

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under
the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and

operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D2.4 – Conceptual model and
Reference architecture

Work Package WP2 – Requirements, Architecture & Technical Coordination

Lead Author (Org) Dimosthenis Kyriazis (UPRC)

Contributing Author(s)
(Org)

Orlando Avila-García (ATOS), Konstantinos Chaidogiannos (UBI), Bin
Cheng (NEC), Ismael Cuadrado-Cordero (ATOS), Christos Doulkeridis
(UPRC), Eleni Fotopoulou (UBI), Jonathan Fuerst (NEC), Konstantinos
Giannakakis (ATC), Kostas Giannakopoulos (SILO), Gal Hammer (RHT),
Ricardo Jimenez (LXS), Miki Kenneth (RHT), Pavlos Kranas (LXS),
Richard McCreadie (GLA), Stavroula Meimetea (UPRC), Yosef Moatti
(IBM), Kostas Papadimitriou (SILO), Marta Patino (UPM), Stathis Plitsos
(DANAOS), Dimitrios Poulopoulos (UPRC), Bernat Quesada Navidad
(ATOS), Amaryllis Raouzaiou (ATC), Martí Sanchez-Juanola (ATOS),
Paula Ta-Shma (IBM), Giannis Tsantilis (UBI), Constantinos Vassilakis
(ATC), Valerio Vianello (UPM), Anastasios Zafeiropoulos (UBI)

Due Date 31.08.2018

Date 07.09.2018

Version 1.0

Dissemination Level
X PU: Public (*on-line platform)
 PP: Restricted to other programme participants (including the Commission)
 RE: Restricted to a group specified by the consortium (including the Commission)
 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 2 of 79 bigdatastack.eu

Versioning and contribution history
Version Date Author Notes

0.5 16.07.2018 Dimitrios Poulopoulos (UPRC) Added UBI and IBM contributions

0.6 20.07.2018 Dimosthenis Kyriazis (UPRC) Updated contributions,
comments, identification of points
to be addressed

0.7 30.07.2018 Sophia Karagiorgou (UBI) Comments addressed & figures
updated

0.7 30.07.2018 Nikos Lykousas (UBI) Comments addressed & figures
updated

0.8 10.08.2018 Peter-Jason Gould (UPRC) Comments addressed & figures
updated

0.9 03.09.2018 Dimitrios Poulopoulos (UPRC) Integration of additional inputs
received from partners

0.10 04.09.2018 Dimosthenis Kyriazis (UPRC) Final version following internal
review

1.0 07.09.2018 Dimosthenis Kyriazis (UPRC) Final version

Disclaimer
This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack Consortium.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 3 of 79 bigdatastack.eu

Table of Contents
1. Executive Summary .. 6

2. Introduction ... 7
2.1. Terminology .. 7
2.2. Document structure ... 8

3. BigDataStack Capabilities .. 9
3.1. Key offerings ... 9
3.2. Stakeholders addressed ... 10

4. Main phases ... 12
4.1. Entry phase ... 12
4.2. Dimensioning phase ... 13
4.3. Deployment phase .. 14
4.4. Operations phase .. 14

5. Architecture .. 16

6. Main architectural components ... 19
6.1. Resources Management ... 19
6.2. Data-Driven Network Management ... 21
6.3. Dynamic Orchestrator ... 22
6.4. Triple Monitoring ... 24
6.5. Applications & Data Services Ranking / Deployment .. 27
6.6. Data Cleaning ... 30
6.7. Real-time CEP .. 33
6.8. Process mapping .. 34
6.9. Seamless Analytics Framework .. 38
6.10. Application Dimensioning Workbench ... 40
6.11. Big Data Layout .. 43
6.12. Process modelling framework ... 44
6.13. Data Toolkit ... 47
6.14. Adaptable Visualizations ... 48

7. Key interactions .. 50
7.1. User Interaction Layer ... 50
7.2. Realization & Deployment ... 55
7.3. Data as a Service & Storage ... 57
7.4. Monitoring & Runtime Adaptations .. 64

8. Conclusions .. 69

9. References ... 70

Appendix 1 – DANAOS dataset structure and description ... 71

Appendix 2 – ATOS WORLDLINE dataset structure and description 76

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 4 of 79 bigdatastack.eu

List of tables
Table 1 - Terminology ... 7
Table 2 - Prometheus integration .. 26
Table 3 - Μain symbols used in process mapping ... 35
Table 4 - Short-name Component Mapping Table ... 56

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 5 of 79 bigdatastack.eu

List of figures
Figure 1 - Technical challenges .. 7
Figure 2 - Key offerings ... 9
Figure 3 - BigDataStack Main Phases ... 12
Figure 4 - Dimensioning phase ... 13
Figure 5 - Deployment phase .. 14
Figure 6 - Operations phase.. 15
Figure 7 - BigDataStack architecture model .. 16
Figure 8 - OKD architecture overview inside the DevOps operation [8] 20
Figure 9 - OKD architecture overview in the users operations [2] .. 21
Figure 10 - Data-Driven Network Management components ... 22
Figure 11 - High-Level Interaction with other Components .. 23
Figure 12 - Dynamic Orchestrator Detailed View ... 24
Figure 13 - Triple Monitoring Engine architecture diagram .. 25
Figure 14 - Process Flow for ADS Ranking/Deploy ... 28
Figure 15 - Internal Components of ADS-Ranking .. 30
Figure 16 - Domain agnostic data cleaning model architecture ... 32
Figure 17 - Data Cleaning Module Architecture ... 33
Figure 18 - Internal architecture of Predictive Analytics sub-component 36
Figure 19 - Internal architecture of Process Analytics sub-component 38
Figure 20 - Seamless Interface ... 39
Figure 21 - Spark Data Source API Ecosystem ... 39
Figure 22 - Application dimensioning internal structure and link with external components . 42
Figure 23 - Process modeling framework building blocks .. 47
Figure 24 - Visualization framework building blocks .. 49
Figure 25 - Information flows in Process Modelling ... 50
Figure 26 - Information flows in Process Mapping ... 51
Figure 27 - User Interaction Layer Sequence Diagram .. 52
Figure 28 - Business analyst view ... 53
Figure 29 - Data analyst’s view ... 55
Figure 30 - Interaction Diagram for Model Leaning ... 56
Figure 31 - Interaction Diagram for First-Time Ranking ... 57
Figure 32 - Architecture of data stores .. 58
Figure 33 - Direct access the LXS ... 59
Figure 34 - Direct access the COS .. 59
Figure 35 - Request data using a simple SparkQL query .. 60
Figure 36 - Request data using combined query on SparkQL ... 61
Figure 37 - Inserting data .. 62
Figure 38 - Inserting streaming data .. 63
Figure 39 - Prometheus exporters ... 64
Figure 40 - Prometheus REST API ... 65
Figure 41 - Publish/subscription mechanism ... 65
Figure 42 - QoS Evaluation component .. 66
Figure 43 - Interaction Diagram for CDP Re-Ranking.. 68
Figure 44 - Dataset structure and description .. 76

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 6 of 79 bigdatastack.eu

1. Executive Summary
BigDataStack aims to deliver a complete stack including an infrastructure management
system that drives decisions according to the live and historical data, thus being fully scalable,
runtime adaptable and high-performant. In this way, BigDataStack will address the emerging
needs of big data operations and data-intensive applications. The system will base all
infrastructure management decisions on the data analytics, monitoring data from
deployments and logic derived from data operations that govern and affect storage, compute
and network resources, as well as their interdependencies. On top of the infrastructure
management system, “Data as a Service” will be offered to data providers, decision-makers,
private and public organisations. Approaches for data cleaning, data layout and efficient
storage, combined with seamless data analytics will be realised holistically across multiple
data stores and locations.

To provide the required information towards enhanced infrastructure management
BigDataStack will provide a range of services, such as the application dimensioning
workbench, which facilitates data-focused application analysis and dimensioning in terms of
predicting the required data services, their interdependencies with the application micro-
services and the underlying resources necessary. This will allow the identification of the
applications data-related properties and their data needs, thereby enabling BigDataStack to
provision deployment with specific performance and quality guarantees. Moreover, a data
toolkit will enable data scientists to ingest their data analytics functions and to specify their
preferences and constraints, which will be exploited by the infrastructure management
system for resources and data management. Finally, a process modelling framework will be
delivered, to enable functionality-based modelling of processes, which will be mapped in an
automated way to concrete technical-level process mining analytics.

The aforementioned key outcomes of BigDataStack are reflected in a set of main building
blocks in the corresponding overall architecture of the stack. This deliverable describes the
key functionalities of the overall architecture, the interactions between the main building
blocks and their components, while also providing a first version of the internals of these
components regarding research approaches to be realised during the course of the project.
Additional information and detailed specification of the components will be delivered through
the corresponding design and specification reports of the relevant work packages of the
project.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 7 of 79 bigdatastack.eu

2. Introduction
The new data-driven industrial revolution highlights the need for big data technologies, to
unlock the potential in various application domains (e.g. transportation, healthcare, logistics,
etc). In this context, big data analytics frameworks exploit several underlying infrastructure
and cluster management systems. However, these systems have not been designed and
implemented in a “big data context”, and they instead emphasise and address the
computational needs and aspects of applications and services to be deployed. BigDataStack
aims at addressing these challenges (depicted in Figure 1) through concrete offerings that
range from a scalable, runtime-adaptable infrastructure management system (that drives
decisions according to data aspects), to techniques for dimensioning big data applications,
modelling and analyzing of processes, as well as provisioning data-as-a-service, by exploiting
a seamless analytics framework.

Figure 1 - Technical challenges

2.1. Terminology
Table 1 summarises the terms used in BigDataStack, not regarding acronyms but regarding
actual usage, given the vast set of concepts and technologies addressed by the stack.

Term Description
Application services Components/micro-services of a user’s application
Data services “Generic” services such as cleaning, aggregation, etc.
Dimensioning Analysis of a user’s application services to identify the data and resources

needs/requirements
Toolkit Mechanism enabling ingest of data analytics tasks & setting of requirements

(from an end-user point of view)
Graph An overall graph including the application services and the data services
Process modelling “Workflow” modelling regarding business processes
Process mining Analytics tasks per process of the “workflow”
Process mapping Mapping of business processes to analytics tasks to be executed
Interdependencies
between application
/ data services

Data flows between application components and data services

Table 1 - Terminology

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 8 of 79 bigdatastack.eu

2.2. Document structure
The document is structured as follows:

• Section 3 provides an overview of the capabilities offered by the BigDataStack
environment including the key offerings and the main stakeholders addressed by each
offering.

• Section 4 introduces the identified main phases, to showcase the interactions
between different key blocks and offerings of the stack.

• Section 5 presents the overall project architecture. Descriptions of the architecture
components are provided thereafter in

• Section 6 provides descriptions of the main architecture components.

• Finally, in Section 7, detailed sequence of events depicting the information flows are
provided. It should be noted that these sequence diagrams capture the interactions
on the overall architecture level and are not supposed to provide details of the
interactions on lower levels given that these will be provided by the corresponding
design and specification reports of the work package deliverables.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 9 of 79 bigdatastack.eu

3. BigDataStack Capabilities
This section provides an overview of the capabilities that will be offered by BigDataStack, in
terms of offerings towards an extensive set of stakeholders. The goal is to present a set of
“desired” capabilities as the key goals of BigDataStack. The components providing and
realising these capabilities are thereafter described in the overall architecture.

3.1. Key offerings
BigDataStack offerings are depicted through a full “stack” that aims at not only facilitating the
needs of data operations and applications (all of which tend to be data-intensive), but
facilitating these needs in an optimized way. As depicted in Figure 2, BigDataStack will provide
a complete infrastructure management system, which will base the management and
deployment decisions on data from current and past application and infrastructure
deployments. A representative example would be that a service-defined deployment decision
by a human expert (current approach) where they choose to deploy VMs on the same physical
host, to reduce data transfer latencies over the network (e.g. for real-time stream processing).
On the other hand, the BigDataStack approach instead will base the decision making
according to information from current and past deployments (e.g. generation rates, transfer
bottlenecks, etc.), which may result in a superior deployment configuration. To this end, the
BigDataStack infrastructure management system would propose a data-driven deployment
decision resulting in containers/VMs placed within geographically distributed physical hosts.
This simple case shows that the trade-off between service and data-based decisions on the
management layer should be re-examined nowadays, due to the increasing volumes and
complexity of data. The envisioned “stack” is depicted in Figure 2, which captures the key
offerings of BigDataStack.

Figure 2 - Key offerings

The first core offering of BigDataStack is efficient and optimised infrastructure management,
including all aspects of management for the computing, storage and networking resources,
as described before.

The second core offering of BigDataStack exploits the underlying data-driven infrastructure
management system, to provide Data as a Service in a performant, efficient and scalable
way. Data as a Service will incorporate a set of technologies addressing the complete data
path: modelling and representation, cleaning, aggregation, and data processing (including

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 10 of 79 bigdatastack.eu

seamless analytics, real-time Complex Event Processing - CEP, and process mining).
Distributed storage will be realised through a layer enabling data to be fragmented/stored
according to different access patterns and allowing the efficient expression of that data for
database storage and subsequent retrieval. Advanced modelling will be provided to enable
the definition of flexible schemas for both data in flight and at rest. These schemas will be
then utilised by the introduced seamless data analytics framework, which analyses data in a
holistic fashion across multiple data stores and locations, and operates on data irrespective
of where and when it arrives at the framework. A cross-stream processing engine will be
provided that can be executed in federated environments. The engine will consider the
latencies across data centres, the locality of data sources and data sinks, and produce a
partitioned topology that will maximise the performance.

The third core offering of BigDataStack refers to Data Visualization, going beyond the
presentation of data and analytics outcomes to adaptable visualisations in an automated
way, according to application analysis and data semantics. Visualizations will cover a wide
range of aspects (interlinked if required) besides data analytics, such as computing, storage
and networking infrastructure data, data sources information, and data operations outcomes
(e.g. cleaning outcomes, aggregation outcomes, etc.). Moreover, the BigDataStack
visualisations will be incremental, thus providing data analytics results as they are produced.

The fourth core offering of BigDataStack, the Data Toolkit, aims at openness and
extensibility. The toolkit will allow the ingestion of data analytics functions and the definition
of analytics, providing at the same time “hints” towards the infrastructure/cluster
management system for the optimised management of these analytics tasks. Furthermore,
the toolkit will allow data scientists and administrators to specify requirements and
preferences both for the infrastructure management (e.g. application requirements) and for
the data management (e.g. data quality goals, incremental analytics, information aggregation
“levels”, etc.).

The Process Modelling offering will provide a framework allowing for flexible modelling of
process analytics to enable their execution. Functionality-based process modelling will then
be concretised to technical-level process mining analytics, while a feedback loop will be
implemented towards overall process optimisation and adaptation.

Finally, the sixth offering of BigDataStack, the Dimensioning Workbench aims at enabling the
dimensioning of applications in terms of predicting the required data services, their
interdependencies with the application micro-services and the necessary underlying
resources.

3.2. Stakeholders addressed
BigDataStack provides a set of endpoints to address the needs of different stakeholders as
described below:

1. Data Owners: BigDataStack offers a unified Gateway to obtain both streaming and
stored data from data owners and record them in its underlying storage infrastructure
that supports SQL and NoSQL data stores.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 11 of 79 bigdatastack.eu

2. Data Scientists: BigDataStack offers the Data Toolkit to enable data scientists both to
easily ingest their analytics tasks and to specify their preferences and constraints to
be exploited during the dimensioning phase regarding the data services that will be
used (for example preferences for the data cleaning service).

