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1 Executive Summary 

This is the second version of a series of three deliverables specifying the stakeholder as well 
as technical (software and technology) requirements for BigDataStack. These three versions 
of the requirements specification are delivered at M6 (D2.1), M11 (D2.2, the present version) 
and M22 (D2.3). 

In the requirements analysis shown in this document, a top-down approach is taken with 
respect to the user requirements, which have been collected through the BigDataStack use 
case providers. This is complemented with a bottom-up approach aiming to identify, collect, 
and analyse the rest of stakeholder requirements as well as technical requirements from 
BigDataStack technology providers.  

The analysis has produced measurable and unambiguous requirements, which inform and 
drive architectural and design decisions at different levels of the BigDataStack platform: 
capabilities, services and technologies. They will also be tracked against the research, 
architecture and implementation work during the project lifetime to ensure that the 
BigDataStack environment complexity is fully addressed and properly considered. To 
contextualize this analysis, this deliverable also introduces the state-of-the-art (baseline) 
technologies that may play a role in BigDataStack. In fact, such descriptions are a refinement 
of the internal joint report (with the architecture work) completed at M3 (and brought as-is 
from the previous version of the requirements specification, D2.1). Moreover, it does not 
simply state some state-of-the-art technologies but rather links them under the context of 
BigDataStack and what BigDataStack can get from them as a baseline. 

Note that the set of requirements contained in this deliverable supersedes those specified in 
the first version of the requirements specification (D2.1) at M6, mainly to capture the 
rationale behind the architecture decisions described in D2.4 (M8), and design decisions 
described in D3.1, D4.1 and D5.1 (M11). As new requirements and constraints are expected 
to emerge during the ongoing implementation and experimentation, the present 
requirements specification will be superseded by a new version (D2.3) at M22. 
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2 Introduction 

The main purpose of this deliverable is to describe the set of measurable and unambiguous 
business and technical requirements for the BigDataStack environment as known at M11. 
This set will be further tracked and validate the architecture development and 
implementation during the project lifetime. 

This report represents the second official deliverable of BigDataStack project’s Task 2.1, 
whose main goal is to collect the user and technical requirements and track them during the 
project. The outcomes of this task are a key input for the architecture as well as component 
design and implementation activities of the project. 

Task 2.1 started at M1 and produced the first version of the requirements analysis (D2.1) at 
M6. The continued work on requirements analysis has produced a new version of the 
requirements at M11, giving rise to the present deliverable D2.2. A third and last version of 
the requirements (refining the present version) is expected to be delivered at M22 as D2.3. 

The main contribution (and difference) of this deliverable with respect to the first 
requirements specification (D2.1) is the following: 

a) Redefinition of GFT’s use case in the context of Smart Insurance instead of Intelligent 
Multi-Channel Baking (Section 4.3). 

b) Redefinition of the stakeholder, system and technology requirements (Sections 6, 7 
and 8). 

c) Better explanation of the organization of the document (Section 2.2). 

Like in the first requirements analysis (D2.1), this elicitation and analysis of the requirements 
has been carried out considering the needs and concerns coming from the communities and 
end users related to the BigDataStack’s use case providers and technology providers. 
Therefore, the analysis specifies not only use case requirements (called “stakeholder 
requirements” by ISO/IEC/IEEE 29148:2011 [41]) but also technical requirements (called 
either “system requirements” or “software requirements” by the same norm). The method is 
fully explained at Section 2.1. 

To contextualize the analysis of requirements, Section 3 describes the BigDataStack platform 
stakeholders, business model, expected business outcomes and business goals. To better 
understand the software technology requirements, this deliverable also includes an 
introduction to the state-of-the-art (baseline) technologies that are expected to be relevant 
for BigDataStack (Section 9). In fact, Sections 3 and 9 are a refinement of the sections 
dedicated respectively to business goals and baseline technologies in the internal joint (with 
architecture) report completed at M3 (and brought as-is from D2.1). 

The rest of the document is organized as follows: Section 2.1 explains the requirements 
engineering method and Section 2.2 the organization of requirements in this deliverable; 
Section 4 specifies business scenarios and use case requirements related to three use cases; 
Section 5 introduces the most relevant roles that the actors (stakeholders) interacting with 
the platform may take; Sections 6, 7 and 8 specify the rest of stakeholder requirements as 
well as technical (system and software) requirements; finally, Section 9 describes baseline 
technologies relevant for BigDataStack. 

It is important to note that the requirements specified in this deliverable were brought into 
D3.1, D4.1 and D5.1 for the reader’s convenience, i.e., for a better understanding of the 



 
 Project No 779747 (BigDataStack) 

 D2.2 – Requirements & State of the Art Analysis – II 

 Date: 18.12.2018 

 Dissemination Level: PU 

 

 page 10 of 102 bigdatastack.eu 

BigDataStack capabilities design described in those deliverables: Data-driven Infrastructure 
Management (D3.1), Data as a Service (D4.1), and Dimensioning, Modelling and Interaction 
Services (D5.1). Nevertheless, the present document should be considered the single source 
of all requirements and be considered the master version of them in case of discrepancies. 

 

2.1 Method 

The requirements engineering method will follow ISO/IEC/IEEE 29148:20111 which describes 
two main processes or practices to be executed in an iterative and recursive fashion: 

Process Purpose Output 
Stakeholder 
Requirements 
Definition Process 

To define the requirements for a system that can 
provide the services needed by users and other 
stakeholders in a defined environment.  

Stakeholder 
Requirements 
Specification (StRS)  

Requirements 
Analysis Process 

To transform the stakeholder, requirement-driven 
view of desired services into a technical view of a 
required product that could deliver those services. 

System Requirements 
Specification (SyRS) 

Software 
Requirements 
Specification (SRS) 

Table 1 – Requirements engineering processes 

 

Figure 1. Requirements engineering method 

                                                 
1 International Organization for Standardization, “ISO/IEC/IEEE 29148:2011 – Systems and software 
engineering — Life cycle processes — Requirements engineering,” ISO/IEC/IEEE, Nov. 2011.  
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The work products are requirements specifications at three levels of detail, which serve as 
input to different practices or stages in the architectural design process. The following table 
describes each of those levels (extracted from ISO/IEC/IEEE 29148:2011 [41]), including the 
architecture domain whose decisions are informed by them. 

 

Work product Acronym Description Informed 
architecture 

domain  

Stakeholder 
Requirements 
Specification 

StRS It identifies stakeholders, or stakeholder classes, 
involved with the system throughout its life cycle, and 
their needs, expectations, and desires. It analyses and 
transforms these into a common set of stakeholder 
requirements that express the intended interaction the 
system will have with its operational environment and 
that are the reference against which each resulting 
operational service is validated.  

It specifies: 

A. The required system characteristics and context 
of use of the product (platform) business 
functions and services, and operational 
concepts are specified. 

B. The constraints on a system solution are 
defined. 

C. Traceability of stakeholder requirements to 
stakeholders and their needs is achieved. 

D. The stakeholder requirements are defined from 
the stakeholder’s perspective. 

E. Stakeholder requirements for validation are 
identified. 

Platform 
Capabilities 
(business 
architecture) 

System 
Requirements 
Specification 

SyRS Technical specifications for the selected system of-
interest and usability for the envisaged human-system 
interaction. It characterises system requirements 
because: 

F. It represents a system (including interfaces of 
functions and services) that will meet 
stakeholder requirements. 

G. Allows lower levels of granularity (recursion), 
i.e., subsystems. 

H. Does not imply any specific implementation.  
 
It specifies: 

I. The future system requirements from the 
domain perspective, background information 
about the overall objectives for the system, and 
its target environment. 

J. A statement of the constraints, assumptions 
and non-functional requirements.  

Platform 
Applications 
and Data 
Services 
Architecture 
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K. Measurable system requirements specifying, 
from the supplier's perspective, what 
characteristics and with what magnitude it is to 
possess to satisfy stakeholder requirements. 

Software 
Requirements 
Specification 

SRS A specification for a software product, program, or set 
of programs) that performs certain functions in a 
specific environment. 

The SRS may be written by one or more representatives 
of the supplier, one or more representatives of the 
acquirer, or by both. 

Typically,  

L. there will be a requirement specification that 
will state the interfaces between the system 
and a software portion; 

M. it will place external performance as well as 
functionality requirements upon the software 
portion; 

N. it defines all the required features (e.g., 
functions) of the specified software product to 
which it applies; and 

O. it documents the conditions and constraints 
under which the software portion must 
perform, and the intended verification 
approaches for the requirements. 

Platform 
Technology 
Architecture 

Table 2 – Levels of requirement specification 

Finally, to identify requirements from all stakeholders’ point of view, we have taken 
inspiration from the TOGAF® Series Guide2: Business Scenarios method to shed light on the 
key business requirements and indicate the implied technical requirements for IT architecture 
of BigDataStack. This is a technique to validate, elaborate, and/or change the premise behind 
an architecture effort by understanding and documenting the key elements of a Business 
Scenario in successive iterations.  

Finally, to better formalize the requirements, we use the following attributes: 

- Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see Section 2.1 
Methodology), we use the following levels: Stakeholder, System and Software (i.e., 
technology details). 

- Type: Types of requirements are functional: FUNC (function), DATA (data); and non-
functional: L&F (Look and Feel Requirements), USE (Usability Requirements), PERF 
(Performance Requirements), ENV (Operational/Environment Requirements), and SUP 
(Maintainability and Support Requirements).  

- Priority: Requirements can have different priorities: MAN (mandatory requirement), DES 
(desirable requirement), OPT (optional requirement), ENH (possible future 
enhancement). 

 

                                                 
2 https://publications.opengroup.org/g176 

https://publications.opengroup.org/g176
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2.2 Organization 

In this document, we firstly describe the stakeholder requirements of the User Enterprises 
(see Table 3 – Stakeholders) to which the use cases belong. This is done through business 
scenarios which represent business problems for the customer organization of a developed 
Big Data solution (see Section 4 - Use Case Requirements and Scenarios). 

 

Figure 2. BigDataStack core platform capabilities 

Secondly, we present the rest of stakeholder requirements as well as the system and 
technology (software) requirements organized in terms of the envisioned BigDataStack 
platform capabilities (see Figure 2): 

- Data-driven Infrastructure Management. The platform capability to provide means for 
efficient and optimized infrastructure, incorporating all aspects of data-driven 
management for the computing, storage and networking resources. 

- Data as a Service. The platform capability to exploit the underlying data-driven 
infrastructure management system to offer data as a service in a performant, efficient 
and scalable way. It includes access to a set of technologies addressing the complete 
data path: modelling and representation, cleaning, aggregation, and data processing 
and analytics. 

- Dimensioning, Modelling and Interaction Services: 
o Data Visualization goes beyond adaptable visualization and presentation of 

data and analytics outcomes, to performance aspects such as computing, 
storage and networking infrastructure data, data sources information, and 
data operations outcomes. 

o Data Toolkit aims at openness, extensibility and wide adoption. The toolkit will 
allow the ingestion of data analytics functions and the definition of analytics in 
a declarative way; moreover, it will allow data scientists and administrators to 
specify requirements and preferences both for the data and infrastructure 
management. 

o Process Modelling will allow for declarative and flexible modelling of process 
analytics. Functionality-based process modelling will then be concretized to 
technical-level process mining analytics, while a feedback loop will be 
implemented towards overall process optimization and adaptation.  

o Dimensioning Workbench enables the self-dimensioning of applications in 
terms of predicting the required data services, their interdependencies with 
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the application micro-services and the required underlying resources. 

3 Business Stakeholders and Goals 

This section aims to identify the business goals to address in the elicitation of requirements 
and architecture specification of BigDataStack results. The identification of business needs 
and requirements will help to implement a solution that meets stakeholders´ expectations 
and allows a better market positioning for a future exploitation. 

It is worth noting that a preliminary wide-reaching Market Analysis will be delivered in M183 
of the project, which will be used to confirm that the business goals envisioned in this phase 
of the project, as well as the business model and stakeholders, are valid.  

3.1 Stakeholder Categories 

As defined in BDVA SRIA Agenda4, the following key stakeholders are the main categories of 
actors along the Big Data Value chain: User Enterprises, Data Generators and Providers, 
Technology Providers and Service Providers. These categories are described in the following 
table, including the BigDataStack platform “side” they will play in: supply versus demand, or 
solution provider versus consumer. 

Id Name Side Description 

STA-01 User 
Enterprises 

Demand 
side 

These are, for example, enterprises in all domains 
and of all size that want to improve their portfolio 
using Big Data technology. 

STA-02 Data 
Generators 
and Providers 

Supply 
side 

Create, collect, aggregate, transform and model raw 
data from heterogeneous sources and offer it to 
customers. 

STA-03 Technology 
Providers 

Supply 

side 

Provide tools and/or platforms that offer data 
management and analytics tools to extract 
knowledge from data, curate and visualize it.  

STA-04 Service 
Providers 

Supply 
side 

Develop Big Data applications on top of the tools and 
platforms to provide services to user enterprises. 

