

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under
the Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and
operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D2.2 – Requirements & State of the Art
Analysis – II

Work Package WP2 – Requirements, Architecture & Technical Coordination

Lead Author (Org) Orlando Avila-García (ATOS)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 2 of 102 bigdatastack.eu

Contributing Author(s) (Org)

Paula Ta-Shma, Yosef Moatti (IBM),

Everton Luís Berz (NEC),

Ana Juan Ferrer, Ana Belén González Méndez, Bernat Quesada,
Alberto Soler (ATOS),

Stathis Plitsos (DAN),

Konstantinos Giannakakis, Amaryllis Raouzaiou (ATC),

Pavlos Kranas (LXS),

Sophia Karagiorgou, Panagiotis Gouvas, Anastasios Zafeiropoulos
(UBI),

Dimitris Poulopoulos, Timoleon Labrinos, Stavroula Meimetea,
Dimosthenis Kyriazis (UPRC),

Valerio Vianello (UPM),

Richard McCreadie (GLA),

Gal Hammer, Miki Kenneth, Luis Tomas (RHT),

Nikos Drosos (SILO),

Maurizio Megliola (GFT)

Reviewer(s) (Org)

Yosef Moatti (IBM),

Amaryllis Raouzaiou (ATC),

Dimosthenis Kyriazis (UPRC)

Due Date 30.11.2018

Date 18.12.2018

Version 1.0

Dissemination Level

X PU: Public (*on-line platform)

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 3 of 102 bigdatastack.eu

Versioning and contribution history

Ver. Date Author Notes

0.1 10.12.2018 Orlando
Avila-García
(ATOS)

Incorporation of a new version of use case requirements and
scenarios by GFT.

0.2 11.12.2018 Orlando
Avila-García
(ATOS)

Incorporation of requirements specified during the
elaboration of D3.1, D4.1 and D5.1 by IBM, NEC, ATOS,
DAN, ATC, LXS, UBI, UPRC, UPM, GLA, RHT, SILO and
GFT.

0.3 12.12.2018 Orlando
Avila-García
(ATOS)

Amendments pointed out by IBM and ATC internal reviews.

1.0 18.12.2018 Orlando
Avila-García
(ATOS)

Final amendments pointed out by UPRC. Finalization of the
deliverable.

Disclaimer

This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of BigDataStack Consortium.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 4 of 102 bigdatastack.eu

Table of Contents
Table of Contents ... 4

List of tables ... 5

List of figures .. 7
1 Executive Summary .. 8
2 Introduction ... 9

2.1 Method .. 10

2.2 Organization .. 13

3 Business Stakeholders and Goals ... 14
3.1 Stakeholder Categories ... 14
3.2 Business Model ... 15
3.3 Business Outcomes .. 16
3.4 Business Goals ... 17

4 Use Case Requirements and Scenarios ... 20
4.1 Real-time Ship Management ... 20

4.2 Connected Consumer ... 27
4.3 Smart Insurance .. 36

5 Platform Roles ... 41

6 Infrastructure-Data Management Requirements ... 43

7 Data as a Service Requirements ... 56
8 Dimensioning, Modelling & Interaction Services Requirements 67
9 Baseline Technologies .. 78

9.1 Computing Resources Management ... 78
9.2 Storage Resources Management .. 79

9.3 Data-driven Network Management .. 80
9.4 Dynamic Orchestrator ... 80
9.5 Triple Monitoring .. 81

9.6 Applications & Data Services Deployment .. 83
9.7 Distributed Storage & Analytics ... 87

9.8 Live Migration .. 88
9.9 Data Cleaning .. 88
9.10 Big Data Layout ... 90
9.11 Real-time CEP ... 92

9.12 Predictive and Process Analytics .. 93
9.13 Seamless Analytics Framework .. 93
9.14 Application Dimensioning Workbench ... 94
9.15 Process modelling framework ... 95
9.16 Data Toolkit ... 97

9.17 Adaptable Visualizations ... 98
10 Bibliography... 100

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 5 of 102 bigdatastack.eu

List of tables
TABLE 1 – REQUIREMENTS ENGINEERING PROCESSES .. 10
TABLE 2 – LEVELS OF REQUIREMENT SPECIFICATION .. 12
TABLE 3 – STAKEHOLDERS ... 14
TABLE 4 – STAKEHOLDER CONCERNS .. 15
TABLE 5 – PRELIMINARY BUSINESS MODEL ... 16
TABLE 6 – STAKEHOLDER REQUIREMENTS .. 17
TABLE 7 – PRIVACY AND SECURITY (BUSINESS GOAL) ... 17
TABLE 8 – ATTRACTIVE REVENUE AND BUSINESS MODEL (BUSINESS GOAL) .. 18
TABLE 9 – HIGH PERFORMANCE, SCALABILITY AND SHARING (BUSINESS GOAL) ... 18
TABLE 10 – PRODUCT INTEGRATION (BUSINESS GOAL) ... 18
TABLE 11 – DIFFERENT ANALYTIC CAPABILITIES (BUSINESS GOAL) .. 19
TABLE 12 – EASE OF USE (BUSINESS GOAL) .. 19
TABLE 13 – MONITORING AND PREDICTIVE MAINTENANCE SCENARIO DESCRIPTION (SCENARIO) .. 22
TABLE 14 – ORDER SUGGESTION AND DYNAMIC ROUTING (SCENARIO) ... 23
TABLE 15 – MAIN ENGINE MONITORING (STAKEHOLDER REQUIREMENT)... 24
TABLE 16 – MALFUNCTION ALERT (STAKEHOLDER REQUIREMENT) .. 25
TABLE 17 – ALERT INSPECTION (STAKEHOLDER REQUIREMENT) ... 25
TABLE 18 – SPARE PART REQUISITION (STAKEHOLDER REQUIREMENT) ... 26
TABLE 19 – REQUISITION PROCESS (STAKEHOLDER REQUIREMENT) ... 26
TABLE 20 – DYNAMIC ROUTING (STAKEHOLDER REQUIREMENT) ... 27
TABLE 21 – RETAIL RECOMMENDER (SCENARIO) .. 30
TABLE 22 – RETAIL DEMONSTRATOR (SCENARIO) ... 32
TABLE 23 – PREDICT PRODUCTS REQUIRED BY A RECURRENT USER (STAKEHOLDER REQUIREMENT) ... 32
TABLE 24 – PREDICT PRODUCTS TO A NEW USER (STAKEHOLDER REQUIREMENT) ... 33
TABLE 25 – RECOMMEND PERSONALIZED DISCOUNTS (STAKEHOLDER REQUIREMENT) ... 33
TABLE 26 – DATA REQUIREMENT (STAKEHOLDER REQUIREMENT) ... 34
TABLE 27 – CLIENTS REQUIREMENTS (STAKEHOLDER REQUIREMENT) .. 34
TABLE 28 – PRODUCTS REQUIREMENTS (STAKEHOLDER REQUIREMENT) ... 34
TABLE 29 – MULTI-DEVICE (STAKEHOLDER REQUIREMENT) .. 35
TABLE 30 – EASY-TO-USE (STAKEHOLDER REQUIREMENT) .. 35
TABLE 31 – MULTI-USER (STAKEHOLDER REQUIREMENT) ... 35
TABLE 32 – DATA SECURITY (STAKEHOLDER REQUIREMENT) .. 36
TABLE 33 – SERVICES SECURITY (STAKEHOLDER REQUIREMENT)... 36
TABLE 34 - CUSTOMERS SEGMENTATION SCENARIO .. 38
TABLE 35 - CUSTOMER LIFETIME VALUE PREDICTION SCENARIO ... 39
TABLE 36 – PROVIDE PERSONALIZED POLICIES REQUIRED BY CUSTOMER (STAKEHOLDER REQUIREMENT) .. 39
TABLE 37 – PROVIDE PERSONALIZED GUARANTEES REQUIRED BY CUSTOMER (STAKEHOLDER REQUIREMENT) 40
TABLE 38 – CUSTOMERS (STAKEHOLDER REQUIREMENT) ... 40
TABLE 39 – POLICIES (STAKEHOLDER REQUIREMENT) ... 40
TABLE 40 – GUARANTEES (STAKEHOLDER REQUIREMENT) .. 41
TABLE 41 – EASY-TO-USE (STAKEHOLDER REQUIREMENT) .. 41
TABLE 42 – DATA SECURITY (STAKEHOLDER REQUIREMENT) .. 41
TABLE 43 – BIGDATASTACK PLATFORM ROLES.. 42
TABLE 44 - SUPPORT OPENSHIFT INSTALLATION ON OPENSTACK VMS (SYSTEM REQUIREMENT). .. 43
TABLE 45 - AVOID DOUBLE ENCAPSULATION OF NETWORK PACKAGES (SYSTEM REQUIREMENT). .. 44
TABLE 46 - SPARK OPERATOR (SYSTEM REQUIREMENT). .. 44
TABLE 47 - ACCEPT REQUESTS TO ALLOCATE ADDITIONAL RESOURCES TO THE STORAGE LAYER (SYSTEM REQUIREMENT). 44
TABLE 48 - FORCE THE STORAGE LAYER TO RELEASE SOME OF ITS AVAILABLE RESOURCES (SYSTEM REQUIREMENT). 45
TABLE 49 - CORRECTION OF REQUIREMENTS AND SLOS VIOLATIONS (STAKEHOLDER REQUIREMENT). .. 45
TABLE 50 - DECISION EFFICIENCY (STAKEHOLDER REQUIREMENT). .. 45
TABLE 51 - RESOURCES LIMITS (STAKEHOLDER REQUIREMENT). .. 45
TABLE 52 - ORCHESTRATION FOR IMPROVEMENTS (STAKEHOLDER REQUIREMENT). .. 46

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 6 of 102 bigdatastack.eu

TABLE 53 - INGEST CANDIDATE DEPLOYMENT PLAYBOOKS AND BENCHMARKING INFORMATION (SYSTEM REQUIREMENT). 46
TABLE 54 - DEPLOYMENT SUITABILITY FEATURE EXTRACTION (SYSTEM REQUIREMENT). ... 46
TABLE 55 - CDP PLAYBOOK SCORING (HEURISTIC) (SYSTEM REQUIREMENT). .. 47
TABLE 56 - CDP PLAYBOOK SCORING (SUPERVISED) (SYSTEM REQUIREMENT). ... 47
TABLE 57 - CDP PLAYBOOK SELECTION (SYSTEM REQUIREMENT). ... 47
TABLE 58 - SUPERVISED MODEL TRAINING (SYSTEM REQUIREMENT). ... 48
TABLE 59 - CDP PLAYBOOK RE-SCORING (SYSTEM REQUIREMENT). ... 48
TABLE 60 - PERFORMANCE MEASURABILITY (STAKEHOLDER REQUIREMENT). ... 48
TABLE 61 - STANDARDS-BASED PLAYBOOK (STAKEHOLDER REQUIREMENT). ... 49
TABLE 62 - STANDARD DEPLOYMENT INFORMATION (SYSTEM REQUIREMENT). .. 49
TABLE 63 - APPLICATION SCORING SYSTEM (SYSTEM REQUIREMENT). .. 49
TABLE 64 - COMPATIBILITY WITH KUBERNETES (SYSTEM REQUIREMENT). ... 50
TABLE 65 - SYNCHRONOUS COMMUNICATION (SYSTEM REQUIREMENT). ... 50
TABLE 66 - REGULAR RECORDING OF DEPLOYMENT QOS INFORMATION (STAKEHOLDER REQUIREMENT). .. 50
TABLE 67 - QOS VIOLATION NOTIFICATION (STAKEHOLDER REQUIREMENT). ... 51
TABLE 68 - QOS VIOLATION MONITORING (STAKEHOLDER REQUIREMENT). .. 51
TABLE 69 - METRICS PUSHER (SYSTEM REQUIREMENT). ... 51
TABLE 70 - MONITORING METRICS API REST (SYSTEM REQUIREMENT). .. 51
TABLE 71 - MONITORING METRICS GETTER (SOFTWARE REQUIREMENT). .. 52
TABLE 72 - SPARK COMPATIBILITY (SOFTWARE REQUIREMENT).. 52
TABLE 73 - LEANXCALE COMPATIBILITY (SOFTWARE REQUIREMENT). .. 52
TABLE 74 - OKD COMPATIBILITY (SOFTWARE REQUIREMENT). .. 53
TABLE 75 - CEP COMPATIBILITY (SOFTWARE REQUIREMENT). .. 53
TABLE 76 - MINIO COMPATIBILITY (SOFTWARE REQUIREMENT). .. 53
TABLE 77 - OPENSTACK NETWORKING SERVICES COMPATIBILITY (SOFTWARE REQUIREMENT). ... 53
TABLE 78 - MONITORING DATABASE (SOFTWARE REQUIREMENT). .. 54
TABLE 79 - MONITORING PUSHGATEWAY (SOFTWARE REQUIREMENT). .. 54
TABLE 80 - METRICS VISUALIZATION (SOFTWARE REQUIREMENT). .. 54
TABLE 81 - METRICS VISUALIZATION (SOFTWARE REQUIREMENT). .. 54
TABLE 82 - NETWORK POLICIES BASED ON TYPE OF DATA (SOFTWARE REQUIREMENT). ... 55
TABLE 83 - NETWORK POLICIES BASED ON APPLICATION (SOFTWARE REQUIREMENT). ... 55
TABLE 84 - REQUIREMENT REQ-BDL-01 FOR BIG DATA LAYOUT ... 56
TABLE 85 - REQUIREMENT REQ-BDL-02 FOR BIG DATA LAYOUT ... 56
TABLE 86 - REQUIREMENT REQ-BDL-03 FOR BIG DATA LAYOUT ... 57
TABLE 87 - REQUIREMENT REQ-BDL-04 FOR BIG DATA LAYOUT ... 57
TABLE 88 - REQUIREMENT REQ-ADS-01 FOR ADAPTABLE DISTRIBUTED STORAGE ... 57
TABLE 89 - REQUIREMENT REQ-ADS-02 FOR ADAPTABLE DISTRIBUTED STORAGE ... 58
TABLE 90 - REQUIREMENT REQ-ADS-03 FOR ADAPTABLE DISTRIBUTED STORAGE ... 58
TABLE 91 - REQUIREMENT REQ-ADS-04 FOR ADAPTABLE DISTRIBUTED STORAGE ... 58
TABLE 92 - REQUIREMENT REQ-ADS-05 FOR ADAPTABLE DISTRIBUTED STORAGE ... 59
TABLE 93 - REQUIREMENT REQ-ADS-06 FOR ADAPTABLE DISTRIBUTED STORAGE... 59
TABLE 94 - REQUIREMENT REQ-ADS-07 FOR ADAPTABLE DISTRIBUTED STORAGE ... 60
TABLE 95 - REQUIREMENT REQ-ADS-08 FOR ADAPTABLE DISTRIBUTED STORAGE ... 60
TABLE 96 - REQUIREMENT REQ-SDAF-01 FOR SEAMLESS DATA ANALYTICS ... 61
TABLE 97 - REQUIREMENT REQ-SDAF-02 FOR SEAMLESS DATA ANALYTICS ... 61
TABLE 98 - REQUIREMENT REQ-SDAF-03 FOR SEAMLESS DATA ANALYTICS ... 61
TABLE 99 - REQUIREMENT REQ-SDAF-04 FOR SEAMLESS DATA ANALYTICS ... 62
TABLE 100 - REQUIREMENT REQ-SDAF-05 FOR SEAMLESS DATA ANALYTICS .. 62
TABLE 101 - REQUIREMENT REQ-DQAI-01 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 63
TABLE 102 - REQUIREMENT REQ-DQAI-02 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 63
TABLE 103 - REQUIREMENT REQ-DQAI-03 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 63
TABLE 104 - REQUIREMENT REQ-DQAI-04 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 63
TABLE 105 - REQUIREMENT REQ-DQAI-05 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 64
TABLE 106 - REQUIREMENT REQ-DQAI-06 FOR DATA QUALITY ASSESSMENT & IMPROVEMENT ... 64

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 7 of 102 bigdatastack.eu

TABLE 107 - REQUIREMENT REQ-RD-01 FOR PREDICTIVE & PROCESS ANALYTICS ... 64
TABLE 108 - REQUIREMENT REQ-RD-02 FOR PREDICTIVE & PROCESS ANALYTICS ... 64
TABLE 109 - REQUIREMENT REQ-RD-03 FOR PREDICTIVE & PROCESS ANALYTICS ... 65
TABLE 110 - REQUIREMENT REQ-RD-04 FOR PREDICTIVE & PROCESS ANALYTICS ... 65
TABLE 111 - REQUIREMENT REQ-CEP-01 FOR CEP .. 65
TABLE 112 - REQUIREMENT REQ-CEP-02 FOR CEP .. 66
TABLE 113 - REQUIREMENT REQ-CEP-03 FOR CEP .. 66
TABLE 114 - REQUIREMENT REQ-CEP-04 FOR CEP .. 66
TABLE 115 – SYSTEM REQUIREMENT (1) FOR PROCESS MODELLING FRAMEWORK ... 67
TABLE 116 – SYSTEM REQUIREMENT (2) FOR PROCESS MODELLING FRAMEWORK ... 67
TABLE 117 – SYSTEM REQUIREMENT (3) FOR PROCESS MODELLING FRAMEWORK ... 68
TABLE 118 – SYSTEM REQUIREMENT (4) FOR PROCESS MODELLING FRAMEWORK ... 68
TABLE 119 – SYSTEM REQUIREMENT (5) FOR PROCESS MODELLING FRAMEWORK ... 68
TABLE 120 – SYSTEM REQUIREMENT (6) FOR PROCESS MODELLING FRAMEWORK ... 69
TABLE 121 – SYSTEM REQUIREMENT (7) FOR PROCESS MODELLING FRAMEWORK ... 69
TABLE 122 – SYSTEM REQUIREMENT (8) FOR PROCESS MODELLING FRAMEWORK ... 69
TABLE 123 – SYSTEM REQUIREMENT (1) FOR PROCESS MAPPING .. 69
TABLE 124 – SYSTEM REQUIREMENT (2) FOR PROCESS MAPPING .. 70
TABLE 125 – SYSTEM REQUIREMENT (3) FOR PROCESS MAPPING .. 70
TABLE 126 – SYSTEM REQUIREMENT (4) FOR PROCESS MAPPING .. 70
TABLE 127 – SYSTEM REQUIREMENT (1) FOR DATA TOOLKIT .. 70
TABLE 128 – SYSTEM REQUIREMENT (2) FOR DATA TOOLKIT .. 71
TABLE 129 – SYSTEM REQUIREMENT (3) FOR DATA TOOLKIT .. 71
TABLE 130 – SYSTEM REQUIREMENT (4) FOR DATA TOOLKIT .. 71
TABLE 131 – SYSTEM REQUIREMENT (1) FOR PATTERN GENERATOR .. 72
TABLE 132 – SYSTEM REQUIREMENT (2) FOR PATTERN GENERATOR .. 72
TABLE 133 – SYSTEM REQUIREMENT (3) FOR PATTERN GENERATOR .. 72
TABLE 134 – SYSTEM REQUIREMENT (4) FOR PATTERN GENERATOR .. 72
TABLE 135 – SYSTEM REQUIREMENT (5) FOR PATTERN GENERATOR .. 73
TABLE 136 – SYSTEM REQUIREMENT (6) FOR PATTERN GENERATOR .. 73
TABLE 137 – SYSTEM REQUIREMENT (1) FOR ADW CORE .. 74
TABLE 138 – SYSTEM REQUIREMENT (2) FOR ADW CORE .. 74
TABLE 139 – SYSTEM REQUIREMENT (3) FOR ADW CORE .. 74
TABLE 140 – SYSTEM REQUIREMENT (4) FOR ADW CORE .. 75
TABLE 141 – SYSTEM REQUIREMENT (5) FOR ADW CORE .. 75
TABLE 142 – SYSTEM REQUIREMENT (6) FOR ADW CORE .. 75
TABLE 143 – SYSTEM REQUIREMENT (7) FOR ADW CORE .. 76
TABLE 144 – SYSTEM REQUIREMENT (8) FOR ADW CORE .. 76
TABLE 145 – SYSTEM REQUIREMENT (9) FOR ADW CORE .. 76
TABLE 146 – SYSTEM REQUIREMENT (1) FOR ADAPTABLE VISUALIZATIONS ... 77
TABLE 147 – SYSTEM REQUIREMENT (2) FOR ADAPTABLE VISUALIZATIONS ... 77
TABLE 148 – SYSTEM REQUIREMENT (3) FOR ADAPTABLE VISUALIZATIONS ... 77

List of figures
FIGURE 1. REQUIREMENTS ENGINEERING METHOD ... 10
FIGURE 2. BIGDATASTACK CORE PLATFORM CAPABILITIES .. 13
FIGURE 3. NETDATA ROLE IN TRIPLE MONITORING... 83
FIGURE 4. DATA INGESTION IN WATSON IOT PLATFORM ... 94
FIGURE 5. NODE-RED PROGRAMMING EXAMPLE ... 96

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 8 of 102 bigdatastack.eu

1 Executive Summary

This is the second version of a series of three deliverables specifying the stakeholder as well
as technical (software and technology) requirements for BigDataStack. These three versions
of the requirements specification are delivered at M6 (D2.1), M11 (D2.2, the present version)
and M22 (D2.3).

In the requirements analysis shown in this document, a top-down approach is taken with
respect to the user requirements, which have been collected through the BigDataStack use
case providers. This is complemented with a bottom-up approach aiming to identify, collect,
and analyse the rest of stakeholder requirements as well as technical requirements from
BigDataStack technology providers.

The analysis has produced measurable and unambiguous requirements, which inform and
drive architectural and design decisions at different levels of the BigDataStack platform:
capabilities, services and technologies. They will also be tracked against the research,
architecture and implementation work during the project lifetime to ensure that the
BigDataStack environment complexity is fully addressed and properly considered. To
contextualize this analysis, this deliverable also introduces the state-of-the-art (baseline)
technologies that may play a role in BigDataStack. In fact, such descriptions are a refinement
of the internal joint report (with the architecture work) completed at M3 (and brought as-is
from the previous version of the requirements specification, D2.1). Moreover, it does not
simply state some state-of-the-art technologies but rather links them under the context of
BigDataStack and what BigDataStack can get from them as a baseline.

Note that the set of requirements contained in this deliverable supersedes those specified in
the first version of the requirements specification (D2.1) at M6, mainly to capture the
rationale behind the architecture decisions described in D2.4 (M8), and design decisions
described in D3.1, D4.1 and D5.1 (M11). As new requirements and constraints are expected
to emerge during the ongoing implementation and experimentation, the present
requirements specification will be superseded by a new version (D2.3) at M22.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 9 of 102 bigdatastack.eu

2 Introduction

The main purpose of this deliverable is to describe the set of measurable and unambiguous
business and technical requirements for the BigDataStack environment as known at M11.
This set will be further tracked and validate the architecture development and
implementation during the project lifetime.

This report represents the second official deliverable of BigDataStack project’s Task 2.1,
whose main goal is to collect the user and technical requirements and track them during the
project. The outcomes of this task are a key input for the architecture as well as component
design and implementation activities of the project.