3. Business Analysts: BigDataStack offers the Process Modelling Framework allowing
business users to define their functionality-based business processes and optimise
them based on the outcomes of process analytics that will be triggered by
BigDataStack. Mapping to specific process analytics tasks will be performed in an
automated way.

4. Application Engineers and Developers: BigDataStack offers the Application
Dimensioning Workbench to enable application owners and engineers to experiment
with their application and obtain dimensioning outcomes regarding the required
resources for specific data needs and data-related properties.

These previously mentioned actors provide information that is exploited thereafter by the
infrastructure/cluster management pillar of BigDataStack. It should be noted that on top of
these offerings, the Visualization Environment is also an interaction point with end users,
providing the outcomes of analytics as well as the monitoring results of all infrastructure and
data-related operations.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 12 of 79 bigdatastack.eu

4. Main phases
The envisioned operation of BigDataStack is reflected in four main phases as depicted in
Figure 3 (and further detailed in the following sub-sections): Entry, Dimensioning,
Deployment and Operation.

Figure 3 - BigDataStack Main Phases

During the entry phase, data owners ingest their data through a gateway. Analysts design
business processes by utilising the functionalities of the Process Modelling framework in
order to describe the overall business workflows, while data scientists can specify their
preferences and pose their constraints through the Data Toolkit.

During the dimensioning phase, the individual processes / steps of the overall process model
(i.e. workflow) are mapped to analytics tasks, and the graph is concretized (including specific
analytics tasks and application services to be deployed). The whole workflow is modelled as
a playbook descriptor and is passed to the Dimensioning Workbench. In turn, the
Dimensioning Workbench provides insights regarding the required infrastructure resources,
for the data services and application components, through an envisioned elasticity model that
includes estimates for different Quality of Service (QoS) requirements and Key Performance
Indicators (KPIs).

The goal of the deployment phase is to deliver the optimum deployment patterns for the data
and application services, by considering the resources and the interdependencies between
application components and data services (based on the dimensioning phase outcomes).

Finally, the operation phase facilitates the provision of data services including technologies
for resource management, monitoring and evaluation towards runtime adaptations.

4.1. Entry phase
During the entry phase, data is introduced into the system, the Business Analysts design and
evaluate their business processes, and the Data Scientists specify their preferences and
constraints through the Data Toolkit. Thus, the Entry Phase consists of three discrete steps:

• Data owners ingest their data in the BigDataStack-supported data stores through a
unified API. They can directly choose if they want to store (non-) relational data or use
the BigDataStack’s object storage offering. Moreover, historical data can periodically
move from the operational database to object storage, keeping only recent data on
the database and providing a backup mechanism. Streaming data can also be
processed, leveraging the BigDataStack’s CEP implementation.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 13 of 79 bigdatastack.eu

• Given the stored data, Business Analysts can design processes utilising the intuitive
graphical user interface provided by the Process Modelling framework, and the
available list of “generic” processes (e.g. customer segmentation process). Overall
they compile a business workflow, ready to be mapped to concrete tasks that will be
executed. These mapping is performed by a mechanism incorporated in the Process
Modelling framework, which is called Process Mapping.

• Based on the outcomes of process mapping, the graph of services (representing the
corresponding business workflow) is made available to the Data Scientists through the
Toolkit. The scientists can specify preferences for specific tasks, for example, how a
data cleaning service should treat missing values or ingest a complete algorithm in the
case this has not been mapped (and as a result made available) by the Process
Mapping mechanism.

The output of the Entry Phase is a playbook descriptor (that includes all relevant information
for the application graph with concrete “executable” services) that is passed to the
dimensioning phase in order to identify the resource needs for the services and as a result for
the overall application.

4.2. Dimensioning phase
The dimensioning phase of BigDataStack aims at optimizing the provision of data services and
data-intensive applications by understanding not only their data-related requirements (e.g.
related data sources, storage needs, etc.) but also the data services requirements across the
data path (e.g. the resources needed for effective data representation, aggregation, etc.) and
the interdependencies between application components and data services (both included as
processes through the process modelling approach described in the previous paragraph). In
this context, dimensioning includes a two-step approach that is realised through the
BigDataStack Application Dimensioning Workbench:

• In the first step, the input from the Data Toolkit (i.e. playbook) is used to define the
composite application (consisting of a set of micro-services) needs with relation to
the required data services. The example illustrated in Figure 4 shows that 3 out of the
5 application components require specific data services for aggregation and analytics.

• The second step is to dimension these identified/required data services, as well as all
the application components, regarding their infrastructure resource needs. That is
achieved by exploiting a load injector generating different loads, to benchmark the
services and analyse their resources and data requirements (e.g. volume, generation
rate, legal constraints, etc.).

Figure 4 - Dimensioning phase

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 14 of 79 bigdatastack.eu

The output of the dimensioning phase is an elasticity model, i.e., a mathematical function that
describes the mapping of the input parameters (such as workload and QoS) to needed
resource parameters (such as the number of VMs, bandwidth, latency etc.).

4.3. Deployment phase
The deployment approach of BigDataStack aims at orchestrating the optimum deployment
patterns and practices for both data services and applications. The need for such optimisation
emerges from the fact that all services to be deployed have interdependencies that need to
be considered, to obtain a practical deployment, as well as to account for the user’s
preferences (e.g. minimisation of cost). To this end, the deployment approach of BigDataStack
includes a two-step phase and is realised through the Deployment mechanism of the
BigDataStack infrastructure/cluster management system:

• Deployment receives the dimensioning information for components from the
Dimensioning phase and decides on the overall optimum deployment pattern through
a ranking mechanism.

• Following the identification and analysis of the interrelations and the impact of the
components, in terms of computation, storage and networking resources (considering
data characteristics such as volumes, application components and data services I/O
rates, legal constraints, etc.), optimum deployment patterns will be compiled as
shown in Figure 5.

Figure 5 - Deployment phase

4.4. Operations phase
The operation phase of BigDataStack is realised through different components of the
BigDataStack infrastructure management system, and aims at the management of the
complete physical infrastructure resources, in an optimised way for data-intensive
applications.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 15 of 79 bigdatastack.eu

Figure 6 - Operations phase

The operation phase includes a seven-step process as depicted in Figure 6:
• Based on the deployment phase, outcomes regarding the optimised deployment

pattern, computing resources are reserved and allocated.
• According to the allocated computing resources, storage resources are also reserved

and allocated. It should be noted that storage resources are distributed.
• Data-driven networking functions are compiled and deployed to facilitate the diverse

networking needs between different computing and storage resources.
• The application components and data services are deployed and orchestrated based

on “combined” data and application-aware deployment patterns. An envisioned
orchestrator mechanism will compile the corresponding orchestration rules according
to the deployment patterns and the reserved computing, storage and network
resources.

• Data analytics tasks will be distributed across the different data stores to perform the
corresponding analytics, while orchestration of application components and data
services is also performed.

• Monitoring data is collected and evaluated for the resources (computing, storage and
network), application components and data services and functions (e.g. query
execution status).

• Runtime adaptations take place for all elements of the environment including
resource re-allocation, storage and analytics re-distribution, re-compilation of
network functions and deployment patterns.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 16 of 79 bigdatastack.eu

5. Architecture
The following figure (Figure 7) presents the initial architecture of BigDataStack, depicting the
main information flows and interactions between key components.

Figure 7 - BigDataStack architecture model

First, the raw data is ingested through the Gateway & Unified API component to the Storage
engine of BigDataStack, which enables storage and data migration across different resources.
The engine includes both stores for relational and non-relational data, as well as an object
store and a CEP engine for streaming data processing. The raw data can be processed by the
Data Cleaning component, which enhances its quality in terms of completeness, accuracy and
volatility. Thereafter, the cleaned data is passed to the Data Layout Optimization framework
where it is modelled (using flexible schemas to describe streaming and stored data), as well
as annotated with metadata.

Given the stored data, decision-makers can model their business workflows through the
Process modelling framework that incorporates two main components. The first component
is Process modelling, which provides an interface for business process modelling and the
specification of optimisation goals for the overall process. Based on the analytics tasks
available in the Catalogue, Process mapping identifies the specific mining and analytics tasks
needed to realise the corresponding business processes. The outcome of the component is a
model in a structural representation e.g. a Docker Compose file [1]. Following, through the
Data Toolkit, data scientists design, develop and ingest analytic processes/tasks to the
Catalogue of Predictive and Process Analytics. This is achieved by combining a set of available
or under development analytic functions into a high-level definition of the user’s application.
For instance, they define executables/scripts to run, as well as the execution endpoints per
workflow step. Data scientists can also declare input/output data parameters, analysis
configuration parameters, (e.g. the k in a k-means algorithm), execution substrate

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 17 of 79 bigdatastack.eu

requirements (e.g. CPU, memory limits etc.) and software packages/dependencies (e.g.
Apache Spark, Flink etc.). During this step, data scientists and DevOps/QA engineers can also
give their feedback on the entire process design and proceed to optimisation. Finally, the
output of the Data Toolkit component is a ‘Playbook’ descriptor, enriching the output of the
previous step (i.e. Process Modelling), in the form of an enriched Docker Compose file. The
latter is passed to the Application dimensioning workbench to estimate the resource
requirements by also considering interdependencies between services. The primary output
of the component is an elasticity model, which defines the mapping of the input QoS
parameters to the concrete resource needed (such as the number of VMs, bandwidth, latency
etc.). Thus, it enables the investigation of optimisation options by the next step of the process,
the Candidate Deployment Patterns Generations in the Realization engine. Based on the
obtained dimensioning outcomes (i.e. resource needs and dependencies) and the availability
of resources (information received from the Resource management engine), deployment
patterns are compiled and used for deployment on the selected resources (through the
Application & data services deployment mechanism), along with potential configuration
parameters obtained by the Holistic services configuration component. The Dynamic
orchestrator performs orchestrations of the application and data services on the allocated
resources. The execution of the data analytics tasks (triggered by the Dynamic orchestrator),
is performed on the Seamless data analytics framework that facilitates analytics across
multiple resources and locations.

During runtime, the Triple monitoring engine collects data regarding resources, application
components (e.g. application metrics, data flows across application components, etc.) and
data operations (e.g. analytics / query progress, storage distribution, etc.). The collected data
is evaluated through a QoS Evaluation component to identify events/facts that affect the
overall quality of service. These are utilised by the Runtime adaptation engine, which includes
a set of components (i.e. cluster resources re-allocation, storage and analytics re-distribution,
network functions re-compilation, application and data services re-deployment, and dynamic
orchestration patterns), to trigger the corresponding runtime adaptations needed for all
infrastructure elements to maintain QoS. These adaptations are aligned with the elasticity
model compiled from the Application dimensioning workbench during the analysis of the
application.

Moreover, the architecture includes the so-called Global decision tracker, which aims at
storing all the decisions taken by the various components. We plan to take advantage of this
recorded historical information to perform future optimisations. The key rationale for the
introduction of this component is the fact that decisions have a cascading effect in the
proposed architecture. For example, a dimensioning decision affects the deployment patterns
compilation, the distribution of storage and analytics, etc. The information about whether
these decisions are altered during runtime will be exploited for optimised future choices
across all components through the decision tracker. Moreover, the tracker holds additional
information such as application logging data, Candidate Deployment Patterns, QoS failures,
etc. Thus, as a global state tracker, it will provide the ground for cross-component
optimisation, as well as tracking the state and history of BigDataStack applications.

Finally, the architecture includes the Adaptive visualisation environment, which will provide
completely and dynamically (regarding sources and data artefacts being presented), all

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 18 of 79 bigdatastack.eu

information, including raw data, cleaned and modelled data, analytical queries, and resources
monitoring information.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 19 of 79 bigdatastack.eu

6. Main architectural components
Based on the overall architecture presented in the previous chapter, this chapter provides
additional information regarding the individual components of the BigDataStack architecture.

6.1. Resources Management
The Resource Management sub-system provides an Enterprise grade platform which
manages Container-based and Virtual Machine-based applications consistently on cloud and
on premise infrastructures. This sub-system makes the physical resources (e.g. CPUs, NICs and
Storage devices) transparent to the applications. The application’s requirements will be
computed based on the input from the Realisation Engine and by a constant monitoring using
the Triple Monitor. The applications’ required resources are automatically allocated from the
available existing infrastructures and will be dismissed upon execution completion. Thus, the
Resource Management sub-system serves as an abstraction layer over today’s
infrastructures, physical hardware, virtual hardware, private and public clouds. This
abstraction allows the developing of compute, networking and storage management
algorithms which can work on a unified system, rather than dealing with the complexity of a
distributed system.

BigDataStack will build on top of the open source OpenShift Origin project for its Resource
Management sub-system. The OpenShift Origin project is an upstream project used in Red
Hat’s various OpenShift products. It is based and build around Kubernetes and CRI-O and is
enhanced with features requested by commercial customers and Enterprise level
requirements. More specifically, OpenShift Kubernetes Distribution (OKD) [2] will be used
(note that OKD is released under an Apache License 2.0). According to Duncan et al. [3] ODK
is “an application platform that uses containers to build, deploy, serve, and orchestrate the
applications running inside it”. OKD simplifies the whole process [4] of the deployment of a
“fine-grained management over common user applications” and management of the
containerized software (the lifecycle of the applications). Since its initial release in 2011, it has
been adopted by multiple organizations and has grown to represent a large percentage of the
market. According to IDC [5], OKD aims at accelerating the application delivery with “agile and
DevOps methodologies”; moving the application architectures toward micro-services; and
adopting a consistent application platform for hybrid cloud deployments.

As a base technology, OKD uses CRI-O for containerization and Kubernetes [6] for their
orchestration, including packaging, instantiation and running the containerized applications.
It also implements “geard” or “gear daemon” [7], a command-line client for the management
of Docker containers and its linkage to systems across multiple hosts, used for the installation
and management of application components; and Project Atomic [8] an operating system
designed to run Docker containers. On top of the above described technologies, OKD adds
[9]:

• Source code management, builds, and deployments for developers
• Managing and promoting images at scale as they flow through your system
• Application management at scale
• Team and user tracking for organizing a large developer organization
• Networking infrastructure that supports the cluster

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 20 of 79 bigdatastack.eu

OKD integrates in the DevOps and users’ operation following a hierarchical structure, as
shown in Figure 8. A master node centralizes the API/authentication, data storage,
scheduling, and management/replication operations, while applications are run on Pods
(following the Kubernetes philosophy [6] and run on a federated cloud).

Figure 8 - OKD architecture overview inside the DevOps operation [9]

Following this layered architecture, users access the API, web-services and command line
directly from the master node, while the applications are accessed through the routing layer
where the application is location, that is, in the physical machine the Pod was deployed.
Finally, the integrated container registry includes the set of container images which can be
deployed in the system.

Another important point for the project is the protection of security and privacy of the user.
On top of the security provided by Kubernetes, OKD also offers granular control on the
security of the cluster. As shown in [6], users can choose a whitelist of cipher suites to security
meet security policies; and share PID between containers to control the cooperation of
containers.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 21 of 79 bigdatastack.eu

Figure 9 - OKD architecture overview in the users operations [3]

6.2. Data-Driven Network Management
The Data-Driven Network Management component will efficiently handle computing and
storage resources, by collectively building intelligence through analytics capabilities. The
motivation is to optimise computing and storage mechanisms to improve network
performance. This component can obtain data from different BigDataStack layers (i.e. from
storage layer to applications layer) and will be used to extract knowledge out of the large
volumes of data to facilitate intelligent decision making and what-if analysis. For example,
with big data analysis, the data-driven network management will know which storage or
computing resource has high popularity. Based on the analysis result, the component will be
able to produce insights on how to redistribute storage and/or computing resources to reduce
network latency and satisfy access load.