Table 3 – Stakeholders 

In the BDVA SRIA Agenda and in many digital media, workshops, congresses, etc., the big data 
stakeholder ecosystem has concerns about problems like those of the main BigDataStack 
stakeholders, which may cause a slower uptake of big data applications and solutions. 

Stakeholder 
Categories 

Concern Description 

STA-01  
STA-02 
STA-03 
STA-04   

Privacy and 
Security 

Potential data users are worried about privacy and security 
of their data. Due to velocity and volume, different data 
locations and different type of data (including not only 
personal data, but also sensitive business data), a robust 

                                                 
3 The result of this preliminary wide-reaching Market Analysis will be included in the deliverable D7.2 - 
Exploitation plan and business potential [ATOS, Report, Public, M18]. 
4 http://www.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3.pdf 
 

http://www.bdva.eu/sites/default/files/EuropeanBigDataValuePartnership_SRIA__v3.pdf
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data protection mechanism is needed. For businesses this is 
a key point, since 89% of companies avoid doing business 
with companies that they believe do not protect their 
privacy5.  

STA-02 Cost The high data volume and quick scalability of big data 
projects make difficult to foresee of cost management for 
enterprises. New provider monetization models are 
emerging to create innovative cost-effective solutions for 
big data users to control costs as far as possible. 

STA-02 Integration 
with existing 
systems 

The integration of big data technologies with existing 
systems is a main question for companies planning to 
implement big data solutions. Companies know that 
changing operational/process company systems is a major 
issue since it leads additional costs, new personal training, 
etc. But the challenge is not only before the big data 
implementation, since companies must be prepared to 
make necessary changes to derive business value from big 
data, which probably will lead to changes in existing 
systems. 

STA-03 Scalability and 
performance 

Nowadays, companies are increasingly using big data in 
their business and must deal with a large amount of data. 
Service providers have to offer attractive cost-effective 
services to their clients to address this problem. 

STA-02 
STA-03 

Heterogeneity 
of data and 
data sources 

The emergence of IoT has incorporated a new type of data 
with different existing ones: data-in-flight from sensors, 
mobiles, etc. which needs a new management data model 
and capabilities 

STA-03 
STA-04 

Different 
analytics 
capabilities 

A key challenge for business is to identify clear business 
objectives, and this will not be the same for the different 
sectors, so application service providers need to develop 
different analytics capabilities to address clients in all 
domains 

STA-03 
STA-04 

Lack of talent There are not enough skilled people and new training 
requires time and money, so providers need big data tools 
ease to use, to deliver new services in a short time to 
market. 

Table 4 – Stakeholder concerns 

3.2 Business Model 

To meet the needs of the stakeholder ecosystem, the BigDataStack platform should support 
whole Big Data management and analytics products and services, addressing needs of data 
operations and data applications in a Data as a Service (DaaS) model. The table below depicts 

                                                 
5 https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/Analytics/ca-en-analytics-ipc-big-data.pdf 
 

https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/Analytics/ca-en-analytics-ipc-big-data.pdf
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the envisioned BigDataStack platform value proposition for customers at each side of it 
(demand and simply sides) as well as the revenue model proposed for them6: 

Products and 
Services 

Revenue 
model 

Customer 

Turn-Key Big Data 
management and 
analytics solutions 

Pay-as-
you-go 

Demand 
side 

Enterprises of all sizes and all sectors that 
want to increase the knowledge or 
operational efficiency of their business and/or 
enhance their business offering by using Big 
Data Analytics and wish a whole outsourcing 
solution for the management of the data path 
operation. 

Development of 
different Big Data 
management and 
analytics solutions 

Pay-as-
you-go 

Supply 
side 

Solution Providers who want to make use of 
BigDataStack tools to enhance their Big Data 
products and services, including technology, 
applications and data offerings. 

Table 5 – Preliminary business model 

3.3 Business Outcomes 

In the proposal stage of the project, a deeper study of the main actors and stakeholders 
related to BigDataStack solutions was carried out. That study has been enhanced and is 
summarized in the following table, where the benefits for each stakeholder of using 
BigDataStack results are included: 

Side Stakeholder 
Category 

Stakeholder Description 

Supply 
side 

STA-03 Infrastructure 
providers 

Offer infrastructure solutions to big data needs 
through efficient and performant management 
of all resources. 

STA-02 Data providers Offer cleaned, modelled, stored and analysed 
data. 

STA-04 Application 
providers 

Provide data-intensive applications with 
guarantees. 

STA-03 Data 
practitioners 

Develop enhanced algorithms and offer them. 

Supply 
side  

STA-03 Infrastructure 
brokers 

Act as second-level entities that take 
advantage of the BigDataStack data-driven 
infrastructure management solutions from 
infrastructure providers. 

STA-02 Data 
aggregators 
and data 
resellers 

Act as second-level entities (following data 
providers) that take advantage of the 
monetization model of Data as a Service 
according to their business models and goals. 

                                                 
6 These assumptions will be deeply explored in the Market Study (D7.2. Exploitation plan and business 
potential) and a best-suited business model will be deployed based of the market analysis result.  
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STA-04 Marketplace 
owners 

Act as second-step entities that take advantage 
of data-intensive application provisioning by 
application providers. 

Demand 
side 

STA-01 Citizens Use applications, services and products with 

guaranteed levels of quality. 

STA-01 SMEs and big 
industries 

Satisfy their internal data needs to develop 

new offering and/or streamline operations by 

utilizing BigDataStack services offered by 

application and data providers. 

STA-01 Public 
organizations 

Using BigDataStack for handling data. 

STA-01 Entrepreneurs Developing, deploying and using data-intensive 

and/or data-driven applications to power their 

products or services by utilizing BigDataStack 

services offered by technology and data 

providers. 

STA-01 Decision 
makers  

Driving business decisions based on accurate, 

timely, meaningful data and analytic insights. 

Table 6 – Stakeholder requirements 

3.4 Business Goals 

Business goals are often called “vision requirements.” These are top-level requirements 
appear first, and to which all the other requirements must be subordinated, to successful 
market uptake. In this stage of the project, the following business goals have been identified: 

Field Description 

Id BG1 

Short Name Privacy and Security  

Description BigDataStack will propose an architecture that enables security and 
privacy aspects and will be oriented toward the compliance with data 
protection regulations.  

Rationale Ensure the protection of personal data and business data. 

Involved 
Stakeholders 

All stakeholders 

Table 7 – Privacy and security (business goal) 

Field Description 

Id BG2 

Short Name Attractive revenue and business model  

Description BigDataStack envisions a Pay-as-you-go as revenue model, delivering a 
cost-effective service for different costumers and looking for strong 
marketplace positioning. 
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Rationale Deliver cost-effective solutions for the whole stakeholder ecosystem as 
Data as a Service solution.  

Involved 
Stakeholders 

All stakeholders 

Table 8 – Attractive revenue and business model (business goal) 

Field Description 

Id BG3 

Short Name High performance, scalability and sharing 

Description BigDataStack will introduce an architecture that enables real-time data-
driven management decisions and will provide a performant, scalable, 
flexible and dependable environment for the efficient delivery of 
distributed data operations, data- and storage- intensive applications. 
The performance and optimization will be achieved by basing all 
infrastructure management decisions on the data aspects. 

Rationale Data management of different data from several sources, including data 
at rest and in flight. 

Involved 
Stakeholders 

Infrastructure providers, Data providers, Application providers, Data 
practitioners, Citizens, SMEs and Large industries, Public Organisations, 
Entrepreneurs, Decision makers. 

Table 9 – High performance, scalability and sharing (business goal) 

Field Description 

Id BG4 

Short Name Product integration 

Description BigDataStack offers a solution catalogue for providers, which can be used 
to manage the complete data path or only to address parts of a 
provider’s whole solution. For end users, BigDataStack-based turn-key 
solutions will facilitate the integration of analytics in their businesses. 

Rationale Integration with other systems in end user companies and with other 
analytic tools for providers. 

Involved 
Stakeholders 

All stakeholders 

Table 10 – Product integration (business goal) 

Field Description 

Id BG5 

Short Name Different analytic capabilities 

Description BigDataStack will validate its solutions in three commercial cases in the 
maritime, market and financing domains; this will provide a key expertise 
to BigDataStack to offer guaranteed turn-key big data solutions in other 
domains. 

Rationale Deliver successful solutions for major challenges in main sectors. 

Involved 
Stakeholders 

Citizens, SMEs and Large Industries, Public Organisations, 
Entrepreneurs, Decision makers. 
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Table 11 – Different analytic capabilities (business goal) 

Field Description 

Id BG6 

Short Name Ease of use 

Description BigDataStack will put emphasis on usability through data toolkits and 
visualization environments. Its solutions will include mechanisms for 
deployed data path operations to become faster. 

Rationale Reduce time to market and cost for new data applications. 

Involved 
Stakeholders 

Infrastructure providers, Data providers, Application providers, Data 
practitioners. 

Table 12 – Ease of use (business goal) 
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4 Use Case Requirements and Scenarios 

This section presents the business usage scenarios and initial requirements elicited from each 
of the three business use cases of the BigDataStack project. These requirements should be 
considered as Stakeholder Requirements focused on specific solutions as required by specific 
User Enterprises (see Table 3 – Stakeholders). The business scenarios are representative of a 
significant business need or problem, and enables data, technology and service providers to 
understand the value to the customer organization of a developed Big Data solution. 

Each scenario describes the different usage from a use case perspective at a high-level 
description. It is not the intention to define the complete and detailed scenarios needed for 
the development of the solution, rather that the descriptions are more related with defining 
the behaviour and the scope to identify the necessities and align the architecture definition 
with the uses case from the beginning of the project. Moreover, the scenarios are by no 
means complete, as the project has two additional iterations to upgrade and refine them, 
however, they provide an overview on the main behavioural patterns involving the different 
actors and aims to define and align the initial design of the architecture (D2.4). Scenario 
descriptions are complemented with UML Use Case Diagrams to identify the different actors, 
prerequisites and the description of the behaviour. 

Each use case can identify one or more scenarios depending on the complexity or the scope 
of the definition. For instance, on one side, the necessity for the analysis of the data services 
and data-intensiveness of the provision (at the dimensioning phase), and on the other side, 
the scenario for the operational phase where the defined Quality of Service (QoS) and rules 
should be applied. Thus, this can be described only in one scenario (more complex) or can be 
split into two scenarios differentiating clearly the objectives, the behaviour and the actors. It 
should be the decision of each use case provider to take the approach that best suits their 
purpose. 

4.1 Real-time Ship Management 

4.1.1 Introduction 

This section refers to the use case of Real-time Ship Management (RSM): Maintenance and 
spare parts inventory planning & dynamic routing. The usage scenarios, that is, a higher-level 
representation of functional requirements (Section 3.1.2), along with a detailed description 
of use cases (Section 3.1.3) will be presented. 

4.1.2 Scenarios 

This case addresses two key challenges in the ship management domain: (i) predictive 
maintenance combined with spare parts inventory planning, and (ii) dynamic routing. In 
recent years, increasing fuel prices, depressed market conditions and environmental issues 
such as emissions from ships, have brought a new perspective to ship routing. Besides being 
cost-efficient, a ship also must be environmentally friendly with regards to its emissions. 

One of the project partners faces similar challenges: DANAOS - a leading international 
maritime player with more than 60 containerships, transports millions of containers, sails 
millions of miles to thousands of ports, and consumes millions of tons of fuel oil. Each year, 
DANAOS senior management, investors, and customers evaluate performance after each 
voyage and demand the highest level of operational quality. Ship engines and other relevant 
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machinery need to achieve high availability not only to deliver transport services (and thus 
ensure availability of resources) but also for operational safety, occupational health and 
environmental impact purposes. High availability of ship engines and machines can only be 
achieved if they are kept under proper conditions using applicable maintenance strategies, 
thus the monitoring of machinery has become even more critical to meet the maintenance 
requirements and achieve predictive maintenance. The latter is based on data that are 
exploited to estimate the type of failure and time to failure. 

An additional problem is the limited availability of spare parts, resulting in expediting inbound 
replenishment shipments. If the spare parts planning and inventory management processes 
cannot cope with the unpredictability of the need for parts, then the operation may be 
starved of critical parts, yet may be flooded with other parts which are not frequently 
required, resulting in lower productivity due to additional downtime and higher holding costs 
due to excess inventory, respectively. Spare parts inventory management in relation to 
maintenance is a complex process because it involves hundreds of parts for a single engine, 
some of which may have a high level of demand per month whereas some may have a 
demand of few units per year. 

We discuss two different but complementary scenarios: (i) monitoring and predictive 
maintenance and (ii) requisition of a spare part and dynamic routing to the closest port 
where this part is available. The following tables describe in more detail these two scenarios. 

Section Description 

Id SCE-RSM-01 

Title Monitoring and predictive maintenance 

Description A vessel must complete its route within a time-frame. When a part of the main 
engine fails unexpectedly, the ship risks staying off-hire. This can be very 
damaging to a shipping company, as chartering revenues decrease, while 
replacing a spare part immediately increases cost. Thus, identification of 
potential failure allows timely ordering, or even replacement of spare parts 
before failure. The main engine, posing the highest risk, consists of various spare 
parts depending on many parameters. Thus, it is difficult to accurately predict 
failures. If false alarms occur, the operating costs increase, as ordering of 
unnecessary parts is not optimal.  