Task 2.1 started at M1 and produced the first version of the requirements analysis (D2.1) at
M6. The continued work on requirements analysis has produced a new version of the
requirements at M11, giving rise to the present deliverable D2.2. A third and last version of
the requirements (refining the present version) is expected to be delivered at M22 as D2.3.

The main contribution (and difference) of this deliverable with respect to the first
requirements specification (D2.1) is the following:

a) Redefinition of GFT’s use case in the context of Smart Insurance instead of Intelligent
Multi-Channel Baking (Section 4.3).

b) Redefinition of the stakeholder, system and technology requirements (Sections 6, 7
and 8).

c) Better explanation of the organization of the document (Section 2.2).

Like in the first requirements analysis (D2.1), this elicitation and analysis of the requirements
has been carried out considering the needs and concerns coming from the communities and
end users related to the BigDataStack’s use case providers and technology providers.
Therefore, the analysis specifies not only use case requirements (called “stakeholder
requirements” by ISO/IEC/IEEE 29148:2011 [41]) but also technical requirements (called
either “system requirements” or “software requirements” by the same norm). The method is
fully explained at Section 2.1.

To contextualize the analysis of requirements, Section 3 describes the BigDataStack platform
stakeholders, business model, expected business outcomes and business goals. To better
understand the software technology requirements, this deliverable also includes an
introduction to the state-of-the-art (baseline) technologies that are expected to be relevant
for BigDataStack (Section 9). In fact, Sections 3 and 9 are a refinement of the sections
dedicated respectively to business goals and baseline technologies in the internal joint (with
architecture) report completed at M3 (and brought as-is from D2.1).

The rest of the document is organized as follows: Section 2.1 explains the requirements
engineering method and Section 2.2 the organization of requirements in this deliverable;
Section 4 specifies business scenarios and use case requirements related to three use cases;
Section 5 introduces the most relevant roles that the actors (stakeholders) interacting with
the platform may take; Sections 6, 7 and 8 specify the rest of stakeholder requirements as
well as technical (system and software) requirements; finally, Section 9 describes baseline
technologies relevant for BigDataStack.

It is important to note that the requirements specified in this deliverable were brought into
D3.1, D4.1 and D5.1 for the reader’s convenience, i.e., for a better understanding of the

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 10 of 102 bigdatastack.eu

BigDataStack capabilities design described in those deliverables: Data-driven Infrastructure
Management (D3.1), Data as a Service (D4.1), and Dimensioning, Modelling and Interaction
Services (D5.1). Nevertheless, the present document should be considered the single source
of all requirements and be considered the master version of them in case of discrepancies.

2.1 Method

The requirements engineering method will follow ISO/IEC/IEEE 29148:20111 which describes
two main processes or practices to be executed in an iterative and recursive fashion:

Process Purpose Output
Stakeholder
Requirements
Definition Process

To define the requirements for a system that can
provide the services needed by users and other
stakeholders in a defined environment.

Stakeholder
Requirements
Specification (StRS)

Requirements
Analysis Process

To transform the stakeholder, requirement-driven
view of desired services into a technical view of a
required product that could deliver those services.

System Requirements
Specification (SyRS)

Software
Requirements
Specification (SRS)

Table 1 – Requirements engineering processes

Figure 1. Requirements engineering method

1 International Organization for Standardization, “ISO/IEC/IEEE 29148:2011 – Systems and software
engineering — Life cycle processes — Requirements engineering,” ISO/IEC/IEEE, Nov. 2011.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 11 of 102 bigdatastack.eu

The work products are requirements specifications at three levels of detail, which serve as
input to different practices or stages in the architectural design process. The following table
describes each of those levels (extracted from ISO/IEC/IEEE 29148:2011 [41]), including the
architecture domain whose decisions are informed by them.

Work product Acronym Description Informed
architecture

domain

Stakeholder
Requirements
Specification

StRS It identifies stakeholders, or stakeholder classes,
involved with the system throughout its life cycle, and
their needs, expectations, and desires. It analyses and
transforms these into a common set of stakeholder
requirements that express the intended interaction the
system will have with its operational environment and
that are the reference against which each resulting
operational service is validated.

It specifies:

A. The required system characteristics and context
of use of the product (platform) business
functions and services, and operational
concepts are specified.

B. The constraints on a system solution are
defined.

C. Traceability of stakeholder requirements to
stakeholders and their needs is achieved.

D. The stakeholder requirements are defined from
the stakeholder’s perspective.

E. Stakeholder requirements for validation are
identified.

Platform
Capabilities
(business
architecture)

System
Requirements
Specification

SyRS Technical specifications for the selected system of-
interest and usability for the envisaged human-system
interaction. It characterises system requirements
because:

F. It represents a system (including interfaces of
functions and services) that will meet
stakeholder requirements.

G. Allows lower levels of granularity (recursion),
i.e., subsystems.

H. Does not imply any specific implementation.

It specifies:

I. The future system requirements from the
domain perspective, background information
about the overall objectives for the system, and
its target environment.

J. A statement of the constraints, assumptions
and non-functional requirements.

Platform
Applications
and Data
Services
Architecture

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 12 of 102 bigdatastack.eu

K. Measurable system requirements specifying,
from the supplier's perspective, what
characteristics and with what magnitude it is to
possess to satisfy stakeholder requirements.

Software
Requirements
Specification

SRS A specification for a software product, program, or set
of programs) that performs certain functions in a
specific environment.

The SRS may be written by one or more representatives
of the supplier, one or more representatives of the
acquirer, or by both.

Typically,

L. there will be a requirement specification that
will state the interfaces between the system
and a software portion;

M. it will place external performance as well as
functionality requirements upon the software
portion;

N. it defines all the required features (e.g.,
functions) of the specified software product to
which it applies; and

O. it documents the conditions and constraints
under which the software portion must
perform, and the intended verification
approaches for the requirements.

Platform
Technology
Architecture

Table 2 – Levels of requirement specification

Finally, to identify requirements from all stakeholders’ point of view, we have taken
inspiration from the TOGAF® Series Guide2: Business Scenarios method to shed light on the
key business requirements and indicate the implied technical requirements for IT architecture
of BigDataStack. This is a technique to validate, elaborate, and/or change the premise behind
an architecture effort by understanding and documenting the key elements of a Business
Scenario in successive iterations.

Finally, to better formalize the requirements, we use the following attributes:

- Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see Section 2.1
Methodology), we use the following levels: Stakeholder, System and Software (i.e.,
technology details).

- Type: Types of requirements are functional: FUNC (function), DATA (data); and non-
functional: L&F (Look and Feel Requirements), USE (Usability Requirements), PERF
(Performance Requirements), ENV (Operational/Environment Requirements), and SUP
(Maintainability and Support Requirements).

- Priority: Requirements can have different priorities: MAN (mandatory requirement), DES
(desirable requirement), OPT (optional requirement), ENH (possible future
enhancement).

2 https://publications.opengroup.org/g176

https://publications.opengroup.org/g176

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 13 of 102 bigdatastack.eu

2.2 Organization

In this document, we firstly describe the stakeholder requirements of the User Enterprises
(see Table 3 – Stakeholders) to which the use cases belong. This is done through business
scenarios which represent business problems for the customer organization of a developed
Big Data solution (see Section 4 - Use Case Requirements and Scenarios).

Figure 2. BigDataStack core platform capabilities

Secondly, we present the rest of stakeholder requirements as well as the system and
technology (software) requirements organized in terms of the envisioned BigDataStack
platform capabilities (see Figure 2):

- Data-driven Infrastructure Management. The platform capability to provide means for
efficient and optimized infrastructure, incorporating all aspects of data-driven
management for the computing, storage and networking resources.

- Data as a Service. The platform capability to exploit the underlying data-driven
infrastructure management system to offer data as a service in a performant, efficient
and scalable way. It includes access to a set of technologies addressing the complete
data path: modelling and representation, cleaning, aggregation, and data processing
and analytics.

- Dimensioning, Modelling and Interaction Services:
o Data Visualization goes beyond adaptable visualization and presentation of

data and analytics outcomes, to performance aspects such as computing,
storage and networking infrastructure data, data sources information, and
data operations outcomes.

o Data Toolkit aims at openness, extensibility and wide adoption. The toolkit will
allow the ingestion of data analytics functions and the definition of analytics in
a declarative way; moreover, it will allow data scientists and administrators to
specify requirements and preferences both for the data and infrastructure
management.

o Process Modelling will allow for declarative and flexible modelling of process
analytics. Functionality-based process modelling will then be concretized to
technical-level process mining analytics, while a feedback loop will be
implemented towards overall process optimization and adaptation.

o Dimensioning Workbench enables the self-dimensioning of applications in
terms of predicting the required data services, their interdependencies with

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 14 of 102 bigdatastack.eu

the application micro-services and the required underlying resources.

3 Business Stakeholders and Goals

This section aims to identify the business goals to address in the elicitation of requirements
and architecture specification of BigDataStack results. The identification of business needs
and requirements will help to implement a solution that meets stakeholders´ expectations
and allows a better market positioning for a future exploitation.

It is worth noting that a preliminary wide-reaching Market Analysis will be delivered in M183
of the project, which will be used to confirm that the business goals envisioned in this phase
of the project, as well as the business model and stakeholders, are valid.

3.1 Stakeholder Categories

As defined in BDVA SRIA Agenda4, the following key stakeholders are the main categories of
actors along the Big Data Value chain: User Enterprises, Data Generators and Providers,
Technology Providers and Service Providers. These categories are described in the following
table, including the BigDataStack platform “side” they will play in: supply versus demand, or
solution provider versus consumer.

Id Name Side Description

STA-01 User
Enterprises

Demand
side

These are, for example, enterprises in all domains
and of all size that want to improve their portfolio
using Big Data technology.

STA-02 Data
Generators
and Providers

Supply
side

Create, collect, aggregate, transform and model raw
data from heterogeneous sources and offer it to
customers.

STA-03 Technology
Providers

Supply

side

Provide tools and/or platforms that offer data
management and analytics tools to extract
knowledge from data, curate and visualize it.

STA-04 Service
Providers

Supply
side

Develop Big Data applications on top of the tools and
platforms to provide services to user enterprises.

Table 3 – Stakeholders

In the BDVA SRIA Agenda and in many digital media, workshops, congresses, etc., the big data
stakeholder ecosystem has concerns about problems like those of the main BigDataStack
stakeholders, which may cause a slower uptake of big data applications and solutions.

Stakeholder
Categories

Concern Description

STA-01
STA-02
STA-03
STA-04

Privacy and
Security

Potential data users are worried about privacy and security
of their data. Due to velocity and volume, different data
locations and different type of data (including not only
personal data, but also sensitive business data), a robust

3 The result of this preliminary wide-reaching Market Analysis will be included in the deliverable D7.2 -
Exploitation plan and business potential [ATOS, Report, Public, M18].
4 http://www.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3.pdf

http://www.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3.pdf

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 15 of 102 bigdatastack.eu

data protection mechanism is needed. For businesses this is
a key point, since 89% of companies avoid doing business
with companies that they believe do not protect their
privacy5.

STA-02 Cost The high data volume and quick scalability of big data
projects make difficult to foresee of cost management for
enterprises. New provider monetization models are
emerging to create innovative cost-effective solutions for
big data users to control costs as far as possible.

STA-02 Integration
with existing
systems

The integration of big data technologies with existing
systems is a main question for companies planning to
implement big data solutions. Companies know that
changing operational/process company systems is a major
issue since it leads additional costs, new personal training,
etc. But the challenge is not only before the big data
implementation, since companies must be prepared to
make necessary changes to derive business value from big
data, which probably will lead to changes in existing
systems.

STA-03 Scalability and
performance

Nowadays, companies are increasingly using big data in
their business and must deal with a large amount of data.
Service providers have to offer attractive cost-effective
services to their clients to address this problem.

STA-02
STA-03

Heterogeneity
of data and
data sources

The emergence of IoT has incorporated a new type of data
with different existing ones: data-in-flight from sensors,
mobiles, etc. which needs a new management data model
and capabilities

STA-03
STA-04

Different
analytics
capabilities

A key challenge for business is to identify clear business
objectives, and this will not be the same for the different
sectors, so application service providers need to develop
different analytics capabilities to address clients in all
domains

STA-03
STA-04

Lack of talent There are not enough skilled people and new training
requires time and money, so providers need big data tools
ease to use, to deliver new services in a short time to
market.

Table 4 – Stakeholder concerns

3.2 Business Model

To meet the needs of the stakeholder ecosystem, the BigDataStack platform should support
whole Big Data management and analytics products and services, addressing needs of data
operations and data applications in a Data as a Service (DaaS) model. The table below depicts

5 https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/Analytics/ca-en-analytics-ipc-big-data.pdf

https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/Analytics/ca-en-analytics-ipc-big-data.pdf

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 16 of 102 bigdatastack.eu

the envisioned BigDataStack platform value proposition for customers at each side of it
(demand and simply sides) as well as the revenue model proposed for them6:

Products and
Services

Revenue
model

Customer

Turn-Key Big Data
management and
analytics solutions

Pay-as-
you-go

Demand
side

Enterprises of all sizes and all sectors that
want to increase the knowledge or
operational efficiency of their business and/or
enhance their business offering by using Big
Data Analytics and wish a whole outsourcing
solution for the management of the data path
operation.

Development of
different Big Data
management and
analytics solutions

Pay-as-
you-go

Supply
side

Solution Providers who want to make use of
BigDataStack tools to enhance their Big Data
products and services, including technology,
applications and data offerings.

Table 5 – Preliminary business model

3.3 Business Outcomes

In the proposal stage of the project, a deeper study of the main actors and stakeholders
related to BigDataStack solutions was carried out. That study has been enhanced and is
summarized in the following table, where the benefits for each stakeholder of using
BigDataStack results are included:

Side Stakeholder
Category

Stakeholder Description

Supply
side

STA-03 Infrastructure
providers

Offer infrastructure solutions to big data needs
through efficient and performant management
of all resources.

STA-02 Data providers Offer cleaned, modelled, stored and analysed
data.

STA-04 Application
providers

Provide data-intensive applications with
guarantees.

STA-03 Data
practitioners

Develop enhanced algorithms and offer them.

Supply
side

STA-03 Infrastructure
brokers

Act as second-level entities that take
advantage of the BigDataStack data-driven
infrastructure management solutions from
infrastructure providers.

STA-02 Data
aggregators
and data
resellers

Act as second-level entities (following data
providers) that take advantage of the
monetization model of Data as a Service
according to their business models and goals.

6 These assumptions will be deeply explored in the Market Study (D7.2. Exploitation plan and business
potential) and a best-suited business model will be deployed based of the market analysis result.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 17 of 102 bigdatastack.eu

STA-04 Marketplace
owners

Act as second-step entities that take advantage
of data-intensive application provisioning by
application providers.

Demand
side

STA-01 Citizens Use applications, services and products with

guaranteed levels of quality.

STA-01 SMEs and big
industries

Satisfy their internal data needs to develop

new offering and/or streamline operations by

utilizing BigDataStack services offered by

application and data providers.

STA-01 Public
organizations

Using BigDataStack for handling data.

STA-01 Entrepreneurs Developing, deploying and using data-intensive

and/or data-driven applications to power their

products or services by utilizing BigDataStack

services offered by technology and data

providers.

STA-01 Decision
makers

Driving business decisions based on accurate,

timely, meaningful data and analytic insights.

Table 6 – Stakeholder requirements

3.4 Business Goals

Business goals are often called “vision requirements.” These are top-level requirements
appear first, and to which all the other requirements must be subordinated, to successful
market uptake. In this stage of the project, the following business goals have been identified:

Field Description

Id BG1

Short Name Privacy and Security

Description BigDataStack will propose an architecture that enables security and
privacy aspects and will be oriented toward the compliance with data
protection regulations.

Rationale Ensure the protection of personal data and business data.

Involved
Stakeholders

All stakeholders

Table 7 – Privacy and security (business goal)

Field Description

Id BG2

Short Name Attractive revenue and business model

Description BigDataStack envisions a Pay-as-you-go as revenue model, delivering a
cost-effective service for different costumers and looking for strong
marketplace positioning.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 18 of 102 bigdatastack.eu

Rationale Deliver cost-effective solutions for the whole stakeholder ecosystem as
Data as a Service solution.

Involved
Stakeholders

All stakeholders

Table 8 – Attractive revenue and business model (business goal)

Field Description

Id BG3

Short Name High performance, scalability and sharing

Description BigDataStack will introduce an architecture that enables real-time data-
driven management decisions and will provide a performant, scalable,
flexible and dependable environment for the efficient delivery of
distributed data operations, data- and storage- intensive applications.
The performance and optimization will be achieved by basing all
infrastructure management decisions on the data aspects.

Rationale Data management of different data from several sources, including data
at rest and in flight.

Involved
Stakeholders

Infrastructure providers, Data providers, Application providers, Data
practitioners, Citizens, SMEs and Large industries, Public Organisations,
Entrepreneurs, Decision makers.

Table 9 – High performance, scalability and sharing (business goal)

Field Description

Id BG4

Short Name Product integration

Description BigDataStack offers a solution catalogue for providers, which can be used
to manage the complete data path or only to address parts of a
provider’s whole solution. For end users, BigDataStack-based turn-key
solutions will facilitate the integration of analytics in their businesses.

Rationale Integration with other systems in end user companies and with other
analytic tools for providers.

Involved
Stakeholders

All stakeholders

Table 10 – Product integration (business goal)

Field Description

Id BG5

Short Name Different analytic capabilities

Description BigDataStack will validate its solutions in three commercial cases in the
maritime, market and financing domains; this will provide a key expertise
to BigDataStack to offer guaranteed turn-key big data solutions in other
domains.

Rationale Deliver successful solutions for major challenges in main sectors.

Involved
Stakeholders

Citizens, SMEs and Large Industries, Public Organisations,
Entrepreneurs, Decision makers.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 19 of 102 bigdatastack.eu

Table 11 – Different analytic capabilities (business goal)

Field Description

Id BG6

Short Name Ease of use

Description BigDataStack will put emphasis on usability through data toolkits and
visualization environments. Its solutions will include mechanisms for
deployed data path operations to become faster.

Rationale Reduce time to market and cost for new data applications.

Involved
Stakeholders

Infrastructure providers, Data providers, Application providers, Data
practitioners.

Table 12 – Ease of use (business goal)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 20 of 102 bigdatastack.eu

4 Use Case Requirements and Scenarios

This section presents the business usage scenarios and initial requirements elicited from each
of the three business use cases of the BigDataStack project. These requirements should be
considered as Stakeholder Requirements focused on specific solutions as required by specific
User Enterprises (see Table 3 – Stakeholders). The business scenarios are representative of a
significant business need or problem, and enables data, technology and service providers to
understand the value to the customer organization of a developed Big Data solution.

Each scenario describes the different usage from a use case perspective at a high-level
description. It is not the intention to define the complete and detailed scenarios needed for
the development of the solution, rather that the descriptions are more related with defining
the behaviour and the scope to identify the necessities and align the architecture definition
with the uses case from the beginning of the project. Moreover, the scenarios are by no
means complete, as the project has two additional iterations to upgrade and refine them,
however, they provide an overview on the main behavioural patterns involving the different
actors and aims to define and align the initial design of the architecture (D2.4). Scenario
descriptions are complemented with UML Use Case Diagrams to identify the different actors,
prerequisites and the description of the behaviour.

Each use case can identify one or more scenarios depending on the complexity or the scope
of the definition. For instance, on one side, the necessity for the analysis of the data services
and data-intensiveness of the provision (at the dimensioning phase), and on the other side,
the scenario for the operational phase where the defined Quality of Service (QoS) and rules
should be applied. Thus, this can be described only in one scenario (more complex) or can be
split into two scenarios differentiating clearly the objectives, the behaviour and the actors. It
should be the decision of each use case provider to take the approach that best suits their
purpose.

4.1 Real-time Ship Management

4.1.1 Introduction

This section refers to the use case of Real-time Ship Management (RSM): Maintenance and
spare parts inventory planning & dynamic routing. The usage scenarios, that is, a higher-level
representation of functional requirements (Section 3.1.2), along with a detailed description
of use cases (Section 3.1.3) will be presented.

4.1.2 Scenarios

This case addresses two key challenges in the ship management domain: (i) predictive
maintenance combined with spare parts inventory planning, and (ii) dynamic routing. In
recent years, increasing fuel prices, depressed market conditions and environmental issues
such as emissions from ships, have brought a new perspective to ship routing. Besides being
cost-efficient, a ship also must be environmentally friendly with regards to its emissions.

One of the project partners faces similar challenges: DANAOS - a leading international
maritime player with more than 60 containerships, transports millions of containers, sails
millions of miles to thousands of ports, and consumes millions of tons of fuel oil. Each year,
DANAOS senior management, investors, and customers evaluate performance after each
voyage and demand the highest level of operational quality. Ship engines and other relevant

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 21 of 102 bigdatastack.eu

machinery need to achieve high availability not only to deliver transport services (and thus
ensure availability of resources) but also for operational safety, occupational health and
environmental impact purposes. High availability of ship engines and machines can only be
achieved if they are kept under proper conditions using applicable maintenance strategies,
thus the monitoring of machinery has become even more critical to meet the maintenance
requirements and achieve predictive maintenance. The latter is based on data that are
exploited to estimate the type of failure and time to failure.

An additional problem is the limited availability of spare parts, resulting in expediting inbound
replenishment shipments. If the spare parts planning and inventory management processes
cannot cope with the unpredictability of the need for parts, then the operation may be
starved of critical parts, yet may be flooded with other parts which are not frequently
required, resulting in lower productivity due to additional downtime and higher holding costs
due to excess inventory, respectively. Spare parts inventory management in relation to
maintenance is a complex process because it involves hundreds of parts for a single engine,
some of which may have a high level of demand per month whereas some may have a
demand of few units per year.

We discuss two different but complementary scenarios: (i) monitoring and predictive
maintenance and (ii) requisition of a spare part and dynamic routing to the closest port
where this part is available. The following tables describe in more detail these two scenarios.

Section Description

Id SCE-RSM-01

Title Monitoring and predictive maintenance

Description A vessel must complete its route within a time-frame. When a part of the main
engine fails unexpectedly, the ship risks staying off-hire. This can be very
damaging to a shipping company, as chartering revenues decrease, while
replacing a spare part immediately increases cost. Thus, identification of
potential failure allows timely ordering, or even replacement of spare parts
before failure. The main engine, posing the highest risk, consists of various spare
parts depending on many parameters. Thus, it is difficult to accurately predict
failures. If false alarms occur, the operating costs increase, as ordering of
unnecessary parts is not optimal.

Actors Coordinator, Fleet manager

Objectives - Monitoring the main engine of a vessel.
- Notification for an upcoming malfunction.
- Minimization of machinery failures that cause the ship to go off-hire.

Pre-
conditions

Monitoring and predictive maintenance of the main engine takes for granted a
full-scale dataset with measurements from the main engine, along with other
factors that may influence the performance of the main engine, such as weather
conditions, hull condition, power consumption, fuel quality etc. Furthermore, a
recorded history of malfunctions is required.

Process
Description

Shipping companies nowadays work preventively against malfunctions via a
planned maintenance scheme and a condition-based maintenance scheme.
Planned maintenance is performed with the help of a planned maintenance
system (PMS) that informs the engineers for actions to be taken for

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 22 of 102 bigdatastack.eu

maintenance from a main-engine component down to a spare-part-level. For
example, the change of lube oils or a piston component after a defined period.
Condition-based maintenance is performed either separately from planned
maintenance via a pure human decision and interaction scheme, or can be
included in the PMS. For example, if the tubes of the air-cooler have been
cleaned, the air-filter should be replaced.