Monitoring mechanisms over the storage layer will provide information to adjust the network
parameters (e.g. my enforcing policies to achieve a significant reduction in data retrieval and
response time). Also, monitoring mechanisms over the computing layer will enable the
development of functionalities and enforce policies that will satisfy users’ requirements
regarding runtime and performance.

To serve data-driven network management, we will analyse the data coming from storage
and computing resources within a workflow which is depicted in Figure 10. The workflow is

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 22 of 79 bigdatastack.eu

composed of three components namely: ingest, which consumes network data, process,
which computes network metrics and analyse, which produces network insights. The lifecycle
of the analysis task includes a set of algorithms that enable computational analytics over the
data, conduct a set of control mechanisms and infer knowledge related to resources
optimisation. Taking advantage of data-driven network management, big data applications
will be able to access the global network view and programmatically implement strategies to
leverage the full potential of the physical storage and computing resources.

Figure 10 - Data-Driven Network Management components

6.3. Dynamic Orchestrator
The Dynamic Orchestrator assures that scheduled applications conform to Service Level
Objectives (SLOs). Such SLOs reflect Quality of Service (QoS) parameters and might be related
to throughput, latency, cost or accuracy targets of the application. For example, to predict
potential vessel collisions, an application processing vessel sensor data might have hard
latency targets that need to be met by the system, so that vessels can react in time. The
dynamic orchestrator assures conformation to SLOs by applying various dynamic optimisation
techniques throughout the runtime of an application at multiple layers across various
components of the data-driven infrastructure management system.

As such, the Dynamic Orchestrator is the component that maintains:

• The knowledge about potentially complementary (or conflicting) actions that other
components can apply.

• The intelligence for deciding which of those actions shall be taken, when, by which
component, and to which extent.

Figure 11 depicts the high-level interactions of the dynamic orchestrator with other
components. Newly scheduled applications are deployed through the Application and Data
Service Ranking component (ADS). ADS ranks possible deployment patterns/configurations
(CDPs) and selects the one which is predicted to best satisfy the SLOs. After an application is
deployed, the orchestrator monitors its performance through the triple monitoring engine. In
case of (predicted) SLO violations, it has two choices: (i) Initiate a re-deploy of the application
through ADS (we envision that this choice will be made when SLOs can only be reached with
major deployment changes, e.g., selecting another ADS ranking option), (ii) Performing more
fine-grained adaptations at different components of the system (e.g., the orchestrator might
reconfigure infrastructure services such as networking resources).

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 23 of 79 bigdatastack.eu

Figure 11 - High-Level Interaction with other Components

Note, that each of the other components also has its internal control loop and its internal
logic for performing (high-responsive) actions, independently of the orchestrator or any of
the other components. The primary challenge of the dynamic orchestrator is to reach a (close-
to) optimal adaptation decision quickly, i.e., with a small overhead. This is a difficult goal,
because application tasks will be distributed and adaptation can be achieved at different
components (application, platform, network, storage). In practice, two adaptation techniques
at different components might lead both to conformation of SLOs. Likewise, two adaptations
at two components, might also conflict with each other. As such, the main challenges of the
dynamic orchestrator are:

• Conflicting adaptations in different components

• Small overhead for adaptation decisions

• Optimal adaptation

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 24 of 79 bigdatastack.eu

Figure 12 - Dynamic Orchestrator Detailed View

Figure 12 depicts a more detailed view of the dynamic orchestrator. As described in the
previous section, the dynamic orchestrator can either initiate a re-deployment, through a re-
ranking of deployment patterns via ADS ranking, or perform more fine-grained adaptations
to keep a running application inside its SLOs (e.g., latency requirements). These dynamic
adaptations are realised through runtime adaptations at multiple controllers (a.k.a., layers or
components) of the BigDataStack platform.

6.4. Triple Monitoring
The monitoring engine manages and correlates/aggregates monitoring data from different
levels to provide a better analysis of the environment, the application and data; allowing the
orchestrator to take informed decisions in the adaptation engine. The engine collects data
from three different sources:

• Infrastructure resources of the compute clusters such as resource utilisation (CPU and
RAM), availability of the hosts, data sources generation rates and windows. This
information allows the taking of decisions at a low level. These metrics are directly
provided by the infrastructure owner or through specific probes, which track the
quality of the available infrastructures.

• Application components such as application metrics, data flows across application
components, availability of the applications etc. This information is related directly to
the data-driven services, which are deployed in the infrastructure. These metrics are
associated with each application, and they should be provided by those applications.

• Data functions/operations such as data analytics, query progress tracking, storage
distribution, etc. This is a mix of data and storage infrastructure information providing
additional information for the “data-oriented” infrastructure resources.

The component will cover both raw metrics (direct measurements provided by the
infrastructure deployed sensors or external measurement systems like the status of
infrastructure) and aggregated metrics (formulas to exploit metrics already collected and

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 25 of 79 bigdatastack.eu

produce the respective aggregated measurements that can be more easily used for QoS
tracking). The collection of metrics will be based on both solutions: the direct probes in the
system that should be monitored and the direct collection of the data from the monitoring
engine.

• The probe approach will cover the information systems, where the platform will be
able to deploy and collect direct information. In this case, the orchestration engine
must manage the deployment of the necessary probes. This approach can cover other
cases, where the probe is included directly in the application, and the orchestration
only needs to deploy the associated application, which can provide the metric
information to the monitoring engine.

• The direct collection will cover the scenarios where the platform cannot deploy any
probe, but the infrastructures or the applications expose some information regarding
these metrics. In this case, the monitoring engine will be responsible for collecting the
metrics data that are exposed by a third party.

After collecting and processing the data, the monitoring engine will be responsible for
notifying other components when an event happens based on the metrics that it is tracking
and specific attributes such as computing, network, storage or application level. Moreover, it
will expose an interface to manage and query the content.

Figure 13 depicts the Triple Monitoring Engine and their components.

Figure 13 - Triple Monitoring Engine architecture diagram

The Tripe Monitoring Engine will be based on the Prometheus monitoring solution (see [11]
for more details) and is composed of the following components:

• Monitoring Interface: This is responsible for exposing the interface to allow other
components to communicate. The interface will manage two ways of interaction with
other components: i) exposing a REST API that will enable other components to know

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 26 of 79 bigdatastack.eu

specific information, for example, if other component wants to know more details
about one violation, to take the correct decision, or if they need to configure new
metrics to collect directly by the monitoring engine. Therefore, the interface will
consist of both a REST interface and a publish/subscribe notification interface.

• Monitoring Manager: This is the core of the engine. It is responsible for receiving all
the data, process and aggregate it, depending on the type, such as application
components, Data & Services and cluster resources, as well as persist it within the
monitoring database. Therefore, all the logic of the engine will be incorporated in this
component.

• Monitoring DB: This is responsible for persisting all the data. The database will be
dimensioned depending on historical requirements, the kind of aggregation and the
expected volume of data produced by the metrics. The monitoring DB component will
either be a separate component or provide all the information to the global decision
tracker of the architecture.

• Collector Layer: This is responsible for obtaining the metrics data to be moved to the
Monitoring manager. There are ways collect data; through a probe or direct collection:

o Probe API will expose an interface to allow different kinds of probes to send
the metrics to the monitoring engine.

o Direct collection component: it will collect directly the metrics data, by calling
other systems or components. For example, it will receive the data directly
from the Resource management engine or call the third-party libraries to
obtain the state of the application.

Integration with resource management engines
The Triple Monitoring Engine provides APIs for receiving metrics from different sources
(infrastructure, application and data services) and expose them for consumption. Although
different APIs will be available due to the great diversity of monitoring data sources, the
recommended API is the “Prometheus exporters” model. Some of the technologies that are
being considered for BigDataStack are already integrated within Prometheus, as shown in
Table 2.

Technology
component

Monitoring aspect Prometheus
exporter availability

Prometheus exporter name

Kubernetes Computing
infrastructure

Yes Kubernetes

OpenStack Computing
infrastructure

Yes Prometheus OpenStack
exporter

Spark/Spark SQL Data
functions/operations

Yes SparkMeasure, jmx

IBM COS (Cloud
Object Store)

Data infrastructure No

LeanXcale database Data infrastructure For some metrics

Table 2 - Prometheus integration

QoS Evaluation

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 27 of 79 bigdatastack.eu

The QoS is directly connected with the Tripe Monitoring Engine to evaluate the quality of the
services on the platform. The component will be responsible for notifying if something
happens in some of the conditions defined for the services at the different levels,
infrastructure performance, storage and application components. Therefore, the component
is not responsible for obtaining the metrics (delegated to the Monitoring Engine), and neither
to apply the defined rules when something happens. It focuses on the identification of rules
violations and their notification.

The component evaluates whether the Service Level Objectives (SLOs) which are set for a
given application or data service are being fulfilled. An SLO specifies a constraint on Non-
Functional Requirements. An SLO may describe a business penalty to apply in case of
violation.

The component is based on the following components

• Interface component (REST API): the component is responsible for managing the
lifecycle of the QoS component.

• QoS database: it is responsible for storing all the content agreements, violation,
service level objectives. This will be stored in the Global Decision Tracker.

• Evaluator: it is responsible for performing QoS evaluation. A periodic thread is started
to check the expiration date of agreements. For each enabled agreement, it starts a
task to check agreement evaluation by getting needed metrics from the adapter. The
task is also started when metrics are received from the Notifier.

• Adapter: it is responsible for calling the monitoring system to obtain the metrics data.
It will be different for each monitoring system, so it will be accountable for building
the specific request to the Triple Monitoring System to gather and transform metrics
to have them ready to compare with SLOs by the Evaluator.

• Notifier: It is responsible for notifying to third parties that want to be alerted if
something happens in the defined agreements, such that corrective actions can be
taken.

6.5. Applications & Data Services Ranking / Deployment
Application and Data Services Ranking/Deployment is a top-level component of the
BigDataStack platform, as defined in the central architecture diagram. It belongs within the
realisation engine of the platform and is concerned with how best to deploy the user’s
application to the cloud, based on information about the application and cluster
characteristics. From a practical perspective, its role is to identify which - of a range of
potential deployment options - is the best for the current user, given their stated (hard)
requirements and other desirable characteristics (e.g. low cost or high throughput), as well as
operationalize the deployment of the user’s application based on the selected option.

In practice, the Application and Data Services Ranking/Deployment is divided into two main
sub-components which we describe in more detail below:

• Application and Data Services Ranking (ADS-Ranking): Which is dedicated to the
selection of the best deployment option

• Application and Data Services Deployment (ADS-Deploy): Which is concerned with

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 28 of 79 bigdatastack.eu

the physical scheduling/deployment of the application for the selected deployment
option

Application and Data Services Ranking (ADS-Ranking)
ADS-Ranking is strongly coupled to the Application & Data Services Dimensioning (ADS-
Dimensioning) component of BigDataStack that sits above it. The main output of ADS-
Dimensioning is a series of candidate deployment patterns (ways that the user’s application
might be deployed) including resource prediction models. It is these deployment patterns
that ADS-Ranking takes as input and subsequently selects one or more ‘good’ options.

It is envisaged that communication to and from ADS-Ranking will be handled via the Publisher-
Subscriber design pattern. In this case, ‘messages’ are sent between components, which
trigger processing on the receiving component. More precisely, ADS-Ranking subscribes to
ADS-Dimensioning to receive packages of deployment patterns (one package per-user
application to deploy). On-receive, this triggers the ranking of the provided deployment
patterns, as well as the filtering out of patterns that either do not meet the user’s
requirements, or that are otherwise predicted to provide unacceptable performance. After
ranking/filtering is complete, ADS-Ranking will select a single deployment pattern to send to
ADS-Deploy for physical scheduling on the available hardware.

Figure 14 illustrates the data flow between the components around ADS-Deploy. As we can
see, ADS-Dimensioning first gets information about the user’s application and preferences
and uses these to produce a package of candidate deployment patterns (CDPs), that we might
consider instantiating to deploy the user’s application. This pattern package is sent as a
message to ADS-Ranking, which ranks and filters those patterns, and finally selecting one
(Selected CDP), which is predicted to efficiently and effectively satisfy the user’s
requirements. This top pattern is placed in a message envelope and sent to both ADS-Deploy
for physical scheduling and the dynamic orchestrator such that deployment-based activities
can be triggered.

Figure 14 - Process Flow for ADS Ranking/Deploy

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 29 of 79 bigdatastack.eu

Internally, ADS-Ranking supports three central operations: 1) the first-time ranking/filtering
of CDPs; 2) re-ranking of CDPs in scenarios where the previous deployment is deemed
unsuitable, and 3) the learning of models to operationalise CDP ranking. The first operation
(CPD ranking and filtering) is comprised of three main processes. These three processes are:

• CDP Aggregate Representation Builder: This takes as input a set of CDPs, and for each
CDP in that package, it builds a single vector representation for that CDP, which
combines all the information provided in its Predicted Performance block. The output
of this component is the list of CDPs along with their new vector representations.

• Deployment Pattern Ranking: This process takes the CDPs and vector representations
as input and ranks those CDPs based on their predicted suitability, with respect to the
user’s desired characteristics. To achieve this, it uses a supervised model trained on
previous CDP deployments and their observed fitness. The output of this process is a
ranking of CDPs.

• Deployment Pattern Selection: This process takes as input the ranking of CDPs and
selects one of these CDPs. That may be a simple process that takes the top CDP and
filters out the rest. However, it may include more advanced techniques to better fit
with user needs, such as making sure the selected CDP will provide sufficient extra
processing capacity, in the case of applications that process data streams with
fluctuating data rates. The output of this process is a single CDPs that can be deployed.

The second function (CDP Re-Ranking) is similar to the primary function, with the exception
that it takes in a CDP that has been deemed to have failed for some reason along with context
about that CDP (e.g. why it failed and the other CDPs that were not selected for the same
application), and it introduces an additional ‘Failure Encoding’ process:

• Failure Encoding: This process examines the context of a failed CDP and encodes that
failure into the CDP structure, such that it can be used by the CDP Aggregate
Representation Builder when representing candidate CDPs. In this way, properties
that promote other CDPs, which will not suffer from the same issues of the failed CDP
encountered, can be up-weighted during ranking.

ADS-Ranking’s third function enables it to update the ranking model used within Deployment
Pattern Ranking. This secondary function involves two main processes:

• Model Manager: This process is responsible for managing the creation/updating of
the learning to rank models that are used within ADS-Ranking. The Model Manager
has two modes of operation. First, it may trigger an update of the underlying learning
to rank model once the previous model has reached a pre-defined age. For instance,
we might refresh the model once each day. Second, model updating may be triggered
by other components by sending an update message to the Model Manager’s
Subscriber. That might be used in the case where a deployed CDP has been identified
as non-viable by the monitoring services, and hence this should be fed into the
learning framework to improve the ranking.

• Learning to Rank: This process is responsible for performing the learning of the
underlying ranking model. When triggered by the Model Manager, it will source

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 30 of 79 bigdatastack.eu

training examples from the Global Decision Tracker and start learning a new ranking
model. This new model will replace the old one when training completes.

