver 
passeggero morto float dead passenger 
pedone morto float dead pedestrian 
totale morto float total dead 
conducente ferito float injured driver 
passeggero ferito float injured passenger 
pedone ferito float injured pedestrian 
totale ferito float total injured 
conducente totale float total driver 
passeggero totale float total passenger 
pedone totale float total pedestrian 
totale totale float total total 

 

 

OD_Precipitazioni_Medie_Ultimi_10_anni (OD Average Precipitation Last 10 years) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
Provincia varchar province 
2009 varchar year 2009 
2010 varchar year 2010 
2011 varchar year 2011 
2012 varchar year 2012 
2013 varchar year 2013 
2014 varchar year 2014 
2015 varchar year 2015 
2016 varchar year 2016 
2017 varchar year 2017 
2018 varchar year 2018 

 

OD_Reati (OD Crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 
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OD_Reati_altri_delitti (OD other crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Associazione_per_delinquere (OD Criminal association) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Associazione_tipo_mafioso (OD Mafia type association) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furti (OD theft crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 
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VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furti_Autovetture (OD car theft offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furti_Con_Strappo (OD Theft Crimes With Tear) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furti_in_abitazioni (OD Thefts in homes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furti_in_esercizi_commerciali (OD Thefts in commercial establishments) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
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POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Furto_con_destrezza (OD Theft With Dexterity) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_Incendi (OD fire crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_omicidi (OD homicidal offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# Float pos# 
PROVINCIA Nvarchar province 
NUMERO REATI Float number of crimes 
OGNI 100mila ABITANTI Float every 100000 inhabitants 

VAR# % ANNUA Float 
annual percentage 
change 
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OD_Reati_omicidi_consumati (OD homicidal crimes committed) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

 

OD_Reati_rapine (OD robbery crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

OD_Reati_Reciclaggio_impiego_denaro (OD Money laundering crimes) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

OD_Reati_Stupefacenti (OD Narcotic offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 
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OD_Reati_Tentati_Omicidi (OD Murder Attempted Offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

OD_Reati_Truffe_frodi_informatiche (OD Computer fraud scams) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

OD_Reati_Usura (OD Wear offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 

 

OD_Reati_Violenze_sessuali (OD Sexual Violence Offenses) 

************************************************************************ 
COLUMN_NAME DATA_TYPE DESCRIPTION 
POS# float pos# 
PROVINCIA nvarchar province 
NUMERO REATI float number of crimes 
OGNI 100mila ABITANTI float every 100000 inhabitants 

VAR# % ANNUA float 
annual percentage 
change 
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