Variations In this case, preventive maintenance is addressed as the remaining cases of
maintenance that are not included in a condition-based or preventive
maintenance scheme. If these two categories are excluded, we discuss about
malfunctions that occur unexpectedly, thus should be handled in a different
manner.

Post-
condition

If a malfunction pattern is identified, the actor is informed via an alert.

Diagrams

Table 13 – Monitoring and predictive maintenance scenario description (scenario)

Section Description

Id SCE-RSM-02

Title Requisition and dynamic routing

Description Once a malfunction is identified and the technical department is informed (Fleet
manager, coordinator), spare parts or actions to be taken for maintenance
should be clarified from the technical department to the supplies department.
The supply department should order the required spare part and proceed with
the requisition and delivery process of the part to the vessel. The cost of the
spare part depends on the location of the vessel, on the distance where the
closest port is, and on the supplier, while some qualitative criteria must be taken
also into account. Usually, each shipping company has a list of suppliers who are
trusted. Thus, the supply department wishes to minimize the cost of the
ordered spare part without compromising the quality of the part itself and
replace it on time without letting the damage on the main engine put the vessel
off-hire.

Actors Coordinator, Fleet manager, Supplies coordinator

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 23 of 102 bigdatastack.eu

Objectives - Timely alerting of the supply department for a new order.
- Timely ordering of spare parts.
- Dynamic routing of the vessel to the closest port with available spare

part.
- Optimization of the requisition and delivery process.

Pre-
conditions

A malfunction has been identified, the technical department is alerted

Process
Description

The requisition process of a spare part goes as follows; First a requisition is made
by the vessel. This request is processed and pre-checked by the supply
department. Next, a Request for Quotation (RFQ) is made via the DANAOS
platform, which broadcasts the RFQ to the company’s listed suppliers. Given
the offers by the suppliers, the supply department performs a comparative
table analysis and decides which supplier will place the order. Once the order is
placed, it is invoiced and delivered to the vessel.

Variations An order may be delivered but not invoiced on time.

Post-
condition

The required spare part is ordered and delivery is expected to the closest port
where the vessel is dynamically routed.

Diagrams

Table 14 – Order suggestion and dynamic routing (scenario)

4.1.3 Requirements

In the following tables, we show the description of the use requirements defined in each
scenario, as described in the previous section.

Section Description

Id REQ-RSM-01

Level of detail Stakeholder

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 24 of 102 bigdatastack.eu

Type FUNC

Short name Main Engine Monitoring

Description As data flow, out of sensors installed at the main engine of a vessel, the
user wishes to have a look on the current or past values of the provided
metrics in a chart, select a set of metrics which are to be drawn on a chart

Additional
Information

Data requirements (indicative):
- Air Cooler Cooling Water Inlet Pressure (Pa)
- Air Cooler Cooling Water Inlet Temperature (°C)
- Cooling Fresh Water Inlet Pressure (Pa)
- Control Air Pressure (Pa)
- Cylinder Lube Oil Temperature (°C)
- Exhaust Valve Spring Air Inlet Pressure (Pa)
- Fuel Oil Flowrate (lt)
- Fuel Oil Inlet Pressure (Pa)
- Fuel Oil Inlet Temperature (°C)
- Heavy Fuel Oil Viscosity High Low (mm2/s)
- HPS Bearing Temperature (°C)
- Jacket Cooling Fresh Water Inlet Temperature Low (°C)
- Order RPM (Bridge Leverer)
- Scavenge Air Inlet Pressure (Pa)
- Scavenge Air Receiver Temperature (°C)
- Starting Air Pressure (Pa)
- Thrust Pad Temperature (°C)
- Main Lube Oil Inlet Pressure (Pa)
- Main Lube Oil Inlet Temperature (°C)
- Fuel Oil Temperature (°C)
- Fuel Oil Total Volume (lt)
- Power (kW)
- Scavenge Air Pressure (Pa)
- Torque (N/m)
- Fuel Oil Consumption (lt/min)
- Fuel Oil Consumption (MT)

Actor Coordinator

Priority MAN

Table 15 – Main Engine Monitoring (stakeholder requirement)

Section Description

Id REQ-RSM-02

Level of detail Stakeholder

Type FUNC

Short name Malfunction Alert

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 25 of 102 bigdatastack.eu

Description Once a malfunction pattern is identified the user is alerted via a message
with minimum and concise information about the upcoming malfunction

Additional
Information

Data requirements:
- Malfunction name
- Estimated time before break-down

Actor Coordinator, Fleet manager

Priority MAN

Table 16 – Malfunction alert (stakeholder requirement)

Section Description

Id REQ-RSM-03

Level of detail Stakeholder

Type FUNC

Short name Alert Inspection

Description Once the user is informed about an alert, he/she can investigate the
malfunction pattern, the metrics and the history of this malfunction.

Additional
Information

Data requirements:
- Malfunction name
- Estimated time before break-down
- Previous occurrence of this malfunction
- Actions taken in previous occurrence (e.g. ordered spare part)
- Chart with values and anomalies on a minute basis

Actor Coordinator, Fleet manager

Priority MAN

Table 17 – Alert Inspection (stakeholder requirement)

Section Description

Id REQ-RSM-04

Level of detail Stakeholder

Type FUNC

Short name Spare Part Requisition

Description Once the Coordinator or the Fleet manager have inspected an alert for
an upcoming malfunction, given the history of actions taken in the past,
he/she makes a requisition for the same or another spare part of the
main engine.

Additional
Information

Data requirements:
- Spare part name
- Spare part id
- Reason for requisition
- Date of requisition

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 26 of 102 bigdatastack.eu

- Description

Actor Coordinator, Fleet manager

Priority ENH

Table 18 – Spare Part Requisition (stakeholder requirement)

Section Description

Id REQ-RSM-05

Level of detail Stakeholder

Type FUNC

Short name Requisition Process

Description Once a requisition is made by the technical department, it is processed
and pre-checked by the supply department. Next, a Request for
Quotation (RFQ) is made via the DANAOS platform, which broadcasts the
RFQ to the company’s listed suppliers. Given the offers by the suppliers,
the supply department performs a comparative table analysis and
decides to which supplier will place the order. Once the order is placed,
it is invoiced and delivered to the vessel.

Additional
Information

Data requirements:
- Spare part id
- Spare part name
- Spare part description
- List of suppliers
- List of offers
- List of available ports
- List of estimated time of deliveries

Actor Supplies Coordinator

Priority ENH

Table 19 – Requisition Process (stakeholder requirement)

Section Description

Id REQ-RSM-05

Level of detail Stakeholder

Type FUNC

Short name Dynamic Routing

Description This use case is a plug-in feature for the requisition process use case,
since it can update the data on the comparative table analysis where
costs of routing to the port where the spare part is available are included.
Furthermore, it can highlight the row in the comparative table the cost-

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 27 of 102 bigdatastack.eu

efficient solution, to suggest to the Supplies coordinator the best possible
choice.

Additional
Information

Data requirements:
- Spare part id
- Spare part name
- Spare part description
- List of suppliers
- List of offers
- List of available ports
- List of estimated time of deliveries
- Voyage estimations to closest ports

Actor Coordinator, Fleet manager, Supplies Coordinator

Priority ENH

Table 20 – Dynamic Routing (stakeholder requirement)

4.2 Connected Consumer

4.2.1 Introduction

This section refers to the use case of Connected Consumer (CC): Multi-sided market
ecosystem. Here, we discuss the usage scenarios by giving a detailed description of the use
cases (Section 4.2.2) along with a description of use requirements (Section 4.2.3).

In a world with instant access to information, where competition is just one click away,
attracting and keeping customers is crucial for survival. Predictive analysis is the challenge. It
can help predict which consumers are the most loyal or which potential buyers are more likely
to purchase a certain product or service, opening new opportunities for retailers, providing
new business prospects to customers, with improved shopping experience for consumers and
new business opportunities for traders.

In this business domain, Eroski7, one of the largest distribution companies in Spain with more
than 35.000 workers, is collaborating with ATOS in the definition and test of a use-case related
to the grocery business. It is also contributing with real data for the development of the
project. The goal of this scenario is to provide data insights to EROSKI to better understand
how to create and offer added-value services to their consumers. In this context, the use case
objective is to predict both which products and which promotions are more likely to be
interesting for the customers at the right time. In this way, EROSKI can adapt the most
appropriate message (i.e. product and/or promotion) for each customer and send it at the
right time and through the most appropriate channel, thus increasing the ROI of their
marketing activities.

From the analysis of different data sources provided by Eroski, the goal is first to predict the
list of products that customers with recurrent purchases will need in the current purchase
period (trend). Afterwards, add to this prediction those products that can be interesting for
the user based on other similar user’s behaviour (cross-selling). Finally, thanks to a deep

7 https://www.eroski.es/

https://www.eroski.es/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 28 of 102 bigdatastack.eu

knowledge of the customer profile, the goal is also to incorporate those promotions that can
be interesting for each customer.

Additionally, a scenario that describes a demonstrator that will help users to display and test
recommendations made by the user has also been included.

4.2.2 Scenarios

Section Description

Id SCE-CC-01

Title Retail Recommender

Description This scenario is distributed in three steps:
- data collection,
- calculate recommendations, and
- show predictions.

The first step, data collection, provides services to update those entities
needed for the recommender with data coming from external systems:

a) Product Service (products, categories, products x category)
b) Sales Service (orders)
c) Client service
d) Events service (used by the external systems to provide feedback

about the visualization of the recommendations)
The second step, calculate recommendations, calculates the products
and the promotions that would recommend to every user.
The input data is being processed, i.e., cleaned (“denoised”) and
modelled. In the cleaning process, any unwanted effects in the data are
removed (such as missing values or outliers) while maximizing its
information. We define noise as any unwanted artefact introduced in the
data collection phase that might affect the result of our data analysis and
interpretation. In the modelling process, the data is being modelled into
some pre-defined model. The pre-defined model is going to be the input
for the main process.
Therefore, we can split the recommendation process in two phases:

- Calculate the products that a user would be interested to buy,
based on:

1. Product sales frequency by user
2. Product sales frequency by product
3. Product seasonality
4. Product cross-selling
5. User feedback (registered with events)
- Calculate the promotions that will be recommended to the final

users. The promotions are calculated in base to:
- Representative products that the user could buy (calculated in

“calculate products” use case)
- Possible promotions, with a priority ranking
- User feedback (registered with events)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 29 of 102 bigdatastack.eu

Finally, the third step, show predictions, provides the needed services
for getting the recommendations calculated. Consumers of these
services will be the client applications that need to show recommended
products or promotions to its users.

Actors External System, Trigger recommender

Objectives The main objective of this scenario is to calculate the most interesting
products and promotions to recommend.
To achieve this main objective, the first thing we need is to collect data
and refresh the database with fresh data, including: users, products,
promotions and sales data. When we have all the new fresh data
collected and stored, we need to process data and prepare it for the
main process, denoising and modelling. Then, with the modelled data,
we calculate the most interesting products and promotions for every
user. Finally, when it's requested, we provide data to client applications
with the recommendations requested.

Pre-
conditions

The system needs, at least, 2 years of data history to do good predictive
recommendations. This data includes:
1) Sales
2) Clients
3) Products
4) Categories
Additionally, we can also have some other data that can be included in
the recommendation process, such as user events, user feedback, etc.

Process
Description

- Data collection
- External system invokes service
- System stores the data provided by the external system

- Calculate recommendations
- Some input data arrives to the system
- The system prepares the data pro process it
- The system calculates products to recommend
- The system calculates promotions to recommend
- Process the results from points 3 and 4 and store the final

products and promotions to recommend on DB
- Data preparation

- Some input data arrives to the system
- The system initiates a denoising process
- The system initiates a modelling process

- Denoising data
- The process for denoising is called with some data
- The data noise is removed
- Denoised data is returned to the caller

- Data modelling
- The process for modelling is called with some data
- The data is modelled
- Modelled data is returned to the caller

- Calculate products

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 30 of 102 bigdatastack.eu

- The process of calculate products is called with some data
- The system calculates recommended products for every user

- Calculate promotions
- The process of calculate promotions is called with some data.
- If the data does not include the suggested products calculated,

the system calculates recommended products for every user.
- The system calculates recommended promotions.

- Show Predictions
- External system invokes service
- System provides the predictions requested by the external

system

Variations N/A

Post-
condition

The suggested products and promotions shouldn’t be null.
The system must store in the DB:

- Products and promotions being recommended for every user.
- Suggested order priority for the recommended products and

promotions for every user.
- Trace tokens to register possible feedback events for every

recommended item.

Diagrams

Table 21 – Retail Recommender (scenario)

Section Description

Id SCE-CC-02

Title Retail Demonstrator

Description This scenario is distributed in three modules: login, View Predicted
Products and View Predicted Promotions.

- The login module logs into the demonstrator application for a
given customer.

- The View Predicted Products module displays the products that

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 31 of 102 bigdatastack.eu

the system would suggest to the customer.
- The View Predicted Promotions module displays the personalized

promotions that the system would suggest to the customer.
In both modules, the View Predicted Products and View Predicted
Promotions, the demonstrator is also giving feedback to the retail
recommender about in which products/promotions the customer has
shown interest so that the recommender can adapt its recommendations
in real time.

Actors Customer, Products Recommender

Objectives - Provide a way to switch from one user to another in the app, thus,
allowing display of the predicted products and promotions for
different users.

- Provide an example on how end users could display the products
calculated by the recommender.

- Provide an example on how end users could display the
promotions calculated by the recommender.

- Provide a way to show that the recommender is considering the
feedback given by the client applications.

Pre-
conditions

User is in the list of available users

Process
Description

1. Display predicted products
- User logs into the system
- System verify username exists
- User selects My predicted products
- System retrieves the prediction for the current user from the

recommender system
- Application displays Suggested Products list
- Application gives feedback to the recommender about both

which products has been shown and which products the user
has shown interest

2. Display predicted promotions
- User is logged in the application
- User selects ‘My predicted promotions’
- System retrieves the prediction for the current user from the

recommender system
- Application displays a suggested promotions list which takes into

consideration the list of products predicted for the user
- Application give feedback to the recommender about both

which promotions has been shown and which promotions the
user has shown interest

Variations N/A

Post-
condition

The user is logged in the demonstrator, and the user can view the
following in the application:

- List of products predicted for the user
- List of promotions predicted for the user

Diagrams

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 32 of 102 bigdatastack.eu

Table 22 – Retail Demonstrator (scenario)

4.2.3 Requirements

In the following tables, we show the description of the use requirements defined in each
scenario, as described in the previous section.

Section Description

Id REQ-CC-01

Level of detail Stakeholder

Type FUNC

Short name Predict products required by a recurrent user

Description For a user with previous orders (recurrent), the system should be able to
predict a list of items that the user is likely to need in the coming days.
The calculation should consider:

- History of orders made by the user
- Seasonality of the products
- Similarity with items that the customer bought and is bound to need
- What other customers bought
- User segment
- Receptivity of the user to the items recommended by the system

Additional
Information

The list of items should return for each item a rank that helped the
external system to prioritize the display of items.
The rank should be assigned to the products considering the probability
that the user needs them, that is, buys them.

Priority MAN

Table 23 – Predict products required by a recurrent user (stakeholder requirement)

Section Description

Id REQ-CC-02

Level of detail Stakeholder

Type FUNC

Short name Predict products to a new user (user without previous orders)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 33 of 102 bigdatastack.eu

Description For a given new user, the system should be able to predict a list of items
that the user is likely to buy.
The calculation should consider:

- Seasonality of the products
- What other customers bought
- User segment

Additional
Information

The list of items should return for each item a rank that helps the external
system prioritize the display of items.
The rank should be assigned to the products considering the probability
that the user buys them.

Priority MAN

Table 24 – Predict products to a new user (stakeholder requirement)

Section Description

Id REQ-CC-03

Level of detail Stakeholder

Type FUNC

Short name Recommend personalized discounts

Description Be able to recommend personalized discounts that users are likely to
use in the coming days.
The calculation should take into account the following factors:

- List of predicted items towards the user (see req-1 for further info)
- Category (commercial structure) of the items predicted to the user.

The list of discounts proposed by the system will contain
promotions that apply on products that belong to the same
category than the products predicted for the user

- User receptivity to the items recommended by the system

Additional
Information

The calculation should consider:
- List of items predicted to the user,
- Seasonality of the products,
- Similarity with items that the customer bought/is bound to need,

and
- What other customers in the same segment bought,

and rank the products according to the probability he will buy them

Priority MAN

Table 25 – Recommend personalized discounts (stakeholder requirement)

Section Description

Id REQ-CC-04

Level of detail Stakeholder

Type DATA

Short name Orders requirements

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 34 of 102 bigdatastack.eu

Description New orders placed by the users should be loaded at least once per day.
Orders should have at least the following information:

- Client Id
- Order Date
- Items

o productId
o price
o promotionId

Additional
Information

N/A

Priority MAN

Table 26 – Data Requirement (stakeholder requirement)

Section Description

Id REQ-CC-05

Level of detail Stakeholder

Type DATA

Short name Clients requirements

Description New Eroski customers should be loaded at least once per day.
Customers should have at least the following information:

- Client Id
- Client segment

Additional
Information

N/A

Priority MAN

Table 27 – Clients requirements (stakeholder requirement)

Section Description

Id REQ-CC-06

Level of detail Stakeholder

Type DATA

Short name Products requirements

Description New Eroski products should be loaded at least once per day.
Products information should have at least the following information:

- Product reference
- Product category

Additional
Information

N/A

Priority MAN

Table 28 – Products requirements (stakeholder requirement)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 35 of 102 bigdatastack.eu

Section Description

Id REQ-CC-07

Level of detail Stakeholder

Type L&F

Short name Multi-device

Description The demonstrator application UI should adapt to different devices and
displays, including mobile, to provide a proper operation of the solution
and a good user experience.

Additional
Information

Give support to both Android and iOS mobile platforms.

Priority MAN

Table 29 – Multi-device (stakeholder requirement)

Section Description

Id REQ-CC-08

Level of detail Stakeholder

Type USE

Short name Easy-to-use

Description The solution should be easy to use for people of different ages. It should
follow the best practices in terms of usability.

Additional
Information

N/A

Priority MAN

Table 30 – Easy-to-use (stakeholder requirement)

Section Description

Id REQ-CC-09

Level of detail Stakeholder

Type ENV

Short name Multi-user

Description The solution should be portable and reusable for different users.

Additional
Information

N/A

Priority MAN

Table 31 – Multi-user (stakeholder requirement)

Section Description

Id REQ-CC-10

Level of detail Stakeholder

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 36 of 102 bigdatastack.eu

Type SUP

Short name Data security

Description Database must be securely accessible and its data must not be breached.

Additional
Information

N/A

Priority MAN

Table 32 – Data security (stakeholder requirement)

Section Description

Id REQ-CC-11

Level of detail Stakeholder

Type SUP

Short name Services security

Description Datasets contain personal information, so security is very important in
services.

Additional
Information

N/A

Priority MAN

Table 33 – Services security (stakeholder requirement)

4.3 Smart Insurance8

4.3.1 Introduction

This section refers to the use case of Smart Insurance: Customers segmentation and Customer
Lifetime Value (CLV) prediction. Here, we discuss the usage scenarios by giving a description
of the use cases (Section 4.3.2) along with a high-level representation of functional
requirements (Section 4.3.3).

The use case focuses on the development of solution for Insurance companies, developing
software and systems addressing the needs of such institutions based on a data-centric
paradigm and addressing the provision of services according to the customer “tailored”
requirements.

The main goal is to allow insurance companies that focus on customer management, to
provide personalized services for their customers, as well as new corporate services for the
handling of customers’ profitability and retention.

This scenario is realized in collaboration with HDI Assicurazioni, which is part of a large
German insurance group, of international standing, the Talanx Group of Hannover9 (born HDI
group). Talanx is the third insurance company in Germany and operates in 150 countries.

8 Note that with respect to deliverable D2.1, this use case has been redefined, according to a
new context (insurance instead of banking) and scenarios.
9 http://www.talanx.com/

http://www.talanx.com/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 37 of 102 bigdatastack.eu

4.3.2 Scenarios

Section Description

Id SCE-SI-01

Title Customers segmentation

Description The scenario focuses on customers’ segmentation according to their
financial sophistication, age, location, etc. Thus, all the customers are
classified into groups by spotting coincidences in their personal
information, preferences or behaviour. This grouping allows developing
attitude and solutions especially relevant for the particular customers. As
a result, target cross-selling (recommendations of products to customers
based on what other customers bought) and upselling
(recommendations of more advanced products to customers based on
what they have bought) strategies may be developed and personal
services may be tailored for each particular segment (such as lower priced
premiums).
This scenario is distributed in three steps:

- Data collection.
- Optimizing the product configuration, and recommendations.
- Show recommended products.

Actors Customer, Service Provider

Objectives - Provide a clusterization of the insurance company customers
according to predefined variables.

- Optimize product configuration or suggestions for campaigns and
cross selling/upselling strategies.

Pre-conditions N/A

Process
Description

- Data collection: the system collects information related to
customers and their policies/guarantees.

- Data processing: the intelligent system module analyses the
collected data and elaborates personalized policies and guarantees
for the different customers.

- Data visualization: the results from the previous phase are
optimized and prepared for the presentation.

Variations N/A

Post-condition - The suggested recommendations and optimizations should not be
null.

- The system must store in the DB the optimizations and
recommendations for every customer.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 38 of 102 bigdatastack.eu

Diagrams

Table 34 - Customers segmentation scenario

Section Description

Id SCE-SI-02

Title Customer Lifetime Value prediction

Description Customers Lifetime Value is a complex phenomenon representing the
value of a customer to a company in the form of the difference between
the revenues gained and the expenses made projected into the entire
future relationship with a customer. Prediction of the CLV is typically
assessed via customer behaviour data in order to predict the customer’s
profitability for the insurer. Thus, the behaviour-based models will be
applied to forecast the customer retention. This allows forecasting the
likelihood of the customers’ behaviour and attitude, as well as churn
prevention (identify which customers are likely to cancel contracts in the
near future).

Actors Customer, Service Provider

Objectives - Compute and dynamically update the CLV.
- Forecast which customers are likely to cancel contracts in the near

future.

Pre-conditions The prediction approach needs at least 1 year of historical data for
efficient predictions.

Process
Description

The key aspects in this case are related to data analytics in order to
predict the different customers value (e.g., most profitable), analyse
present and future profitability, identify target customers, and predict
which customers are not satisfied and are likely to cancel their
contracts in the future. This information allows enhancing the process
descripted in the first scenario, and helps providing better
recommendations to customers.

Variations N/A

Post-condition - The computed CLV should not be null.
- The system must store the predicted results about customers.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 39 of 102 bigdatastack.eu

Use case
diagrams

Table 35 - Customer lifetime value prediction scenario

4.3.3 Requirements

The following template introduces the structure of requirements for SI use case.

Section Description

Id REQ-SI-01

Type FUNC

Short name Provide personalized policies required by customer

Description
For any customer, the system should be able to predict a set of
personalized policies for the customer.