Figure 15 illustrates the main processes and data flow within ADS-Ranking.

Figure 15 - Internal Components of ADS-Ranking

Application and Data Services Deployment (ADS-Deploy)
This process is triggered by the ADS-Ranking and takes as an input the selected CDP. The
output of this component is both starting a specific configuration on the cloud infrastructure
for the user, that is, one or more containers configured according to the information included
in the CDP and informing the user about the success of the creation operation. To achieve
this, the ADS-Deploy component interacts with a container orchestration service (e.g.
Kubernetes), translating for the latter the CDP into instructions for its correct deployment on
it.

This task is divided into the following steps:

1. Receive and check CDP. The component checks that the CDP triggering the
deployment process is structurally correct.

2. Translate CDP. The CDP is translated to an ontology that the orchestrator will
understand.

3. Interpretation and deployment. The orchestrator interprets the file received and
starts the containers and rules.

4. Communication with the user. The result of the process (either success or fail) is
communicated to the rest of the architecture (an ultimately, to the user) as an event
by means of a publisher-subscriber model. The main subscribers to this event will be
the Dynamic Orchestrator and ADS-Ranking components.

6.6. Data Cleaning
The data cleaning mechanism will incorporate a set of algorithms to enable domain-agnostic
cleaning and harmonisation of data. The latter is proposed as an approach that results to a

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 31 of 79 bigdatastack.eu

mechanism being “generalised” and applicable to different application domains and as a
result to different datasets. While current solutions in data cleaning are quite efficient when
considering domain knowledge (for example in eHealth regarding the correlation between
different measurements of different health parameters), they provide limited results
regarding data volatility, if such knowledge is not utilised. BigDataStack will provide a data
cleaning service that exploits Artificial Neural Networks (ANN) and Deep Learning (DL)
techniques, to extract latent features that correlate different fields (of datasets) and identify
possible defects in these datasets.

Furthermore, the mechanism will be enhanced to evaluate and assess the corresponding
quality levels of the data sources. To this end, by monitoring the frequency of the errors that
arrive from a specific source, the data cleaning mechanism will identify possible deterioration
and levels of data veracity. This will be correlated with the information regarding the obtained
data and the corresponding quality / verification outcomes properties, to provide a complete,
holistic snapshot of the data source and the actual data veracity.

The key issues that need to be handled by the Data Cleaning service are:

• Work in a context-aware but domain-agnostic fashion. The process should be
adaptable to any dataset, learn the relationships between the data points and
discover possible inconsistencies.

• Enhance the quality of the raw data, in terms of completeness, accuracy and veracity.
In other words, the service should address the problem of missing values and identify
distorted or erroneous data points.

• Identify source function deterioration. If a source constantly measures and transmits
distorted signals, or even produce no data at all, the system should take notice and
raise a suitable alert. It should also check against previous datasets, to verify data
veracity.

• Model the relationships between data points and reuse the learned patterns. The
system should save the models learned by the machine learning algorithms, and reuse
them through an optimisation component, that checks if the raw data have similar
patterns, dataset structure or sources. In that case, already existing models should be
activated, to complete the process in an efficient manner.

The way to learn and predict the relationships between data points, to discover possible
deviations, is to exploit the recent breakthroughs in Deep Learning, and the idea of an
embedding space. Figure 16 depicts a serial architecture, which tries to predict if two entities
are related to each other.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 32 of 79 bigdatastack.eu

Figure 16 - Domain agnostic data cleaning model architecture

Given the learned distributed encodings of each entity 𝑥𝑥,𝑦𝑦 or, in our case, any data point, we
can discover if these two candidate entities or data points are related. Thus, considering a
medical example, if the temperature sensor emits a value that is illogical given other patient
examinations, the relationship 𝑅𝑅 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 between two data points, the actual
measurement and the patient’s condition, would be associated with a low score. To optimize
the data cleaning process, we introduce a subcomponent that retrieves previously learned
models, when a similar dataset structure arrives in the system, or the same data source sends
new data.

Data cleaning component inputs:

• The raw data ingested by the data owner through the Gateway & Unified API
• The corresponding data schema (type, rates etc.)
• The data model provided by the optimizer if exists
• User preferences and specifications, ingested through the Data Toolkit

Data cleaning component outputs:
• Cleaned and harmonised data, in terms of completeness, accuracy and veracity
• Trained, reusable ML models, stored in a repository for later use
• A holistic snapshot of the data source function and the actual data veracity

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 33 of 79 bigdatastack.eu

The main structure of the Data Cleaning is depicted in Figure 17.

Figure 17 - Data Cleaning Module Architecture

Based on the figure above, the flow is as follows:

• The Data Pre-processing unit takes raw data and converts them in a form that the
machine learning algorithms can work with

• The main pillar of the service is the data cleaning component, which takes the pre-
processed data as input and, optionally, a learned data model through the Model
Repository, for optimising the process

• The model repository stores and retrieves the learned models produced by the ML
(Machine Learning) component

6.7. Real-time CEP
Streaming engines are used for real-time analysis of data collected from heterogeneous data
sources with very high rates. Given the amount of data to be processed in real-time (from
thousands to millions of events per second), scalability is a fundamental feature for data
streaming technologies. In the last decade, several data streaming systems have been
released. StreamCloud [12], was the first system addressing the scalability problem allowing
a parallel distributed processing of massive amount of collected data. Apache Storm [13] and
later Apache Flink [14] followed the same path providing commercial solutions able to
distribute and parallelise the data processing over several machines to increase the system
throughput in terms of number of events processed per second. Apache Spark [15] added
streaming capability onto their product later. Spark’s approach is not purely streamed, if fact
it divides the data stream into a set of micro-batches and repeats the processing of these
batches in a loop.

The streaming engine for the BigDataStack platform will be a scalable complex event
processing (CEP) engine able to run in federated environments and to aggregate and correlate
real-time events with structured and non-structured information stored in the BigDataStack
datastores.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 34 of 79 bigdatastack.eu

Data enters the CEP engine as a continuous stream of events, and it is processed by
continuous queries. In contrast with a point in time queries (typical in database systems) that
process existing data and deliver the result, a continuous query is deployed once and
continuously delivers the result until it is decommissioned.

Continuous queries are modeled as acyclic graph where nodes are streaming operators and
edges are data streams connecting them. Streaming operators are computational units that
perform operations over events from input streams and outputs resulting events over its
outgoing streams. Streaming operators are similar to relational algebra operators, and they
are classified into three categories according with their nature, namely: stateless, stateful and
datastore.

• Stateless operators are used to filter and transform individual events. Output events,
if any, only depend on the data contained in the current event.

• Stateful operators produce results based on state kept in a memory structure named
sliding window. Sliding windows store tuples according to spatial or temporal
conditions.

• Datastore operators are used to integrate the CEP with the BigDataStack datastores.
These operators allow to perform correlation among real time streaming data and
data at rest.

The main components of BigDataStack CEP are:

• Orchestrator: it oversees the CEP. Register and deploy the continuous queries in the
engine.

• Instance Manager: it is the component that runs a continuous query or a piece of it.
• Edge Worker: It is the components that connect with the sensors and performs pre-

processing on the edge of the system.
• Reliable Registry: A store information related to the query deployments and

components status.
• Driver: The interface between the CEP and other applications. Applications can use

the CEP

Driver to register/unregister or deploy/displace a continuous query, discover where a source
streams are deployed, subscribe with the output streams of the queries to consume results
and mainly to send events to the engine.

6.8. Process mapping
The Process mapping component of the BigDataStack architecture consists of two separate
sub-components: Predictive Analytics and Process Analytics.

• The objective of the Predictive Analytics sub-component is to predict the best
algorithm from a set of algorithms available in the Predictive and Process Analytics
Catalogue, given a specific data set D and a specific analysis task T.

• The goal of the Process Analytics sub-component is to discover Process Models and
apply Process Analytics techniques to event log data in order to optimize overall
processes (i.e. workflows).

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 35 of 79 bigdatastack.eu

Symbol Description
T An analysis task (e.g., clustering, classification…)
D A data set
T(D) The analysis task T applied on data set D
A(T) An algorithm that solves the analysis task T (e.g., A(T)=K-means for T=Clustering)
A(T,D) An algorithm applied on D to solve the task T
M(D) A model describing a data set D
T An analysis task (e.g., clustering, classification…)
D A data set
T(D) The analysis task T applied on data set D

Table 3 - Μain symbols used in process mapping

Predictive Analytics
The inputs of the Predictive Analytics sub-component consist of:

• The analysis task T (e.g., Regression, Classification, Clustering, Association Rule
Learning, Reinforcement Learning, etc.) that the user wished to perform

• Additional information that is dependent on the analysis task T (e.g., the response –
predictor variables in the case of Supervised Learning, the desired number of clusters
in the case of Clustering, etc.).

• A data set D that is subject to the analysis task T

The output of the Predictive Analytics sub-component is a selected algorithm A(T) that is
predicted to be the most suitable for executing the data analysis task T at hand.

The Predictive Analytics sub-component comprises the following four main modules:

• Data Descriptive Model: This module takes as input a data set in a given input form
and performs automatically various types of data analysis tests and computation of
different statistical properties, in order to derive a model M(D) that describes the data
set D. Examples of information that could be captured by the model M(D) include:
dimensionality and the intrinsic (fractal) dimensionality, set of attributes, types of
attributes, statistical distribution per numerical attribute (mean, median, standard
deviation, quantiles), cardinality for categorical attributes, statistics indicating
sparsity, correlation between dimensions, outliers, etc. The exact representation of a
model M(D) will be determined explicitly during the course of the project, but it can
be considered as a set of features with corresponding values. The produced model
M(D) is going to be used subsequently in order to identify previously analysed data
sets that have similarities with the given data set.

• Analytics Engine: The role of this module is twofold: (a) to query the Predictive and
Process Analytics Catalogue for algorithms available in BigDataStack that can be used
for the Analysis task at hand, and (b) to query the Analytics Repository for matching
data models Mi to the data model M(D) of the current data set.

• Analytics Repository: The purpose of this repository is to store a history (log) of
previous results of data analysis tasks on various data sets. Each record in this
repository corresponds to one previous execution of a task. It contains the model of
data set that has been analysed in the past, along with the algorithm executed, and

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 36 of 79 bigdatastack.eu

its associated parameters. In addition, the record keeps one or more quality
indicators, which are numerical quantities (evaluation metrics) that evaluate the result
quality of the specific algorithm when applied to the specific data model.

• Results Filter: Its primary role is to evaluate the results of an algorithm that has been
executed, and provide some numerical evaluations indicating how well the algorithm
performed. For example, for clustering algorithms, several implementations of
clustering validity measures can be used to evaluate the goodness of derived clusters.
For classification algorithms, the accuracy of the algorithm can be computed. For
regression algorithms, R-Squared, p-values, adjusted R-Squared and other metrics will
be computed to evaluate the quality of the result.

Figure 18 provides an overview of the different modules and their interactions. Once the
Predictive Analytics sub-component has received the required inputs, the data is ingested into
the Data Descriptive Model where characteristics and morphology aspects of the data set D
are analysed, in order to produce the model M(D). Then, together with user requirements are
forwarded to the Analytics Engine. At this point a query is made from the Analytics Engine to
the Analytics Repository, a storage of previously executed analysis models and the final
algorithms that were executed in each case. We distinguish two cases:

• No similar models can be found: In this case, the available algorithms from the
Predictive and Process Analytics Catalogue that match the user requirements are
executed, and the results are returned and evaluated in the Results Filter (where
quality metrics are computed for each run depending on its performance). The results
are stored in the Analytics Repository.

• A similar model can be found: In this case, the corresponding algorithm (that
performed well in the past on a similar data set) is executed on the data set at hand,
and the results are again analysed in the Results Filter. The results are again stored in
the Analytics Repository. In case the result is not satisfactory, the process can be
repeated for the second most similar model, etc.

Figure 18 - Internal architecture of Predictive Analytics sub-component

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 37 of 79 bigdatastack.eu

Process Analytics
The Process Analytics sub-component comprises the following four main modules:

• Discovery: The main objective of this component is via a given event log to create
a process model.

• Conformance Checking/Enhancement: This component’s role is dual. Firstly, in the
Conformance Checking Stage a process model is evaluated against an event log for
missing steps, unnecessary steps, and many more (process model replay).
Secondly, in the Enhancement Stage user input is considered (e.g. cost-
effectiveness or time effectiveness of a process) to create an according model of
a process. Also, in this stage dependency graphs will be created and through
metrics, such as direct succession and dependency measures to be utilized by the
Predictions component.

• Log Repository: A repository consisting of any changes to a model during
Conformance Checking/Enhancement stage.

• Prediction: Dependency graphs and weighted graphs of process models, created
in the Enhancement phase will be used in collaboration with an active event log to
predict behaviour of an active process.

• Model Repository: A storage unit of all process models, user-defined or created in
the Discovery stage.

The input variables of this mechanism are:
• Event logs.
• Process models (not obligatory).

The output of the mechanism is as follows:
• Discovered process models.
• Enhanced process models.
• Diagnostics on process models.
• Predictions - Recommendations on events occurring in process models.

The main structure of the predictive component is depicted in Figure 19:

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 38 of 79 bigdatastack.eu

Figure 19 - Internal architecture of Process Analytics sub-component

6.9. Seamless Analytics Framework
A single logical dataset can be stored physically in many different data stores and locations.
For example, an IoT data pipeline may involve an ingestion phase from devices via a message
bus to a database and after several months the data may be moved to object storage to
achieve higher capacity and lower cost. Moreover, within each lifecycle phase, we may find
multiple stores or locations for reasons such as compliance, disaster recovery, capacity or
bandwidth limitations etc. Our goal is to enable seamless analytics over all data in a single
logical dataset, no matter what the physical storage organization details are.

In the context of BigDataStack, we could imagine a scenario where data would stream from
IoT devices such as DANAOS ship devices, via a CEP message bus, to a LeanXcale data base
and eventually, under certain conditions be migrated to the IBM COS Object Store. This flow
makes sense since LeanXcale provides transactional support and low latency but has capacity
limits. Therefore, once the data is no longer fresh it could be moved to object storage to
vacate space for newer incoming data. This approach is desirable when managing Big Data.

The seamless analytics framework aims to provide tools to analyse a logical data set which
may be stored in one or more underlying physical data stores, without requiring deep
knowledge of the intricacies of each of the specific data stores, nor even awareness of where
the data is exactly stored.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 39 of 79 bigdatastack.eu

A given data set may be stored in multiple data stores and the seamless analytics framework
will permit analytics over it in a unified manner. We plan to adopt Apache Spark as the
framework and analytics engine to demonstrate this approach. Figure 20 depicts this concept.

Figure 20 - Seamless Interface

Data is continuously migrating between stores, and the seamless interface provides the user
with a holistic view, without needing to keep track of what was migrated when. To do this,
we propose to use the Apache Spark Data Source API which allows data store developers to
easily integrate with the Spark framework. To date, Spark supports many and varied data
stores via the Data Source API. File systems and object stores supporting the Hadoop File
System API are also supported, together with various data formats, as depicted in Figure 21.