Actors Coordinator, Fleet manager 

Objectives - Monitoring the main engine of a vessel. 
- Notification for an upcoming malfunction. 
- Minimization of machinery failures that cause the ship to go off-hire. 

Pre-
conditions 

Monitoring and predictive maintenance of the main engine takes for granted a 
full-scale dataset with measurements from the main engine, along with other 
factors that may influence the performance of the main engine, such as weather 
conditions, hull condition, power consumption, fuel quality etc. Furthermore, a 
recorded history of malfunctions is required. 

Process 
Description 

Shipping companies nowadays work preventively against malfunctions via a 
planned maintenance scheme and a condition-based maintenance scheme. 
Planned maintenance is performed with the help of a planned maintenance 
system (PMS) that informs the engineers for actions to be taken for 
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maintenance from a main-engine component down to a spare-part-level. For 
example, the change of lube oils or a piston component after a defined period.  
Condition-based maintenance is performed either separately from planned 
maintenance via a pure human decision and interaction scheme, or can be 
included in the PMS. For example, if the tubes of the air-cooler have been 
cleaned, the air-filter should be replaced. 

Variations In this case, preventive maintenance is addressed as the remaining cases of 
maintenance that are not included in a condition-based or preventive 
maintenance scheme. If these two categories are excluded, we discuss about 
malfunctions that occur unexpectedly, thus should be handled in a different 
manner. 

Post-
condition 

If a malfunction pattern is identified, the actor is informed via an alert.   

Diagrams  

 

Table 13 – Monitoring and predictive maintenance scenario description (scenario) 

Section Description 

Id SCE-RSM-02 

Title Requisition and dynamic routing 

Description Once a malfunction is identified and the technical department is informed (Fleet 
manager, coordinator), spare parts or actions to be taken for maintenance 
should be clarified from the technical department to the supplies department. 
The supply department should order the required spare part and proceed with 
the requisition and delivery process of the part to the vessel. The cost of the 
spare part depends on the location of the vessel, on the distance where the 
closest port is, and on the supplier, while some qualitative criteria must be taken 
also into account. Usually, each shipping company has a list of suppliers who are 
trusted. Thus, the supply department wishes to minimize the cost of the 
ordered spare part without compromising the quality of the part itself and 
replace it on time without letting the damage on the main engine put the vessel 
off-hire.  

Actors Coordinator, Fleet manager, Supplies coordinator 
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Objectives - Timely alerting of the supply department for a new order. 
- Timely ordering of spare parts. 
- Dynamic routing of the vessel to the closest port with available spare 

part. 
- Optimization of the requisition and delivery process. 

Pre-
conditions 

A malfunction has been identified, the technical department is alerted 

Process 
Description 

The requisition process of a spare part goes as follows; First a requisition is made 
by the vessel. This request is processed and pre-checked by the supply 
department. Next, a Request for Quotation (RFQ) is made via the DANAOS 
platform, which broadcasts the RFQ to the company’s listed suppliers. Given 
the offers by the suppliers, the supply department performs a comparative 
table analysis and decides which supplier will place the order. Once the order is 
placed, it is invoiced and delivered to the vessel.  

Variations An order may be delivered but not invoiced on time. 

Post-
condition 

The required spare part is ordered and delivery is expected to the closest port 
where the vessel is dynamically routed. 

Diagrams  

Table 14 – Order suggestion and dynamic routing (scenario) 

4.1.3 Requirements 

In the following tables, we show the description of the use requirements defined in each 
scenario, as described in the previous section. 

Section Description 

Id REQ-RSM-01 

Level of detail Stakeholder 
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Type FUNC 

Short name Main Engine Monitoring 

Description As data flow, out of sensors installed at the main engine of a vessel, the 
user wishes to have a look on the current or past values of the provided 
metrics in a chart, select a set of metrics which are to be drawn on a chart  

Additional 
Information  

Data requirements (indicative):  
- Air Cooler Cooling Water Inlet Pressure (Pa) 
- Air Cooler Cooling Water Inlet Temperature (°C) 
- Cooling Fresh Water Inlet Pressure (Pa) 
- Control Air Pressure (Pa) 
- Cylinder Lube Oil Temperature (°C) 
- Exhaust Valve Spring Air Inlet Pressure (Pa) 
- Fuel Oil Flowrate (lt)  
- Fuel Oil Inlet Pressure (Pa) 
- Fuel Oil Inlet Temperature (°C) 
- Heavy Fuel Oil Viscosity High Low (mm2/s) 
- HPS Bearing Temperature (°C) 
- Jacket Cooling Fresh Water Inlet Temperature Low (°C) 
- Order RPM (Bridge Leverer) 
- Scavenge Air Inlet Pressure (Pa) 
- Scavenge Air Receiver Temperature (°C) 
- Starting Air Pressure (Pa) 
- Thrust Pad Temperature (°C) 
- Main Lube Oil Inlet Pressure (Pa) 
- Main Lube Oil Inlet Temperature (°C) 
- Fuel Oil Temperature (°C) 
- Fuel Oil Total Volume (lt) 
- Power (kW) 
- Scavenge Air Pressure (Pa) 
- Torque (N/m) 
- Fuel Oil Consumption (lt/min) 
- Fuel Oil Consumption (MT) 

Actor Coordinator 

Priority MAN 

Table 15 – Main Engine Monitoring (stakeholder requirement) 

Section Description 

Id REQ-RSM-02 

Level of detail Stakeholder 

Type FUNC 

Short name Malfunction Alert 
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Description Once a malfunction pattern is identified the user is alerted via a message 
with minimum and concise information about the upcoming malfunction 

Additional 
Information  

Data requirements:  
- Malfunction name 
- Estimated time before break-down 

Actor Coordinator, Fleet manager 

Priority MAN 

Table 16 – Malfunction alert (stakeholder requirement) 

Section Description 

Id REQ-RSM-03 

Level of detail Stakeholder 

Type FUNC 

Short name Alert Inspection 

Description Once the user is informed about an alert, he/she can investigate the 
malfunction pattern, the metrics and the history of this malfunction. 

Additional 
Information  

Data requirements:  
- Malfunction name 
- Estimated time before break-down 
- Previous occurrence of this malfunction 
- Actions taken in previous occurrence (e.g. ordered spare part) 
- Chart with values and anomalies on a minute basis 

Actor Coordinator, Fleet manager 

Priority MAN 

Table 17 – Alert Inspection (stakeholder requirement) 

Section Description 

Id REQ-RSM-04 

Level of detail Stakeholder 

Type FUNC 

Short name Spare Part Requisition 

Description Once the Coordinator or the Fleet manager have inspected an alert for 
an upcoming malfunction, given the history of actions taken in the past, 
he/she makes a requisition for the same or another spare part of the 
main engine.  

Additional 
Information  

Data requirements:  
- Spare part name 
- Spare part id  
- Reason for requisition 
- Date of requisition  
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- Description 

Actor Coordinator, Fleet manager 

Priority ENH 

Table 18 – Spare Part Requisition (stakeholder requirement) 

Section Description 

Id REQ-RSM-05 

Level of detail Stakeholder 

Type FUNC 

Short name Requisition Process 

Description Once a requisition is made by the technical department, it is processed 
and pre-checked by the supply department. Next, a Request for 
Quotation (RFQ) is made via the DANAOS platform, which broadcasts the 
RFQ to the company’s listed suppliers. Given the offers by the suppliers, 
the supply department performs a comparative table analysis and 
decides to which supplier will place the order. Once the order is placed, 
it is invoiced and delivered to the vessel.  

Additional 
Information  

Data requirements:  
- Spare part id 
- Spare part name 
- Spare part description 
- List of suppliers  
- List of offers 
- List of available ports 
- List of estimated time of deliveries 

Actor Supplies Coordinator 

Priority ENH 

Table 19 – Requisition Process (stakeholder requirement) 

Section Description 

Id REQ-RSM-05 

Level of detail Stakeholder 

Type FUNC 

Short name Dynamic Routing 

Description This use case is a plug-in feature for the requisition process use case, 
since it can update the data on the comparative table analysis where 
costs of routing to the port where the spare part is available are included. 
Furthermore, it can highlight the row in the comparative table the cost-
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efficient solution, to suggest to the Supplies coordinator the best possible 
choice.  

Additional 
Information  

Data requirements:  
- Spare part id 
- Spare part name 
- Spare part description 
- List of suppliers 
- List of offers 
- List of available ports 
- List of estimated time of deliveries 
- Voyage estimations to closest ports 

Actor Coordinator, Fleet manager, Supplies Coordinator 

Priority ENH 

Table 20 – Dynamic Routing (stakeholder requirement) 

4.2 Connected Consumer  

4.2.1 Introduction 

This section refers to the use case of Connected Consumer (CC): Multi-sided market 
ecosystem. Here, we discuss the usage scenarios by giving a detailed description of the use 
cases (Section 4.2.2) along with a description of use requirements (Section 4.2.3). 

In a world with instant access to information, where competition is just one click away, 
attracting and keeping customers is crucial for survival. Predictive analysis is the challenge. It 
can help predict which consumers are the most loyal or which potential buyers are more likely 
to purchase a certain product or service, opening new opportunities for retailers, providing 
new business prospects to customers, with improved shopping experience for consumers and 
new business opportunities for traders.  

In this business domain, Eroski7, one of the largest distribution companies in Spain with more 
than 35.000 workers, is collaborating with ATOS in the definition and test of a use-case related 
to the grocery business. It is also contributing with real data for the development of the 
project. The goal of this scenario is to provide data insights to EROSKI to better understand 
how to create and offer added-value services to their consumers. In this context, the use case 
objective is to predict both which products and which promotions are more likely to be 
interesting for the customers at the right time. In this way, EROSKI can adapt the most 
appropriate message (i.e. product and/or promotion) for each customer and send it at the 
right time and through the most appropriate channel, thus increasing the ROI of their 
marketing activities.  

From the analysis of different data sources provided by Eroski, the goal is first to predict the 
list of products that customers with recurrent purchases will need in the current purchase 
period (trend). Afterwards, add to this prediction those products that can be interesting for 
the user based on other similar user’s behaviour (cross-selling). Finally, thanks to a deep 

                                                 
7 https://www.eroski.es/ 

https://www.eroski.es/
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knowledge of the customer profile, the goal is also to incorporate those promotions that can 
be interesting for each customer.  

Additionally, a scenario that describes a demonstrator that will help users to display and test 
recommendations made by the user has also been included. 

4.2.2 Scenarios 

Section Description 

Id SCE-CC-01 

Title Retail Recommender 

Description This scenario is distributed in three steps:  
- data collection, 
- calculate recommendations, and 
- show predictions. 

The first step, data collection, provides services to update those entities 
needed for the recommender with data coming from external systems: 

a) Product Service (products, categories, products x category) 
b) Sales Service (orders) 
c) Client service 
d) Events service (used by the external systems to provide feedback 

about the visualization of the recommendations) 
The second step, calculate recommendations, calculates the products 
and the promotions that would recommend to every user. 
The input data is being processed, i.e., cleaned (“denoised”) and 
modelled. In the cleaning process, any unwanted effects in the data are 
removed (such as missing values or outliers) while maximizing its 
information. We define noise as any unwanted artefact introduced in the 
data collection phase that might affect the result of our data analysis and 
interpretation. In the modelling process, the data is being modelled into 
some pre-defined model. The pre-defined model is going to be the input 
for the main process. 
Therefore, we can split the recommendation process in two phases: 

- Calculate the products that a user would be interested to buy, 
based on: 

1. Product sales frequency by user 
2. Product sales frequency by product 
3. Product seasonality 
4. Product cross-selling 
5. User feedback (registered with events) 
- Calculate the promotions that will be recommended to the final 

users. The promotions are calculated in base to: 
- Representative products that the user could buy (calculated in 

“calculate products” use case) 
- Possible promotions, with a priority ranking 
- User feedback (registered with events) 
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Finally, the third step, show predictions, provides the needed services 
for getting the recommendations calculated. Consumers of these 
services will be the client applications that need to show recommended 
products or promotions to its users. 

Actors External System, Trigger recommender 

Objectives The main objective of this scenario is to calculate the most interesting 
products and promotions to recommend. 
To achieve this main objective, the first thing we need is to collect data 
and refresh the database with fresh data, including: users, products, 
promotions and sales data. When we have all the new fresh data 
collected and stored, we need to process data and prepare it for the 
main process, denoising and modelling. Then, with the modelled data, 
we calculate the most interesting products and promotions for every 
user. Finally, when it's requested, we provide data to client applications 
with the recommendations requested. 

Pre-
conditions 

The system needs, at least, 2 years of data history to do good predictive 
recommendations. This data includes: 
1) Sales 
2) Clients 
3) Products 
4) Categories 
Additionally, we can also have some other data that can be included in 
the recommendation process, such as user events, user feedback, etc. 