The calculation should consider the historic of product purchases made
by the customer.

Additional
Information

N/A

Priority MAN

Table 36 – Provide personalized policies required by customer (stakeholder requirement)

Section Description

Id REQ-SI-02

Type FUNC

Short name Provide personalized guarantees required by customer

Description For any customer, the system should be able to predict a set of
personalized guarantees for the customer.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 40 of 102 bigdatastack.eu

The calculation should consider the historic of product purchases made
by the customer.

Additional
Information

N/A

Priority MAN

Table 37 – Provide personalized guarantees required by customer (stakeholder requirement)

Section Description

Id REQ-SI-03

Type DATA

Short name Customers

Description Customers should have at least the following information:
- Client Id

Additional
Information

N/A

Priority MAN

Table 38 – Customers (stakeholder requirement)

Section Description

Id REQ-SI-04

Type DATA

Short name Policies

Description Policies’ information should have at least the following information:
- Policy reference
- Policy category

Additional
Information

N/A

Priority MAN

Table 39 – Policies (stakeholder requirement)

Section Description

Id REQ-SI-05

Type DATA

Short name Guarantees

Description Guarantees’ information should have at least the following information:
- Guarantee reference
- Guarantee category

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 41 of 102 bigdatastack.eu

Additional
Information

N/A

Priority MAN

Table 40 – Guarantees (stakeholder requirement)

Section Description

Id REQ-SI-06

Type Stakeholder

Short name Usability

Description Easy-to-use

Additional
Information

The application should be easy to use and to understand by people of
different ages.

Priority MAN

Table 41 – Easy-to-use (stakeholder requirement)

Section Description

Id REQ-SI-07

Type Stakeholder

Short name Security

Description Data security

Additional
Information

Database must be reached securely.

Priority MAN

Table 42 – Data security (stakeholder requirement)

5 Platform Roles

The following table shows a description of what BigDataStack offers to different roles related
to the development, deployment and operation of Big Data Analytics solutions.

Id Name Description

ROL-01 Data Owner BigDataStack offers a unified Gateway to obtain both
streaming and stored data from data owners and store them
in its underlying storage infrastructure that supports SQL and
NoSQL data stores.

ROL-02 Data Scientist BigDataStack offers the Data Toolkit to enable data scientists
both to easily ingest their analytics tasks by utilizing a
declarative paradigm, and to specify their preferences and
constraints to be exploited during the dimensioning phase
regarding the data services that will be used (for example
preferences for the data cleaning service)

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 42 of 102 bigdatastack.eu

ROL-03 Business
Analysts

BigDataStack offers the Process Modelling Framework allowing
business users to define their functionality-based business
processes (through declaratively-defined models) and
optimize them based on the outcomes of process analytics that
will be triggered by BigDataStack.

ROL-04 Application
Engineers and
Application
Service
Owners

BigDataStack offers the Application Dimensioning Workbench
to enable application owners and engineers to experiment
with their applications and dimension it in terms of its data
needs and data-related properties

ROL-05 Data Engineers
and Data
Service
Owners

BigDataStack offers the possibility to Data Service owners
(such as the roles implemented by IBM and LXS in this project)
to bring in (adapt) their data services to the platform.

Table 43 – BigDataStack Platform roles

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 43 of 102 bigdatastack.eu

6 Infrastructure-Data Management Requirements

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component were brought into D3.1 and literally

included from this section. Therefore, note the following requirement tables also appear as-

is in such deliverable for the reader’s convenience.

 Id10 Level of detail11 Type12 Actor13 Priority14

REQ-CM-01 System FUNC Developer MAN

Name Support OpenShift installation on OpenStack VMs

Description Include the needed steps on the OpenShift installer to handle OpenShift
cluster installation on top of OpenStack resources, i.e, VMs, networks,
volumes, etc.

Additional
Information

This needs to be done in the ‘upstream’ way so that it is supported also
after the project lifecycle. It entails modification to different repositories,
not only the openshift/installer (https://github.com/openshift/installer)
but also other related such as:

- cluster-network-operator15

- cluster-api-provider-openstack16

- gophercloud17

Table 44 - Support OpenShift installation on OpenStack VMs (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-02 System PERF Developer MAN

Name Avoid double encapsulation of network packages

Description Integrate Kuryr on the OpenShift installer to avoid the double encapsulation
problem due to using 2 different overlays (OpenStack SDN and OpenShift
SDN on top). Kuryr enables containers running on top of OpenStack VMs to
use the same SDN as the VMs itself, i.e., the OpenStack SDN. Thus, avoiding

10Identifier: To be used in D2.2 to allow for the correct traceability of requirements.

11Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the
following levels: Stakeholder, System and Software (i.e., technology details).

12Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).

13Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor,
e.g. another component or service.

14Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable
requirement), OPT (optional requirement), ENH (possible future enhancement).

15 https://github.com/openshift/cluster-network-operator
16 https://github.com/kubernetes-sigs/cluster-api-provider-openstack
17 https://github.com/gophercloud/gophercloud

https://github.com/openshift/cluster-network-operator
https://github.com/kubernetes-sigs/cluster-api-provider-openstack
https://github.com/gophercloud/gophercloud

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 44 of 102 bigdatastack.eu

the double encapsulation and enabling a remarkable throughput gain,
needed for handling the data at the BigDataStack components.

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so
that it is supported after the project. It entails modifications to the same
repositories plus the addition of a kuryr operator that will handle the kuryr
related operational actions,

Table 45 - Avoid double encapsulation of network packages (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-03 System ENV Developer DES

Name Spark operator

Description This operator will be responsible for handling the spark cluster, not only its
installation but also the scaling actions. It will offer an API to the spark
management through the OpenShift API.

Additional
Information

This is related to the dynamic orchestrator, as the optimization actions
could be then simply triggered through standard OpenShift API commands
(e.g., modifying the information at the associated spark ConfigMap)

Table 46 - Spark Operator (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-04 System ENV Developer DES

Name Accept requests to allocate additional resources to one of the storage layer
components

Description The Adaptable Distributed Storage component can be scaled in/out
independently, considering decisions based on its internal metrics and
handle on its own the reconfiguration of the internal data regions. Due to
this, it is necessary from the Cluster Management to provide a mechanism
that allows the storage layer to request for additional resources or the
release of already provided ones.

Additional
Information

This is closely related to requirement REQ-ADS-04 “Be able to request
additional resources from the infrastructure layer,” described in D4.1.

Table 47 - Accept requests to allocate additional resources to the storage layer (system requirement).

 Id Level of detail Type Actor Priority

REQ-CM-05 System ENV Developer OPT

Name Force the storage layer to release some of its available resources

Description The cluster management might identify that the overall BigDataStack
platform is running out of available resources. To ensure the execution of
crucial components, it might decide to reduce some of the already allocated
resources for some services, for the benefits of others. Due to this, it should
be able to request the release of the storage resources and wait for its

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 45 of 102 bigdatastack.eu

proper response. The storage should be able to reject such requests, in
cases that could lead to data loss.

Additional
Information

This is close related with requirement REQ-ADS-05 “Being able to release
resources and adapt if resources are deallocated from the infrastructure,”
as described in more details in D4.1.

Table 48 - Force the storage layer to release some of its available resources (system requirement).

 Id Level of detail Type Actor Priority

REQ-DO-01 Stakeholder FUNC Developer MAN

Name Correction of Requirements or SLOs Violations

Description When an application or service is running, the orchestrator shall detect the
violation of an application requirement or service level objective (SLO) and
send a signal to the ADS-ranker to trigger a change in the deployment to try
to satisfy the requirements or SLOs.

Additional
Information

N/A

Table 49 - Correction of Requirements and SLOs Violations (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC Developer MAN

Name Decision Efficiency

Description When the violation of a requirement has been detected, the orchestrator
shall be able to decide what modification to the deployment (e.g. change
the number of replicas or the number of vCPUs) has the highest probability
of improving the requirements or SLOs satisfaction, as long as any change is
possible (i.e. all resources are at its full capacity due to limits).

Additional
Information

N/A

Table 50 - Decision Efficiency (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-DO-03 System FUNC Developer MAN

Name Resources Limits

Description The orchestrator shall be able to receive a trigger from the ADS-Ranker
when a deployment parameter, such as the number of replicas, the number
of vCPUs or the assigned cluster memory, cannot be further increased or
decreased (i.e. this resource has reached its maximum or minimum possible
value) and use this information in its own decisions.

Additional
Information

The complete list of deployment parameters to be taken into account still
needs to be determined.

Table 51 - Resources Limits (stakeholder requirement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 46 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-DO-04 Stakeholder FUNC Developer DES

Name Orchestration for Improvements

Description When an application or service is running, the orchestrator shall detect
changes in the system status or inputs (e.g. less new events per minute) and
trigger a change in the deployment that results in lower costs (e.g. to use
less replicas) without compromising the application functioning.

Additional
Information

N/A

Table 52 - Orchestration for Improvements (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-01 System FUNC Application
Dimensioning
Workbench

MAN

Name Ingest Candidate Deployment Playbooks and Benchmarking Information

Description The Application Dimensioning Workbench sends a series of candidate
deployment patterns (CDP) playbooks and benchmarking information to
the ADS Ranking component. ADS Ranking needs to collect all these
patterns for subsequent scoring/ranking based on the user requirements
and preferences.

Additional
Information

Ingestion occurs via a common publisher/subscriber platform (RabbitMQ).

Table 53 - Ingest Candidate Deployment Playbooks and Benchmarking Information (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-02 System FUNC Developer MAN

Name Deployment Suitability Feature Extraction

Description Once a series of candidate deployment pattern playbooks and associated
benchmarking information has been received, the next step is to determine
how each pattern is predicted to perform based on the benchmarking
information. In effect, this involves defining a series of functions that relate
individual or groups of user requirements to the predicted performances
produced by benchmarking. The output of this step is a vector
representation for each CDP playbook, representing how that playbook is
predicted to fair under different user requirements.

Additional
Information

Features produced here are dependent on the capabilities of the
benchmarking system and the amount of information the user provides in
terms of requirements and preferences.

Table 54 - Deployment Suitability Feature Extraction (system requirement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 47 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-ADSR-03 System FUNC Developer MAN

Name CDP Playbook Scoring (Heuristic)

Description Given a vector representation for a CDP Playbook, we next need to map
this vector into a single score, representing how suitable that playbook will
be overall (such that we can compare different CDP Playbooks). This
involves combining the different elements within the vector (that each
represent some aspect of pattern suitability, such as cost, or predicted
compute wastage). The first version of this will use a hand-tuned linear
combination.

Additional
Information

N/A

Table 55 - CDP Playbook Scoring (Heuristic) (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-04 System FUNC Developer DES

Name CDP Playbook Scoring (Supervised)

Description Given a vector representation for a CDP Playbook, we next need to map this
vector into a single score, representing how suitable that playbook will be
overall (such that we can compare different CDP Playbooks). This involves
combining the different elements within the vector (that each represent
some aspect of pattern suitability, such as cost, or predicted compute
wastage). The second version of this will learn how to combine the elements
based on logging information from past deployments. Models may be non-
linear in nature.

Additional
Information

Depends on REQ-ADSR-06.

Table 56 - CDP Playbook Scoring (Supervised) (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-05 System FUNC Developer MAN

Name CDP Playbook Selection

Description Once all candidate deployment patterns have been scored, the final step is
to select one of those patterns to pass to ADS Deployment. In many cases
this will simply involve selecting the highest scoring pattern. However, the
user may have the option to select an alternative configuration at this stage.

Additional
Information

N/A

Table 57 - CDP Playbook Selection (system requirement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 48 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-ADSR-06 System FUNC Developer DES

Name Supervised Model Training

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react to
changes in the deployment environment over time, this model needs to be
frequently updated based on new information from current deployments.
This model needs to be trained based on logging data being collected by the
Triple Monitoring Framework.

Additional
Information

Requires logging information produced by the Triple Monitoring Framework
and stored in the Central Decision Tracker.

Table 58 - Supervised Model Training (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSR-07 System FUNC Developer MAN

Name CDP Playbook Re-Scoring

Description It is envisaged that in (rare) scenarios, an ongoing application deployment
will fail to meet the user’s quality of service requirements. This might occur
due to assumptions on data input volumes being violated for instance. In
this case, we may not be able to solve this issue without fully redeploying
the user application with different resources. To support such re-
deployment activities, ADS Ranking supports a re-scoring function, where a
previous set of CDP playbooks for a user’s application can be re-scored
based on updated preferences provided by the Big Data Stack Orchestrator,
as well as live data about how the previous deployment performed (and
failed).

Additional
Information

N/A

Table 59 - CDP Playbook Re-Scoring (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-01 Stakeholder FUNC Application
developers

MAN

Name Performance Measurability

Description Each environment should be measurable according to a set of
characteristics, that is, Key Performance Indicators (KPIs).

Additional
Information

The KPIs considered must include:
- vCPUs
- Memory

Table 60 - Performance Measurability (stakeholder requirement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 49 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-ADSD-02 Stakeholder FUNC System MAN

Name Standards-based Playbook

Description The description of the environments and deployments (i.e., playbooks) will
follow a standard specification language

Additional
Information

N/A

Table 61 - Standards-based Playbook (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-03 System FUNC System MAN

Name Standard deployment information

Description When communicating with other components, as described in Section 7.2,
these components will use the playbook standard defined in REQ-RD-02.

Additional
Information

N/A

Table 62 - Standard deployment information (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-04 System FUNC System MAN

Name Application Scoring System

Description The ranking system evaluates each environment’s deployment, which keeps
track of the most suitable configuration for each application. When trying a
deployment configuration for a new application, this ranking will be used to
select the most suitable one.

Additional
Information

The evaluation will be done following the measurements defined in REQ-
RD-01.

Table 63 - Application Scoring System (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-05 System FUNC Cluster
management
component

MAN

Name Compatibility with Kubernetes

Description Since the technology used to run and orchestrate the applications is based
in Kubernetes (OKD18). Thus, the ADS-Deployment component is required
to be compatible with Kubernetes.

18 OKD - https://www.okd.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 50 of 102 bigdatastack.eu

Additional
Information

The ADS-Deploy component should translate from the playbook standard
defined in REQ-RD-01 into Kubernetes primitives.

Table 64 - Compatibility with Kubernetes (system requirement).

 Id Level of detail Type Actor Priority

REQ-ADSD-06 System FUNC MAN

Name Synchronous communication

Description The communication with and within both components should be done
through an API REST.

Additional
Information

N/A

Table 65 - Synchronous Communication (system requirement).

 Id Level of detail Type Actor Priority

REQ-TM-01 Stakeholder FUNC Developer MAN

Name Regular recording of QoS metrics

Description When a user’s application is deployed, the Triple Monitoring Framework
monitors that application, tracking statistical information about its
operation and associated QoS data, including network, data storage,
virtualization layers, etc.

This data is needed to support the learning of ranking models by ADS-
Ranking service (part of Application and Service Deployment; see REQ-
ADSR-03) and regularly saved in a centralised data store for later access.

Additional
Information

Input:
- Candidate Deployment Pattern (application identifier from this is the

primary key for saving monitoring data for an application)
Output:

- Deployment QoS Snapshot (monitoring/QoS data, every few mins)
Service Dependencies:

- Centralised Data Store (Storage Service)
-

This is implemented over Prometheus19 as the monitoring collector.

Table 66 - Regular recording of deployment QoS information (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-02 Stakeholder FUNC Developer MAN

Name QoS violation alert

Description If the system does not respect the agreed QoS, an alert is raised.

19 Prometheus. https://prometheus.io/

https://prometheus.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 51 of 102 bigdatastack.eu

Additional
Information

This alert is used internally to evaluate the performance of an
environment, relating to REQ-RD-004.

Table 67 - QoS violation notification (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-03 Stakeholder FUNC Developer DES

Name QoS violation monitoring

Description QoS violations are also monitored and shown to the user/admin.

Additional
Information

N/A

Table 68 - QoS violation monitoring (stakeholder requirement).

 Id Level of detail Type Actor Priority

REQ-TM-04 System FUNC Developer MAN

Name Metrics pusher

Description The metric pusher retrieves KPI data, clean them and ingest them into the
monitoring collector (Prometheus).

Additional
Information

The metrics pusher is used when the exporter approach is impossible to
apply. This solution will be very useful for getting application specific
metrics (it’s not approved yet).

Table 69 - Metrics pusher (system requirement).

 Id Level of detail Type Actor Priority

REQ-TM-05 System FUNC Developer DES

Name API REST for accessing the collected monitoring metrics

Description The metrics are accessible through an API REST.

Additional
Information

This component translates client’s requests to Prometheus request
compatible. Grafana20 will be used for visualization.

Table 70 - Monitoring metrics API REST (system requirement).

 Id Level of detail Type Actor Priority

REQ-TM-06 Software FUNC Developer MAN

Name Pub/Sub Mechanism for Metrics

Description This component queries the metrics repository periodically and publishes
this information through a publisher/subscriber mechanism. Each client
sends subscription requests to the system.

20 Grafana. https://grafana.com/

https://grafana.com/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 52 of 102 bigdatastack.eu

Additional
Information

The monitoring metrics getter is implemented on RabbitMQ21

Table 71 - Monitoring metrics getter (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-07 Software FUNC Developer DES

Name Spark compatible

Description The triple monitoring engine monitors the performance of Apache Spark22,
which is used in the BigDataStack project as an analytics engine for Big
Data, thus needs to be compatible with this technology.

Additional
Information

Monitoring Spark is done using Spark measure project, which can be
embedded in spark application allowing the collection of some metrics after
each SQL execution. Those metrics are sent to push gateway to be exported
to Prometheus.

Table 72 - Spark compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-08 Software FUNC Developer DES

Name LeanXcale compatibility

Description LeanXcale database23 already uses Prometheus for its monitoring
subsystem. However, the integration is relied on static deployments. Thus,
it should be extended to consider re-deployments in cases when an
elasticity action takes places which leads to a scale in/out of the resources.
In these scenarios, LeanXcale should reconfigure its integration with the
existing Prometheus deployment on the run-time and provide monitoring
information for the new nodes

Additional
Information

N/A

Table 73 - LeanXcale compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-09 Software FUNC Developer DES

Name OKD compatibility

Description The Triple Monitoring engine monitors the performance of Openshift
OKD24, which is the baseline technology used in the orchestration of
containers. Therefore, the triple monitoring engine needs to be compatible
with this technology.

21 RabbitMQ. https://www.rabbitmq.com/
22 Apache Spark. https://spark.apache.org/
23 LeanXcale. https://www.leanxcale.com/
24 Openshift OKD (Origin Kubernetes Distribution). https://www.okd.io/

https://www.rabbitmq.com/
https://spark.apache.org/
https://www.leanxcale.com/
https://www.okd.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 53 of 102 bigdatastack.eu

Additional
Information

N/A

Table 74 - OKD compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-10 Software FUNC Developer DES

Name CEP compatibility

Description The triple monitoring engine monitors the performance of CEP, which is
used in the BigDataStack project as a streaming engine for processing data
in real-time. Therefore, the triple monitoring engine needs to be compatible
with this technology.

Additional
Information

The CEP exposes several monitoring metrics that are exported to
Prometheus.

Table 75 - CEP compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-11 Software FUNC Developer DES

Name Minio compatibility

Description The triple monitoring engine monitors the performance of Minio25, which is
used for object storage in the system. Therefore, the triple monitoring
engine needs to be compatible with this technology.

Additional
Information

N/A

Table 76 - Minio compatibility (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-12 Software FUNC Developer DES

Name OpenStack Networking Services compatibility

Description The Triple Monitoring engine monitors the performance of the internal
network connecting the different containers inside an application.
BigDataStack uses the OpenStack networking services for managing this
network communications, so the triple monitoring engine needs to be
compatible with this technology.

Additional
Information

N/A

Table 77 - OpenStack Networking Services compatibility (software requirement).

25 Minio Private Cloud Storage- https://www.minio.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 54 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-TM-13 Software FUNC Developer MAN

Name Persistently store the monitoring metrics

Description The triple monitoring engine should use a database for persistently storing
monitoring metrics and is connected to Prometheus by http.

Additional
Information

This database is based on influxDB24.

Table 78 - Monitoring database (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-14 Software FUNC Developer ENH

Name Spark Monitoring Pushgateway

Description This component is used to gather metrics from Spark and ingest them into
the metrics collector.

Additional
Information

The connection between this component and the applications use http.

Table 79 - Monitoring Pushgateway (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-16 Software FUNC Developer ENH

Name Metrics visualization

Description The metrics must be shown to the end-user via a graphical interface.
Grafana is used for metrics’ visualization.

Additional
Information

Grafana26 is configured for receiving metrics from two sources
(Prometheus, InfluxDB).

Table 80 - Metrics visualization (software requirement).

 Id Level of detail Type Actor Priority

REQ-TM-17 System FUNC Dynamic
Orchestrator

ENH

Name Asynchronous rich notification of SLA violations

Description SLA violations should be notified by means of a publish/subscribe
mechanism, together with the metrics (KPIs) upon which the SLA imposes
restrictions.

Additional
Information

The main consumer of the SLA violations notifications is the Dynamic
Orchestrator.

Table 81 - Metrics visualization (software requirement).

26 Grafana - https://grafana.com/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 55 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-IN-01 Software FUNC ROL-02 MAN

Name Information-Driven Networking based on type of data

Description The Information-Driven Networking mechanisms enforce a set of policies by
specifying the rules of how two or more components can communicate
(send/receive data) with each other according to the available resources.

Additional
Information

A different policy is enforced based on different incoming data
requirements, following the type of processing requirements (stream,
micro-batch, batch) and the type of data (structured, semi-structured,
unstructured).

Table 82 - Network Policies based on type of data (software requirement).

 Id Level of detail Type Actor Priority

REQ-IN-02 Software FUNC ROL-02 MAN

Name Information-Driven Networking based on application requirements

Description The Information-Driven Networking mechanisms enforce a set of policies by
specifying the rules of how to handle applications with different
requirements according to the available resources. For instance, an
application with analytics requiring real-time data processing may impose
time-critical constraints on the handling, operation and transformation of
data.

To support online analytics and decision making in time-critical conditions
specific network policies need to be applied to deliver the results within
predefined time constraints.

Additional
Information

The Data Scientist can set an “allow/deny access” policy regarding the set
of applications and their requirements (real-time, close to real-time needs)
accessing the backend services of the BigDataStack environment to
prioritize/isolate the set of ingress/egress workloads that are enabled/dis-
based on their IP & Port in order to achieve efficient services interaction.

Table 83 - Network policies based on application (software requirement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 56 of 102 bigdatastack.eu

7 Data as a Service Requirements

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component were brought into D4.1 and literally

included from this section. Therefore, note the following requirement tables also appear as-

is in such deliverable for the reader’s convenience.

 Id27 Level of detail28 Type29 Actor30 Priority31

REQ-BDL-01 Software FUNC Developer MAN

Name Support data skipping for arbitrary query predicates

Description The query predicate could comprise UDFs and AND/OR/NOT. Example UDFs
could be geospatial or temporal functions.

Additional
Information

This functionality is important for the ship management use case, which
requires geospatial UDFs.