Figure 21 - Spark Data Source API Ecosystem

Moreover, we plan to study the additional capabilities offered by the new Data Source API
V2. This API was released with Spark 2.3 but will continue to evolve in the upcoming releases
of Spark.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 40 of 79 bigdatastack.eu

6.10. Application Dimensioning Workbench
The goal of the dimensioning phase is to provide insights regarding the required infrastructure
resources for the data services and application components (micro-services), linking the used
resources with load and expected QoS levels. To this end it needs to cater for both cases of
resources needed, creating prediction/correlation models between the application/service
related information (such as KPIs and workload, parameters of the data service etc.) and the
used resources to be able to provide recommendations towards the deployment
mechanisms. Benchmarking against these services is an option that may help in concentrating
the original dataset that is needed for the creation of such supervised models, as well as
historical data from previous runs (especially for the case of the data services existing in the
BigDataStack environment).

The main issues that need to be handled by the Dimensioning Workbench are:

• The workflow based nature of the application, which implies that application (and data
service) structure should be known and taken under consideration by the analysis. To
this end, the generic structure needs to be provided as input to the Workbench,
through the Data Toolkit. On top of this structure, the workbench can generate the
model that will capture the identified quantified dependencies

• While application structure is provided to the workbench, this will often not imply a
particular deployment configuration for the application (e.g. what node types will be
suitable for the user’s application). For this reason, the dimensioning workbench
receives this input from the Pattern Generation in order to create candidate
deployment patterns, for which expected QoS will be returned to the deployment
process for final ranking and selection.

• Insertion of monitoring code patches to extract relevant information with relation to
the current monitored metrics of the application (per component), via exploiting the
aforementioned endpoints that the application needs to offer (in order to extract
application related information such as workload or application level QoS metrics).

Dependencies of the dimensioning component especially in the form of anticipated exchange
of information (in type and form) are presented in the following bullets. Inputs include:

• Structure of the application along with the used data services is considered an input,
as concretized by the Data Toolkit component (in the form of a Docker compose file)
and passed on to the Dimensioning component, following its enrichment with various
used resource types from the Pattern Generator, and including expected workload
levels inserted by the user in the Data toolkit phase. This is the structure upon which
the Dimensioning workbench needs to append information regarding experienced
QoS per component. Thus, the modelling approach selected needs to be able to
handle such workflow-based descriptions

• Types of infrastructure resources available in terms of size, type etc. This information
is necessary at the Pattern Generator side in order to create candidate deployments.

• Different types of Data Services will be provided by BigDataStack to the end users.
Each of these services may have different characteristics and functionalities, affected
in a different manner and quantity by the application input (such as the data schema

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 41 of 79 bigdatastack.eu

used). Consideration of these features should be included in the modelling of the
specific service (e.g. usage of a more or less strict SQL schema, usage of document DBs
against key value stores etc.), as well as inputs that may be received by the application
developer/data scientist, such as needed quality parameters of the service (such as
percentage of data cleaning, throughput needed etc.) or other preferences declared
through the Data Toolkit. For the latter, the declaration format should also be defined
and is a dependency of the Dimensioning workbench.

• Application related current workload and QoS values should be available to enable
dynamic adaptation of the application dimensioning workbench in terms of feedback
during the load injection phase for the training set. This would either be obtained from
application exposed endpoints or through the Triple Monitoring Engine of the
Infrastructure Management block.

Necessary outputs:

• The most prominent output of the Dimensioning phase is the concretized (in terms of
expected QoS) playbook for a candidate deployment structure for the application
components and used data services in the format needed by the ADS-Ranking
component that utilizes the dimensioning outcomes. This implies that the format used
by Dimensioning to describe these aspects should be understood by the respective
components and thus should be agreed in collaboration, defined currently as a Docker
compose file structure. More concretely, this is operationalized as a series of
candidate deployment patterns (CDPs), which describe the different ways that the
user’s application might be deployed along with the expected QoS levels per defined
metric. CDPs are provided in Docker Compose File format, such that they can be easily
used to perform subsequent application deployment. The Dimensioning phase will
augment each CDP with estimated performance metrics and/or quality of service
metrics, providing a series of indicators that can be used to judge the potential
suitability of each CDP. These estimates are used later to select the CDP that will best
satisfy the user’s deployment requirements/preferences.

The main structure of the Dimensioning is depicted in Figure 22. The component list is as
follows:

• Pattern Generation: The role of pattern generation is to define the different ways that
a user’s application might be deployed. In particular, given the broad structure of a
user’s application provided by the Data Toolkit, there are typically many ways that
this application might be deployed, e.g. using different node types or utilizing
different replication levels. We refer to these different ways that a user’s application
might be deployed as ‘candidate deployment patterns’ (CDPs). CDPs are generated
automatically through analysis of the user’s application structure provided in the form
of a Docker Compose file (known as the ‘Playbook’) from the Data Toolkit, as well as
the available cloud infrastructure. Some CDPs will be more suitable than others once
we consider the user’s requirements and preferences, such as desired throughput or
maximum cost. Hence, different CDPs will encode various performance/cost trade-
offs. These CDPs define the configurations of the user’s application that are

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 42 of 79 bigdatastack.eu

benchmarked during the Dimensioning phase, producing predicted performance and
quality of service estimations for each. Even though Pattern Generation is part of
Dimensioning, it is portrayed as an external component given that for each CDP the
core Dimensioning block will be invoked.

• Structure2Model Translator: This component acts as an abstraction layer and is
responsible for obtaining the output of the Data Toolkit containing the application
structure in the format this is expressed (e.g. Docker compose service structure) and
transforming it to the common representation needed in order to serve as input to
the Modelling Engine. The latter needs to have a standardized input to create the
performance model corresponding to the structure.

• Modelling Engine: This component is the core of the Dimensioning workbench and is
responsible for building the main model structure and training it to be able to give out
concretizations in terms of the needed resources based on dynamic inputs

• Load Injector: The injector is responsible for load generation of different load patterns
to benchmark the application and/or data services. It is also an abstraction layer since
it needs to adapt to different types of data services. Existing abstraction layers (such
as YCSB’s multi-driver logic) may help alleviate much of the burden, at least for the
database domain, however potentially other types of data services such as streaming
will be needed.

• Model repository: This component is intended to hold the created models from the
Modelling Engine for future usage or for usage during the Runtime Control.

• Output Adaptor: This component acts as an abstraction layer and is responsible for
generating the output format needed for the deployment of the service to the target
platform (in this particular case enriching the inputed Docker compose file with the
extra QoS metrics). Thus, it needs to reverse the process followed during the
Structure2Model translator.

Figure 22 - Application dimensioning internal structure and link with external components

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 43 of 79 bigdatastack.eu

6.11. Big Data Layout
Here we focus on how to best run analytics on Big Data in the cloud. Today’s best practices to
deploy and manage cloud compute and storage services independently leaves us with a
problem: it means that potentially huge datasets need to be shipped from the storage service
to the micro-service to analyse data. If this data needs to be sent across the WAN then this is
even more critical. Therefore, it becomes of ultimate importance to minimize the amount of
data sent across the network, since this is the key factor affecting cost and performance in
this context.

We refer the reader to the BigData Layout section (8.10) of the D2.1 BigDataStack deliverable
which surveys the main three approaches to minimize data read from Object Storage and sent
across the network. We augmented these approaches with a technique called Data Skipping,
which allows the platform to avoid reading unnecessary objects from Object Storage as well
as avoiding sending them across the network (also described in D2.1). As explained there, in
order to get good data skipping it is necessary to pay attention to the Data Layout.

In the IOStack H2020 project [19], we developed a data skipping method, which fits well with
Object Storage and is based on a partitioning scheme using the k-d-tree data structure in a
novel way.

This initial work has certain limitations such as:

1. It handles only static data
2. Our work focused on geospatial data from the GridPocket use case partner.
3. Our work focused on optimization of one specific query for nearest neighbor energy

comparisons

In the BigDataStack project, we plan to significantly enhance this initial research in the
following directions:

1. Handle a wider variety of datasets, go beyond geospatial data
2. Handle continuous streaming data that is appended to an existing logical dataset.
3. Continuously assess the properties of the streaming data to possibly adapt the

partitioning scheme as needed
4. Handle general query workloads. This is significant because often different queries

have different, even conflicting, requirements for data layout.
5. Handle query workloads which change over time.
6. Build a benefit/cost model to evaluate whether parts of the data set should be

partitioned anew (thus rewritten) to adapt to significant workload changes.

Previous research focused on the HDFS, whereas we plan to focus on Object Storage, which
is of critical importance in an industrial context. Object Storage adds constraints of its own:
once an object has been put in the Object Store, it cannot be modified, where even appending
to an existing object is not possible, neither can it be renamed. This means that it is important
to get the layout right as soon as possible and avoid unnecessary changes. Moreover, it is
important for objects to have roughly equal sizes (see our recent blog on best practices [16]),
and we are researching the optimal object size and how it depends on other factors such as

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 44 of 79 bigdatastack.eu

data format. Moreover, the cost model for reorganizing the data layout is likely to be different
for Object Storage than for other storage systems such as HDFS.

6.12. Process modelling framework
Process modelling provides an interface to business users to model their business processes
and workflows as well as to obtain recommendations for their optimization following the
execution of process mining tasks on the BigDataStack analytics framework. The outcome of
the component is a model in a structural representation – a Docker Compose file. The latter
is actually a descriptor of the overall graph reflecting the application and data services
mapped to specific executables that will be deployed to the BigDataStack infrastructure. To
this end, the descriptor is passed to the Application dimensioning workbench to identify their
resource requirements prior to execution.

The main issues that need to be handled by the Process modeling framework are:

• Declarative process modelling approach: Processes may be distinguished in Routine
(Strict) and Agile. Routine processes are modelled with the imperative method that
corresponds to imperative or procedural programming, where every possible path
must be foreseen at design time and encoded explicitly. If a path is missing, then it is
considered not allowed. Classic approaches like the BPEL or BPMN follow the
imperative style and are therefore limited to the automation type of processes. The
metaphor employed is the flow chart. Agile processes are modeled with the
declarative method according to which declarative models concentrate on describing
what must be done and the exact step-by-step execution order is not directly
prescribed; only the undesired paths and constellations are excluded so that all
remaining paths are potentially allowed and do not have to be foreseen individually.
The metaphor employed is rules/constraints. Agility at the process level, entails “the
ability to redesign and reconfigure Individual business process components,
combining individual tasks and capabilities in response to the environment” [17].
Declarative process modeling or a mixed approach seems to fit well in our
environment providing the necessary flexibility in process modelling, mapping and
optimization.

• Recognize workflow patterns and task types: In process-aware information systems
various perspectives can be distinguished: (i) The control-flow perspective captures
aspects related to control-flow dependencies between various tasks (e.g. parallelism,
choice, synchronization etc.), i.e. Sequence pattern: A task in a process in enabled
after the completion of a preceding task in the same process or Parallel split pattern:
The divergence of a branch into two or more parallel branches each of which execute
concurrently. (ii) The data perspective deals with the passing of information, scoping
of variables, etc. (iii) The resource perspective deals with resource to task allocation,
delegation, etc. (iv) The exception handling perspective deals with the various causes
of exceptions and the various actions that need to be taken because of exceptions
occurring. The expressiveness of modelling languages is assessed according to the
well-known workflow resource patterns [18] they can express/model.

• Data connection, schema and data sources access: Business analysts should have
access to the data schema of the specified data sources and be able to specify their
rules/constraints when feeding certain analytic tasks as part of the flow.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 45 of 79 bigdatastack.eu

• Simulated run, debug/evaluate/first level optimization: A process while being
designed must be able to perform a simulated run for debugging purposes but as well
for optimization recommendations before feeding the dimensioning framework and
head for execution.

• Structure to output to the application dimensioning framework, workflow/reference
to executables/execution logic: The output of the process modeling framework should
be a structure to feed the dimensioning framework. The structure should provide for
reproducing the process graph, the tasks mapping to executables and the logic in
terms of rules/constrains that govern the execution flow and the execution of the
process tasks. The foreseen I/O and the structure of the process modeling framework
in terms of definition of the subcomponents and their interactions are listed in the
following bullets.

Necessary inputs:
• Input from the seamless data analytics framework to assist optimization of processes

towards specified goals through the collection of performance measures and events
(process mining) during process runtime.

• Input from the Catalogue of predictive & process analytics to provide for the definition
and concretization of process tasks utilizing already developed data analytics
applications.

• Input from exposed data sources to facilitate process design and rules/constraints
definition.

• Input from the Catalogue of application components to provide for the definition and
concretization of process tasks utilizing already developed applications other than
data analytics.

Necessary outputs:
• Output the structure of the developed process model to the application dimensioning

workbench.
• Output defined tasks, relationships and process model to the repository.

The main structure of the Process modelling framework is depicted in Figure 23. The
component list is as follows:

• Modeling toolkit: This component provides the interface for business analysts to
design their processes in a non-expert way, the interface for developers to provide in
an easy way predefined tasks and relationship types as selectable and configurable
tools for business analysts and the core engine to communicate with all the involved
components towards design, concretization, evaluation, simulation, output and
optimization of a business process.

• Data connector: This component provides connection to the data sources schema and
data to be exploited as input during process design through the Modelling toolkit.
Furthermore, connection to the data sources through the data connector is required
not only during design time but also during evaluation of the associated rules (Rules
engine) and simulated run of the process (Simulator engine).

• Rules engine: The engine provides all the logic for defining rules and constraints,
evaluating and executing them. The aim is the business analyst to be provided with a

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 46 of 79 bigdatastack.eu

predefined set of rules offered as a choice through the tasks and relations toolbox. In
example, a relation between two tasks which requires to be expressed as a rule is not
to proceed in executing the 2nd task before you obtain X samples as output from the
1st task. This option could be offered to the business analyst through a configurable
behavior of a relation expressed as an arrow; the analyst clicks on the arrow
connecting the two tasks and selects the number of outputs that will trigger the
execution of the following task. Another example could be a constraint expressed as
rule such as for a task providing temperature, do not proceed to executing the
following task unless the output (temperature) is higher than X degrees Celsius.

• Model/Task repository: This component is responsible for storing reusable tasks,
defined relationships and whole process models and making it available to the
modeling toolkit.

• Simulator engine: This engine is responsible for performing a simulated run of the
defined process after being mapped in order not only to evaluate the correct execution
and help design but also to collect at a first level performance measures through the
process mining engine which will be used by the optimization engine to provide a first
set of optimization recommendations during design.

• ProcessStructure2Model Translator: This component is responsible for obtaining the
offered predictive & process analytics from the Catalogue in a format containing the
application structure and transforming it to the common representation needed to
serve as input to the Modelling Toolkit described above.

• Process mapper: this component provides an association of the process tasks defined
by the process modelling toolkit with specific analytical tasks stored in the Model/Task
repository, following a set of criteria related to each process task. These associations
are later enriched, parametrized and concretized in the context of the data toolkit.
Additionally, it is responsible for mapping specific steps of the workflows defined in
the process modelling toolkit with concrete tasks that maybe required to a process but
are not of the data analytics type i.e. generate a report, execute an action using the
exposed API of a control application. Additional information for this engine can be
found in Section 6.8 regarding predictive analytics that serve the needs of process
mapping.

• Process mining engine: This component is responsible for collecting performance
measures by setting the necessary performance hooks either during a simulation run
of the process or during an actual run of the process then through the Seamless data
analytics framework. These data will feed the optimization engine to provide
recommendations towards reaching the specified goals. Additional information for
this engine can be found in Section 6.8 regarding process analytics that serve the
needs of process mining.