Process 
Description 

- Data collection 
- External system invokes service  
- System stores the data provided by the external system 

- Calculate recommendations 
- Some input data arrives to the system 
- The system prepares the data pro process it 
- The system calculates products to recommend 
- The system calculates promotions to recommend 
- Process the results from points 3 and 4 and store the final 

products and promotions to recommend on DB 
- Data preparation 

- Some input data arrives to the system 
- The system initiates a denoising process 
- The system initiates a modelling process 

- Denoising data 
- The process for denoising is called with some data 
- The data noise is removed 
- Denoised data is returned to the caller 

- Data modelling 
- The process for modelling is called with some data 
- The data is modelled 
- Modelled data is returned to the caller 

- Calculate products 
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- The process of calculate products is called with some data 
- The system calculates recommended products for every user 

- Calculate promotions 
- The process of calculate promotions is called with some data. 
- If the data does not include the suggested products calculated, 

the system calculates recommended products for every user. 
- The system calculates recommended promotions. 

- Show Predictions 
- External system invokes service  
- System provides the predictions requested by the external 

system 

Variations N/A 

Post-
condition 

The suggested products and promotions shouldn’t be null. 
The system must store in the DB: 

- Products and promotions being recommended for every user. 
- Suggested order priority for the recommended products and 

promotions for every user. 
- Trace tokens to register possible feedback events for every 

recommended item. 

Diagrams  

 

Table 21 – Retail Recommender (scenario) 

Section Description 

Id SCE-CC-02 

Title Retail Demonstrator  

Description This scenario is distributed in three modules: login, View Predicted 
Products and View Predicted Promotions. 

- The login module logs into the demonstrator application for a 
given customer. 

- The View Predicted Products module displays the products that 
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the system would suggest to the customer.  
- The View Predicted Promotions module displays the personalized 

promotions that the system would suggest to the customer.  
In both modules, the View Predicted Products and View Predicted 
Promotions, the demonstrator is also giving feedback to the retail 
recommender about in which products/promotions the customer has 
shown interest so that the recommender can adapt its recommendations 
in real time. 

Actors Customer, Products Recommender 

Objectives - Provide a way to switch from one user to another in the app, thus, 
allowing display of the predicted products and promotions for 
different users. 

- Provide an example on how end users could display the products 
calculated by the recommender. 

- Provide an example on how end users could display the 
promotions calculated by the recommender. 

- Provide a way to show that the recommender is considering the 
feedback given by the client applications. 

Pre-
conditions 

User is in the list of available users 

Process 
Description 

1. Display predicted products  
- User logs into the system 
- System verify username exists 
- User selects My predicted products 
- System retrieves the prediction for the current user from the 

recommender system 
- Application displays Suggested Products list 
- Application gives feedback to the recommender about both 

which products has been shown and which products the user 
has shown interest 

2. Display predicted promotions 
- User is logged in the application 
- User selects ‘My predicted promotions’ 
- System retrieves the prediction for the current user from the 

recommender system 
- Application displays a suggested promotions list which takes into 

consideration the list of products predicted for the user 
- Application give feedback to the recommender about both 

which promotions has been shown and which promotions the 
user has shown interest 

Variations N/A 

Post-
condition 

The user is logged in the demonstrator, and the user can view the 
following in the application: 

- List of products predicted for the user 
- List of promotions predicted for the user 

Diagrams  
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Table 22 – Retail Demonstrator (scenario) 

4.2.3 Requirements 

In the following tables, we show the description of the use requirements defined in each 
scenario, as described in the previous section. 

Section Description 

Id REQ-CC-01 

Level of detail Stakeholder 

Type FUNC 

Short name Predict products required by a recurrent user 

Description For a user with previous orders (recurrent), the system should be able to 
predict a list of items that the user is likely to need in the coming days.  
The calculation should consider: 

- History of orders made by the user 
- Seasonality of the products 
- Similarity with items that the customer bought and is bound to need 
- What other customers bought 
- User segment 
- Receptivity of the user to the items recommended by the system 

Additional 
Information 

The list of items should return for each item a rank that helped the 
external system to prioritize the display of items. 
The rank should be assigned to the products considering the probability 
that the user needs them, that is, buys them. 

Priority MAN 

Table 23 – Predict products required by a recurrent user (stakeholder requirement) 

Section Description 

Id REQ-CC-02 

Level of detail Stakeholder 

Type FUNC 

Short name Predict products to a new user (user without previous orders) 
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Description For a given new user, the system should be able to predict a list of items 
that the user is likely to buy.  
The calculation should consider: 

- Seasonality of the products 
- What other customers bought 
- User segment 

Additional 
Information 

The list of items should return for each item a rank that helps the external 
system prioritize the display of items. 
The rank should be assigned to the products considering the probability 
that the user buys them. 

Priority MAN 

Table 24 – Predict products to a new user (stakeholder requirement) 

Section Description 

Id REQ-CC-03 

Level of detail Stakeholder 

Type FUNC 

Short name Recommend personalized discounts 

Description Be able to recommend personalized discounts that users are likely to 
use in the coming days.  
The calculation should take into account the following factors: 

- List of predicted items towards the user (see req-1 for further info) 
- Category (commercial structure) of the items predicted to the user. 

The list of discounts proposed by the system will contain 
promotions that apply on products that belong to the same 
category than the products predicted for the user 

- User receptivity to the items recommended by the system 

Additional 
Information 

The calculation should consider:  
- List of items predicted to the user, 
- Seasonality of the products, 
- Similarity with items that the customer bought/is bound to need, 

and 
- What other customers in the same segment bought, 

and rank the products according to the probability he will buy them 

Priority MAN 

Table 25 – Recommend personalized discounts (stakeholder requirement) 

Section Description 

Id REQ-CC-04 

Level of detail Stakeholder 

Type DATA 

Short name Orders requirements 
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Description New orders placed by the users should be loaded at least once per day.  
Orders should have at least the following information: 

- Client Id 
- Order Date 
- Items 

o productId 
o price 
o promotionId 

Additional 
Information 

N/A 

Priority MAN 

Table 26 – Data Requirement (stakeholder requirement) 

Section Description 

Id REQ-CC-05 

Level of detail Stakeholder 

Type DATA 

Short name Clients requirements 

Description New Eroski customers should be loaded at least once per day.  
Customers should have at least the following information: 

- Client Id 
- Client segment 

Additional 
Information 

N/A 

Priority MAN 

Table 27 – Clients requirements (stakeholder requirement) 

Section Description 

Id REQ-CC-06 

Level of detail Stakeholder 

Type DATA 

Short name Products requirements 

Description New Eroski products should be loaded at least once per day.  
Products information should have at least the following information: 

- Product reference 
- Product category 

Additional 
Information 

N/A 

Priority MAN 

Table 28 – Products requirements (stakeholder requirement) 
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Section Description 

Id REQ-CC-07 

Level of detail Stakeholder 

Type L&F 

Short name Multi-device 

Description The demonstrator application UI should adapt to different devices and 
displays, including mobile, to provide a proper operation of the solution 
and a good user experience. 

Additional 
Information 

Give support to both Android and iOS mobile platforms. 

Priority MAN 

Table 29 – Multi-device (stakeholder requirement) 

Section Description 

Id REQ-CC-08 

Level of detail Stakeholder 

Type USE 

Short name Easy-to-use 

Description The solution should be easy to use for people of different ages. It should 
follow the best practices in terms of usability. 

Additional 
Information 

N/A 

Priority MAN 

Table 30 – Easy-to-use (stakeholder requirement) 

Section Description 

Id REQ-CC-09 

Level of detail Stakeholder 

Type ENV 

Short name Multi-user 

Description The solution should be portable and reusable for different users.  

Additional 
Information 

N/A 

Priority MAN 

Table 31 – Multi-user (stakeholder requirement) 

Section Description 

Id REQ-CC-10 

Level of detail Stakeholder 
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Type SUP 

Short name Data security 

Description Database must be securely accessible and its data must not be breached. 

Additional 
Information 

N/A 

Priority MAN 

Table 32 – Data security (stakeholder requirement) 

Section Description 

Id REQ-CC-11 

Level of detail Stakeholder 

Type SUP 

Short name Services security 

Description Datasets contain personal information, so security is very important in 
services. 

Additional 
Information 

N/A 

Priority MAN  

Table 33 – Services security (stakeholder requirement) 

4.3 Smart Insurance8  

4.3.1 Introduction 

This section refers to the use case of Smart Insurance: Customers segmentation and Customer 
Lifetime Value (CLV) prediction. Here, we discuss the usage scenarios by giving a description 
of the use cases (Section 4.3.2) along with a high-level representation of functional 
requirements (Section 4.3.3). 

The use case focuses on the development of solution for Insurance companies, developing 
software and systems addressing the needs of such institutions based on a data-centric 
paradigm and addressing the provision of services according to the customer “tailored” 
requirements. 

The main goal is to allow insurance companies that focus on customer management, to 
provide personalized services for their customers, as well as new corporate services for the 
handling of customers’ profitability and retention. 

This scenario is realized in collaboration with HDI Assicurazioni, which is part of a large 
German insurance group, of international standing, the Talanx Group of Hannover9 (born HDI 
group). Talanx is the third insurance company in Germany and operates in 150 countries. 

                                                 
8 Note that with respect to deliverable D2.1, this use case has been redefined, according to a 
new context (insurance instead of banking) and scenarios. 
9 http://www.talanx.com/ 

http://www.talanx.com/
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4.3.2 Scenarios 

Section Description 

Id SCE-SI-01 

Title Customers segmentation 

Description The scenario focuses on customers’ segmentation according to their 
financial sophistication, age, location, etc. Thus, all the customers are 
classified into groups by spotting coincidences in their personal 
information, preferences or behaviour. This grouping allows developing 
attitude and solutions especially relevant for the particular customers. As 
a result, target cross-selling (recommendations of products to customers 
based on what other customers bought) and upselling 
(recommendations of more advanced products to customers based on 
what they have bought) strategies may be developed and personal 
services may be tailored for each particular segment (such as lower priced 
premiums). 
This scenario is distributed in three steps: 

- Data collection. 
- Optimizing the product configuration, and recommendations. 
- Show recommended products. 

Actors Customer, Service Provider 

Objectives - Provide a clusterization of the insurance company customers 
according to predefined variables. 

- Optimize product configuration or suggestions for campaigns and 
cross selling/upselling strategies. 

Pre-conditions N/A 

Process 
Description 

- Data collection: the system collects information related to 
customers and their policies/guarantees. 

- Data processing: the intelligent system module analyses the 
collected data and elaborates personalized policies and guarantees 
for the different customers. 

- Data visualization: the results from the previous phase are 
optimized and prepared for the presentation. 

Variations N/A 

Post-condition - The suggested recommendations and optimizations should not be 
null. 

- The system must store in the DB the optimizations and 
recommendations for every customer. 
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Diagrams 

 

Table 34 - Customers segmentation scenario 

Section Description 

Id SCE-SI-02 

Title Customer Lifetime Value prediction 

Description Customers Lifetime Value is a complex phenomenon representing the 
value of a customer to a company in the form of the difference between 
the revenues gained and the expenses made projected into the entire 
future relationship with a customer. Prediction of the CLV is typically 
assessed via customer behaviour data in order to predict the customer’s 
profitability for the insurer. Thus, the behaviour-based models will be 
applied to forecast the customer retention. This allows forecasting the 
likelihood of the customers’ behaviour and attitude, as well as churn 
prevention (identify which customers are likely to cancel contracts in the 
near future). 

Actors Customer, Service Provider 

Objectives - Compute and dynamically update the CLV. 
- Forecast which customers are likely to cancel contracts in the near 

future. 

Pre-conditions The prediction approach needs at least 1 year of historical data for 
efficient predictions. 

Process 
Description 

The key aspects in this case are related to data analytics in order to 
predict the different customers value (e.g., most profitable), analyse 
present and future profitability, identify target customers, and predict 
which customers are not satisfied and are likely to cancel their 
contracts in the future. This information allows enhancing the process 
descripted in the first scenario, and helps providing better 
recommendations to customers. 

Variations N/A 

Post-condition - The computed CLV should not be null. 
- The system must store the predicted results about customers. 
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Use case 
diagrams 

 

Table 35 - Customer lifetime value prediction scenario 

4.3.3 Requirements 

The following template introduces the structure of requirements for SI use case.  

Section Description 

Id REQ-SI-01 

Type FUNC 

Short name Provide personalized policies required by customer 

Description 
For any customer, the system should be able to predict a set of 
personalized policies for the customer.  

The calculation should consider the historic of product purchases made 
by the customer. 

Additional 
Information 

N/A 

Priority MAN 

Table 36 – Provide personalized policies required by customer (stakeholder requirement) 

Section Description 

Id REQ-SI-02 

Type FUNC 

Short name Provide personalized guarantees required by customer 

Description For any customer, the system should be able to predict a set of 
personalized guarantees for the customer.  
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The calculation should consider the historic of product purchases made 
by the customer. 