Table 84 - requirement REQ-BDL-01 for Big Data Layout

 Id Level of detail Type Actor Priority

REQ-BDL-02 Software FUNC Developer MAN

Name Support a truly pluggable architecture for data skipping

Description The goal of this requirement is to enable the addition of new data skipping
index types without changing the core data skipping library. This is needed
for requirement REQ-BDL-01 since supporting new UDFs may require new
index types.

Additional
Information

External users can also exploit this capability

Table 85 - requirement REQ-BDL-02 for Big Data Layout

 Id Level of detail Type Actor Priority

REQ-BDL-03 Software FUNC Developer MAN

Name Enable layout change for (part of) a dataset

27Identifier: To be used in D2.2 to allow for the correct traceability of requirements.

28Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the
following levels: Stakeholder, System and Software (i.e., technology details).

29Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).

30Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor,
e.g. another component or service.

31Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable
requirement), OPT (optional requirement), ENH (possible future enhancement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 57 of 102 bigdatastack.eu

Description There is a strong relationship between how a dataset is laid out in the object
store and the performance of data skipping against this data set. Moreover,
this performance may be also very dependent on the queries. Hence the
need to adapt the layout, not only for future data but also for heavily
queried data already in object store.

Additional
Information

N/A

Table 86 - requirement REQ-BDL-03 for Big Data Layout

 Id Level of detail Type Actor Priority

REQ-BDL-04 Software FUNC Developer MAN

Name Enable on-line data layout

Description Layout is critical for the data skipping performance. As of now data is stored
as is and possibly laid out again offline. The need is to upload dataset chunks
with the best-known layout as data is ingested.

Additional
Information

N/A

Table 87 - requirement REQ-BDL-04 for Big Data Layout

 Id Level of detail Type Actor Priority

REQ-ADS-01 System DATA Developer MAN

Name Being able to fragment a dataset and move the data fragments across
different nodes.

Description The adaptable distributed storage should be able to split a dataset into
different regions, and move these regions to different data nodes, in order
to adapt in case of increased load (both in terms of user workload or data
load) so as to achieve efficient consumption, based on the provided
resources.

Additional
Information

When a movement (move, split, join) of a data fragment occurs, the storage
must not suffer from a down-time. On the contrary, it must remain
operational with minimum overhead on the overall performance.

Table 88 - requirement REQ-ADS-01 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-ADS-02 System ENV Developer MAN

Name Identify data nodes that are overprovisioning.

Description The adaptable storage must be able to identify data nodes that are
overprovisioning their available resources and send internal alerts to trigger
a dynamic reconfiguration of the deployment of the data fragments.

Additional
Information

N/A

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 58 of 102 bigdatastack.eu

Table 89 - requirement REQ-ADS-02 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-ADS-03 System FUNC Developer DES

Name Solve the non-linear resource allocation problem to suggest alternative
deployment of the data fragments.

Description According to the available resources for the deployment of the data nodes
and the stored data set, along with its split points that define data
fragments, there is a non-linear resource allocation problem for the optimal
deployment of the data fragments.

Additional
Information

As a non-linear, the solution of the resource allocation problem requires
exponential time to be solved, which is not acceptable for run-time
requirements. The provided solution should take into account possible
acceptable solutions that can solve the problem and improve the resource
consumption, under a minimum time interval.

Table 90 - requirement REQ-ADS-03 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-ADS-04 System ENV Developer DES

Name Be able to request additional resources from the infrastructure layer.

Description In case of overprovisioning of the resources, the adaptable distributed
storage should be able to request additional resources from the
infrastructure of BigDataStack.

Additional
Information

As noted in REQ-ADS-02, the adaptable storage must identify data nodes
that are overprovisioning, and using REQ-ADS-03, it can suggest different
distribution of the data fragments. However, there might be cases that this
is not possible due to the overprovision of the whole system, and in such
case, a horizontal scale out must take place. The adaptable storage should
request additional resources, and grant them, if they are available. The
communication should be as follows:

- The adaptable storage requests an additional node with the specific
requirements for resources.

- The infrastructure responds if it can allocate additional resources for
the storage.

- The infrastructure informs the storage that the additional resources are
now available.

This requirement also includes the need from the adaptable storage to
inform the infrastructure that it can release resources that are not needed.

Table 91 - requirement REQ-ADS-04 for Adaptable Distributed Storage

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 59 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-ADS-05 System ENV Developer OPT

Name Being able to release resources and adapt if resources are deallocated from
the infrastructure.

Description There might be cases where the whole infrastructure is overprovisioning
there are no more resources to be allocated to tasks. Then, the
infrastructure might decide to reduce the overall resources of specific
components, in favour of others that might execute some critical
operations, or they have biggest priority at that point. The adaptable
storage engine should be listening to the infrastructure for such cases and
adapt accordingly.

Additional
Information

Once the adaptable distributed storage receives a request to release some
of its nodes, then it should inform if it is capable of doing so: releasing some
the data nodes, might result to not have the required amount of storage
available for the dataset. In such cases, it should be responding that this is
not permitted, as this would lead to data loss. In case that this is permitted,
then it should re-distribute its data load, and inform the infrastructure that
the node is ready to be released.

Table 92 - requirement REQ-ADS-05 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-ADS-06 System ENV Developer DES

Name Inform the re-deployment component regarding reconfigurations of the
data fragments.

Description As it is up to the storage itself to decide its optimal configuration of its data
load, the re-deployment component cannot be aware of possible
reconfigurations, that might affect the overall deployment of an
application. Therefore, the storage should inform the re-deployment
component about these actions.

Additional
Information

A message should be sent just before the re-configuration takes place, along
with the setup, so that the re-deployment component can be notified and
not take into account possible outliner monitoring information coming from
this subcomponent. During this time, the re-deployment component should
not modify any deployments that rely on the data set that is being re-
configured. When the reconfiguration is finished, the adaptable storage
should notify the redeployment component again, in order for the latter to
start looking on the new monitoring information and decide upon possible
redeployment of existed applications as well.

Table 93 - requirement REQ-ADS-06 for Adaptable Distributed Storage.

 Id Level of detail Type Actor Priority

REQ-ADS-07 System ENV Developer MAN

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 60 of 102 bigdatastack.eu

Name Re-establish connectivity with the monitoring subcomponent when a
horizontal scaling action takes place

Description The adaptable storage engine exports its monitoring data to a specific place
where the Prometheus, part of the monitoring subcomponent of
BigDataStack can periodically pull and gather this information. Prometheus
can be configured on where to pull this information upon its initialization.
However, in cases of a runtime redeployment that takes place after a
horizontal scaling action, information regarding the newly deployed nodes
should also reach the monitoring component.

Additional
Information

There should be a monitoring proxy of the adaptable storage that will take
the responsibility to send monitoring information to the target component.
This proxy should encapsulate the details of the underlying deployment. It
should gather all information of the data nodes, reconfigure itself to take into
account newly deployed data nodes, and send everything to the Prometheus.

Table 94 - requirement REQ-ADS-07 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-ADS-08 System ENV Developer MAN

Name Enable a deployment of the data node component using Kubernetes

Description As the infrastructure of BigDataStack uses Kubernetes for deploying the
various application/platform components, the adaptable distributed engine
must be able to deploy and configure additional data nodes via this
technology.

Additional
Information

N/A

Table 95 - requirement REQ-ADS-08 for Adaptable Distributed Storage

 Id Level of detail Type Actor Priority

REQ-SDAF-01 Software FUNC Developer MAN

Name Provide access to data stores via a single and common interface.

Description BigDataStack includes two different data stores: the LeanXcale relational
data store and IBM object store. The dataset can be fragmented and
distributed over the two data stores (historic data being moved to object
store). However, the application should be kept unaware of these internal
data transfers. The application needs a common interface to submit queries,
without having to specify where the data is stored.

Additional
Information

A federation mechanism is required that will encapsulate the process of data
retrieval from the two data stores. The LeanXcale access point will act as the
federator between the relational and the Object Storage. The LeanXcale data
base already provides a common JDBC interface for data connectivity. The
federator will receive the query and execute it in both data stores. For the
object store, the access would be via Spark SQL, which also provides a JDBC
interface. The federator will take into consideration the operations that can

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 61 of 102 bigdatastack.eu

be supported in order to push down the operations accordingly. Regarding
the relational store, all operations will be pushed down to the store. At the
very end, the federator will merge the results and return back the result set.
It shouldn’t count data that appears in both data stores twice.

Table 96 - requirement REQ-SDAF-01 for Seamless Data Analytics

 Id Level of detail Type Actor Priority

REQ-SDAF-02 System DATA Developer MAN

Name Move historical data from the relational data store to the object store.

Description Data ingested by the use cases will be stored into the relational datastore,
as they are operational, in order to ensure data consistency in terms of ACID
properties. After a configurable period of time, called the freshness window
(which depends on the data set), the data becomes outdated and is no
longer used by operational workloads. However, this historical data is still
valuable and can be exploited by Big Data analytics algorithms. This data
should be moved from the LeanXcale data base to the IBM object store.

Additional
Information

The LeanXcale data base provides a mechanism that allows to periodically
produce a dumb snapshot of the modified data. This information will be
transformed accordingly and will be pushed to an Apache Kafka queue. A
Kafka based connector will, periodically pull this information and import the
historical data to the object store.

Table 97 - requirement REQ-SDAF-02 for Seamless Data Analytics

 Id Level of detail Type Actor Priority

REQ-SDAF-03 Software DATA Developer MAN

Name Inform the LeanXcale data store when data are imported to the object store.

Description When data are pushed to the Apache Kafka queue, the LeanXcale data base
can drop them. However, due to the asynchronous design, the LeanXcale
data base cannot know when the data has been made available to the
object store. As a result, the object store must inform the LeanXcale data
base regarding the successful insertion of the data, so that the LeanXcale
data base can safely drop these data.

Additional
Information

One possible solution to deal with this requirement will be the introduction
of marking the data to be transferred to the object store by additional
timestamps. Data that is being flushed and exported to the Kafka queue can
be marked that way, so that later on, the object store can inform the
LeanXcale data base that this bunch of data has been successfully imported.
By doing so, the federator component can push down operations
accordingly, and only request specific data from the underlying data stores.
Data that are known to the LeanXcale data base that has been previously
uploaded to the object store, will not be retrieved by the federator and can
be safely discarded by the vacuum process of the LeanXcale data base.

Table 98 - requirement REQ-SDAF-03 for Seamless Data Analytics

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 62 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-SDAF-04 Software DATA Developer OPT

Name Optimize query execution

Description The federator receives a query and executes it into the different stores. The
federator will be based on the LeanXcale query engine. The latter provides a
query optimizer, which allows it to examine the different execution plans that
can be produced in order to execute a query. However, it has been
implemented to evaluate plans to be executed locally. It should be extended
in order to take into consideration the operations that can be pushed down
to the object store, and whether or not it is worth for an operator to be
pushed down, according to the response time of the execution from Spark
SQL, the amount of data that will be retrieved to the federator etc.

Additional
Information

N/A

Table 99 - requirement REQ-SDAF-04 for Seamless Data Analytics

 Id Level of detail Type Actor Priority

REQ-SDAF-05 Software DATA Developer OPT

Name Optimize access to Object Storage.

Description In order to perform analytics efficiently on Object Storage, a client-side
caching/acceleration layer is needed. This is critical for a hybrid cloud
scenario, where some of the customer data is on premise (potentially the
LeanXcale data base and Spark) and some is in the cloud (potentially IBM
COS). In such a scenario, when performing analytics, data needs to move
from COS to Spark across the WAN, therefore minimizing the amount of data
movement when part of the data is retrieved multiple times is of utmost
importance.
A similar scenario involves multi-cloud, where a dataset may be distributed
among more than one cloud, also requiring data transfer across the WAN
for the purposes of analytics.

Additional
Information

This complements data skipping and data layout techniques to further
reduce the KPI measuring the number of bytes sent from Object Storage to
Spark.

Table 100 - requirement REQ-SDAF-05 for Seamless Data Analytics

 Id Level of detail Type Actor Priority

REQ-DQAI-01 Software DATA Developer MAN

Name Infer data schema

Description The Data Quality Assessment and Improvement module should be able to
infer a data schema for a given dataset. The data schema should describe

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 63 of 102 bigdatastack.eu

the name of each field, its type (e.g., integer, floating number, string, etc.)
and its presence (mandatory or optional).

Additional
Information

The schema will be stored in a sharable format (e.g. JSON document) and
the system should be able to recall it and compare a new dataset against it,
to discover lurking anomalies.

Table 101 - requirement REQ-DQAI-01 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-DQAI-02 Software DATA Developer OPT

Name Create schema environments

Description The Data Quality Assessment and Improvement module should be able to
different schema environments, for example for training and serving
datasets.

Additional
Information

This way the user should be able to feed the system slightly different
datasets for training, validation, testing and serving purposes.

Table 102 - requirement REQ-DQAI-02 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-DQAI-03 Software DATA Developer MAN

Name Check data anomalies

Description The Data Quality Assessment and Improvement module should be able to
compare a given dataset to a restored data schema and produce a data
anomaly assessment, e.g., discovering missing columns or wrong data
types.

Additional
Information

The final analysis will be stored in a sharable format (e.g. JSON document)
and the system should be able to recall it and present it to the user to act.

Table 103 - requirement REQ-DQAI-03 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-DQAI-04 Software DATA Developer MAN

Name Check data skew and drift

Description The Data Quality Assessment and Improvement module should be able to
detect skew between training and serving data, as well as drift between
training datasets in different model versions.

Additional
Information

The final analysis will be stored in a sharable format (e.g. JSON document)
and the system should be able to recall it and present it to the user to act.

Table 104 - requirement REQ-DQAI-04 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-DQAI-05 Software DATA Developer DES

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 64 of 102 bigdatastack.eu

Name Detect data source deterioration

Description The Data Quality Assessment and Improvement module should be able to
detect if a data source, e.g., an IoT sensor, is not malfunctioning and always
emits corrupted data.

Additional
Information

The final analysis will be stored in a sharable format (e.g. JSON document)
and the system should be able to recall it and present it to the user to act.

Table 105 - requirement REQ-DQAI-05 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-DQAI-06 Software DATA Developer MAN

Name Detect unexpected range of values

Description The Data Quality Assessment and Improvement module should be able to
detect unexpected range of values in any field of the dataset, given a
specific context, i.e., the values in neighbouring columns.

Additional
Information

The final analysis will be stored in a sharable format (e.g. JSON document)
and the system should be able to recall it and present it to the user to act.

Table 106 - requirement REQ-DQAI-06 for Data Quality Assessment & Improvement

 Id Level of detail Type Actor Priority

REQ-RD-01 Stakeholder FUNC Developer ENH

Name Global event tracker connection

Description A connection to the Global Event Tracker (GET) is needed for the Predictive
& Process Analytics component.

Additional
Information

The information stored in GET is crucial to the implementation of this
module.

Table 107 - requirement REQ-RD-01 for Predictive & Process Analytics

Id Level of detail Type Actor Priority

REQ-RD-02 Stakeholder FUNC Developer ENH

Name Connection to the Process Modelling Framework

Description A connection between this component and the Process Modelling
Framework needs to be established, so information can be sent and received.

Additional
Information

The recommendations made by this component will be in real time, as the
Business Analyst – Data engineer is modelling the process.

Table 108 - requirement REQ-RD-02 for Predictive & Process Analytics

 Id Level of detail Type Actor Priority

REQ-RD-03 Stakeholder FUNC Developer ENH

Name Data pre-processing

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 65 of 102 bigdatastack.eu

Description The data ingested by this component needs to be in an eXtensible Event
Stream32 (XES) file format. A tool is created, depending on the format of
the Global Event Tracker.

Additional
Information

The XES standard defines a grammar for a tag-based language whose aim is
to provide designers of information systems with a unified and extensible
methodology for capturing systems behaviours by means of event logs and
event streams is defined in the XES standard. An XML Schema describing the
structure of an XES event log/stream and an XML Schema describing the
structure of an extension of such a log/stream are included in this standard.
Moreover, a basic collection of so-called XES extension prototypes that
provide semantics to certain attributes as recorded in the event log/stream
is included in this standard.

Table 109 - requirement REQ-RD-03 for Predictive & Process Analytics

 Id Level of detail Type Actor Priority

REQ-RD-04 Stakeholder FUNC Developer ENH

Name ProM framework

Description ProM is an extensible framework that supports a wide variety of process
mining techniques in the form of plug-ins.

Additional
Information

The process mining techniques used will be utilized to derive metrics of the
event log, to create the semantics needed between events for the
recommendation process.

Table 110 - requirement REQ-RD-04 for Predictive & Process Analytics

 Id Level of detail Type Actor Priority

REQ-
CEP-01

System FUNC Developer MAN

Name Manage data from different sources to generate alarms if required.

Description The CEP will process data on the fly coming from sensors. Each sensor sends
events each minute. CEP will analyse the data according to a set of rules and
generate alarms.

Additional
Information

The processing will be both stateless and over windows of time and number
of events.

Table 111 - requirement REQ-CEP-01 for CEP

 Id Level of detail Type Actor Priority

REQ-CEP-02 System FUNC Developer MAN

Name Send alarms and data from each node of the distributed environment to the
data centre.

32 http://www.xes-standard.org/

http://www.xes-standard.org/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 66 of 102 bigdatastack.eu

Description Once metrics have been analysed, the CEP will send the alarms and the data
to a central location (data centre).

Additional
Information

The CEP will run on nodes of a geographically distributed environment.

Table 112 - requirement REQ-CEP-02 for CEP

 Id Level of detail Type Actor Priority

REQ-CEP-03 System PERF Developer MAN

Name Data from distributed nodes is aggregate at a central location.

Description Further processing over remote data will be done at a central location.

Additional
Information

The CEP processing will scale to tens streams coming from different remote
sources.

Table 113 - requirement REQ-CEP-03 for CEP

 Id Level of detail Type Actor Priority

REQ-CEP-04 Stakeholder PERF Developer ENH

Name Store data on the data store

Description The CEP will store the data at the rate is being produced.

Additional
Information

Both CEP and LX will run at the same location.

Table 114 - requirement REQ-CEP-04 for CEP

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 67 of 102 bigdatastack.eu

8 Dimensioning, Modelling & Interaction Services
Requirements

To facilitate the understanding of the design as well as the challenges addressed by this set

of services, the requirements related to them were brought into D5.1 and literally included

from this section. Therefore, note the following requirement tables also appear as-is in such

deliverable for the reader’s convenience.

 Id33 Level of detail34 Type35 Actor36 Priority37

REQ-PMF-01 System and
Software

USE ROL-04 MAN

Name UI/UX experience

Description The system should guide the users to complete the business diagram / flow
with easy steps. It should clearly indicate what connections – interactions
are possible and provide comprehensive error messages.

Additional
Information

N/A

Table 115 – System Requirement (1) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-02 System and
Software

FUNC ROL-04 MAN

Name Multi-user support

Description Multiple users should be able to use the Process Modelling Framework and
create diagrams at the same time. It should also support different roles:
business analysts and data analysts. A business analyst will define a process
in a higher level and a data analyst will provide the concrete
implementations

Additional
Information

N/A

Table 116 – System Requirement (2) for Process Modelling Framework

33Identifier: To be used in D2.2 to allow for the correct traceability of requirements.

34Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the
following levels: Stakeholder, System and Software (i.e., technology details).

35Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).

36Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor,
e.g. another component or service.

37Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable
requirement), OPT (optional requirement), ENH (possible future enhancement).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 68 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-PMF-03 System and
Software

FUNC Business Analyst MAN

Name Process workflow creation

Description A business analyst should be able to create a process workflow in a higher
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow.

Additional
Information

N/A

Table 117 – System Requirement (3) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-04 System and
Software

FUNC Data Analyst MAN

Name Process workflow configuration

Description The data analyst should be able to configure a process workflow with all the
required details. The data analyst will set up the nodes parameters and
define the rules for moving from one node to another.

Additional
Information

N/A

Table 118 – System Requirement (4) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-05 System and
Software

FUNC Data Analyst MAN

Name Process workflow export

Description The data analyst should be able to export the process workflow in
BigDataStack format.

Additional
Information

The default format of the export will be in JSON. It will include information
regarding the flows and their interconnections. Alternative export formats
(YAML, Dockerfile) will be considered based on the requirements of other
components. The user should be able to select the appropriate export
format.

Table 119 – System Requirement (5) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-06 System and
Software

FUNC Business Analyst MAN

Name Support for end-to-end (in terms of process workflow) objectives

Description The business analyst should be able to defile end-to-end objectives. These
objectives do not apply to a single process, but to the workflow as a whole.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 69 of 102 bigdatastack.eu

Additional
Information

N/A

Table 120 – System Requirement (6) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-07 System and
Software

FUNC Business Analyst MAN

Name Process constraints

Description The business analyst should be able to set apply constraints per node /
process of the workflow

Additional
Information

N/A

Table 121 – System Requirement (7) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-PMF-08 System and
Software

FUNC Business Analyst MAN

Name Edge constrains

Description The business analyst should be able to apply constraints / parameters per
edge (i.e. connections between processes of the workflow).

Additional
Information

N/A

Table 122 – System Requirement (8) for Process Modelling Framework

 Id Level of detail Type Actor Priority

REQ-DO-01 Stakeholder FUNC ROL-04 MAN

Name Compatibility with output of Process Modelling

Description The Process Mapping component is able to process the output of Process
Modelling, in order to select appropriate ML algorithm(s) for specific
Process steps.

Additional
Information

This requirement practically ascertains that the two components (Process
Modelling and Process Mapping) are compatible and that the output of the
first can be consumed by the second.

Table 123 – System Requirement (1) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC ROL-04 MAN

Name Extraction of metadata

Description Given a dataset, extract a set of metadata that is sufficient in order to
discover similarities between datasets, in particular regarding the
underlying data distributions and other statistical properties.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 70 of 102 bigdatastack.eu

Additional
Information

The metadata should cover at least statistical and information-theoretic
characterization of a given dataset.

Table 124 – System Requirement (2) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-03 Stakeholder FUNC ROL-04 MAN

Name Build and maintain a meta-knowledge repository

Description Collect and store information about datasets, metadata, and the
performance of ML algorithms that have been executed on the datasets.
This information is referred to as meta-knowledge, because it is essentially
knowledge about the learning process. This meta-knowledge repository is
going to be used for meta-learning, which is defined as the study of
methods that exploit meta-knowledge to obtain efficient models and
solutions by adapting machine learning processes.

Additional
Information

The meta-knowledge repository is augmented with information about the
execution of ML algorithms on new datasets.

Table 125 – System Requirement (3) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-DO-04 Stakeholder FUNC ROL-04 MAN

Name ML algorithm selection

Description Given a machine learning task, a dataset, and a set of available ML
algorithms that can handle the given task, select (or recommend) the subset
of ML algorithms with best performance.

Additional
Information

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and
an execution environment for running ML algorithms on different datasets
and evaluating their result quality.

Table 126 – System Requirement (4) for Process Mapping

 Id Level of detail Type Actor Priority

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN

Name Describe data mining and analysis processes through data workflows

Description Support for the description of data mining and analysis processes,
interconnected to each other in terms of input/output data
streams/objects. The corresponding metadata and an algorithms taxonomy
for the categorisation of the analytic processes, type of data and connection
details will be used to facilitate the description of individual nodes.

Additional
Information

The playbook must be represented in the form of a descriptor (e.g. through
a yaml file) that can be incorporated into the Dimensioning Workbench as
well as the Dynamic Orchestrator.