• Optimization engine: This component provides recommendations on the optimization
of a process workflow and mapping with respect to a goal (objective) set. Optimization
may be offline or online. Offline does not require the process to run and provides a first
set of optimization recommendations regarding the workflow design (i.e. detect
repeated steps such as a task that generates on the same data several times an
output). Online optimization requires the process to run either in simulation or run over
the infrastructure to use the collected performance measures and provide
recommendations towards optimization of the objective set. Additional information

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 47 of 79 bigdatastack.eu

for this engine can be found in Section 6.8 regarding predictive analytics that serve
the needs of overall process (i.e. workflow) optimization.

• ProcessModel2Structure Translator: This component generates the structure from the
developed model that will feed the dimensioning framework. This structure must be
able to instantiate and run as an application. It will include the workflow, the logic in
terms of relationships and rules regarding the execution of process tasks, reference
and configuration of the involved analytics tasks (contained in the catalogue) and
reference to other application tasks and services (which are not contained in any
catalogue) (i.e. a task that generates a report from collected values or a task that finds
the maximum value of a set of values or a task that when triggered communicates
using an API and turns of a machine (if we consider a process that controls the
operation of machines).

Figure 23 - Process modeling framework building blocks

6.13. Data Toolkit
The main objective of the data toolkit is to design and support data analysis workflows. An
analysis workflow consists of a set of data mining and analysis processes, interconnected
among each other in terms of input/output data streams or batch objects. The objective is to
support data analysts and/or data scientists to concretize the business process workflows
created through the process modelling toolkit. This can be done by considering the outputs
of the process mapper component or choosing among a set of available or under
development analytic functions, while parametrizing them with respect to the objectives
defined in the relevant process model. A strict requirement regards the capacity to support
various technologies/programming languages for development of analytic processes, given
the existence and dominance of set of them (e.g. R, Python, Java).

Towards this direction, the toolkit is going to be modelled in a way that will enable data
scientists to declare and parametrize the data mining/analytics algorithms, as well as the

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 48 of 79 bigdatastack.eu

required runtime adaptations (CPUs, RAM, etc.), data curation operations associated with the
high-level workflow steps of the business process model.

At its core, the data toolkit will incorporate an environment which supports the design of
graph-based workflows, and the ability to annotate/enrich each workflow step with
algorithm or processes specific parameters and metadata, while respecting a predefined set
of rules to which workflows must conform on to guarantee their validity.

There is a wide range of versatile flow-based programming tools that fit well the requirements
for constituting the basis for the data toolkit, such as Node-Red [20]. Also a custom workflow-
design environment tailored for the specific needs of the data toolkit could be developed,
supported by libraries such as D3.js [21] and NoFlo [22], which will allow for fine-grained
control over all the elements associated with the data analytics workflow.

6.14. Adaptable Visualizations
The adaptable visualization layer has a dual purpose: (i) supporting the visualization of data
analytics for the applications deployed in BigDataStack, and (ii) provide a visual application
performance monitoring dashboard of the data operations and the applications, both during
benchmarking and during operation. Importantly, the dashboard will be able to monitor the
application deployed over the infrastructure. For the visualization of data analytics, it will
provide a reporting tool that will enable to build visual analytical reports. The reporting will
be produced from analytical queries and will include summary tables as well as graphical
charts. The application and infrastructure performance monitoring dashboard will be
adaptable, since it will enable to build a custom dashboard that can include charts with the
KPIs chosen by the user, out of a set of chart catalogue and a set of transformation operators,
which can aggregate and correlate the received metrics in different manners.

The main issues that need to be handled by the Process modelling framework are:

• Adaptable dashboards and reports: Dashboards and reports must be possible to be
adapted according to the needs of the viewer and provide a personalized view

• KPIs definition and integration: Definition of a KPI must be possible through the
framework if not supported elsewhere in the architecture

• Triggering of events and production of visual notifications or else: Event handling and
triggering of alarms or responses to the event must be supported

The foreseen I/O and the structure of the visualization framework in terms of definition of
the subcomponents and their interactions are listed in the following bullets.

Necessary inputs:

• Analytic outcomes as input from the seamless data analytics framework
• Real-time monitoring data as input from the triple monitoring engine. Data will refer

Application components monitoring, to Data & Services monitoring and to Cluster
resources monitoring

• CEP outcomes as input from the real-time CEP of the Storage engine
• Input from exposed data sources to facilitate KPIs definitions and event triggering

rules

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 49 of 79 bigdatastack.eu

Necessary Outputs:

• Output of visual reports
• Output of historical reports data to repository

The main structure of the Adaptable visualizations framework is depicted in Figure 24. The
component list is as follows:

• Visualization toolkit: this component connects all the components and makes
available a tool set of offered capabilities (e.g. types of graphs, reports)

• Rights management module: this component handles the permissions to modify
views, dashboards, reports, KPIs and event triggers

• Dashboard module: this component offers the capability to design and adapt
dashboards

• Reports module: this component offers the capability to design and adapt reports to
be generated

• KPIs module: this component offers the capability to define KPIs
• Data connector: this component makes possible to retrieve data schemas and data

from the exposed data sources to assist in defining KPIs and set event triggers.
Furthermore, it could provide the same way access to historical data or reports

• Events processing: this component makes possible to define event triggers that will
produce visual notifications, warnings or generation of specific reports

Figure 24 - Visualization framework building blocks

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 50 of 79 bigdatastack.eu

7. Key interactions
7.1. User Interaction Layer

User Interaction with the BigDataStack ecosystem plays an important role in the entire
lifecycle of a big data application / operation. There exist the following user roles: Business
Analysts, Data Analysts and/or Data Scientists.

First, the Business Analyst uses the Process Modelling Framework to define the business
processes and associated objectives and accordingly design a BPMN-like workflow for the
actualization of the business-oriented objectives and the required analytic tasks to
accomplish. The analyst is able to design, model and characterize each step in the workflow
according to a list of predefined rules encapsulated by a rules engine component of the
modelling framework. The output of this process is a graph-like output with a high-level
description of the workflow from the business analyst’s perspective. The sequence diagram
of Process Modelling is depicted in Figure 25.

Figure 25 - Information flows in Process Modelling

Next, the Process Mapping component provides an association of the process steps modeled
by the Business Analyst with specific analytic tasks, following a set of criteria related to each
process task, while taking into account any constraints defined in the business objectives.
These criteria may contain the characterization of required data, time, resources and/or
performance parameters need to be concretized to perform the analytic tasks. The output of
this step is a workflow graph enriched with the mappings of the business process steps to
algorithms, runtime and performance parameters.

Then, the Data Analyst and/or the Data Scientist uses the Data Toolkit, to perform a series
of tasks related to the concretization of the analytics process workflow graph produced in the
process mapping step, such as:

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 51 of 79 bigdatastack.eu

• Concretizing the business objectives in terms of selecting lower bounds for hardware,
runtime adaptations, performance for which the selected algorithms perform
sufficiently well.

• Defining the data source bindings from where the datasets related to the task will be
ingested.

• Defining any data curation tasks (i.e. data cleaning, feature extraction, data
enrichment, data sampling, data aggregation, Extract-Transform-Load (ETL)
operations) necessary for the algorithms and the related steps.

• Configuring and parametrizing the data analytics tasks returned (i.e. selected) by the
Processes Mapping component, and additionally providing the functionality to design
and tune new algorithms and analysis tasks, which are then stored to the Catalogue
of Predictive and Process Analytics and can be re-used in the future.

• Selecting and defining performance metrics for the algorithms, along with the
acceptable ranges with respect to the business objectives, used to evaluate the
algorithm/model configurations.

At the end, a Playbook representing the grounded workflow for each business process will be
generated, in a format that further feeds the Dimensioning workbench in order to provide
the corresponding resource estimates for each node of the graph.

Figure 26 - Information flows in Process Mapping

In the following, Figure 27 presents the sequence diagram, which depicts all flows in the
User Interaction Layer along with inputs, outputs and steps.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 52 of 79 bigdatastack.eu

Figure 27 - User Interaction Layer Sequence Diagram

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 53 of 79 bigdatastack.eu

Example Use Case: Predictive Maintenance
Regarding the entry phase described above, an example is presented in the following sections
to link the functionalities of different components to an actual use case.

Business Analyst’s View
The following figure shows the perspective of a business analyst in terms of Process
Modelling, which treats Real-time ship monitoring (RTSM) as a whole. This is expected to be
the view (not in terms of user interface but in terms of processes and abstraction of
information) of the Process Modelling Framework. Moreover, through the framework, the
business analyst will be able to specify constraints (as noted with red fonts in the figure).
Overall, separate processes, actions and data required to perform RTSM. As shown, the first
step is the vessel and weather data acquisition. That includes a dataset with granularity down
to a minute and 2 years timespan for vessel data, along with weather data as provided by the
National Oceanic and Atmospheric Administration (NOAA), i.e., granularity of weather reports
up to 3 hours for every 30 minutes of a degree. Past this, given that there are plenty of
attributes within both datasets, there has to be some attribute selection rule. For example,
only 190 approximately are required from both datasets, because these are the most reliable
and important. Following this, the data are imported into two different components. The first
is the monitoring tool, which simulates and enhances the on-board tools of the Alarm
Monitoring System (AMS). Given that, if an anomaly occurs a rule-based alert has to be
produced close-to or in real time. The second component is the Predictive Maintenance Alert.
This informs the end user that the current data under examination pinpoint a malfunction
that has occurred in the past. Again, this should work close-to or even better in real-time.
Consecutively, given that identifying an upcoming malfunction is achieved, spare part
ordering follows. The ordered spare part has to be delivered at least 1 day before the
estimated time of arrival, while ordering of spare parts should be performed only by suppliers
that are to be trusted. Quality of service should not be neglected while cost criteria are also
taken into account. Finally, given the delivery port of the spare part, re-routing of the vessel
takes place, where the estimated time of arrival to the closest port is less than 12 hours.

Figure 28 - Business analyst view

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 54 of 79 bigdatastack.eu

Data Analyst’s View
Following the outcome of the process modelling (previous view), the following figure depicts
the view for the data analyst, that is the view in the Data Toolkit. As shown in the figure, the
view is different with components that have been mapped automatically from the Process
Mapping mechanism of BigDataStack (e.g. “CEP monitoring” to enable the “Rule-based alert”
process).
Overall the data analyst’s view is a set of system components, in-house or out-sourced
processes and/or systems, actions and data required to perform RTSM. The Vessel data
acquisition process is fed from an in-house database (DB) that contains vessel data (power
consumption related and main engine data) along with Telegrams and past maintenance
events. Given a total of 10 vessels, this requires up to 40 GB of hard disk storage. Weather
data are imported from NOAA via FTP, by a weather service that loads hindcasts in GRIB
format for the whole earth with a 3-hour granularity for every 30 minutes of a degree. GRIB
files are parsed and stored in a database that requires up to 2.1 TB storage. Given that any
trajectory of a vessel can by joined with weather data via a REST API that the weather service
provides. Past this, given that there are plenty of attributes within both datasets, i.e., weather
and vessel data, there has to be some attribute selection rule. For example, only 190
approximately are required from both datasets, because these are the most reliable and
important such as the consumed power (kW), the rotations per minute of the main shaft
(RPM) etc. In order to avoid feeding the algorithmic components of this architecture with
false or null data values, a filtering component is in charge of removing null values, preferably
with average values, smoothing-out the effect of data-loss. Next, given a set of defined rules,
such as “if the power consumption exceeds a limit and the fuel-oil inlet pressure drops below
a threshold” the CEP component is in charge to produce an alert, close-to or in-real time. In
parallel, a pattern recognition algorithm tries to identify patterns on the data that looks like
a past case where a malfunction occurred in the main engine. If this happens, an alert is
produced, and given the upcoming malfunction that has been identified a spare-part
suggestion is made. Given the Danaos-ONE platform, where orders of spare parts are placed
via a REST API, the order of the suggested spare-part is placed and is accessible from the
suppliers that are preferred. So, once the order is made to a supplier, a suggested place and
time are provided, and given this re-routing of the vessel takes place via an external REST
service provided at a specific IP address and port.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 55 of 79 bigdatastack.eu

Figure 29 - Data analyst’s view

7.2. Realization & Deployment
Application and Data Service Ranking

Within the Realization module, there is a series of operationalizable tasks associated to
Application Data Service Ranking. The goal of these tasks is to enable the selection of a
candidate deployment pattern (CDP) which represents a complete configuration of the
application (which is needed for application deployment on the cloud). There are two main
tasks of interest when realizing an application’s deployment:

• Model Learning: This task is concerned with the creation of a supervised model for
ranking deployment patterns that can later be used on-demand.

• First-Time Ranking of Candidate Deployment Patterns and Subsequent Deployment:
This task aims to select the most suitable candidate deployment pattern from a set
that has previously been generated when the user first requests deployment of their
application, and then uses that pattern to deploy the user’s application on the cloud.

Below we discuss each of these two tasks in more detail and provide an interaction sequence
diagram for each. For legibility of the interaction diagrams, we use short names for each
component. A mapping between components and their short names are shown in the
following table.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 56 of 79 bigdatastack.eu

Full name Sub-component Short name
(interaction diagrams)

Application and Data Services Dimensioning N/A Dimensioning
Application and Data Services Ranking Feature Aggregator ADS-R Feature Aggregator
Application and Data Services Ranking Learning to Rank ADS-R LTRank
Application and Data Services Ranking Model ADS-R Model
Application and Data Services Ranking Pattern Selector ADS-R Pattern Selector
Application and Data Services Deploy N/A ADS-Deploy
Dynamic Orchestrator N/A Orchestrator
Global Decision Tracker N/A Global Decision Tracker

Table 4 - Short-name Component Mapping Table

Model Learning

The goal of model learning is to produce a learning to rank model that takes in a list of
candidate deployment patterns and scores each based on their suitability to the user’s
requirements. This model is learned based on past application deployments and logging data
associated to those deployments. In short, we aim to learn what makes effective deployments
from the past, and then use that information to select new deployments in the future.

Model learning is triggered by the Dynamic Orchestrator component within BigDataStack, as
the central control node within Realization. This trigger is anticipated to be based on the
availability of new deployment logging data that we can learn from. Once triggered, the
Updater sub-component of Application and Data Services Ranking (ADS-R) will request the set
of past deployments and log data (containing quality of service information) from the Global
Decision Tracker. This data is used internally to learn a new learning to rank model. Learning
happens asynchronously. Once leaning is complete, the new model is sent to the Model sub-
component of ADS-R, where it can be used in the other two tasks discussed below.

Figure 30 - Interaction Diagram for Model Leaning

First-Time Ranking of Candidate Deployment Patterns and Subsequent Deployment

The second task is concerned with the ranking of candidate deployment patterns when the
user first requests their application to be deployed. Candidate deployment patterns are
generated by the Dimensioning component of BigDataStack. The output of this task is a

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 57 of 79 bigdatastack.eu

selected deployment pattern, which can be passed to Application and Data Services
Deployment for physical deployment.

This task is triggered by the Dimensioning component once it was finished generating the
different candidate deployment patterns (CDPs) and producing the quality of service
estimations for each. The Dimensioning component sends a package of CDPs to the
Application and Data Services Ranking component, or more specifically the Feature
Aggregator sub-component of it. This component analyses and aggregates the different
quality of service estimations into a form that can be used for ranking (referred to as features).
Once this transformation is complete, the CDPs and aggregated features are sent to the
Learning to Rank sub-component, which uses a pre-trained model to score and hence rank
each CDP based its suitability with respect to the user’s requirements. Once the CDPs have
been ranked, that ranking is sent to the Pattern Selector sub-component, which selects the
best one. This selected CDP is then sent to the Application and Data Services Deployment
component for physical deployment. At the same time, a notification is sent to the Dynamic
Orchestrator to specify that deployment is underway for the user’s application. Moreover,
the selected CDP, other CDPs not selected and ranking information/features are sent to the
Global Decision Tracker for persistence.