Additional 
Information 

N/A 

Priority MAN 

Table 37 – Provide personalized guarantees required by customer (stakeholder requirement) 

Section Description 

Id REQ-SI-03 

Type DATA 

Short name Customers 

Description Customers should have at least the following information: 
- Client Id 

Additional 
Information 

N/A 

Priority MAN 

Table 38 – Customers (stakeholder requirement) 

Section Description 

Id REQ-SI-04 

Type DATA 

Short name Policies 

Description Policies’ information should have at least the following information: 
- Policy reference  
- Policy category 

Additional 
Information 

N/A 

Priority MAN 

Table 39 – Policies (stakeholder requirement) 

Section Description 

Id REQ-SI-05 

Type DATA 

Short name Guarantees 

Description Guarantees’ information should have at least the following information: 
- Guarantee reference  
- Guarantee category 
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Additional 
Information 

N/A 

Priority MAN 

Table 40 – Guarantees (stakeholder requirement) 

Section Description 

Id REQ-SI-06 

Type Stakeholder 

Short name Usability 

Description Easy-to-use 

Additional 
Information 

The application should be easy to use and to understand by people of 
different ages. 

Priority MAN 

Table 41 – Easy-to-use (stakeholder requirement) 

Section Description 

Id REQ-SI-07 

Type Stakeholder 

Short name Security 

Description Data security 

Additional 
Information 

Database must be reached securely. 

Priority MAN 

Table 42 – Data security (stakeholder requirement) 

5 Platform Roles 

The following table shows a description of what BigDataStack offers to different roles related 
to the development, deployment and operation of Big Data Analytics solutions. 

Id Name Description 

ROL-01 Data Owner BigDataStack offers a unified Gateway to obtain both 
streaming and stored data from data owners and store them 
in its underlying storage infrastructure that supports SQL and 
NoSQL data stores. 

ROL-02 Data Scientist BigDataStack offers the Data Toolkit to enable data scientists 
both to easily ingest their analytics tasks by utilizing a 
declarative paradigm, and to specify their preferences and 
constraints to be exploited during the dimensioning phase 
regarding the data services that will be used (for example 
preferences for the data cleaning service) 
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ROL-03 Business 
Analysts 

BigDataStack offers the Process Modelling Framework allowing 
business users to define their functionality-based business 
processes (through declaratively-defined models) and 
optimize them based on the outcomes of process analytics that 
will be triggered by BigDataStack. 

ROL-04 Application 
Engineers and 
Application 
Service 
Owners 

BigDataStack offers the Application Dimensioning Workbench 
to enable application owners and engineers to experiment 
with their applications and dimension it in terms of its data 
needs and data-related properties 

ROL-05 Data Engineers 
and Data 
Service 
Owners 

BigDataStack offers the possibility to Data Service owners 
(such as the roles implemented by IBM and LXS in this project) 
to bring in (adapt) their data services to the platform. 

Table 43 – BigDataStack Platform roles 
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6 Infrastructure-Data Management Requirements 

To facilitate the understanding of the design as well as the challenges addressed by this 

component, the requirements related to this component were brought into D3.1 and literally 

included from this section. Therefore, note the following requirement tables also appear as-

is in such deliverable for the reader’s convenience. 

 Id10 Level of detail11 Type12 Actor13 Priority14 

REQ-CM-01 System FUNC Developer MAN 

Name Support OpenShift installation on OpenStack VMs 

Description Include the needed steps on the OpenShift installer to handle OpenShift 
cluster installation on top of OpenStack resources, i.e, VMs, networks, 
volumes, etc. 

Additional 
Information 

This needs to be done in the ‘upstream’ way so that it is supported also 
after the project lifecycle. It entails modification to different repositories, 
not only the openshift/installer (https://github.com/openshift/installer) 
but also other related such as: 

- cluster-network-operator15 

- cluster-api-provider-openstack16 

- gophercloud17 

Table 44 - Support OpenShift installation on OpenStack VMs (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-02 System PERF Developer MAN 

Name Avoid double encapsulation of network packages  

Description Integrate Kuryr on the OpenShift installer to avoid the double encapsulation 
problem due to using 2 different overlays (OpenStack SDN and OpenShift 
SDN on top). Kuryr enables containers running on top of OpenStack VMs to 
use the same SDN as the VMs itself, i.e., the OpenStack SDN. Thus, avoiding 

                                                 
10Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 

11Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the 
following levels: Stakeholder, System and Software (i.e., technology details). 

12Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and 
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV 
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).  

13Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor, 
e.g. another component or service. 

14Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable 
requirement), OPT (optional requirement), ENH (possible future enhancement). 

15 https://github.com/openshift/cluster-network-operator 
16 https://github.com/kubernetes-sigs/cluster-api-provider-openstack 
17 https://github.com/gophercloud/gophercloud 

https://github.com/openshift/cluster-network-operator
https://github.com/kubernetes-sigs/cluster-api-provider-openstack
https://github.com/gophercloud/gophercloud
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the double encapsulation and enabling a remarkable throughput gain, 
needed for handling the data at the BigDataStack components. 

Additional 
Information 

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so 
that it is supported after the project. It entails modifications to the same 
repositories plus the addition of a kuryr operator that will handle the kuryr 
related operational actions, 

Table 45 - Avoid double encapsulation of network packages (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-03 System ENV Developer DES 

Name Spark operator 

Description This operator will be responsible for handling the spark cluster, not only its 
installation but also the scaling actions. It will offer an API to the spark 
management through the OpenShift API. 

Additional 
Information 

This is related to the dynamic orchestrator, as the optimization actions 
could be then simply triggered through standard OpenShift API commands 
(e.g., modifying the information at the associated spark ConfigMap) 

Table 46 - Spark Operator (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-04 System ENV Developer DES 

Name Accept requests to allocate additional resources to one of the storage layer 
components 

Description The Adaptable Distributed Storage component can be scaled in/out 
independently, considering decisions based on its internal metrics and 
handle on its own the reconfiguration of the internal data regions. Due to 
this, it is necessary from the Cluster Management to provide a mechanism 
that allows the storage layer to request for additional resources or the 
release of already provided ones. 

Additional 
Information 

This is closely related to requirement REQ-ADS-04 “Be able to request 
additional resources from the infrastructure layer,” described in D4.1. 

Table 47 - Accept requests to allocate additional resources to the storage layer (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-CM-05 System ENV Developer OPT 

Name Force the storage layer to release some of its available resources 

Description The cluster management might identify that the overall BigDataStack 
platform is running out of available resources. To ensure the execution of 
crucial components, it might decide to reduce some of the already allocated 
resources for some services, for the benefits of others. Due to this, it should 
be able to request the release of the storage resources and wait for its 
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proper response. The storage should be able to reject such requests, in 
cases that could lead to data loss. 

Additional 
Information 

This is close related with requirement REQ-ADS-05 “Being able to release 
resources and adapt if resources are deallocated from the infrastructure,” 
as described in more details in D4.1. 

Table 48 - Force the storage layer to release some of its available resources (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-01 Stakeholder FUNC Developer MAN 

Name Correction of Requirements or SLOs Violations 

Description When an application or service is running, the orchestrator shall detect the 
violation of an application requirement or service level objective (SLO) and 
send a signal to the ADS-ranker to trigger a change in the deployment to try 
to satisfy the requirements or SLOs. 

Additional 
Information 

N/A 

Table 49 - Correction of Requirements and SLOs Violations (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC Developer MAN 

Name Decision Efficiency 

Description When the violation of a requirement has been detected, the orchestrator 
shall be able to decide what modification to the deployment (e.g. change 
the number of replicas or the number of vCPUs) has the highest probability 
of improving the requirements or SLOs satisfaction, as long as any change is 
possible (i.e. all resources are at its full capacity due to limits).  

Additional 
Information 

N/A 

Table 50 - Decision Efficiency (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-DO-03 System FUNC Developer MAN 

Name Resources Limits 

Description The orchestrator shall be able to receive a trigger from the ADS-Ranker 
when a deployment parameter, such as the number of replicas, the number 
of vCPUs or the assigned cluster memory, cannot be further increased or 
decreased (i.e. this resource has reached its maximum or minimum possible 
value) and use this information in its own decisions. 

Additional 
Information 

The complete list of deployment parameters to be taken into account still 
needs to be determined. 

Table 51 - Resources Limits (stakeholder requirement). 
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 Id Level of detail Type Actor Priority 

REQ-DO-04 Stakeholder FUNC Developer DES 

Name Orchestration for Improvements 

Description When an application or service is running, the orchestrator shall detect 
changes in the system status or inputs (e.g. less new events per minute) and 
trigger a change in the deployment that results in lower costs (e.g. to use 
less replicas) without compromising the application functioning. 

Additional 
Information 

N/A 

Table 52 - Orchestration for Improvements (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-01 System FUNC Application 
Dimensioning 
Workbench 

MAN 

Name Ingest Candidate Deployment Playbooks and Benchmarking Information 

Description The Application Dimensioning Workbench sends a series of candidate 
deployment patterns (CDP) playbooks and benchmarking information to 
the ADS Ranking component. ADS Ranking needs to collect all these 
patterns for subsequent scoring/ranking based on the user requirements 
and preferences.  

Additional 
Information 

Ingestion occurs via a common publisher/subscriber platform (RabbitMQ).  

Table 53 - Ingest Candidate Deployment Playbooks and Benchmarking Information (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-02 System FUNC Developer MAN 

Name Deployment Suitability Feature Extraction 

Description Once a series of candidate deployment pattern playbooks and associated 
benchmarking information has been received, the next step is to determine 
how each pattern is predicted to perform based on the benchmarking 
information. In effect, this involves defining a series of functions that relate 
individual or groups of user requirements to the predicted performances 
produced by benchmarking. The output of this step is a vector 
representation for each CDP playbook, representing how that playbook is 
predicted to fair under different user requirements.  

Additional 
Information 

Features produced here are dependent on the capabilities of the 
benchmarking system and the amount of information the user provides in 
terms of requirements and preferences. 

Table 54 - Deployment Suitability Feature Extraction (system requirement). 
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 Id Level of detail Type Actor Priority 

REQ-ADSR-03 System FUNC Developer MAN 

Name CDP Playbook Scoring (Heuristic) 

Description Given a vector representation for a CDP Playbook, we next need to map 
this vector into a single score, representing how suitable that playbook will 
be overall (such that we can compare different CDP Playbooks). This 
involves combining the different elements within the vector (that each 
represent some aspect of pattern suitability, such as cost, or predicted 
compute wastage). The first version of this will use a hand-tuned linear 
combination.  

Additional 
Information 

N/A 

Table 55 - CDP Playbook Scoring (Heuristic) (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-04 System FUNC Developer DES 

Name CDP Playbook Scoring (Supervised) 

Description Given a vector representation for a CDP Playbook, we next need to map this 
vector into a single score, representing how suitable that playbook will be 
overall (such that we can compare different CDP Playbooks). This involves 
combining the different elements within the vector (that each represent 
some aspect of pattern suitability, such as cost, or predicted compute 
wastage). The second version of this will learn how to combine the elements 
based on logging information from past deployments. Models may be non-
linear in nature. 

Additional 
Information 

Depends on REQ-ADSR-06. 

Table 56 - CDP Playbook Scoring (Supervised) (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-05 System FUNC Developer MAN 

Name CDP Playbook Selection 

Description Once all candidate deployment patterns have been scored, the final step is 
to select one of those patterns to pass to ADS Deployment. In many cases 
this will simply involve selecting the highest scoring pattern. However, the 
user may have the option to select an alternative configuration at this stage. 

Additional 
Information 

N/A 

Table 57 - CDP Playbook Selection (system requirement). 
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 Id Level of detail Type Actor Priority 

REQ-ADSR-06 System FUNC Developer DES 

Name Supervised Model Training 

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react to 
changes in the deployment environment over time, this model needs to be 
frequently updated based on new information from current deployments. 
This model needs to be trained based on logging data being collected by the 
Triple Monitoring Framework. 

Additional 
Information 

Requires logging information produced by the Triple Monitoring Framework 
and stored in the Central Decision Tracker. 

Table 58 - Supervised Model Training (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSR-07 System FUNC Developer MAN 

Name CDP Playbook Re-Scoring 

Description It is envisaged that in (rare) scenarios, an ongoing application deployment 
will fail to meet the user’s quality of service requirements. This might occur 
due to assumptions on data input volumes being violated for instance. In 
this case, we may not be able to solve this issue without fully redeploying 
the user application with different resources. To support such re-
deployment activities, ADS Ranking supports a re-scoring function, where a 
previous set of CDP playbooks for a user’s application can be re-scored 
based on updated preferences provided by the Big Data Stack Orchestrator, 
as well as live data about how the previous deployment performed (and 
failed).   

Additional 
Information 

N/A 

Table 59 - CDP Playbook Re-Scoring (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-01 Stakeholder FUNC Application 
developers 

MAN 

Name Performance Measurability 

Description Each environment should be measurable according to a set of 
characteristics, that is, Key Performance Indicators (KPIs). 