Table 127 – System Requirement (1) for Data Toolkit

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 71 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN

Name Express data workflows through graphs using nodes and edges

Description Data workflows are represented in the form of an analysis application graph
that includes the set of individual processes as nodes of the graph along
with their binding/dependencies in the form of virtual links (i.e. edges). The
links may include properties representing constraints, KPIs or objectives
which are desirable at specific analytic stage.

Additional
Information

N/A

Table 128 – System Requirement (2) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-03 Software FUNC ROL-03 MAN

Name Validate graph through chain-ability constraints

Description This requirement resolves chain-ability constraints through different nodes
in the data workflows. The target is to produce a valid graph. This is the
reason why a set of checks will be performed to meet these prerequisites.
If these prerequisites are not met, the graph is not considered valid.

Additional
Information

N/A

Table 129 – System Requirement (3) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-SY-DT-04 Software FUNC ROL-03 MAN

Name Link valid graphs with viable executables for Big Data analytic processes

Description This step links the graph with the actual executable image. In order to cope
with the problem of vendor lock-in format of the executable the container
format has been chosen. To this end, the actual container pulling will be
performed.

Additional
Information

N/A

Table 130 – System Requirement (4) for Data Toolkit

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-01 System and
Software

FUNC ROL-04 MAN

Name Ingest Playbook

Description The Data Toolkit sends to the Pattern Generation a Playbook containing
the graph of the user’s application. The Pattern Generation receives the
playbook and initiates creation of candidate deployment patterns.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 72 of 102 bigdatastack.eu

Additional
Information

N/A

Table 131 – System Requirement (1) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-02 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory (File)

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon. Initial versions will load this information from a static
file.

Additional
Information

N/A

Table 132 – System Requirement (2) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-03 System and
Software

FUNC ROL-04 MAN

Name Load Hardware Directory

Description To produce candidate deployment patterns, Pattern Generation needs to
know what hardware is available to deploy the components of the user’s
application upon.

Additional
Information

N/A

Table 133 – System Requirement (3) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-04 System and
Software

FUNC ROL-04 MAN

Name Service-Hardware Mapping (1-1)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The first version
of this functionality produces only 1-1 mappings, i.e. one service is
mapped to one piece of hardware (e.g. machine).

Additional
Information

N/A

Table 134 – System Requirement (4) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-05 System and
Software

FUNC ROL-04 MAN

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 73 of 102 bigdatastack.eu

Name Service-Hardware Mapping (1-M)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The second
version of this functionality produces only one to many mappings, i.e. one
service can be mapped to multiple piece of hardware (e.g. spread over
multiple machines). This may be advantageous in cases such as were a
single ‘big’ machine is more expensive than multiple smaller machines.

Additional
Information

N/A

Table 135 – System Requirement (5) for Pattern Generator

 Id Level of detail Type Actor Priority

REQ-T5.1-PG-06 System and
Software

FUNC ROL-04 DES

Name Service-Hardware Mapping (M-1/Pods)

Description The main process in Pattern Generation is mapping the different
components (services) to potentially suitable hardware. The third version
of this functionality produces only many to one mappings, i.e. multiple
services can be co-located on a single piece of hardware. This may be
advantageous when services perform high-volume data transfers that
would be expensive over a network.

Additional
Information

N/A

Table 136 – System Requirement (6) for Pattern Generator

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-01 System PERF/
NONFUNC

ROL-02 MAN

Name Response Time and Workload

Description The service provided by the data applications (e.g. recommender system)
must have enough speed so consumers will not notice the time taken by the
request. This implies that the Data Scientist should be able to dictate what
are the required levels of QoS, selecting them from available metrics and
appropriate levels for them.

Additional
Information

This requirement poses initially the feature of metric selection and insertion
at the Data Toolkit layer, for the Data Scientist to express their desires. Then
the annotated Playbook gets passed to the following components (primarily
ADW). Inside the Application Dimensioning Workbench, an initial candidate
solution set is created, its estimated QoS level is enriched and the solution
set is returned to the Data Scientist for final selection. Workload features
(e.g. maximum/average etc. number of concurrent users) should also be
able to be specified in order for the system to estimate the anticipated QoS
levels for the desired range of application level workload.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 74 of 102 bigdatastack.eu

This indicates that per category of data service or data service+analytics
function a suitable selection of workload and QoS metrics should be
performed and supported across the system (including also other
components like monitoring)

Table 137 – System Requirement (1) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-02 System NONFUNC
/ PERF

ROL-04 MAN

Name Scalability and configurability of stress tests for load injection

Description The system should have knowledge of a mapping between workload and
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the
data services that can easily scale to support the client sizes needed.
Furthermore, different parameters of workload should be able to be
determined

Additional
Information

Given that different data services exist in the project ecosystem, different
baseline benchmarking tools should be identified per case. Following their
selection, they need to be configured based on the respective workload
parameters and scaled based on an abstracted generic approach (e.g.
Docker containerization and Docker swarm approach)

Table 138 – System Requirement (2) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-03 System FUNC ROL-04 MAN

Name Dimensioning output

Description The Dimensioning workbench should provide a list of candidate
dimensioning suggestions along with the expected QoS levels towards the
ADS Deploy component (and eventually the Application Engineer role), for
the former to filter them based on an extra set of criteria and the latter to
perform the final selection.

Additional
Information

Upon reception of the playbook with the service graph, ADW needs to
estimate QoS level based on the results obtained through REQ-SYS-DW-02
and populate the respective fields. The operation should be offered through
a REST service interface for automating the process and hiding complexities.

Table 139 – System Requirement (3) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SY-DW-04 System FUNC ROL-04 MAN

Name Monitoring requirements for dimensioning

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 75 of 102 bigdatastack.eu

Description The Dimensioning workbench should have a means to obtain monitoring
information from the deployed data services and application components
for a given deployment to extract training data for the performance models.
The rationale of the requirement is that for every needed metric (workload
oriented e.g. number of current users, requests etc. or QoS oriented e.g.
response time, throughput) in the model the respective endpoint should
exist from which the monitoring component would extract metrics values.
This applies to both actual runtime and benchmarking phase

Additional
Information

Relevant Tools affected: Data services, application components, triple
monitoring engine.

Table 140 – System Requirement (4) for ADW Core

 Id Level of
detail

Type Actor Priority

REQ-SO- ADW-01 Software FUNC ROL-04 MAN

Name Load injector dockerization

Description To support a generic load injection process as indicated by REQ-SY-DW-02,
“dockerization” of the respective load generators per type of service needs
to be performed. Thus, a specific Docker container image per needed load
generator tool needs to be provided, along with a unified process for
feeding the per case load description file based on the Docker API and
configuration process.

Additional
Information

N/A

Table 141 – System Requirement (5) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-02 Software FUNC ROL-04 MAN

Name Service structure specification

Description The service graph specification coming as input from the Process Modelling
and Data Toolkit should follow the Docker Compose specification, to be
understandable by the Dimensioning workbench. Following, the
Dimensioning phase should add the respective candidate resource
deployment options as additional custom metadata in the file to be used by
the Deployment selection. The same applies for the benchmarking runs,
which should be based on the same format (even without the inclusion of
the PM and Data Toolkits). All requirements needed for deploying the
benchmarking environment should be described using this common agreed
standard.

Additional
Information

N/A

Table 142 – System Requirement (6) for ADW Core

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 76 of 102 bigdatastack.eu

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-03 Software FUNC ROL-04 MAN

Name Representative nature of gathered data samples

Description In order to create representative and accurate performance models,
dataset creation from benchmarking should take into account different
conditions such as applied workloads, configuration aspects of the service,
deployment options etc. In this way different bottlenecks may be examined,
and the final decision making can be adapted per case of service usage.

Additional
Information

N/A

Table 143 – System Requirement (7) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-04 Software FUNC ROL-04 ENH

Name Deployment time for stress tests

Description The overhead added by the benchmarking setup should be negligible and
not included in the measurement process.

Additional
Information

Since the deployment phase is done in a containerized manner, the time
used in instructions different than launching the benchmark or storing data
should not be significant.

Table 144 – System Requirement (8) for ADW Core

Id Level of
detail

Type Actor Priority

REQ-SO- ADW-05 Software FUNC ROL-04 ENH

Name Benchmarking Workflow implementation

Description During the benchmarking phase, there should be a controlled manner in
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data
collection.

Additional
Information

Table 145 – System Requirement (9) for ADW Core

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 77 of 102 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-AV-01 System and
Software

USE ROL-04 MAN

Name Interactive and Responsive UI

Description The system should provide an interactive UI that should adapt to different
devices and displays in order to provide a proper operation of the solution
and a good user experience.

Additional
Information

N/A

Table 146 – System Requirement (1) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-02 System and
Software

FUNC ROL-04 MAN

Name Automatic graph selection

Description Appropriate graphs and reports should automatically be selected for
different data sets.

Additional
Information

N/A

Table 147 – System Requirement (2) for Adaptable Visualizations

 Id Level of detail Type Actor Priority

REQ-AV-03 System and
Software

FUNC ROL-04 MAN

Name Live data for different data sources

Description The system should be able to display live data obtained from application
probes, resource probes and data operations probes.

Additional
Information

Adaptable selection of sources should be possible both in terms of
application, resources or data operations, as well as in terms of the datasets
selected and visualized per each one of these cases. Combinations should
also be enabled.

Table 148 – System Requirement (3) for Adaptable Visualizations

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 78 of 102 bigdatastack.eu

9 Baseline Technologies

This chapter shortly presents the baseline technologies to be used to introduce the ground
for the proposed work and to ensure that non-conflicting (in terms of functional properties
and integration with other components) technologies will be used. It does not simply state
some state-of-the-art technologies but rather links them under the context of BigDataStack
and what BigDataStack can get from them.

9.1 Computing Resources Management

Public clouds (such as GCP38 or IBM Cloud39) offer infrastructure-as-a-service (IaaS). IaaS is a
pay-per-use service model to consume virtual computational (e.g., virtual machines), storage
and networking resources. This service provides high levels of QoS and wide variety of
resource types (e.g., machines with different memory, CPU and acceleration chipset
features).

OpenStack40 is an open source software that aims to create private and public clouds. It lets
companies to create an IaaS in their data centre. OpenStack lets you add servers, network
and storage components easily and efficiently to your cloud. It controls large pools of
compute, storage, and networking resources throughout a data centre, managed through
a dashboard or via the OpenStack API.

Container management/orchestration platforms are becoming popular solutions to make it
easier provisioning and managing cloud applications. Some examples are Kubernetes41,
Docker Swarm42, Amazon ECS43, or Mesosphere Marathon44. These typically provide an API
for developers to upload, organize, run, scale, manage and stop containers. They also
normally provide a command line interface (CLI) and a web console to configure and monitor
the performance of the services and resources of the platform, such as:

- container deployment and configuration,
- performance monitoring,
- cluster management and scaling,
- logging, and
- container lifecycle management.

Kubernetes is the most popular and widespread container orchestration platform; its main
purpose is to schedule container (process) execution in a single machine or a cluster of
machines and optimize (maximize the utilization) of the resources of the cluster. Everything
in the platform is treated as an API object representing a concrete instance of a resource type
in the cluster:

- Kubernetes Pods are the simplest object to be managed by Kubernetes. A pod is a group
of related containers (processes) collocated on a Kubernetes cluster’s node, sharing

38 GCP (Google Cloud Platform). https://cloud.google.com
39 IBM Cloud. https://www.ibm.com/cloud/
40 Open Stack. https://www.openstack.org/
41 Kubernetes. https://kubernetes.io/
42 Docker Swarm. https://docs.docker.com/engine/swarm/
43 Amazon ECS (Elastic Container Service). https://aws.amazon.com/en/ecs/
44 Mesosphere Marathon. https://mesosphere.github.io/marathon/

http://searchitoperations.techtarget.com/definition/Docker-Swarm
https://cloud.google.com/
https://www.ibm.com/cloud/
https://www.openstack.org/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/en/ecs/
https://mesosphere.github.io/marathon/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 79 of 102 bigdatastack.eu

storage/network and a specification for how to run the containers45. Replica sets are the
number of pod instances running and represent the way to scale out/in deployments.

- Kubernetes Namespaces support multiple virtual clusters on the same physical cluster.
Namespaces are used to organize objects in a cluster and provide a way to divide cluster
resources to isolate environments and better ensure Quality of Service (QoS).

- Kubernetes Services describe how to access sets of pods and can describe ports and load-
balancers.

Kubernetes scheduler is built around the concept of managing CPU and memory resources at
a container level. Every Kubernetes cluster’ node (instances to schedule containers to) is
assigned an amount of schedulable memory and CPU. At deployment time, every container
specifies how much memory and CPU it will request. And the scheduler finds the best fit given
the allocated CPU and memory on the nodes.

Kubernetes defines the CPU and MEMORY resources using basic constructs [53]: The request
value specifies the min value you will be guaranteed; the limit value specifies the max value
you can consume (i.e., a CPU quota or a memory limit) and the value applications should be
tuned to use.

Kubernetes defines several different quality of service (QoS) tiers based on how request and
limit are specified [53]: Best-Effort, Guaranteed and Burstable.

While those are the basic constructs, different applications have different needs and data
driven applications should consume these resources in an “intelligent” way.

9.2 Storage Resources Management

As we base our infrastructure on Kubernetes (see previous section), we need to tackle usage
of storage by the application through the Containers Orchestrators perspective.

The current model for persistent storage for containers is settling out on attaching volumes
(LUNs) to a container and formatting that volume with a file system. Through the container
engine, the file system is exposed as a mount point within the container. Storage could be
taken from local disks (e.g. a volume created using an LVM) or from external storage
presented to the container server/node.

To make it easier to plug in storage interfaces into the Container Platform, K8S created the
CSI. The aim of the Container Storage Interface (CSI) is to provide a common standard to
connect container orchestration platforms (COs) like Kubernetes, Docker Swarm and Mesos
to a plugin and ultimately to persistent storage (see previous section).

Theoretically, with a standardised communication protocol, storage vendors will only need to
write a plugin to a single specification. CSI sets out the definition of how to talk to the plugin;
exactly how the plugin is managed or operates is up to the storage provider. CSI provides the
following capabilities.

- Dynamic provisioning and decommissioning of volumes.
- Attachment and detachment of volumes from a host node.
- Mounting and unmounting of a volume from a host node.

45 https://kubernetes.io/docs/concepts/workloads/pods/pod/

https://kubernetes.io/docs/concepts/workloads/pods/pod/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 80 of 102 bigdatastack.eu

This technology enables us in BigDataStack to create flexible and dynamic management for
the storage resources needed by the different workloads of the applications.

9.3 Data-driven Network Management

Data-driven network management regards a set of functions related to optimal network setup
to cover the operational requirements of analytic processes in terms of efficient data
exchange. In most of the cases, analytic process deployments are realised within a data centre
(DC) environment and do not impose strict requirements in terms of layer-3 routing
mechanisms. Optimal network flows’ setup and management must be realised within a DC
environment. Towards this direction, Software Defined Networking Mechanisms (SDN) can
be applied along with network management mechanisms (e.g. enforcement of network
policies) supported by the Orchestration Engine.

For instance, in case of Kubernetes, a network policy is a specification of how groups of pods
can communicate with each other and other network endpoints. Network Policy resources
use labels to select pods and define rules which specify what traffic should be allowed. In case
of application of SDN-based mechanisms, OpenFlow46 is considered as the dominant
communications protocol that gives access to the forwarding plane of a network switch or
router over the network. OpenFlow enables network controllers to determine the path of
network packets across a network of switches.

The adopted set of solutions for Data-driven Network Management is going to be well bound
to the orchestration solution to be designed and implemented within BigDataStack,
guaranteeing the support of novel and intelligent network management mechanisms,
applicable to data-intensive and network-intensive processes.

9.4 Dynamic Orchestrator

Orchestration (as an infrastructure management service) refers to the enablement and the
coordinated handling of various optimizations inside the platform. Examples of such
optimizations are the placement (or allocation) of tasks to computing resources, decisions
regarding parallelization degrees of parallelizable tasks/services, load balancing, algorithm
selection, and more. In the state of the art, such optimizations are handled in a way that we
call “service-driven”. This means that the optimization functions, the criteria, and the system
setup are built around basic features such as CPU power, network bandwidth, and
task/service requirements to optimize certain metrics (e.g. latency) with regard to the
examined service.

Related works [46][47] exploit obvious known synergies such as the fact that running tasks on
low-CPU nodes can increase processing time or the fact that overloading certain links can
create bottlenecks. Apart from the fact that such concrete optimizations have rarely been
handled homogeneously or investigated in a common context, there are also gaps towards
making them data-driven rather than service-driven.

To support data-driven overall orchestration and data-driven solutions of specific
optimization problems (e.g. placement), we propose techniques to identify the synergies
between characteristics of data analytics and system KPIs, e.g. functions that represent how
data I/O volumes affect the CPU-intensity of certain tasks etc. We will provide the basis for

46 https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/

https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 81 of 102 bigdatastack.eu

using such data-related synergies for all system orchestration aspects by defining machine-
readable profile specifications (hereinafter referred to as Synergy Profile) for profiling
homogenously all entities (e.g. nodes, algorithms, network links, application tasks) that are
involved in data-driven orchestration. A rule-based approach for triggering runtime
optimizations based on the monitored data will be delivered. We will also define interfaces
and procedures where the Dynamic Orchestrator communicates to other controllers to create
and maintain the Synergy Profiles. The baseline technologies that will support the Sinergy
Profiler implementation and integration are preliminary defined as the following:

- Drools as the rule engine for triggering orchestration actions that must be enforced
over the operational application based on real-time monitoring data.

- Kubernetes and Mesosphere DC/OS for application placement and container
orchestration.

- LeanXcale will provide an interface for data services deployment.
- OpenFlow for network functions recompilation.
- OpenStack will support live migration procedures.

9.5 Triple Monitoring

To be able to maintain a good quality and perform best adaptation based on the change that
could happen in a system, metrics need to be taken continuously and exposed to the
component involved in the evaluation of quality and adaptation. In the context of
BigDataStack, tracking information will be performed by the Triple monitoring engine. Three
different groups of metrics need to be tracked: infrastructure information, data operation
(data produced by applications running on the platform) and all data involved in database
transactions.

Since these metrics are produced by applications with different purposes, specifications,
functionalities and technologies, two approaches will be used, the first is to use probe to
directly ingest metrics into the monitoring collector. The second approach is to provide a
sanitizer to prepare metrics conforming with the specification of the collector and ingest
them. This sanitizer will act as a unified APΙ.

The triple monitoring engine has an input REST API which is an entry point of the system and
an output REST API for exposing data to all applications data consumer. The monitoring
should provide an efficient and fast way of transferring metrics from the input to the
manager that handle all the logics of the engine. The big number of metrics from different
sources must be organized chronologically and presented to a correct format for their
visualization. We've been interested by two main technologies:

Prometheus is a technology for monitoring management, which includes metrics collection
facilities. This technology will be very convenient for the following reasons47:

• Powerful queries: A flexible query language (NoSQL based) allows slicing and dicing of
collected time series data.

• Efficient storage: Prometheus stores times series in memory and on local storage in
an efficient custom format. Scaling is achieved by function sharing and federation.

• Extensive integration: Many existing exporters allow bringing data from third-party
application to its collector.

47 Prometheus. https://prometheus.io/

https://prometheus.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 82 of 102 bigdatastack.eu

• Push gateway: In case it’s impossible to scrape metrics (using probe), metrics can be
exposed to the Prometheus collector by this mechanism48.

The manager needs a persistent connection with the output REST API, a connection oriented
based technology will be used. RabbitMQ will be very convenient because of the following49:

• Availability in many languages and platform.
• Asynchronous Messaging: Supports multiple messaging protocols, message queuing,

delivery acknowledgement, flexible routing to queues, multiple exchange type. Those
features allow for publish/subscribe communication and high-speed asynchronous I/O
engines, in a tiny library.

• Distributed Deployment: Deploy as clusters for high availability and throughput;
federate across multiple availability zones and regions.

Persistent data need to be stored for later use, since all REST API within triple monitoring
engine use JSON format and metrics don't have the same structure because of their
respective origin, a convenient technology for saving these data will be using a database that
handle JSON format to facilitate data transfer within the triple monitoring engine and to allow
polymorphism. Based on the amount of data arriving per second and the huge quantity of
operation that need to be perform MongoDB will be very efficient [48].

As said before, the triple monitoring engine provides two REST interfaces.

• The first has the goal of receiving data from different sources and sending them to the
Netdata collector (plugin). This interface will be the input of the monitoring engine.
The API keeps data in memory until it is consumed by the plugin. Applications (data
producers) will have access to this API for sending their measurements.

• The second interface provides the output of the monitoring engine to applications
(consumers). This interface has two kinds of connection to serve results: a REST API
and a Publish/Subscribe mechanism that is connection-oriented service.

48 Prometheus https://prometheus.io/
49 RabbitMQ https://www.rabbitmq.com/

https://prometheus.io/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 83 of 102 bigdatastack.eu

Figure 3. Netdata role in triple monitoring

Netdata is a system for health and performance monitoring of distributed real-time systems.
It provides real-time insights of everything happening on the system it runs (including
applications such as web and database servers), using interactive web dashboards [7].
Netdata main capabilities are gathering data from different sources and exposing them
through a REST API. Netdata architecture is extensible through plugins to read measurements
(metrics) from different sources. In Figure 3 , the component named “BigDataStack plugin” is
an adapter that needs to be deployed to ingest data into Netdata.

9.6 Applications & Data Services Deployment

Application and Data Services Deployment is concerned with how to deploy the user’s
application onto the cloud infrastructure, as well as subsequent re-deployment in cases
where the initial deployment did not meet the user’s quality of service requirements. It
belongs within the realization engine of the overall BigDataStack platform. More precisely, it
is comprised of two main components:

I. ADS-Ranking: A component that ranks different possible deployment configurations
of the user’s application on the cloud hardware (referred to as candidate deployment
patterns) such that we can select the most suitable one given the user’s requirements.
In a redeployment scenario, this component re-ranks and selects a new candidate
deployment pattern that solves issues identified with the previous deployment.

II. ADS-Deployment: A component that takes the best candidate deployment pattern
and physically deploys it on the cloud infrastructure. Meanwhile, in a re-deployment
scenario, this service facilitates the transition of one-or-more already deployed user
services to a new configuration based on an updated candidate deployment pattern.

9.6.1 ADS-Ranking

What is ADS-Ranking? ADS-Ranking is a component that is concerned with how best to deploy
the user’s application onto the cloud based on information about the application and cluster
characteristics. From a practical perspective, its role is to identify which - of a range of
potential deployment options - is the best for the current user, given their stated (hard)
requirements and other desirable (soft) characteristics (e.g. low cost or high throughput).

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 84 of 102 bigdatastack.eu

ADS-Ranking is strongly coupled to the Application & Data Services Dimensioning (ADS-
Dimensioning) component of BigDataStack that sits above it in the overall architecture stack.
The main output of ADS-Dimensioning is a series of candidate deployment patterns (ways
that the user’s application might be deployed). It is these deployment patterns that ADS-
Deploy takes as input, and subsequently selects the best one to deploy. In practice, this is
accomplished using state-of-the-art supervised machine learning techniques to rank the
candidate deployment patterns, which model the relationships between the features of each
candidate deployment pattern and the user requirements/preferences. ADS-Ranking is also
used for application re-deployment in cases where a previously selected deployment was
deemed unsuitable, for example, because the provided quality of service was too low or the
cost too high. In this case, ADS-Ranking updates the underlying model with evidence from the
failing deployment and re-ranks the candidate deployment patterns with the aim of finding a
new one that will provide superior performance.