Figure 31 - Interaction Diagram for First-Time Ranking

7.3. Data as a Service & Storage
The Data as a Service and the Storage offerings of BigDataStack cover different cases. As base
data stores, the LeanXcale data store and the Cloud Object Storage (COS) are considered as
depicted in the following figure (Figure 32).

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 58 of 79 bigdatastack.eu

Figure 32 - Architecture of data stores

From the above, it can be considered that the two components that are able to persistently
store data are: LeanXcale’s relational data store, and IBM’s Cloud Object Store. The former is
a fully transactional database which will serve operational workloads, while in the meantime
can execute analytical operations on the runtime, providing a JDBC implementation, thus
being able to execute SQL compliant queries. The latter is a cloud data base capable of storing
numerous terabytes of data, but lacks transactional processing and does not offer SQL
capabilities. As a result, data will be firstly inserted in LeanXcale (LXS), which ensures
transactional properties. However, after a period of time (i.e. one year or several months),
data will be periodically send to the Cloud Object Store (COS) which can offer analytical
processing over historical data.

On top of the datastores lies the Seamless Storage Interface (SSI) which provides a seamless
way for executing queries over a distributed dataset held by different datastores that provide
different interfaces. The connectivity for information retrieval can be facilitated via the use of
SparkQL, as the SSI has been already integrated with the latter. As a result, the end-user can
write SparkQL queries and let the SSI decide where the data is located and obtain the result.
However, the execution of the queries directly to each data store is also permitted. As a result,
we have the following scenarios:

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 59 of 79 bigdatastack.eu

Direct access the LXS

Figure 33 - Direct access the LXS

User executes an SQL query, requesting data directly from LXS using a standard JDBC
interface, and the latter returns the resultSet as the response.

Direct access the COS

Figure 34 - Direct access the COS

User executes a query, requesting data directly from COS, using the stocator open source
connector which permits the connection of Object stores to Spark, and the COS returns back
the result as the response.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 60 of 79 bigdatastack.eu

Request data using a simple SparkQL query

Figure 35 - Request data using a simple SparkQL query

User sends a request for data retrieval writing a SparkQL query. The SSI is already integrated
with SparkQL and provides a set of SQL capabilities. According to the query to be executed,
SparkQL can pushdown some operations that can be executed by the SSI itself. The SSI is
aware of the location of the data over the distributed dataset that is split into the two
different datastores and is integrated with both of them. As a result, it translates the query
to each datastore’s internal language and request the data from both of them. At the end, it
aggregates the results and returns the data back to SparkQL. Finally the latter, executes the
operations that could not be pushed down due to the incapability of SSI, and returns the final
results to the user. Notice that steps 4A and 4B might be in parallel according to the
implementation of SSI.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 61 of 79 bigdatastack.eu

Request data using combined query on SparkQL

Figure 36 - Request data using combined query on SparkQL

As LXS provides a JDBC implementation, it is fully compliant with the SQL standard. Moreover,
SparkQL provides JDBC connectivity. As a result, SparkQL can pushdown all operations it
supports to a relational database in order to improve performance. This makes possible a
slightly different use case where the user can write a SparkQL query combining data coming
from two different datastores. SparkQL will pushdown all operations that concerns LXS and
retrieve the data from it much faster. It will also pushdown as many operations as supported
by COS. It will then perform the remaining operations that could still have to be executed and
finally will combine the results and will return the response. This might lead to an improved
performance, as a part of the operations will be executed at the datastore level, and data
might not need to be transmitted up to SparkQL to be evaluated against the remaining
operations. The main disadvantage of this scenario is that the user must be aware of data
distribution across the two data stores in order to write the appropriate query.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 62 of 79 bigdatastack.eu

Insert data to BigDataStack

Figure 37 - Inserting data

An integrated application produces data that wants to store in the BigDataStack platform. The
data are being sent to the Gateway, which is the entry point for the platform. Its responsibility
is to transform data coming from external sources in various formats, to the platform’s
internal schema. Then, it forwards the data to the operational data store to permanently store
them. The latter periodically collects all data that has been inserted from more than a
constant period of time, which are now considered historical and hence are not needed to be
stored to a relational database, and as such sends them to the COS for further analytical
processing.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 63 of 79 bigdatastack.eu

Inserting streaming data to BigDataStack

Figure 38 - Inserting streaming data

In this specific use case, a ship from the DANAOS fleet streams data coming from one of its
sensors. Data is being first sent to a local installation of the CEP in order for the latter to
correlate them locally and identify possible threats, producing alerts. Then, it sends the data
to the platform´s Gateway who is responsible of transforming the data to the platform’s
internal format. A CEP is also installed inside the platform and receives data from the Gateway
in order to correlate them globally and identify potential opportunities, combining data
coming from all the fleet. The global correlation involves a query to LXS to retrieve data in
rest that has been already been stored in the data store. Finally, it stores the incoming data
to the relational datastore. The latter, as explained before, periodically collects all data that
have been inserted from more than a constant period of time.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 64 of 79 bigdatastack.eu

7.4. Monitoring & Runtime Adaptations
When considering the process of monitoring and adapting user applications on the cloud, it
is useful to divide the discussion into three parts, i.e. 1) the interactions required to perform
the actual monitoring of a running application and 2) how this monitoring process can be used
to track quality of service; and 3) the interactions needed to adapt the user’s application to
some new configuration when a quality of service deficiency is identified or predicted. We
summarize each below:

Triple Monitoring Engine
The triple monitoring system provides APIs for receiving metrics from different sources and
exposes them for consumption. Metrics are obtained mainly by exporters and plugins. In the
case of the deployment of an exporter or a Netdata plugin is impossible for some reason, the
monitoring engine implements a system that can receives metrics by get and post methods
and exposes them to Prometheus. This component of the triple monitoring is expected to
behave as a REST API and Prometheus exporter. The following diagram describes its
functionality.

Figure 39 - Prometheus exporters

An application provider sends its metrics in JSON format by http get or post, the API parses
the json structure, sanitizes metrics to convert them to Prometheus’s format and saves them
in a temporally list. A response is then returned to the application provider. The Prometheus
engine scrapes the REST API by http get metrics, to get available metrics. This scraping
operation is performed by the amount of time specified in the Prometheus’s configuration.
The triple implements two different exposition system methods. The first is a REST API where
applications consumers ask for a metric, the REST API translates this request to Prometheus
query and return a result. The following sequence describes this process.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 65 of 79 bigdatastack.eu

Figure 40 - Prometheus REST API

The second output interface implemented in the triple monitoring system is the
publish/subscription mechanism.

Figure 41 - Publish/subscription mechanism

An application that needs steaming data can through this component subscribe and receives
metrics in real-time. Three types different of requests are available. The first request type is
the “subscription”, the consumer after having created his queue, its is going to send to the
pub/sub system a subscription request that contains the name of its queue, its name

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 66 of 79 bigdatastack.eu

(application name) and a list a metrics. The consumer sends its request in the “manager”
queue so that to be consumed by the manager of the triple monitoring system. The manager
receives the subscription request, creates a subscription object and add this last in the
subscription list. A confirmation message is then returned to the consumer. Each interval of
time (defined base of the minimum scrape interval in Prometheus’s configuration) the
manager reads the subscription list, get metrics from Prometheus and publishes them in the
concerned consumer’s queue.

The second request is the “add_metrics” request type, the consumer sends a message that
contains its name, queue name and a metric to add to its subscription list, the manager
verifies the request, updates the subscription and returns a message.

The last request type is “my_subscription”, the consumer send its name and queue name.
The manager returns the corresponding subscription list.

Quality of Service (QoS) Evaluation

QoS properties (parameters) to be evaluated by the QoS Evaluation component should
correspond to the kind of KPIs coming from the Application Dimensioning Workbench
within the Playbooks.

• An example of KPI is the “throughput.”
• There should be a trivial mapping between Playbooks’ KPIs and the “terms” of SLA

“agreements”.

The QoS Evaluation component will be responsible for translating the Playbooks’ KPIs into
SLOs (Service Level Objectives).

Figure 42 - QoS Evaluation component

The QoS Evaluation component will periodically query the Triple Monitoring Engine (based on
Kubernetes) to recover the metrics related to the monitored QoS parameters.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 67 of 79 bigdatastack.eu

Once a violation of a given SLO is detected, a notification is sent to the Dynamic Orchestrator
to trigger the data-driven orchestration of application components and data services. The
standard sequence of interactions will be the following:

• Evaluator calls the Adapter to recover a certain QoS metrics from Prometheus.
• The Evaluator calls the Notifier when SLO violation is detected.
• Notifier calls Dynamic Orchestration passing a message describing the violation and

possibly any applicable penalty.

Dynamic Orchestration communicates with the ADS (Application and Data Services) Ranking
to trigger the dynamic adaptation (re-configuration) of the application or data service
deployment pattern.

Adapting at Runtime

If a user’s application is identified or predicted to have some deficiency with respect to the
quality of service, then that application’s configuration needs to be altered to correct for this.
For instance, this might involve moving data closer to the machines performing the
computation to reduce IO latency, or in more extreme cases it might require the complete re-
deployment of the user’s application on new more suitable hardware. BigDataStack supports
a range of adaptations that might be performed , such as Pattern Re-Deployment, where the
goal is to select an alternative candidate deployment pattern (hardware configuration) after
the user’s application has been deployed. This is used in cases where the original deployment
pattern was deemed unsuitable and this could not be rectified without changing the
deployment infrastructure. In this case, a new candidate deployment pattern will be chosen,
and the application services will be transitioned to this new configuration. This may result in
application down-time as services are moved.

In the remainder of this section we provide more detail on how Pattern Re-Deployment is
operationalized within BigDataStack.

Pattern Re-Deployment

The aim of the pattern re-deployment task is to facilitate the selection of a new candidate
deployment pattern (CDP) if a previously selected CDP is no longer considered viable. This
might occur if a deployed application fails to meet minimum service requirements and this
cannot be resolved through data service manipulation. In this case, we need to take into
account why the current pattern is failing and based on that information, re-rank the CDPs
for the user application and select a new alternative that will provide better performance.
This new CDP can then be used to transition the user’s application to the new configuration
by the Application and Data Services Deployment component.

This task is triggered by the Dynamic Orchestrator when the orchestrator detects that an
application deployment is failing. It sends a notification to the Application and Data Services
Ranking component. More precisely, this notification is processed by the Failure Encoder sub-
component. This component first contacts the Global Decision Tracker to retrieve the other
CDPs that were not selected for the failing user’s application (as it is from these that a new
pattern will be selected). These patterns are then sent into the same process pipeline as for

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 68 of 79 bigdatastack.eu

first-time ranking (see above), with the exception that the previously selected deployment is
excluded (we know that it is insufficient) and the Pattern Selector sub-component will also
consider the reason that the previously selected CDP failed.

When the ADS-Selector chooses the new CDP, this information is sent to the ADS-Deploy,
together with the instruction to redeploy. Then, the deployment component translates the
CDP, and communicates it to the container orchestrator using the same process as defined in
Section 6.5. The orchestrator will then start a re-dimensioning process. If the process is
successful, then the user’s process continues normally. However, if the re-dimensioning was
unsuccessful, then the container orchestrator needs to destroy the current deployment,
stopping the processes and starting a new deployment from scratch. This situation has the
setback that users have their processes interrupted and/or restarted and ultimately impair
the availability of application and data services (downtimes).

Figure 43 - Interaction Diagram for CDP Re-Ranking

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 69 of 79 bigdatastack.eu

8. Conclusions
This document summarizes the initial version of the BigDataStack architecture, including the
offerings / capabilities of the overall environment to different stakeholders as well as the
architecture of the complete environment. Additional information is provided on a
component level, while the report also captures the main interactions between key
components of the architecture.

This report serves as a basis for the detailed design specifications of the individual
components of the architecture (to be performed on work package level and reported in the
relevant deliverables of the work packages) and drives the activities of the project towards
the overall vision and objectives. An updated version of the architecture will be released in
M18 (June 2019) of the project following the outcomes of the initial integrated prototypes
and the obtained experimentation and validation results.

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 70 of 79 bigdatastack.eu

9. References
[1] Docker compose, https://docs.docker.com/compose/compose-file/
[2] OpenShift Origin Kubernetes Distribution, https://www.openshift.com/
[3] [1] J. Duncan, J. Osborne “Chapter 1. Getting to know OpenShift” in “OpenShift in Action”. Manning

Publications Co. ISBN 978-1-6172-9483-9, 2018
[4] 2 RedHat, “How Deployments Work”,

https://docs.okd.io/latest/dev_guide/deployments/how_deployments_work.html
[5] 3 Larry Carvalho Matthew Marden, “The Business Value of Red Hat OpenShift”,

https://cdn2.hubspot.net/hubfs/4305976/s3-files/idc-business-value-of-openshift.pdf
[6] 5 RedHat, “What’s New in Red Hat OpenShift Origin 3.10 OpenShift Commons Briefing”,

https://blog.openshift.com/wp-content/uploads/Whats-New-in-Origin-3.10.pdf
[7] [3x] Geard, https://openshift.github.io/geard/
[8] [3y] Project Atomic, https://www.projectatomic.io/
[9] 4 RedHat, “Architecture OpenShift Container Platform 3.6 Architecture Information”,

https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/pdf/architecture/OpenShift_Container_Platform-3.6-
Architecture-en-US.pdf

[10] ITU, “User Requirements Notation”, https://www.itu.int/rec/T-REC-Z.151-201210-I/en
[11] BigDataStack (July 2018). “D2.1 – State of the art and Requirements analysis - I”
[12] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente, P. Valduriez, “StreamCloud: An Elastic

and Scalable Data Streaming System”, IEEE Trans. Parallel Distrib. Syst. 23(12): 2351-2365, 2012
[13] Apache Storm, http://storm.apache.org/
[14] Apache Flink, http://flink.apache.org
[15] Apache Spark, https://spark.apache.org/streaming
[16] Paula Ta-Shma, “How to Layout Big Data in IBM Cloud Object Storage for Spark SQL”,

https://www.ibm.com/blogs/bluemix/2018/06/big-data-layout/
[17] R. Raschke, "Process-based view of agility: The value contribution of IT and the effects on process

outcomes." International Journal of Accounting Information Systems 11.4: 297-313, 2010
[18] Workflow Patterns Initiative http://www.workflowpatterns.com/R
[19] IOStack H2020 project, http://iostack.eu
[20] Node-RED, https://nodered.org/
[21] Data-Driven Documents, https://d3js.org/
[22] Flow-Based Programming for JavaScript - NoFlo, https://noflojs.org/

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 71 of 79 bigdatastack.eu

Appendix 1 – DANAOS dataset
structure and description

TELEGRAMS table structure (14 attributes)

id: Telegram id,

vessel_code: The id of the vessel,

telegram_date: Telegram timestamp (UTC),

type: Telegram type: D:Departure, A:Arrival, N:Noon-telegram,

total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers)