Additional 
Information 

The KPIs considered must include: 
- vCPUs 
- Memory 

Table 60 - Performance Measurability (stakeholder requirement). 
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 Id Level of detail Type Actor Priority 

REQ-ADSD-02 Stakeholder FUNC System MAN 

Name Standards-based Playbook 

Description The description of the environments and deployments (i.e., playbooks) will 
follow a standard specification language 

Additional 
Information 

N/A 

Table 61 - Standards-based Playbook (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-03 System FUNC System MAN 

Name Standard deployment information 

Description When communicating with other components, as described in Section 7.2, 
these components will use the playbook standard defined in REQ-RD-02. 

Additional 
Information 

N/A 

Table 62 - Standard deployment information (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-04 System FUNC System MAN 

Name Application Scoring System 

Description The ranking system evaluates each environment’s deployment, which keeps 
track of the most suitable configuration for each application. When trying a 
deployment configuration for a new application, this ranking will be used to 
select the most suitable one. 

Additional 
Information 

The evaluation will be done following the measurements defined in REQ-
RD-01. 

Table 63 - Application Scoring System (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-05 System FUNC Cluster 
management 
component 

MAN 

Name Compatibility with Kubernetes 

Description Since the technology used to run and orchestrate the applications is based 
in Kubernetes (OKD18). Thus, the ADS-Deployment component is required 
to be compatible with Kubernetes. 

                                                 
18 OKD - https://www.okd.io/ 
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Additional 
Information 

The ADS-Deploy component should translate from the playbook standard 
defined in REQ-RD-01 into Kubernetes primitives. 

Table 64 - Compatibility with Kubernetes (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-ADSD-06 System FUNC  MAN 

Name Synchronous communication 

Description The communication with and within both components should be done 
through an API REST. 

Additional 
Information 

N/A 

Table 65 - Synchronous Communication (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-01 Stakeholder FUNC Developer MAN 

Name Regular recording of QoS metrics 

Description When a user’s application is deployed, the Triple Monitoring Framework 
monitors that application, tracking statistical information about its 
operation and associated QoS data, including network, data storage, 
virtualization layers, etc.  

This data is needed to support the learning of ranking models by ADS-
Ranking service (part of Application and Service Deployment; see REQ-
ADSR-03) and regularly saved in a centralised data store for later access. 

Additional 
Information 

Input:  
- Candidate Deployment Pattern (application identifier from this is the 

primary key for saving monitoring data for an application)  
Output:  

- Deployment QoS Snapshot (monitoring/QoS data, every few mins) 
Service Dependencies:  

- Centralised Data Store (Storage Service) 
-  

This is implemented over Prometheus19 as the monitoring collector. 

Table 66 - Regular recording of deployment QoS information (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-02 Stakeholder FUNC Developer MAN 

Name QoS violation alert 

Description If the system does not respect the agreed QoS, an alert is raised. 

                                                 
19 Prometheus. https://prometheus.io/ 

https://prometheus.io/
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Additional 
Information 

This alert is used internally to evaluate the performance of an 
environment, relating to REQ-RD-004. 

Table 67 - QoS violation notification (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-03 Stakeholder FUNC Developer DES 

Name QoS violation monitoring 

Description QoS violations are also monitored and shown to the user/admin. 

Additional 
Information 

N/A 

Table 68 - QoS violation monitoring (stakeholder requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-04 System FUNC Developer MAN 

Name Metrics pusher  

Description The metric pusher retrieves KPI data, clean them and ingest them into the 
monitoring collector (Prometheus). 

Additional 
Information 

The metrics pusher is used when the exporter approach is impossible to 
apply. This solution will be very useful for getting application specific 
metrics (it’s not approved yet). 

Table 69 - Metrics pusher (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-05 System FUNC Developer DES 

Name API REST for accessing the collected monitoring metrics 

Description The metrics are accessible through an API REST. 

Additional 
Information 

This component translates client’s requests to Prometheus request 
compatible. Grafana20 will be used for visualization. 

Table 70 - Monitoring metrics API REST (system requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-06 Software FUNC Developer MAN 

Name Pub/Sub Mechanism for Metrics 

Description This component queries the metrics repository periodically and publishes 
this information through a publisher/subscriber mechanism. Each client 
sends subscription requests to the system. 

                                                 
20 Grafana. https://grafana.com/ 

 

https://grafana.com/
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Additional 
Information 

The monitoring metrics getter is implemented on RabbitMQ21  

Table 71 - Monitoring metrics getter (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-07 Software FUNC Developer DES 

Name Spark compatible 

Description The triple monitoring engine monitors the performance of Apache Spark22, 
which is used in the BigDataStack project as an analytics engine for Big 
Data, thus needs to be compatible with this technology. 

Additional 
Information 

Monitoring Spark is done using Spark measure project, which can be 
embedded in spark application allowing the collection of some metrics after 
each SQL execution. Those metrics are sent to push gateway to be exported 
to Prometheus. 

Table 72 - Spark compatibility (software requirement). 

 Id  Level of detail Type Actor Priority 

REQ-TM-08 Software FUNC Developer DES 

Name LeanXcale compatibility 

Description LeanXcale database23 already uses Prometheus for its monitoring 
subsystem. However, the integration is relied on static deployments. Thus, 
it should be extended to consider re-deployments in cases when an 
elasticity action takes places which leads to a scale in/out of the resources. 
In these scenarios, LeanXcale should reconfigure its integration with the 
existing Prometheus deployment on the run-time and provide monitoring 
information for the new nodes 

Additional 
Information 

N/A 

Table 73 - LeanXcale compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-09 Software FUNC Developer DES 

Name OKD compatibility 

Description The Triple Monitoring engine monitors the performance of Openshift 
OKD24, which is the baseline technology used in the orchestration of 
containers. Therefore, the triple monitoring engine needs to be compatible 
with this technology. 

                                                 
21 RabbitMQ. https://www.rabbitmq.com/ 
22 Apache Spark. https://spark.apache.org/ 
23 LeanXcale. https://www.leanxcale.com/ 
24 Openshift OKD (Origin Kubernetes Distribution). https://www.okd.io/ 

https://www.rabbitmq.com/
https://spark.apache.org/
https://www.leanxcale.com/
https://www.okd.io/
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Additional 
Information 

N/A 

Table 74 - OKD compatibility (software requirement). 

 

 Id  Level of detail Type Actor Priority 

REQ-TM-10 Software FUNC Developer DES 

Name CEP compatibility 

Description The triple monitoring engine monitors the performance of CEP, which is 
used in the BigDataStack project as a streaming engine for processing data 
in real-time. Therefore, the triple monitoring engine needs to be compatible 
with this technology. 

Additional 
Information 

The CEP exposes several monitoring metrics that are exported to 
Prometheus. 

Table 75 - CEP compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-11 Software FUNC Developer DES 

Name Minio compatibility 

Description The triple monitoring engine monitors the performance of Minio25, which is 
used for object storage in the system. Therefore, the triple monitoring 
engine needs to be compatible with this technology. 

Additional 
Information 

N/A 

Table 76 - Minio compatibility (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-12 Software FUNC Developer DES 

Name OpenStack Networking Services compatibility 

Description The Triple Monitoring engine monitors the performance of the internal 
network connecting the different containers inside an application. 
BigDataStack uses the OpenStack networking services for managing this 
network communications, so the triple monitoring engine needs to be 
compatible with this technology. 

Additional 
Information 

N/A 

Table 77 - OpenStack Networking Services compatibility (software requirement). 

 

                                                 
25 Minio Private Cloud Storage- https://www.minio.io/ 
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 Id Level of detail Type Actor Priority 

REQ-TM-13 Software FUNC Developer MAN 

Name Persistently store the monitoring metrics 

Description The triple monitoring engine should use a database for persistently storing 
monitoring metrics and is connected to Prometheus by http. 

Additional 
Information 

This database is based on influxDB24. 

Table 78 - Monitoring database (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-14 Software FUNC Developer ENH 

Name Spark Monitoring Pushgateway 

Description This component is used to gather metrics from Spark and ingest them into 
the metrics collector. 

Additional 
Information 

The connection between this component and the applications use http. 

Table 79 - Monitoring Pushgateway (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-16 Software FUNC Developer ENH 

Name Metrics visualization 

Description The metrics must be shown to the end-user via a graphical interface. 
Grafana is used for metrics’ visualization. 

Additional 
Information 

Grafana26 is configured for receiving metrics from two sources 
(Prometheus, InfluxDB).  

Table 80 - Metrics visualization (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-TM-17 System FUNC Dynamic 
Orchestrator 

ENH 

Name Asynchronous rich notification of SLA violations 

Description SLA violations should be notified by means of a publish/subscribe 
mechanism, together with the metrics (KPIs) upon which the SLA imposes 
restrictions.  

Additional 
Information 

The main consumer of the SLA violations notifications is the Dynamic 
Orchestrator. 

Table 81 - Metrics visualization (software requirement). 

                                                 
26 Grafana - https://grafana.com/ 
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 Id Level of detail Type Actor Priority 

REQ-IN-01 Software FUNC ROL-02 MAN 

Name Information-Driven Networking based on type of data 

Description The Information-Driven Networking mechanisms enforce a set of policies by 
specifying the rules of how two or more components can communicate 
(send/receive data) with each other according to the available resources. 

Additional 
Information 

A different policy is enforced based on different incoming data 
requirements, following the type of processing requirements (stream, 
micro-batch, batch) and the type of data (structured, semi-structured, 
unstructured). 

Table 82 - Network Policies based on type of data (software requirement). 

 Id Level of detail Type Actor Priority 

REQ-IN-02 Software FUNC ROL-02 MAN 

Name Information-Driven Networking based on application requirements 

Description The Information-Driven Networking mechanisms enforce a set of policies by 
specifying the rules of how to handle applications with different 
requirements according to the available resources. For instance, an 
application with analytics requiring real-time data processing may impose 
time-critical constraints on the handling, operation and transformation of 
data. 

To support online analytics and decision making in time-critical conditions 
specific network policies need to be applied to deliver the results within 
predefined time constraints.   

Additional 
Information 

The Data Scientist can set an “allow/deny access” policy regarding the set 
of applications and their requirements (real-time, close to real-time needs) 
accessing the backend services of the BigDataStack environment to 
prioritize/isolate the set of ingress/egress workloads that are enabled/dis- 
based on their IP & Port in order to achieve efficient services interaction. 

Table 83 - Network policies based on application (software requirement). 
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7 Data as a Service Requirements 

To facilitate the understanding of the design as well as the challenges addressed by this 

component, the requirements related to this component were brought into D4.1 and literally 

included from this section. Therefore, note the following requirement tables also appear as-

is in such deliverable for the reader’s convenience. 

 Id27 Level of detail28 Type29 Actor30 Priority31 

REQ-BDL-01 Software FUNC Developer MAN 

Name Support data skipping for arbitrary query predicates 

Description The query predicate could comprise UDFs and AND/OR/NOT. Example UDFs 
could be geospatial or temporal functions. 

Additional 
Information 

This functionality is important for the ship management use case, which 
requires geospatial UDFs. 

Table 84 - requirement REQ-BDL-01 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-02 Software FUNC Developer MAN 

Name Support a truly pluggable architecture for data skipping 

Description The goal of this requirement is to enable the addition of new data skipping 
index types without changing the core data skipping library. This is needed 
for requirement REQ-BDL-01 since supporting new UDFs may require new 
index types. 

Additional 
Information 

External users can also exploit this capability 

Table 85 - requirement REQ-BDL-02 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-03 Software FUNC Developer MAN 

Name Enable layout change for (part of) a dataset 

                                                 
27Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 

28Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the 
following levels: Stakeholder, System and Software (i.e., technology details). 

29Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and 
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV 
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).  

30Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor, 
e.g. another component or service. 

31Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable 
requirement), OPT (optional requirement), ENH (possible future enhancement). 
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Description There is a strong relationship between how a dataset is laid out in the object 
store and the performance of data skipping against this data set.  Moreover, 
this performance may be also very dependent on the queries. Hence the 
need to adapt the layout, not only for future data but also for heavily 
queried data already in object store. 

Additional 
Information 

N/A 

Table 86 - requirement REQ-BDL-03 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-BDL-04 Software FUNC Developer MAN 

Name Enable on-line data layout 

Description Layout is critical for the data skipping performance.  As of now data is stored 
as is and possibly laid out again offline. The need is to upload dataset chunks 
with the best-known layout as data is ingested. 

Additional 
Information 

N/A 

Table 87 - requirement REQ-BDL-04 for Big Data Layout 

 Id Level of detail Type Actor Priority 

REQ-ADS-01 System DATA Developer MAN 

Name Being able to fragment a dataset and move the data fragments across 
different nodes. 

Description The adaptable distributed storage should be able to split a dataset into 
different regions, and move these regions to different data nodes, in order 
to adapt in case of increased load (both in terms of user workload or data 
load) so as to achieve efficient consumption, based on the provided 
resources. 

Additional 
Information 

When a movement (move, split, join) of a data fragment occurs, the storage 
must not suffer from a down-time. On the contrary, it must remain 
operational with minimum overhead on the overall performance. 
 