Literature Review Machine Learning: Machine learning refers to the field of approaches that
automatically learn solutions to problems using prior data [22]. Machine learning has become
closely linked with information retrieval, as many tasks in information retrieval can be
formulated in a manner that can be tackled by machine learning approaches, e.g. categorising
documents [23] or learning how to rank documents [24]. Moreover, machine learned
approaches have shown to be effective for many of these tasks [25]. Indeed, commercial Web
search engines like Google and Bing use machine learned models to drive their search
rankings. An important concept within machine learning is that of a feature. A feature is some
property about the subject of the learning. For example, for information retrieval ranking
problems, the features might be about the documents or user queries. An example of a query
feature is query length, while a document feature might be its PageRank [26] score. For the
purposes of ADS-Ranking that we are concerned with here, our features are derived from the
‘predicted performance’ information within each candidate deployment pattern, i.e.
estimations about how effective a candidate deployment pattern is likely to be.

Literature Review Learning-to-Rank: Learning to rank (LTR) approaches use machine learning
to tackle item ranking problems [25]. In an information retrieval setting, this typically involves
ranking documents with respect to relevancy, although other ranking criteria are possible.
The aim of learning to rank approaches is to improve a given item ranking with respect to
some property. This is achieved by re-ranking an initial ranking such that items with the
desired property are promoted into the top ranks.

In their simplest form, learning to rank techniques use initial item rankings for a set of topics,
features about the individual items within those rankings, and relevance assessments about
the individual items for each topic, to form a ranking model. This model can then be applied
to unseen item rankings, re-ranking them to increase some desired ranking property. When
building (or training) a model, an initial item ranking is created, referred to as the sample. A
sample should have high recall in terms of items with the desired ranking property, e.g. for
relevancy-based rankings, the sample should contain many relevant documents [27].
However, these documents do not need to appear within the top ranks; indeed, it is the aim
of LTR to achieve this through re-ranking. Next, features about each of the items are
extracted. An effective feature should aid in distinguishing the items that have the desired
property, e.g. relevance to the query. In effect, the LTR approach aims to find a combination
of these features that leads to effective ranking. Indeed, given the sample and its features, a

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 85 of 102 bigdatastack.eu

learning to rank approach will try different combinations of those features to find those that
lead to increased effectiveness when ranking the sample. LTR approaches repeat this process
for many document samples to find the feature combination that leads to improved
effectiveness across all those samples. This feature combination is referred to as the ranking
model. The idea is that the resultant ranking model will generalise to unseen sample rankings,
if the training samples are representative of the types of rankings encountered. The ranking
model can be updated with new samples over time, which is referred to as
Active/Reinforcement Learning.

Learning to rank approaches can be categorised into three different types. Each type of
approach uses a different strategy to evaluate the sample ranking. These types are point wise,
pair wise and list wise. Point wise techniques learn on a per-item basis, i.e. each item is
considered independently. Pair wise techniques optimise the number of pairs of items
correctly ranked. List wise techniques optimise the entire ranking list at one time. Prior work
has indicated that list wise techniques learn more effective Models [25].

Within ADS-Ranking we use learning-to-rank techniques to produce models to rank different
candidate deployment patterns for the user. In a re-deployment scenario, Active Learning
and Reinforcement Learning are used to adapt the ranking model on-the-fly to enable the
re-ranking of deployment patterns.

Selected Technologies: For BigDataStack, the ADS-Ranking component will be built on top of
the open source Apache Spark framework and will be written in Java. ADS-Ranking will be
deployed as a real-time stream processing service using Spark Streaming, which assesses
candidate deployment patterns for different user applications and emits a single selected
pattern for each. In this way, the component will be scalable to high-demand periods, as well
as extensible. The component will be operationalized as a series of transformers within the
Spark service, divided into: transformers for converting candidate deployment patterns into
features; the learning of ranking models based on those features; and the application of those
models for ranking during service operation. Model training will be implemented using Spark
MLib.

9.6.2 ADS-Deployment

Cloud application service orchestration frameworks manage all dependencies and
relationships between components of the application, facilitating infrastructure-centric
orchestration in the cloud. They provide a solution for the provisioning and management
(from deployment to adaptation) of complex applications in the cloud. We use the concept of
“service template” or “application chart” to refer to the specification of the service structure
and “orchestration” to the management of the behaviour of IT infrastructure services where
the application is deployed and operated.

OpenStack Heat50 and AWS CloudFormation51 are based on specific language descriptors.
TOSCA52 specification provides a language to describe application service components and
their relationships using a service topology. This specification also provides mechanisms to

50 Openstack Heat. https://wiki.openstack.org/wiki/Heat,
51 AWS CloudFOrmatio. https://aws.amazon.com/cloudformation/,
52 OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) , https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca

https://wiki.openstack.org/wiki/Heat
https://aws.amazon.com/cloudformation/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 86 of 102 bigdatastack.eu

describe management procedures that create or modify services using orchestration
processes. Popular cloud tools such as OpenStack Heat conform to this specification.

jClouds53 is a toolkit that facilitates interoperability with different cloud tools. It gives

developers the freedom to create applications that are portable across clouds while giving
you full control to use cloud-specific features. It is an open source multi-cloud library for the
Java platform.

Docker54 is a technology for operating-system-level virtualization and a popular alternative to

package and manage applications through its lifecycle. Docker uses the resource isolation
features of the Linux kernel to allow independent “containers” to run within a single Linux
instance and therefore avoiding the overhead of managing multiple virtual machines (VMs).
To achieve this, Docker let developers package and deploy libraries and any other
configuration and dependency at operating system level with the application code.

Container orchestration solutions are based on the concept of Docker containers. Docker
Swarm55 is the native container orchestrator of Docker. Swarm uses the same Docker
interface, which enables transparent scalability from Docker use to Swarm use. Swarm
manager is responsible for the management of a cluster of so-called Docker hosts over which
it distributed the containers for execution.

Kubernetes56 is the most popular container orchestration solution. Kubernetes scheduler runs
as a process alongside the other master components such as the API server. A Kubernetes
pod models an application-specific “logical host” and contains one or more application
containers which are relatively tightly coupled. Pods can also be exposed as Kubernetes
services, which father facilitates the management of containerized application services.
Kubernetes charts offer a way to model, deploy and manage the life-cycle of complex
containerized applications (i.e. consisting of several inter-related containers, pods and
services). Helm57 is the open source library implementing this capability. It offers an API to
deploy applications on Kubernetes and manage their life-cycle. By means of Helm, developers
can install, delete and upgrade whole applications/services with one command.

Other solutions for application management in the cloud are Alien4Cloud58, supporting
application SLA (service level agreement) specification, and Serf59, offering a decentralized
solution for cluster management, failure detection, and orchestration; Cloudify60, Chef61 and
Puppet62, on the other hand, are general purpose infrastructure configuration solutions which
provide very flexible automated application lifecycle management.

53 Apache jClouds. https://jclouds.apache.org/
54 Docker. https://www.docker.com/
55 Docker Swarm. https://docs.docker.com/engine/swarm/
56 Kubernetes. http://kubernetes.io/
57 Helm. https://helm.sh/
58 Alien4Cloud. http://alien4cloud.github.io/
59 Serf. https://www.serf.io/
60 Cloudify. http://docs.getcloudify.org/3.3.1/intro/what-is-cloudify/
61 Chef. https://www.chef.io/chef/
62 Puppet. https://puppet.com/

https://jclouds.apache.org/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://helm.sh/
http://alien4cloud.github.io/
https://www.serf.io/
http://docs.getcloudify.org/3.3.1/intro/what-is-cloudify/
https://www.chef.io/chef/
https://puppet.com/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 87 of 102 bigdatastack.eu

9.7 Distributed Storage & Analytics

ACID database systems providing transactional semantics had been to the foreground for
many decades. However, after the evolve of the cloud computing ecosystem, application
components could scale in numerous nodes and serve highly intense workloads, thus
requiring from the persistent storage systems to be able to handle these intensive loads.
Traditional database systems however rely on the two-phase-commit [28, 29] as the de facto
atomic commit protocol. The latter inevitably introduces increased latency, which makes it
slow, as it requires two rounds of messages between the coordinator and the participants of
the transaction. Additionally, the existence of a central coordinator to manage the transaction
lifecycle during the commit phase makes the protocol very difficult to scale adequately to be
able to handle numerous nodes. This limited scalability of transactions offered by traditional
database systems lead to the emergence of new data management technologies, frequently
known as NoSQL, that trade the lack of support for ACID transactions for scalability, thus
delegating consistency checks and transactional management on the application level.

To overcome these limitations, during the last decade, quite a few solutions that try to
combine scalable transactional support without sacrificing consistency, such as Percolator
[30] or Spanner [31] have been proposed. However, they continue to suffer from the
limitations as most of them still rely on variations of the two-phase-commit protocol, which
inherently introduces increased latency by design or having a centralized transactional
manager like Omid [32] and Apache Tephra [33], which prevents them from being able to
scale linearly when large deployments are needed. Finally, others make use of expensive
hardware for requesting time events, like Spanner, Deuteronomy and LEAP.

Moreover, traditional database systems providing transactional capabilities, thus serving
OLTP workloads ensuring ACID properties, rely on locking mechanism to provide the required
isolation level. This means that heavy analytical queries will prevent write operations on the
database until the formers finish, and vice versa, intensive operational workloads prevent
analytical queries to be executed, as each of these types of queries block each other. To
overcome this limitation, enterprises used to make use of ETLs to take a snapshot of the data,
duplicate it in a data warehouse and perform the analytical operations on the latter. However,
the past few years have witnessed a rise in demand for real-time Big Data Analytics for real-
time business intelligence with a large range of research terms being adopted [34]. The goal
is to develop tools that enable analytical processing over data that should be most up to date,
thus processing data as soon as they arrive into the system [35]. Even if most systems claim
to have real-time capabilities [36], they should be considered “near-real-time” as they still
rely on an update process to acquire the latest data snapshot. As organizations increasingly
require analytics on fresh operational data to derive timely insights, the notion of hybrid OLTP
and OLAP databases have emerged, currently most known as HTAP (Hybrid Transaction and
Analytical Processing) that does not involve the use of some kind of ETLs which are cost-
expensive and introduce data duplication while they do not provide analytical processing over
real-time data at the very end. Hyper [37] and SAP HANA [38] are typical HTAP database
systems. The limitation of Hyper however is that it cannot be scaled horizontally as it must be
deployed on a single machine, while SAP HANA suffers under intensive OLTP workloads and
performs worse than a single-node typical database system.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 88 of 102 bigdatastack.eu

To overcome all these challenges, LeanXcale63, which is a relational data base on top of a key-
value store, is capable of handling write-intensive workloads, exploiting its ultra-scalable
transactional management engine with its ability to linearly scale to 100s of nodes, while
ensuring ACID properties and data coherence. Moreover, it provides tools for analytical
processing as an integral part of the data store, which can exploit both inter- and intra-query
parallelism, to provide real-time Big Data Analytics, thus truly implement the “just-in-time
warehousing” model. LeanXcale internal OLAP engine is also distributed and each instance
can be co-located with a corresponding data node, thus exploiting data affinity for improved
performance. Moreover, its internal key-value storage engine can distribute its data load, by
splitting, and merging data regions, whilst moving them across its data nodes on the runtime.
During this process, the data store is fully operational, and no performance overhead is being
noticed. Thus, the online re-distribution of the data load is performed seamlessly from the
application point of view. Finally, for the application developers to use the distributed engine,
an Elastic JDBC driver is provided, which implements all functionalities that can be found in
traditional relational database management systems. Moreover, an additional driver can be
used for directly accessing the internal key-value data store, which skips the overhead
introduced by the Query Engine of the platform for improved performance.

9.8 Live Migration

Live migration is a pervasive technique in the realm of virtual machines, allowing transparent
movement of virtual machine instances (VMs) from one physical machine to another with
negligible service disruption (hence the term live). Live migration describes a mean to transfer
a running VM from one physical host to another host without interrupting the VM execution
and transparent to the VM’s users. The required information is transferred over the network
(e.g., Ethernet) and includes an option to use an encrypted connection.

With recent trends toward scalability and distributed microservices, containerization has
quickly become a lightweight and widely adopted alternative to VMs or physical nodes as the
unit of deployment. The biggest benefit of containers, is that they can be quickly created and
destroyed in large numbers, and therefore relocating a container/pod in Kubernetes is only
possible by disposing of the source pod, then recreating a new pod of the same type/template
from scratch (see Section 8.1). Application developers need to design around this fact by not
relying on longevity of pod-local state and by storing any necessary data into pod-
independent persistent storage, such as an external database. Along with the fact that there
are many scenarios that would benefit from the ability to relocate active pods, the work on
developing live migration for containers has started, but it’s still in the early stages.

9.9 Data Cleaning

Data quality and verification is of major importance given that it affects the complete data
path: storage, processing, analytics results, decision-making, etc. It poses many challenges in
several phases of data management. In contrast to the much more researched modelling and
analysis phases, the quality analysis and verification step is often seen as a sore point, even
though without it the modelling and analysis phases could be of limited value. If the data are
not verified and of acceptable quality (e.g. missing values, outliers etc.), the conclusions might
be associated with a high level of uncertainty or even reduced to garbage.

63 https://www.leanxcale.com/

https://www.leanxcale.com/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 89 of 102 bigdatastack.eu

In this project, we will develop mechanisms to evaluate the data quality, in terms of
completeness and accuracy. These approaches will exploit artificial neural networks (ANN)
and Deep Learning (DL) techniques, taking advantage of the work done on Natural Language
Processing (NLP), to extract latent features that correlate different fields, and identify possible
defects in the content. Furthermore, by harnessing the power of Machine Learning (ML) and
DL, the proposed approach will automate the process of data harmonization, an approach to
data quality that improves the condition and utilization of the data. Data Harmonization is
about creating a single source of truth. It works by absorbing diverse data from various
sources, brushing away any inconsistencies, purifying it and presenting it as an integrated
whole. Artificial Intelligence and ML can simplify and automate this operation, thereby
speeding up the process of data modelling.

Over the past few years, both industry and academia have shown great interest on
researching different aspects of data cleaning and applying new methods, including but not
limited to new abstractions [1]–[4], interfaces [5], [6], approaches for scalability [7]–[10], or
even crowdsourcing techniques [11]–[13]. The main differentiator comes from the error
definition itself; on one hand, quantitative techniques are used for anomaly detection and
outlier exposure, using statistical methods (e.g. a value that is more than three standard
deviations from the mean should be an error), on the other hand qualitative techniques use
a rule-based approach, to detect errors (e.g. A man can never give birth to a child). Once
errors are detected, they can be corrected using a script, a human crowd or human experts.
There are even situations that a hybrid of two or more approaches yields better results.

As it follows, a data cleaning process consists of two phases: i) the error detection, and ii) the
error repairing. Concerning error detection, the techniques used can be classified based on
three main questions [14]:

1. what to detect,
2. how to detect it, and
3. where to detect.

What to detect refers on error type, namely integrity constraints, missing or duplicate values
etc. The how to detect question indicates the level of automation in the system. While most
methods can be fully automated, like detecting violations of functional dependencies [15], in
some others the human element is necessary [16]. Where to detect covers the business logic
layer, where errors can be detected in the original source (i.e. the original database) or the
target (i.e. the data warehouse) [17], where business logic is defined (e.g. an error on the total
budget assumes that some aggregates must be in place).

On the second phase, while repairing errors, the main questions are:

A. what to repair,
B. how to repair, and
C. where to repair.

The first question considers what the learning algorithm assumes. If it has complete
confidence in the business rules, then everything diverging from the rules is flagged as an
error [4]. If the algorithm trusts the data, then it can relax the constraints to “fit” the data
[18]. Finally, there’s the option to explore both relaxing business rules and conforming to
them [19]. The how to repair question refers once again to the automation level of the
process, where automated techniques can be deployed, or the human element shows up,

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 90 of 102 bigdatastack.eu

even if they are training learning models to carry out the job [20]. Conclusively, the where to
repair question aims to answer if the repairs will be made in place, effectively destructing the
original database, or a model is defined to describe possible repairs.

Where Artificial Intelligence (AI) and pattern recognition is concerned, machine learning is
often used to improve the efficiency and accuracy of the data. For instance, ActiveClean [21]
utilizes appropriate methods to select the most valuable data, while iteratively updates ML
models given newly clean data. This way, data models can be correctly produced from a small
subset of the data and be as accurate as they would be if the full dataset was employed.

To facilitate the implementation of such intricate deep learning algorithms, a suitable
framework will be used. The prevailing option is that of Google’s Tensorflow64. Several
implementations like Yahoo!’s TensorFlowOnSpark65 or SparkNet66 allows this framework to
run in a distributed way over a Spark cluster, thus, making it totally compatible with the
BigDataStack’s platform. Yahoo!’s implementation seems superior because it requires
minimal change in the original TensorFlow code.

Finally, some of the challenges that need to be addressed are those that pose scalability
issues, user engagement, processing of semi-structured or unstructured data, streaming data
and new privacy regulations or security concerns [15].

9.10 Big Data Layout

Today’s best practices to deploy and manage cloud compute and storage services
independently leaves us with a problem: it means that potentially huge datasets need to be
shipped from the storage service to the micro service to analyse data. If this data needs to be
sent across the WAN then this is even more critical. Therefore, it becomes of ultimate
importance to minimize the amount of data sent across the network, since this is the key
factor affecting cost and performance in this context. Many cloud-based SQL services, for
example Amazon Athena67, bill users according to the amount of data scanned in object
storage, outlining the importance of this metric. There are currently three main approaches
to limit the number of bytes sent from the storage to Spark. (Note we focus on object storage
although this can also be applied more broadly).

The first is to use specialized column based formats such as Parquet68 and ORC69. These
formats provide column wise compression, which significantly reduces the number of bytes
to be sent. They also support column pruning, so that only columns requested by a query
need to be sent to Spark. Finally, they sometimes support specialized metadata which can be
used to filter columns following query predicates. Parquet can provide more than an order
magnitude performance improvement over other formats such as csv70.

64 https://www.tensorflow.org/
65 https://github.com/yahoo/TensorFlowOnSpark
66 https://github.com/amplab/SparkNet
67 https://aws.amazon.com/athena/pricing/
68 https://parquet.apache.org/
69 https://orc.apache.org/
70 http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/

https://www.tensorflow.org/
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/amplab/SparkNet
https://aws.amazon.com/athena/pricing/
https://parquet.apache.org/
https://orc.apache.org/
http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 91 of 102 bigdatastack.eu

The second approach is to use Hive style partitioning to name the objects using a certain
convention. In this case, information about object contents is encoded into object names. For
example, if we partition per a date column then each object will contain data records with
the same date, and the date is encoded in the object name. Spark SQL understands this
convention and can filter the set of objects retrieved when query predicates apply to
partitioning columns. This can significantly reduce the number of objects sent to Spark and
the number of bytes shipped (for more information see IBM’s recent blog post71).

The third approach is called Data Skipping and it can complement the first two approaches.
This approach utilizes metadata to track information about objects and their dataset columns
which can then be used for data skipping i.e. to show that an object is not relevant to a query
and therefore does not need to be accessed from storage or sent on the network from object
storage to Spark. IBM Research implemented Data Skipping technology in the context of the
IOStack H2020 project72. To make it efficient, we indexed the metadata, so that during query
execution, can quickly filter out irrelevant objects from the list of objects to be accessed by
the query. Note that this technique applies to all data formats, and avoids touching irrelevant
objects altogether (see our presentation73 at the Spark Summit, where Databricks announced
Data Skipping support in their platform.

To get good Data Skipping one typically needs to pay attention to Data Layout. Data layout
refers to all details regarding the storage of the data including object size, format, Hive style
partitioning, and data partitioning, i.e. the assignment of data records to objects. We focus
now on data partitioning. For any given query, we would like the records which satisfy the
query to be grouped together in a small set of objects, so that the remaining objects can be
skipped. In general, we need to partition the data so that it gives as much as possible data
skipping for an incoming stream of queries (i.e. a workload), not just a single query. Note that
the various queries may have conflicting requirements. Moreover, the workload changes over
time, as does the data.

This multi-dimensional partitioning and indexing problem has been addressed in the past with
space-filling curves. Techniques based on Space-filling curves74 such as Z-order curves (or
Morton curves75) map a multi-dimensional space into a single indexing dimension
represented by an encoding string (the metadata). These techniques can handle varying data
density by issuing a geohash code of varying length. Possible usage of these techniques is to
convert a given query bounding box into a one-dimensional code range and to use it against
the indexed data. However, the main drawback of these techniques in the fact that the chosen
space filling curve and the dataset points completely determines the partitioning. In addition,
the query history is not considered. Also, one cannot dynamically change the way partitioning
is done, and Space-filling curves treat all dimensions in a symmetric way so no way to “prefer”
one dimension over the other (e.g., to achieve metadata compactness and to fit the
representation to the query distribution).

71 https://www.ibm.com/blogs/bluemix/2018/06/big-data-layout/
72 http://iostack.eu/
73 https://databricks.com/session/using-pluggable-apache-spark-sql-filters-to-help-gridpocket-users-keep-up-
with-the-jones-and-save-the-planet
74 http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Jass05/courses/2/Valgaerts/Valgaerts_paper.pdf
75 “Z-order curves.” https://en.wikipedia.org/wiki/Z-order_curve

https://www.ibm.com/blogs/bluemix/2018/06/big-data-layout/
http://iostack.eu/
https://databricks.com/session/using-pluggable-apache-spark-sql-filters-to-help-gridpocket-users-keep-up-with-the-jones-and-save-the-planet
https://databricks.com/session/using-pluggable-apache-spark-sql-filters-to-help-gridpocket-users-keep-up-with-the-jones-and-save-the-planet
http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Jass05/courses/2/Valgaerts/Valgaerts_paper.pdf
https://en.wikipedia.org/wiki/Z-order_curve

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 92 of 102 bigdatastack.eu

Recently data partitioning for the specific purpose of data skipping has become an active
research area, and there has been significant work to define the problem and various
approaches to solve it. A fundamental paper shows that the general problem is NP-hard, but
devises a heuristic algorithm which performs well in practical use cases [49, 50]. A follow-on
paper shows how improve the layout further for handle column based formats76.

In 2017, as part of IOStack, IBM Research independently developed the notion of k-d tree
partitioning which uses query history to choose the partitioning columns and dataset medians
as cutting points for partitioning77. In parallel, a paper was published by an MIT team which
used a similar approach and similarly applied it to Apache Spark for data skipping [51]. The
work in this paper went beyond previous work by providing an adaptive approach to
repartition datasets on the fly according to a cost model. A recent companion paper covers
how their technique can be applied to join processing [52].

This is a cutting-edge research area which is also promising in terms of its applicability to
analytics on real world big datasets. We plan to undertake further research in this area as well
as apply it to a commercial setting.