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers)

cons_ifo_static_counter: sensor-based measurement TEUs

cons_ifo_static1_counter: sensor-based measurement of FEUs,

draft_aft: Vessel draft at stern (m),

draft_fore: Vessel draft at fore (m),

sea_temperature: Sea temperature (°C),

port_name: Current port name,

next_port: The name of the next port,

eta_next_port: ETA to the next port

VESSEL_DATA table structure (23 attributes)

vessel_code: Vessel id,

datetime: Timestamp of the measurement (UTC),

power: Consumed power (kW),

apparent_wind_speed: Wind-speed (kn),

speed_overground: GPS speed (kn),

stw_long double precision: Speed through water – longitudinal (kn),

stw_trans double precision: Speed through water – transverse (kn),

rpm: rotations per minute of the main shaft,

apparent_wind_angle: Wind angle (0-359.99 degrees),

total_teus: Total Twenty-foot Equivalent Unit (TEU) (# of containers),

total_feus: Total Fourty-foot Equivalent Unit (FEU) (# of containers),

cons_ifo_static_counter: Low-sulfur fuel oil consumption (metric tones),

cons_ifo_static1_counter: High-sulfur fuel oil consumption (metric tones),

port_mid_draft: Vessel draft at port-side (left-side looking to the fore) (m),

stbd_mid_draft: Vessel draft at starboard-side (right-side looking to the fore) (m),

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 72 of 79 bigdatastack.eu

draft_aft: Vessel draft at stern (m),

draft_fore: Vessel draft at fore (m),

stw: Speed through water – calculated by stw_trans and stw_lon (kn),

equivalent_teus: Total number of containers,

mid_draft: Vessel draft at mid-line (m),

trim: The trim of the vessel, calculated by draft_aft and draft_fore,

latitude: The latitude of the vessel’s position,

longitude: The longitude of the vessel’s position,

MAIN_ENGINE_DATA table structure (102 attributes)

vessel_code: The id of the vessel,

datetime: Timestamp of measurement in UTC,

airCoolerCWInLETPress: Air Cooler Cooling Water Inlet Pressure (Pa)

scavAirFireDetTempNo1: Cyllinder #1 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo2: Cyllinder #2 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo3: Cyllinder #3 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo4: Cyllinder #4 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo5: Cyllinder #5 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo6: Cyllinder #6 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo7: Cyllinder #7 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo8: Cyllinder #8 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo9: Cyllinder #9 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo10: Cyllinder #10 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo11: Cyllinder #11 Scavenge Air Fire Detection Temperature (°C),

scavAirFireDetTempNo12: Cyllinder #12 Scavenge Air Fire Detection Temperature (°C),

coolerCWinTemp: Air Cooler Cooling Water Inlet Temperature (°C)

cfWInPress: Cooling Fresh Water Inlet Pressure (Pa),

controlAirPress: Control Air Pressure (Pa),

cylLoTemp: Cylinder Lube Oil Temperature (°C)

exhVVSpringAirInPress: Exhaust Valve Spring Air Inlet Pressure (Pa)

foFlow: Fuel Oil Flowrate (lt),

foInPress: Fuel Oil Inlet Pressure (Pa),

foInTemp: Fuel Oil Inlet Temperature (°C),

hfoViscocityHighLow: Heavey Fuel Oil Viscosity High Low (mm2/s)

hpsBearingTemp: HPS Bearing Temperature (°C),

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 73 of 79 bigdatastack.eu

jcfWInTempLow: Jacket Cooling Fresh Water Inlet Temperature Low (°C)

cylExhGasOutTempNo1: Cyllinder #1 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo2: Cyllinder #2 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo3: Cyllinder #3 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo4: Cyllinder #4 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo5: Cyllinder #5 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo6: Cyllinder #6 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo7: Cyllinder #7 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo8: Cyllinder #8 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo9: Cyllinder #9 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo10: Cyllinder #10 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo11: Cyllinder #11 Exhaust Gas Out Temperature (°C),

cylExhGasOutTempNo12: Cyllinder #12 Exhaust Gas Out Temperature (°C),

cylJCFWOutTempNo1: Cyllinder #1 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo2: Cyllinder #2 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo3: Cyllinder #3 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo4: Cyllinder #4 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo5: Cyllinder #5 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo6: Cyllinder #6 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo7: Cyllinder #7 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo8: Cyllinder #8 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo9: Cyllinder #9 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo10: Cyllinder #10 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo11: Cyllinder #11 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylJCFWOutTempNo12: Cyllinder #12 Jacket Cooling Fresh Water Outlet Temperature (°C),

cylPistonCOOutTempNo1: Cyllinder #1 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo2: Cyllinder #2 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo3: Cyllinder #3 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo4: Cyllinder #4 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo5: Cyllinder #5 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo6: Cyllinder #6 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo7: Cyllinder #7 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo8: Cyllinder #8 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo9: Cyllinder #9 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo10: Cyllinder #10 Piston Cooling Outlet Temperature (°C),

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 74 of 79 bigdatastack.eu

cylPistonCOOutTempNo11: Cyllinder #11 Piston Cooling Outlet Temperature (°C),

cylPistonCOOutTempNo12: Cyllinder #12 Piston Cooling Outlet Temperature (°C),

tcExhGasInTempNo1: Turbo-Charger #1 Exhaust Gas Inlet Temperature (°C)

tcExhGasInTempNo2: Turbo-Charger #2 Exhaust Gas Inlet Temperature (°C),

tcExhGasInTempNo3: Turbo-Charger #3 Exhaust Gas Inlet Temperature (°C),

tcExhGasInTempNo4: Turbo-Charger #4 Exhaust Gas Inlet Temperature (°C),

tcExhGasOutTempNo1: Turbo-Charger #1 Exhaust Gas Outlet Temperature (°C),

tcExhGasOutTempNo2: Turbo-Charger #2 Exhaust Gas Outlet Temperature (°C),

tcExhGasOutTempNo3: : Turbo-Charger #3 Exhaust Gas Outlet Temperature (°C)

tcExhGasOutTempNo4: Turbo-Charger #4 Exhaust Gas Outlet Temperature (°C)

tcLOInLETPressNo1: Turbo-Charger #1 Lube Oil Inlet Pressure (Pa),

tcLOInLETPressNo2: Turbo-Charger #2 Lube Oil Inlet Pressure (Pa),

tcLOInLETPressNo3: Turbo-Charger #3 Lube Oil Inlet Pressure (Pa),

tcLOInLETPressNo4: Turbo-Charger #4 Lube Oil Inlet Pressure (Pa),

tcLOOutLETTempNo1: Turbo-Charger #1 Lube Oil Outlet Pressure (Pa),

tcLOOutLETTempNo2: Turbo-Charger #2 Lube Oil Outlet Pressure (Pa),

tcLOOutLETTempNo3: Turbo-Charger #3 Lube Oil Outlet Pressure (Pa),

tcLOOutLETTempNo4: Turbo-Charger #4 Lube Oil Outlet Pressure (Pa),

tcRPMNo1: Turbo-Charger #1 RPMs,

tcRPMNo2: Turbo-Charger #2 RPMs,

tcRPMNo3: Turbo-Charger #3 RPMs,

tcRPMNo4: Turbo-Charger #4 RPMs,

orderRPMBridgeLeverer: Order RPM (Bridge Lever)

rpm: Rotations per minute of the main shaft

scavAirInLetPress: Scavenge Air Inlet Pressure (Pa),

scavAirReceiverTemp: Scavenge Air Receiver Temperature (°C),

startAirPress: Starting Air Pressure (Pa),

thrustPadTemp: Thrust Pad Temperature (°C),

mainLOInLetPress: Main Lube Oil Inlet Pressure (Pa),

mainLOInTemp: Main Lube Oil Inlet Temperature (°C)

foTemperature: Fuel Oil Temperature (°C)

foTotVolume: Fuel Oil Total Volume (lt)

power: Consumed power (kW),

scavengeAirPressure: Scavenge Air Pressure (Pa)

torque: Torque of the main shaft (N/m),

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 75 of 79 bigdatastack.eu

coolingWOutLETTempNo1: Turbo-Charger #1 Air Cooler Cooling Water Outlet Temperature (°C),

coolingWOutLETTempNo2: Turbo-Charger #2 Air Cooler Cooling Water Outlet Temperature (°C),

coolingWOutLETTempNo3: Turbo-Charger #3 Air Cooler Cooling Water Outlet Temperature (°C),

coolingWOutLETTempNo4: Turbo-Charger #4 Air Cooler Cooling Water Outlet Temperature (°C),

foVolConsumption: Fuel Oil Consumption (lt/min)

VESSEL_DAMAGES table structure (5 attributes)

vessel_code: The id of the vessel,

defect_type: Type of damage (Main Bearing, Crosshead Bearing, Crankpin Bearing)

defect_details: Short description of damage

date_of_damage: Date of damage

cause_of_damage: Short description for cause of damage

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 76 of 79 bigdatastack.eu

 Appendix 2 – ATOS WORLDLINE
dataset structure and description

Introduction
This document aims at describing the main entities to be used in the implementation of the
recommender system that is going to be developed in the retailer use-case of the project
BigDataStack.

Having pre-analysed a sample of raw data coming from our partner Eroski, a selection of the
most relevant attributes that are candidates to be used during the build of the predictive
model has been done. These selected attributes are the ones contained in this document.

CLIENTS
52 attributes

HEADERS
52 attributes

LINES
62 attributes

CENTERS
55 attributes

ORDERS

ARTICLES
76 attributes

CLIENTS
8 attributes

HEADERS
11 attributes

LINES
25 attributes

CENTERS
16 attributes

ORDERS

ARTICLES
16 attributes

RAW DATA
CANDIDATE
ATTRIBUTES

CLIENTS
1 attribute

HEADERS
4 attributes

LINES
6 attributes

CENTERS
1 attributes

ORDERS

ARTICLES
12 attributes

ITERATION 1

Figure 44 - Dataset structure and description

CLIENTS table structure (8 over 52 attributes)

ID_CLIENTE: Client id,

COD_TARJ_TRAVEL: Travel card id,

FLG_EROSKI_CLUB: Flag to check if the client belongs to Eroski Club or not,

FLG_CLIENTE_ORO: Flag to check if the client is gold or not,

FECHA_ALTA_ORO: Date when the client became gold,

FLG_CLIENTE_APP: Flag if the client is an app client or not,

FLG_CLIENTE_WEB: Flag if the client is a web client or not,

COD_MISION_COMPRA: Purchase reason (weekly purchase, holidays ...).

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 77 of 79 bigdatastack.eu

HEADERS structure (11 over 52 attributes) – FROM TICKETS

ID_CLIENTE: Client id,

COD_LOC: Store’s localization id,

DIA: Ticket’s date,

COD_CAJA: Till’s id,

NUM_TICKET: Ticket number (id),

HORA_EMISION: Timestamp of tickets emission,

COD_F_PAGO_DET -> M_FORMA_PAGO: Type of payment procedure,

HORA_INI_FAC: Invoice start time,

HORA_FIN_FAC: Invoice end time,

COD_TIPO_VENTA: Type of sale,

COD_TIPO_CENTRO: Type of center.

LINES structure (25 over 62 attributes) – FROM TICKETS

ID_CLIENTE: Client id,

COD_LOC: Store’s localization id,

COD_ART: Article’s id,

DIA: Day,

COD_CAJA: Till id,

NUM_TICKET: Ticket number (id),

NUM_LINEA: Line number (id),

HORA_EMISION: Timestamp of tickets emission,

UNID_VENTA_TARIFA: Total amount of items sold in tariff’s type,

UNID _VENTA_OFERTA: Total amount of items sold in offer’s type,

UNID _VENTA_COMPETE: Total amount of items sold in competence’s type,

UNID _VENTA_LIQUID: Total amount of items sold in liquidation’s type,

UNID _VENTA_CAMPANA: Total amount of items sold in campaign’s type,

IMP_VENTA_TARIFA: Total economic amount of the items sold by tariff’s type,

IMP_VENTA_OFERTA: Total economic amount of the items sold by offer’s type,

IMP_VENTA_COMPETE: Total economic amount of the items sold by competence’s type,

IMP_VENTA_LIQUID: Total economic amount of the items sold by liquidation’s type,

IMP_VENTA_CAMPANA: Total economic amount of the items sold by campaign’s type,

COD_N1_HIST: Area,

COD_N2_HIST: Section,

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 78 of 79 bigdatastack.eu

COD_N3_HIST: Category,

COD_N4_HIST: Subcategory,

COD_N5_HIST: Segment,

ANO_OFERTA: Offer’s year,

COD_OFERTA_COD_EAN: Reference EAN’s code.

CENTERS structure (16 over 55 attributes)

COD_LOC: Store’s localization id,

COD_PROVIN: Province id,

DESC_LOC: Center’s description,

DESC_PROVIN: Province’s name,

COD_ZONA: Zone id,

DESC_ZONA: Zone description,

COD_REGION: Region id,

DESC_REGION: Region description,

COD_AREA: Area id,

DESC_AREA: Area’s description,

COD_ENSENA: Type of center id,

DESC_ENSENA: Type of center description (Eroski City, Eroski Center…),

COD_NEGOCIO: Store’s id,

DESC_NEGOCIO: Store’s type,

COD_SOCIEDAD: Type of company,

DESC_SOCIEDAD: Company’s description,

ARTICLES structure (16 over 78 attributes)

COD_ART: Article’s id,

DESC_ART: Article’s description,

COD_N1_PPAL: Area’s id,

DESC_N1: Area’s description,

COD_N2_PPAL: Section’s id,

DESC_N2: Section’s description,

COD_N3_PPAL: Category’s id,

DESC_N3: Category’s description,

COD_N4_PPAL: Subcategory’s id,

 Project No 779747 (BigDataStack)
 D2.4 – Conceptual model and Reference architecture
 Date: 31.08.2018
 Dissemination Level: PU

 page 79 of 79 bigdatastack.eu

DESC_N4: Subcategory’s description,

COD_N5_PPAL: Segment’s id,

DESC_N5: Segment’s description,

FEC_INI_ART: Article start time,

FEC_FIN_ART: Article finishes time,

COD_FORMATO: Format id (KG, Gr, Unities...),

COD_MARCA: Brand’s id

	Table of Contents
	List of tables
	List of figures
	1. Executive Summary
	2. Introduction
	2.1. Terminology
	2.2. Document structure

	3. BigDataStack Capabilities
	3.1. Key offerings
	3.2. Stakeholders addressed

	4. Main phases
	4.1. Entry phase
	4.2. Dimensioning phase
	4.3. Deployment phase
	4.4. Operations phase

	5. Architecture
	6. Main architectural components
	6.1. Resources Management
	6.2. Data-Driven Network Management
	6.3. Dynamic Orchestrator
	6.4. Triple Monitoring
	6.5. Applications & Data Services Ranking / Deployment
	6.6. Data Cleaning
	6.7. Real-time CEP
	6.8. Process mapping
	6.9. Seamless Analytics Framework
	6.10. Application Dimensioning Workbench
	6.11. Big Data Layout
	6.12. Process modelling framework
	6.13. Data Toolkit
	6.14. Adaptable Visualizations

	7. Key interactions
	7.1. User Interaction Layer
	7.2. Realization & Deployment
	7.3. Data as a Service & Storage
	7.4. Monitoring & Runtime Adaptations

	8. Conclusions
	9. References
	Appendix 1 – DANAOS dataset structure and description
	Appendix 2 – ATOS WORLDLINE dataset structure and description