Table 88 - requirement REQ-ADS-01 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-02 System ENV Developer MAN 

Name Identify data nodes that are overprovisioning. 

Description The adaptable storage must be able to identify data nodes that are 
overprovisioning their available resources and send internal alerts to trigger 
a dynamic reconfiguration of the deployment of the data fragments. 

Additional 
Information 

N/A 
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Table 89 - requirement REQ-ADS-02 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-03 System FUNC Developer DES 

Name Solve the non-linear resource allocation problem to suggest alternative 
deployment of the data fragments. 

Description According to the available resources for the deployment of the data nodes 
and the stored data set, along with its split points that define data 
fragments, there is a non-linear resource allocation problem for the optimal 
deployment of the data fragments. 

Additional 
Information 

As a non-linear, the solution of the resource allocation problem requires 
exponential time to be solved, which is not acceptable for run-time 
requirements. The provided solution should take into account possible 
acceptable solutions that can solve the problem and improve the resource 
consumption, under a minimum time interval. 

Table 90 - requirement REQ-ADS-03 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-04 System ENV Developer DES 

Name Be able to request additional resources from the infrastructure layer. 

Description In case of overprovisioning of the resources, the adaptable distributed 
storage should be able to request additional resources from the 
infrastructure of BigDataStack.  

Additional 
Information 

As noted in REQ-ADS-02, the adaptable storage must identify data nodes 
that are overprovisioning, and using REQ-ADS-03, it can suggest different 
distribution of the data fragments. However, there might be cases that this 
is not possible due to the overprovision of the whole system, and in such 
case, a horizontal scale out must take place. The adaptable storage should 
request additional resources, and grant them, if they are available. The 
communication should be as follows: 

- The adaptable storage requests an additional node with the specific 
requirements for resources. 

- The infrastructure responds if it can allocate additional resources for 
the storage. 

- The infrastructure informs the storage that the additional resources are 
now available. 

This requirement also includes the need from the adaptable storage to 
inform the infrastructure that it can release resources that are not needed.   

Table 91 - requirement REQ-ADS-04 for Adaptable Distributed Storage 
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 Id Level of detail Type Actor  Priority 

REQ-ADS-05 System ENV Developer OPT 

Name Being able to release resources and adapt if resources are deallocated from 
the infrastructure. 

Description There might be cases where the whole infrastructure is overprovisioning 
there are no more resources to be allocated to tasks. Then, the 
infrastructure might decide to reduce the overall resources of specific 
components, in favour of others that might execute some critical 
operations, or they have biggest priority at that point. The adaptable 
storage engine should be listening to the infrastructure for such cases and 
adapt accordingly. 

Additional 
Information 

Once the adaptable distributed storage receives a request to release some 
of its nodes, then it should inform if it is capable of doing so: releasing some 
the data nodes, might result to not have the required amount of storage 
available for the dataset. In such cases, it should be responding that this is 
not permitted, as this would lead to data loss. In case that this is permitted, 
then it should re-distribute its data load, and inform the infrastructure that 
the node is ready to be released.  

Table 92 - requirement REQ-ADS-05 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-06 System ENV Developer DES 

Name Inform the re-deployment component regarding reconfigurations of the 
data fragments. 

Description As it is up to the storage itself to decide its optimal configuration of its data 
load, the re-deployment component cannot be aware of possible 
reconfigurations, that might affect the overall deployment of an 
application. Therefore, the storage should inform the re-deployment 
component about these actions. 

Additional 
Information 

A message should be sent just before the re-configuration takes place, along 
with the setup, so that the re-deployment component can be notified and 
not take into account possible outliner monitoring information coming from 
this subcomponent. During this time, the re-deployment component should 
not modify any deployments that rely on the data set that is being re-
configured. When the reconfiguration is finished, the adaptable storage 
should notify the redeployment component again, in order for the latter to 
start looking on the new monitoring information and decide upon possible 
redeployment of existed applications as well. 

Table 93 - requirement REQ-ADS-06 for Adaptable Distributed Storage. 

 Id Level of detail Type Actor Priority 

REQ-ADS-07 System ENV Developer MAN 
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Name Re-establish connectivity with the monitoring subcomponent when a 
horizontal scaling action takes place 

Description The adaptable storage engine exports its monitoring data to a specific place 
where the Prometheus, part of the monitoring subcomponent of 
BigDataStack can periodically pull and gather this information. Prometheus 
can be configured on where to pull this information upon its initialization. 
However, in cases of a runtime redeployment that takes place after a 
horizontal scaling action, information regarding the newly deployed nodes 
should also reach the monitoring component. 

Additional 
Information 

There should be a monitoring proxy of the adaptable storage that will take 
the responsibility to send monitoring information to the target component. 
This proxy should encapsulate the details of the underlying deployment. It 
should gather all information of the data nodes, reconfigure itself to take into 
account newly deployed data nodes, and send everything to the Prometheus. 

Table 94 - requirement REQ-ADS-07 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-ADS-08 System ENV Developer MAN 

Name Enable a deployment of the data node component using Kubernetes 

Description As the infrastructure of BigDataStack uses Kubernetes for deploying the 
various application/platform components, the adaptable distributed engine 
must be able to deploy and configure additional data nodes via this 
technology. 

Additional 
Information 

N/A 

Table 95 - requirement REQ-ADS-08 for Adaptable Distributed Storage 

 Id Level of detail Type Actor Priority 

REQ-SDAF-01 Software FUNC Developer MAN 

Name Provide access to data stores via a single and common interface. 

Description BigDataStack includes two different data stores: the LeanXcale relational 
data store and IBM object store. The dataset can be fragmented and 
distributed over the two data stores (historic data being moved to object 
store). However, the application should be kept unaware of these internal 
data transfers. The application needs a common interface to submit queries, 
without having to specify where the data is stored. 

Additional 
Information 

A federation mechanism is required that will encapsulate the process of data 
retrieval from the two data stores. The LeanXcale access point will act as the 
federator between the relational and the Object Storage. The LeanXcale data 
base already provides a common JDBC interface for data connectivity. The 
federator will receive the query and execute it in both data stores. For the 
object store, the access would be via Spark SQL, which also provides a JDBC 
interface. The federator will take into consideration the operations that can 
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be supported in order to push down the operations accordingly. Regarding 
the relational store, all operations will be pushed down to the store. At the 
very end, the federator will merge the results and return back the result set. 
It shouldn’t count data that appears in both data stores twice. 

Table 96 - requirement REQ-SDAF-01 for Seamless Data Analytics 

 Id Level of detail Type Actor Priority 

REQ-SDAF-02 System DATA Developer MAN 

Name Move historical data from the relational data store to the object store. 

Description Data ingested by the use cases will be stored into the relational datastore, 
as they are operational, in order to ensure data consistency in terms of ACID 
properties. After a configurable period of time, called the freshness window 
(which depends on the data set), the data becomes outdated and is no 
longer used by operational workloads. However, this historical data is still 
valuable and can be exploited by Big Data analytics algorithms. This data 
should be moved from the LeanXcale data base to the IBM object store. 

Additional 
Information 

The LeanXcale data base provides a mechanism that allows to periodically 
produce a dumb snapshot of the modified data. This information will be 
transformed accordingly and will be pushed to an Apache Kafka queue. A 
Kafka based connector will, periodically pull this information and import the 
historical data to the object store. 

Table 97 - requirement REQ-SDAF-02 for Seamless Data Analytics 

 Id Level of detail Type Actor Priority 

REQ-SDAF-03 Software DATA Developer MAN 

Name Inform the LeanXcale data store when data are imported to the object store. 

Description When data are pushed to the Apache Kafka queue, the LeanXcale data base 
can drop them. However, due to the asynchronous design, the LeanXcale 
data base cannot know when the data has been made available to the 
object store. As a result, the object store must inform the LeanXcale data 
base regarding the successful insertion of the data, so that the LeanXcale 
data base can safely drop these data. 

Additional 
Information 

One possible solution to deal with this requirement will be the introduction 
of marking the data to be transferred to the object store by additional 
timestamps. Data that is being flushed and exported to the Kafka queue can 
be marked that way, so that later on, the object store can inform the 
LeanXcale data base that this bunch of data has been successfully imported. 
By doing so, the federator component can push down operations 
accordingly, and only request specific data from the underlying data stores. 
Data that are known to the LeanXcale data base that has been previously 
uploaded to the object store, will not be retrieved by the federator and can 
be safely discarded by the vacuum process of the LeanXcale data base. 

Table 98 - requirement REQ-SDAF-03 for Seamless Data Analytics 
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 Id Level of detail Type Actor Priority 

REQ-SDAF-04 Software DATA Developer OPT 

Name Optimize query execution 

Description The federator receives a query and executes it into the different stores. The 
federator will be based on the LeanXcale query engine. The latter provides a 
query optimizer, which allows it to examine the different execution plans that 
can be produced in order to execute a query. However, it has been 
implemented to evaluate plans to be executed locally. It should be extended 
in order to take into consideration the operations that can be pushed down 
to the object store, and whether or not it is worth for an operator to be 
pushed down, according to the response time of the execution from Spark 
SQL, the amount of data that will be retrieved to the federator etc.  

Additional 
Information 

N/A 

Table 99 - requirement REQ-SDAF-04 for Seamless Data Analytics 

 Id Level of detail Type Actor Priority 

REQ-SDAF-05 Software DATA Developer OPT 

Name Optimize access to Object Storage. 

Description In order to perform analytics efficiently on Object Storage, a client-side 
caching/acceleration layer is needed. This is critical for a hybrid cloud 
scenario, where some of the customer data is on premise (potentially the 
LeanXcale data base and Spark) and some is in the cloud (potentially IBM 
COS). In such a scenario, when performing analytics, data needs to move 
from COS to Spark across the WAN, therefore minimizing the amount of data 
movement when part of the data is retrieved multiple times is of utmost 
importance.  
A similar scenario involves multi-cloud, where a dataset may be distributed 
among more than one cloud, also requiring data transfer across the WAN 
for the purposes of analytics. 
  

Additional 
Information 

This complements data skipping and data layout techniques to further 
reduce the KPI measuring the number of bytes sent from Object Storage to 
Spark. 

Table 100 - requirement REQ-SDAF-05 for Seamless Data Analytics 

 Id Level of detail Type Actor Priority 

REQ-DQAI-01 Software DATA Developer MAN 

Name Infer data schema  

Description The Data Quality Assessment and Improvement module should be able to 
infer a data schema for a given dataset. The data schema should describe 
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the name of each field, its type (e.g., integer, floating number, string, etc.) 
and its presence (mandatory or optional). 

Additional 
Information 

The schema will be stored in a sharable format (e.g. JSON document) and 
the system should be able to recall it and compare a new dataset against it, 
to discover lurking anomalies. 

Table 101 - requirement REQ-DQAI-01 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-02 Software DATA Developer OPT 

Name Create schema environments  

Description The Data Quality Assessment and Improvement module should be able to 
different schema environments, for example for training and serving 
datasets. 

Additional 
Information 

This way the user should be able to feed the system slightly different 
datasets for training, validation, testing and serving purposes.  

Table 102 - requirement REQ-DQAI-02 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-03 Software DATA Developer MAN 

Name Check data anomalies  

Description The Data Quality Assessment and Improvement module should be able to 
compare a given dataset to a restored data schema and produce a data 
anomaly assessment, e.g., discovering missing columns or wrong data 
types. 

Additional 
Information 

The final analysis will be stored in a sharable format (e.g. JSON document) 
and the system should be able to recall it and present it to the user to act. 

Table 103 - requirement REQ-DQAI-03 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-04 Software DATA Developer MAN 

Name Check data skew and drift 

Description The Data Quality Assessment and Improvement module should be able to 
detect skew between training and serving data, as well as drift between 
training datasets in different model versions. 

Additional 
Information 

The final analysis will be stored in a sharable format (e.g. JSON document) 
and the system should be able to recall it and present it to the user to act. 

Table 104 - requirement REQ-DQAI-04 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-05 Software DATA Developer DES 
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Name Detect data source deterioration 

Description The Data Quality Assessment and Improvement module should be able to 
detect if a data source, e.g., an IoT sensor, is not malfunctioning and always 
emits corrupted data. 

Additional 
Information 

The final analysis will be stored in a sharable format (e.g. JSON document) 
and the system should be able to recall it and present it to the user to act. 

Table 105 - requirement REQ-DQAI-05 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor Priority 

REQ-DQAI-06 Software DATA Developer MAN 

Name Detect unexpected range of values 

Description The Data Quality Assessment and Improvement module should be able to 
detect unexpected range of values in any field of the dataset, given a 
specific context, i.e., the values in neighbouring columns. 

Additional 
Information 

The final analysis will be stored in a sharable format (e.g. JSON document) 
and the system should be able to recall it and present it to the user to act. 

Table 106 - requirement REQ-DQAI-06 for Data Quality Assessment & Improvement 

 Id Level of detail Type Actor  Priority 

REQ-RD-01 Stakeholder FUNC Developer ENH 

Name Global event tracker connection 

Description A connection to the Global Event Tracker (GET) is needed for the Predictive 
& Process Analytics component.  