9.11 Real-time CEP

Streaming engines are used for real-time analysis of data collected from heterogeneous data
sources with very high rates. Given the amount of data to be process in real-time (from
thousands to millions of events per second), scalability is a fundamental feature for data
streaming technologies. In the last decade, several data streaming systems have been
released. StreamCloud [39] was the first system addressing the scalability problem allowing
a parallel distributed processing of massive amount of collected data. Apache Storm78 and
later Apache Flink79 followed the same path providing commercial solutions able to distribute
and parallelize the data processing over several machines to increase the system throughput
in terms of number of events processed per second. Apache Spark added streaming capability
onto their product later80. Spark approach is not purely streamed, if fact it divides the data
stream into a set of micro batches and repeat the processing of these batches in loop.

The streaming engine for the BigDataStack platform will be a scalable complex event
processing (CEP) able to run in federated environments and to aggregate and correlate real-
time events with structured and non-structured information stored in BigDataStack stores.

BigDataStack CEP we will be built upon the streaming engine owned by UPM that will be
extended to run in federated environments and perform correlation on the edge closer to the
data sources. Furthermore, techniques will be developed to reduce the access latency to the
BigDataStack data stores increasing the efficiency of the correlation among real time data and
data at rest.

The metrics exported by UPM’s CEP technology are the following:

• CPU_LOAD: percentage of CPU used by an Instance Manager (CEP Worker). One value
per IM

76 Skipping-oriented partitioning for columnar layouts VLDB 2016 https://dl.acm.org/citation.cfm?id=3025123
77 IOStack. http://iostack.eu/deliverables/send/3-deliverables/31-d4-3-summary-and-demonstration-of-results
78 http://storm.apache.org/
79 Apache Flink. https://flink.apache.org/
80 Apache Spark. https://spark.apache.org/streaming

http://iostack.eu/deliverables/send/3-deliverables/31-d4-3-summary-and-demonstration-of-results
http://storm.apache.org/
https://flink.apache.org/
https://spark.apache.org/streaming

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 93 of 102 bigdatastack.eu

• Subquery # Tuple Received: Number of tuple received by a sub-query. One value per
sub-query instance.

• Operator # Tuple Received: Number of tuple received by a streaming operator. One
value per operator instance.

• Operator Latency: Time taken by a streaming operator to process a tuple. One value
per operator instance.

9.12 Predictive and Process Analytics

In the predictive and process analytics component of the project there are two main goals to
be achieved: Predictive Analytics and Process Analytics. Following is a brief introduction to
the tools and technologies which will be used for the above.

9.12.1 Predictive Analytics

In Predictive Analytics, the main goal is the selection of a correct algorithm from a set of
available algorithms and model hyper-parameter tuning. To this end Predictive Analytics will
utilize the resources of the Spark libraries.

To begin, tools from Spark SQL81, Dataframes and Datasets Guides will be used such as
sampling a feature of Hive. When data volume is large, the need to find a subset of data to
speed up data analysis becomes apparent. Here it comes to a technique used to select and
analyse a subset of data to identify patterns and trends. In Hive, there are three ways of
sampling data: random sampling, bucket table sampling, and block sampling.

Finally, tools from the Spark MLib library will be used such as Cross-Validation, Train-
Validation Split, and Approximate Nearest Neighbour Search etc. better described in the Spark
documentation under: Model selection and tuning and Extracting, transforming and selecting
features.

9.12.2 Process Analytics (Process Mining)

In Process Analytics, the main goal is to enhance, optimize process models derived from the
process modelling framework and to discover process models from raw event log files. For
the enhancement and optimization phase to take place an event log for the process itself will
be required from the global tracker consisting of the steps taken for the application in each
component of the architecture.

For these tasks a tool such as ProM (which is short for Process Mining framework) [40] will be
a good candidate. ProM is an Open Source framework for process mining algorithms.

The ProM framework integrates the functionality of several existing process mining tools and
provides many additional process-mining plug-ins. The ProM framework supports multiple
formats and multiple languages, e.g., Petri nets, EPCs, Social Networks, etc. The plug-ins can
be used in several ways and combined to be applied in real-life situations.

9.13 Seamless Analytics Framework

Typically, logical data sets of IoT data will become too big to be kept in a single “storage entity”
(e.g., a database for Cloudant, or a bucket/container for Object Storage). Therefore,

81 Spark SQL. https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#supported-hive-features

https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#supported-hive-features

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 94 of 102 bigdatastack.eu

accessing a single logical data set may require targeting a continually changing and possibly
large set of storage entities, thus rendering difficult the access to the data. To hide this
complexity, the seamless storage driver analyses queries and maps them to exactly the
storage entities that contain relevant data.

Figure shows an example where data is ingested with the Watson IoT Platform within
multiple Cloudant databases with a daily bucketing interval. Using the seamless storage
driver, which implements the data sources API82 (a pluggable mechanism for accessing
structured data though Spark SQL), a user can write simple and intuitive queries against the
logical dataset without needing to refer to the various underlying databases. Moreover, the
driver analyses the queries and accesses only the relevant databases are accessed.

Figure 4. Data ingestion in Watson IoT Platform

9.14 Application Dimensioning Workbench

For the Load injector case, we will utilize Docker Swarm as an easy mean to scale stress tests
towards the target application/data service. For each case/category that needs to be tested,
the respective tool from a wide set of available ones can be used to understand and
implement a load, to cater for the different range of application types. Thus, baseline Docker
images will be used, prepared in advance for the specific baseline tool case, in which the load
file will be injected based on the test scenario. As an example, targeting at the project data
stores, YCSB will be one candidate towards the LXS case while Jmeter jmx files may be used
to target application level components such as web servers or for example the case of HTTP
requests against the IBM Object store. One of the main benefits of this approach is that we
separate the Load Injector framework from the baseline load generation tool, thus being able
to reuse the former in different cases of the latter. Another benefit is the easy scale up of the
Docker Swarm service approach to cater for extreme test conditions and avoidance of client-
side bottleneck phenomena.

82 https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html

https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 95 of 102 bigdatastack.eu

With relation to other baseline technology aspects, we anticipate inputs coming in and out of
the dimensioning tool to be based on the Docker service manifest template (Docker
Compose), to indicate service structure, component interconnection and naming. To extend
the level of information in the file, we will also abide by the Docker specification (e.g. to
include size of the resource per service element), but also inclusion of further metadata based
on the custom metadata structure of the specification.

For the case of the dimensioning workbench front end, one candidate tool refers to Node-
RED that can be used to easily create custom dashboards and integrate between different
services, while performing the various transformation and adaptation tasks needed (e.g. to
understand the input file, start the testing process and generate the output file). This tool is
expected to be used mainly for coordinating the various actions and presenting results to the
user and not for the core modelling work which would be performed in the backend. For the
case of the Modelling Engine backend, dimensioning models are anticipated to be based on
artificial neural networks. To this end, candidate technologies include tools such as GNU
Octave, an open source equivalent of Matlab, while other candidates include the Tensorflow
library. Selection will be performed during the project. Potential integration of ML within
Node-RED (e.g. through the usage of node-red-contrib-machine-learning node) will also be
investigated. However, given that the latter primarily deal with classification aspects (and not
regression ones as expected to be used by Dimensioning), this approach would need to be
based on a concept such as QoS (Quality of Service) class categories.

9.15 Process modelling framework

KIE (Knowledge Is Everything) is an umbrella project. KIE contains the following different but
related projects offering a complete portfolio of solutions for business automation and
management:

- Drools is a business rule management system with a forward-chaining and backward-
chaining inference-based rules engine, allowing fast and reliable evaluation of business
rules and complex event processing.

- jBPM is a flexible Business Process Management suite allowing you to model business
goals by describing the steps that need to be executed to achieve those goals.

- OptaPlanner is a constraint solver that optimizes use cases such as employee rostering,
vehicle routing, task assignment and cloud optimization.

- Drools Workbench is a full featured web application for the visual composition of custom
business rules and processes.

- UberFire is a web-based workbench framework inspired by Eclipse Rich Client Platform.

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows
executing business processes using the BPMN 2.0 specification. It can run in any Java
environment, embedded in an application or as a service. jBPM is also not just an isolated
process engine. Complex business logic can be modelled as a combination of business
processes with business rules and complex event processing. It can be combined with the
Drools project to support one unified environment that integrates these paradigms where
one can model business logic as a combination of processes, rules and events. It supports
adaptive and dynamic processes that require flexibility to model complex, real-life situations
that cannot easily be described using a rigid process.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 96 of 102 bigdatastack.eu

KIE is a full suite and regarding our needs it includes a rules engine, a modelling & execution
environment, and several adapters (out of the box REST service task). Although jBPM is a
BPMN 2.0 tool, it seems that declarative modelling is possible when combined with Drools.
This enables to select a specific set of rules to execute at a specific point in the workflow using
the native features of Drools.

At this early phase, it seems as an appropriate base framework to use towards building the
processing modelling framework. A more thorough testing and analysis is ongoing while other
platforms are under testing as well (i.e., node-red, dpil). Other technologies needed to
support all the functions required are under research and dependent on the selections of
other components of the architecture.

Node-RED83 is a programming tool for wiring together hardware devices, APIs and online
services in new and interesting ways. It is a browser-based tool that provides a drag-and-drop
interface for selecting nodes from a palette and wiring them together.

Node-RED is open source software released under the Apache 2.0 license. Although initially
targeted for Internet of Things environments, it is highly extensible and has been successfully
been employed in a wide range of applications.

Figure 5. Node-red programming example

Node-RED will provide a visually appealing and effective User Interface fulfilling all key
requirements of the Process Model Framework. This will allow us to only focus on
BigDataStack functionality and avoid having to build an advanced tool from scratch.

83 https://nodered.org/

https://nodered.org/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 97 of 102 bigdatastack.eu

9.15.1 Building Blocks Palette

The Process Model Framework will make all building blocks in a suitable palette. The building
blocks will be classified in comprehensive categories and it will be possible to apply filters on
them. Users will drag-and-drop a building block from the palette into the editor. Visual hints
will make apparent what connections between the blocks are allowed. The Process Model
Framework will constantly validate the edited model and provide clear error messages to the
user.

It is to be expected that during the project the list of building blocks will undergo many
changes. The Process Model Framework based on Node-RED will be designed in such a way,
so that it can easily and quickly adapt to the changes.

9.15.2 Output Format

The Process Model Framework will export the designed model into an output format suitable
for all subsequent layers in the architecture. The following notations could be considered:

- Drools84 (business rule management system language)
- BPMN (Business Process Model Notation)
- DPIL (Declarative Process Intermediate Language)

The exported model will be used by subsequent layers of the architecture. The notation must
be so selected that it imposes as few requirements to these layers as possible. Also, the
notation must be flexible enough to support requirement changes. For these reasons, it is
suggested that a simple Drools file is used. Drools is a widely-used system and allows the
creation of both simple and advanced rules notations. It supports adding metadata to rules,
which will allow adding BigDataStack properties to model steps. It will finally be easy to read
and process the exported model from all subsystems of the architecture.

9.16 Data Toolkit

The main objective of the Data Toolkit is to design and support data analysis workflows. Such
analysis workflows are designed based on the business requirements that will drive the
process modelling. The set of high level business process analysis steps already identified,
along with the indications for the data analysis algorithms that must be used per step, must
be detailed in a scientific basis leading to the production of an end-to-end analysis workflow
that can be realised over an application’s orchestrator. Such an end-to-end analysis workflow
is defined as the analysis playbook within BigDataStack.

Playbooks consist of a set of data mining and analysis processes, interconnected among each
other in terms of input/output data streams/objects. It is represented in the form of an
analysis application graph (following concepts from cloud applications deployment and
orchestration) that includes the set of individual processes as nodes of the graph along with
their binding/dependencies in the form of virtual links.

Playbooks should let data scientists design and develop complex analytic processes by
combining set of available or under development analytic functions/primitives. This should
include characteristics related to input data parameters (type of data sources without any
binding), output data parameters, analysis configuration parameters, execution substrate

84 https://www.drools.org/

https://www.drools.org/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 98 of 102 bigdatastack.eu

requirements and the software packages. Following, interconnection of such nodes leads to
the production of the playbook (overall graph).

A strict requirement regards the capacity to support various technologies/programming
languages for development of analytics processes, given the existence and dominance of set
of them (e.g., R, Python, Java, Scala). The developed analytics processes have also to be
deployable over big data computing frameworks (e.g. Apache Spark, Apache Flink).

The data toolkit can be implemented based on existing open source solutions along with their
appropriate extension and customisation. Such solutions include -among others- tools like
Conductor85 that supports orchestration of micro-services-based process flows, OpenCPU86
that is a system for embedded scientific computing and reproducible research. The exact tool
to be adopted must be decided according the specification of the overall architectural
solution of BigDataStack.

9.17 Adaptable Visualizations

The Adaptive Visualisations will be implemented as a web Single Page Application (SPA).
JavaScript libraries will be used for a fast loading, interactive and adaptable user interface
(e.g. React or AngularJS) and for data visualization (e.g., Highcharts or D3). The following
diagram depicts the main technologies to implement the application.

The application will be implemented with React87 javascript library. React is a modern
javascript library that encourages good architectural design and follows a component-based
approach. It makes it easy to design, debug and test fast interactive applications. For the
graphs, Highcharts88 library will be used. Highcharts is a widely used, royalty-free commercial
javascript library for creating impressive interactive web diagrams. It supports numerous
diagram types that we expect to cover all BigDataStack needs. Should a more advanced or
custom diagram is needed, the D3.js89 library will be employed. For both Highcharts and D3.js
ready-made components for React are available.

For certain use-cases visualization of real-time data is required. The following diagram depicts
the components that will implement the real-time visualizations.

85 https://netflix.github.io/conductor/
86 https://www.opencpu.org/
87 https://reactjs.org/
88 https://www.highcharts.com/
89 https://d3js.org/

Highcharts
Interactive

Graphs

D3 advanced
visualisations

React Application

https://netflix.github.io/conductor/
https://www.opencpu.org/
https://reactjs.org/
https://www.highcharts.com/
https://d3js.org/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 99 of 102 bigdatastack.eu

A Spark Cluster will be set-up that will read data from a data source through an appropriate
API. The Spark Cluster will provide the Spark Streams that will process the data and produce
the appropriate aggregations to be pushed in an intermediate database. A Spring Boot
application will consume the aggregated data and will provide a Web Socket interface to the
React Application. This will allow the real-time update of the visualization without the user
having to refresh the page.

Web
Socket Spring Boot

Application
SPA React

Application

Spark
Cluster

Spark
Stream

Data

Data
Source

API

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 100 of 102 bigdatastack.eu

10 Bibliography

[1] G. Beskales, I. F. Ilyas, and L. Golab, “Sampling the repairs of functional dependency violations

under hard constraints,” Proc. VLDB Endow., vol. 3, no. 1–2, pp. 197–207, 2010.

[2] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain fixes with editing rules and master data,”

Proc. VLDB Endow., vol. 3, no. 1–2, pp. 173–184, 2010.

[3] J. Wang and N. Tang, “Towards dependable data repairing with fixing rules,” in Proceedings of the

2014 ACM SIGMOD international conference on Management of data, 2014, pp. 457–468.

[4] X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning: Putting violations into context,” in Data

Engineering (ICDE), 2013 IEEE 29th International Conference on, 2013, pp. 458–469.

[5] M. Heinsman, “Trifacta,” Trifacta. [Online]. Available at https://www.trifacta.com/. [Accessed: 23-

May-2018].

[6] M. Dallachiesa et al., “NADEEF: a commodity data cleaning system,” in Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, 2013, pp. 541–552.

[7] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo, “A sample-and-clean

framework for fast and accurate query processing on dirty data,” in Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, 2014, pp. 469–480.

[8] Z. Khayyat et al., “Bigdansing: A system for big data cleansing,” in Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, 2015, pp. 1215–1230.

[9] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra, “Progressive approach to relational entity

resolution,” Proc. VLDB Endow., vol. 7, no. 11, pp. 999–1010, 2014.

[10] Z. Li, S. Shang, Q. Xie, and X. Zhang, “Cost reduction for web-based data imputation,” in

International Conference on Database Systems for Advanced Applications, 2014, pp. 438–452.

[11] D. Haas, J. Wang, E. Wu, and M. J. Franklin, “Clamshell: Speeding up crowds for low-latency data

labeling,” Proc. VLDB Endow., vol. 9, no. 4, pp. 372–383, 2015.

[12] C. Gokhale et al., “Corleone: hands-off crowdsourcing for entity matching,” in Proceedings of the

2014 ACM SIGMOD international conference on Management of data, 2014, pp. 601–612.

[13] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden, “Scaling up crowd-sourcing to very

large datasets: a case for active learning,” Proc. VLDB Endow., vol. 8, no. 2, pp. 125–136, 2014.

[14] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data Cleaning: Overview and Emerging Challenges,”

2016, pp. 2201–2206.

[15] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model and effective heuristic for

repairing constraints by value modification,” in Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, 2005, pp. 143–154.

[16] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing entity resolution,” Proc.

VLDB Endow., vol. 5, no. 11, pp. 1483–1494, 2012.

[17] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti, “Descriptive and prescriptive data cleaning,”

in Proceedings of the 2014 ACM SIGMOD international conference on Management of data, 2014, pp.

445–456.

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 101 of 102 bigdatastack.eu

[18] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu, “On generating near-optimal tableaux for

conditional functional dependencies,” Proc. VLDB Endow., vol. 1, no. 1, pp. 376–390, 2008.

[19] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, “On the relative trust between inconsistent data

and inaccurate constraints,” in Data Engineering (ICDE), 2013 IEEE 29th International Conference on,

2013, pp. 541–552.

[20] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas, “Guided data repair,” Proc.

VLDB Endow., vol. 4, no. 5, pp. 279–289, 2011.

[21] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg, “Activeclean: Interactive data cleaning

while learning convex loss models,” ArXiv Prepr. ArXiv160103797, 2016.

[22] Carbonell, J. (1990). Machine learning: paradigms and methods. Elsevier North-Holland,
Inc.

[23] Yu, H., Han, J. & Chang, K. C.-C., “PEBL: Positive example -based learning for Web page
classification using SVM.” In ‘Proceedings of ACM SIGKDD 2002 International Conference on
Knowledge Discovery and Data Mining’.

[24] Agichtein, E., Brill, E. & Dumais, S. T.,“Improving Web search ranking by incorporating user
behavior information.” In ‘Proceedings of the 29th International ACM SIGIR Conference on Research
and Development in Information Retrieval’.

[25] Liu, T.-Y., “Learning to rank for information retrieval.” Foundations Trends Information Retrieval.
3, 225–331.

[26] Page, L., Brin, S., Motwani, R. & Winograd, T.,“The PageRank Citation Ranking: Bringing Order to
the Web.” Technical report. Stanford InfoLab. 1999

[27] Macdonald, C., Santos, R. & Ounis, “The whens and hows of learning to rank.” Information
Retrieval. 2012

[28] J. N. Gray, "Notes on data base operating systems," Lecture Notes in Computer Science, vol. 60,
pp. 393-481, 1978.

[29] H. Sturgis and B. Lampson, “Crash recovery in a distributed data storage system,” Computer
Science Laboratory, Xerox, Palo Alto, 1976.

[30] D. Peng and F. Dabek, "Large-scale incremental processing using distributed transactions and
notifications," in Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’10), 2010.

[31] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C.
Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd and S. Melnik, "Spanner: Google’s
globally-distributed database," in Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12), 2012.

[32] D. G. Ferro, F. Junqueira, I. Kelly, B. Reed and M. Yabandeh, "Omid: Lock-free transactional
support for distributed data stores," in IEEE 30th International Conference on Data Engineering (ICDE),
Chicago, 2014.

[33] Apache, "Apache Tephra," [Online]. Available at http://tephra.incubator.apache.org. [Accessed
May 2018].

[34] Amr Osman, Mohamed El-Refaey, Ayman Elnaggar, Towards Real-Time Analytics in the Cloud, In
Proceedings of IEEE SERVICES, 2013

[35] Mike Barlow, Real-Time Big Data Analytics: Emerging Architecture, O'Reilly Media, Inc.,2013

http://tephra.incubator.apache.org/

 Project No 779747 (BigDataStack)

 D2.2 – Requirements & State of the Art Analysis – II

 Date: 18.12.2018

 Dissemination Level: PU

 page 102 of 102 bigdatastack.eu

[36] T. Özsu, P. Valduriez. Principles of Distributed Database Systems. Springer, 2011

[37] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In Proceedings of ICDE, 2011

[38] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and Wolfgang
Lehner. SAP HANA database: data management for modern business applications. In Proceedings of
SIGMOD, 2012.

[39] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente, P. Valduriez (2012) StreamCloud:
An Elastic and Scalable Data Streaming System. IEEE Trans. Parallel Distrib. Syst. 23(12): 2351-2365.

[40] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and W. M. P. van
der Aalst, “The ProM Framework: A New Era in Process Mining Tool Support,” in Applications and
Theory of Petri Nets 2005, vol. 3536, G. Ciardo and P. Darondeau, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 444–454.

[41] International Organization for Standardization, “ISO/IEC/IEEE 29148:2011 – Systems and software
engineering — Life cycle processes — Requirements engineering,” ISO/IEC/IEEE, Nov. 2011.

[42] Open Grid Forum, “Web Services Agreement Specification (WS-Agreement),” Oct. 10, 2011.
http://ogf.org/documents/GFD.192.pdf

[43] Open Grid Forum, “WS-Agreement Negotiation Version 1.0,” Jan. 31, 2011.
https://www.ogf.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-
Negotiation+v1.0.pdf

[44] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer, “Network-Aware
Operator Placement for Stream-Processing Systems”, 22nd International Conference on Data
Engineering (ICDE ’06), pp. 49–53, IEEE Computer Society, 2006.

[45] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed QoS-aware Scheduling in Storm”,
9th ACM International Conference on Distributed Event-Based Systems, pp. 344-347, ACM, 2015.

[46] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution in the Borealis Stream Processor”,
21st International Conference on Data Engineering (ICDE ’05), pp. 791–802, IEEE Computer Society,
2005.

[47] M. Hirzel, R. Soule, S. Schneider, B. Gedik, and R. Grimm, “A Catalog of Stream Processing
Optimizations”, ACM Computing Surveys, vol. 46, Mar. 2014, pp 1–34.

[48] MongoDB MongoDB and MySQL Compare. [Accessed: 27/05/2018]
https://www.mongodb.com/compare/mongodb-mysql

[49] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin, “Fine-grained partitioning for aggressive data
skipping,” SIGMOD, 2014.

[50] L. Sun, S. Krishnan, R. S. Xin, and M. J. Franklin, “A partitioning framework for aggressive data
skipping,” VLDB, 2014.

[51] A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J. Elmore, “A robust partitioning scheme for
ad-hoc query workloads,” SoCC, 2017.

[52] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden, “Adaptdb: Adaptive partitioning for distributed
joins,” VLDB, 2017.

[53] D. McPherson, “Managing Compute Resources with OpenShift/Kubernetes,” August 2016. Red
Hat. https://blog.openshift.com/managing-compute-resources-openshiftkubernetes/ [Accessed June
2018].

http://ogf.org/documents/GFD.192.pdf
https://www.ogf.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf
https://www.ogf.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf
https://www.mongodb.com/compare/mongodb-mysql
https://blog.openshift.com/managing-compute-resources-openshiftkubernetes/