Additional 
Information 

The information stored in GET is crucial to the implementation of this 
module. 

Table 107 - requirement REQ-RD-01 for Predictive & Process Analytics 

 
 

Id Level of detail Type Actor  Priority 

REQ-RD-02 Stakeholder FUNC Developer ENH 

Name Connection to the Process Modelling Framework 

Description A connection between this component and the Process Modelling 
Framework needs to be established, so information can be sent and received. 

Additional 
Information 

The recommendations made by this component will be in real time, as the 
Business Analyst – Data engineer is modelling the process. 

Table 108 - requirement REQ-RD-02 for Predictive & Process Analytics 

 Id Level of detail Type Actor  Priority 

REQ-RD-03 Stakeholder FUNC Developer ENH 

Name Data pre-processing 
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Description The data ingested by this component needs to be in an eXtensible Event 
Stream32 (XES) file format. A tool is created, depending on the format of 
the Global Event Tracker. 

Additional 
Information 

The XES standard defines a grammar for a tag-based language whose aim is 
to provide designers of information systems with a unified and extensible 
methodology for capturing systems behaviours by means of event logs and 
event streams is defined in the XES standard. An XML Schema describing the 
structure of an XES event log/stream and an XML Schema describing the 
structure of an extension of such a log/stream are included in this standard. 
Moreover, a basic collection of so-called XES extension prototypes that 
provide semantics to certain attributes as recorded in the event log/stream 
is included in this standard. 

Table 109 - requirement REQ-RD-03 for Predictive & Process Analytics 

 Id Level of detail Type Actor  Priority 

REQ-RD-04 Stakeholder FUNC Developer ENH 

Name ProM framework 

Description ProM is an extensible framework that supports a wide variety of process 
mining techniques in the form of plug-ins. 

Additional 
Information 

The process mining techniques used will be utilized to derive metrics of the 
event log, to create the semantics needed between events for the 
recommendation process. 

Table 110 - requirement REQ-RD-04 for Predictive & Process Analytics 

 Id Level of detail Type Actor Priority 

REQ-
CEP-01 

System FUNC Developer MAN 

Name Manage data from different sources to generate alarms if required. 

Description The CEP will process data on the fly coming from sensors. Each sensor sends 
events each minute. CEP will analyse the data according to a set of rules and 
generate alarms.  

Additional 
Information 

The processing will be both stateless and over windows of time and number 
of events. 

Table 111 - requirement REQ-CEP-01 for CEP 

 

 Id Level of detail Type Actor Priority 

REQ-CEP-02 System FUNC Developer MAN 

Name Send alarms and data from each node of the distributed environment to the 
data centre. 

                                                 
32 http://www.xes-standard.org/ 

http://www.xes-standard.org/
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Description Once metrics have been analysed, the CEP will send the alarms and the data 
to a central location (data centre). 

Additional 
Information 

The CEP will run on nodes of a geographically distributed environment.  

Table 112 - requirement REQ-CEP-02 for CEP 

 Id Level of detail Type Actor  Priority 

REQ-CEP-03 System PERF Developer MAN 

Name Data from distributed nodes is aggregate at a central location. 

Description Further processing over remote data will be done at a central location.  

Additional 
Information 

The CEP processing will scale to tens streams coming from different remote 
sources. 

Table 113 - requirement REQ-CEP-03 for CEP 

 Id Level of detail Type Actor Priority 

REQ-CEP-04 Stakeholder PERF Developer ENH 

Name Store data on the data store  

Description The CEP will store the data at the rate is being produced.  

Additional 
Information 

Both CEP and LX will run at the same location. 

Table 114 - requirement REQ-CEP-04 for CEP 
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8 Dimensioning, Modelling & Interaction Services 
Requirements 

To facilitate the understanding of the design as well as the challenges addressed by this set 

of services, the requirements related to them were brought into D5.1 and literally included 

from this section. Therefore, note the following requirement tables also appear as-is in such 

deliverable for the reader’s convenience. 

 Id33 Level of detail34 Type35 Actor36 Priority37 

REQ-PMF-01 System and 
Software 

USE ROL-04 MAN 

Name UI/UX experience 

Description The system should guide the users to complete the business diagram / flow 
with easy steps. It should clearly indicate what connections – interactions 
are possible and provide comprehensive error messages. 

Additional 
Information 

N/A 

Table 115 – System Requirement (1) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-02 System and 
Software 

FUNC ROL-04 MAN 

Name Multi-user support 

Description Multiple users should be able to use the Process Modelling Framework and 
create diagrams at the same time. It should also support different roles: 
business analysts and data analysts. A business analyst will define a process 
in a higher level and a data analyst will provide the concrete 
implementations 

Additional 
Information 

N/A 

Table 116 – System Requirement (2) for Process Modelling Framework 

                                                 
33Identifier: To be used in D2.2 to allow for the correct traceability of requirements. 

34Level of detail: Following the use of ISO/IEC/IEEE 29148:2011 (see section 2.1 Methodology), we use the 
following levels: Stakeholder, System and Software (i.e., technology details). 

35Type: Types of requirements are functional: FUNC (function), DATA (data); and non-functional: L&F (Look and 
Feel Requirements), USE (Usability Requirements), PERF (Performance Requirements), ENV 
(Operational/Environment Requirements), and SUP (Maintainability and Support Requirements).  

36Actor: It needs to be either one of the BigDataStack platform roles identified in Section 5 or a system actor, 
e.g. another component or service. 

37Priority: Requirements can have different priorities: MAN (mandatory requirement), DES (desirable 
requirement), OPT (optional requirement), ENH (possible future enhancement). 
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 Id Level of detail Type Actor Priority 

REQ-PMF-03 System and 
Software 

FUNC Business Analyst MAN 

Name Process workflow creation 

Description A business analyst should be able to create a process workflow in a higher 
level. The analyst will select nodes from a catalogue and using a drag-and-
drop interface will link them together to create the flow. 

Additional 
Information 

N/A 

Table 117 – System Requirement (3) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-04 System and 
Software 

FUNC Data Analyst MAN 

Name Process workflow configuration 

Description The data analyst should be able to configure a process workflow with all the 
required details. The data analyst will set up the nodes parameters and 
define the rules for moving from one node to another. 

Additional 
Information 

N/A 

Table 118 – System Requirement (4) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-05 System and 
Software 

FUNC Data Analyst MAN 

Name Process workflow export 

Description The data analyst should be able to export the process workflow in 
BigDataStack format. 

Additional 
Information 

The default format of the export will be in JSON. It will include information 
regarding the flows and their interconnections. Alternative export formats 
(YAML, Dockerfile) will be considered based on the requirements of other 
components. The user should be able to select the appropriate export 
format. 

Table 119 – System Requirement (5) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-06 System and 
Software 

FUNC Business Analyst MAN 

Name Support for end-to-end (in terms of process workflow) objectives 

Description The business analyst should be able to defile end-to-end objectives. These 
objectives do not apply to a single process, but to the workflow as a whole. 
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Additional 
Information 

N/A 

Table 120 – System Requirement (6) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-07 System and 
Software 

FUNC Business Analyst MAN 

Name Process constraints 

Description The business analyst should be able to set apply constraints per node / 
process of the workflow 

Additional 
Information 

N/A 

Table 121 – System Requirement (7) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-PMF-08 System and 
Software 

FUNC Business Analyst MAN 

Name Edge constrains 

Description The business analyst should be able to apply constraints / parameters per 
edge (i.e. connections between processes of the workflow). 

Additional 
Information 

N/A 

Table 122 – System Requirement (8) for Process Modelling Framework 

 Id Level of detail Type Actor Priority 

REQ-DO-01 Stakeholder FUNC ROL-04 MAN 

Name Compatibility with output of Process Modelling 

Description The Process Mapping component is able to process the output of Process 
Modelling, in order to select appropriate ML algorithm(s) for specific 
Process steps. 

Additional 
Information 

This requirement practically ascertains that the two components (Process 
Modelling and Process Mapping) are compatible and that the output of the 
first can be consumed by the second.  

Table 123 – System Requirement (1) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-02 Stakeholder FUNC ROL-04 MAN 

Name Extraction of metadata 

Description Given a dataset, extract a set of metadata that is sufficient in order to 
discover similarities between datasets, in particular regarding the 
underlying data distributions and other statistical properties. 



 
 Project No 779747 (BigDataStack) 

 D2.2 – Requirements & State of the Art Analysis – II 

 Date: 18.12.2018 

 Dissemination Level: PU 

 

 page 70 of 102 bigdatastack.eu 

Additional 
Information 

The metadata should cover at least statistical and information-theoretic 
characterization of a given dataset.  

Table 124 – System Requirement (2) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-03 Stakeholder FUNC ROL-04 MAN 

Name Build and maintain a meta-knowledge repository 

Description Collect and store information about datasets, metadata, and the 
performance of ML algorithms that have been executed on the datasets. 
This information is referred to as meta-knowledge, because it is essentially 
knowledge about the learning process. This meta-knowledge repository is 
going to be used for meta-learning, which is defined as the study of 
methods that exploit meta-knowledge to obtain efficient models and 
solutions by adapting machine learning processes.  

Additional 
Information 

The meta-knowledge repository is augmented with information about the 
execution of ML algorithms on new datasets. 

Table 125 – System Requirement (3) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-DO-04 Stakeholder FUNC ROL-04 MAN 

Name ML algorithm selection 

Description Given a machine learning task, a dataset, and a set of available ML 
algorithms that can handle the given task, select (or recommend) the subset 
of ML algorithms with best performance. 

Additional 
Information 

It assumes the availability of a pool of ML algorithms (e.g., a ML library) and 
an execution environment for running ML algorithms on different datasets 
and evaluating their result quality. 

Table 126 – System Requirement (4) for Process Mapping 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-01 Software FUNC ROL-02, ROL-03 MAN 

Name Describe data mining and analysis processes through data workflows 

Description Support for the description of data mining and analysis processes, 
interconnected to each other in terms of input/output data 
streams/objects. The corresponding metadata and an algorithms taxonomy 
for the categorisation of the analytic processes, type of data and connection 
details will be used to facilitate the description of individual nodes.  

Additional 
Information 

The playbook must be represented in the form of a descriptor (e.g. through 
a yaml file) that can be incorporated into the Dimensioning Workbench as 
well as the Dynamic Orchestrator. 

Table 127 – System Requirement (1) for Data Toolkit 



 
 Project No 779747 (BigDataStack) 

 D2.2 – Requirements & State of the Art Analysis – II 

 Date: 18.12.2018 

 Dissemination Level: PU 

 

 page 71 of 102 bigdatastack.eu 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-02 Software FUNC ROL-02, ROL-03 MAN 

Name Express data workflows through graphs using nodes and edges 

Description Data workflows are represented in the form of an analysis application graph 
that includes the set of individual processes as nodes of the graph along 
with their binding/dependencies in the form of virtual links (i.e. edges). The 
links may include properties representing constraints, KPIs or objectives 
which are desirable at specific analytic stage. 

Additional 
Information 

N/A 

Table 128 – System Requirement (2) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-03 Software FUNC ROL-03 MAN 

Name Validate graph through chain-ability constraints 

Description This requirement resolves chain-ability constraints through different nodes 
in the data workflows. The target is to produce a valid graph. This is the 
reason why a set of checks will be performed to meet these prerequisites. 
If these prerequisites are not met, the graph is not considered valid. 

Additional 
Information 

N/A 

Table 129 – System Requirement (3) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-SY-DT-04 Software FUNC ROL-03 MAN 

Name Link valid graphs with viable executables for Big Data analytic processes 

Description This step links the graph with the actual executable image. In order to cope 
with the problem of vendor lock-in format of the executable the container 
format has been chosen. To this end, the actual container pulling will be 
performed. 

Additional 
Information 

N/A 

Table 130 – System Requirement (4) for Data Toolkit 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-01 System and 
Software 

FUNC ROL-04 MAN 

Name Ingest Playbook 

Description The Data Toolkit sends to the Pattern Generation a Playbook containing 
the graph of the user’s application. The Pattern Generation receives the 
playbook and initiates creation of candidate deployment patterns. 
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Additional 
Information 

N/A 

Table 131 – System Requirement (1) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-02 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory (File) 

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon. Initial versions will load this information from a static 
file. 

Additional 
Information 

N/A 

Table 132 – System Requirement (2) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-03 System and 
Software 

FUNC ROL-04 MAN 

Name Load Hardware Directory  

Description To produce candidate deployment patterns, Pattern Generation needs to 
know what hardware is available to deploy the components of the user’s 
application upon.  

Additional 
Information 

N/A 

Table 133 – System Requirement (3) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-04 System and 
Software 

FUNC ROL-04 MAN 

Name Service-Hardware Mapping (1-1) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The first version 
of this functionality produces only 1-1 mappings, i.e. one service is 
mapped to one piece of hardware (e.g. machine). 

Additional 
Information 

N/A 

Table 134 – System Requirement (4) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-05 System and 
Software 

FUNC ROL-04 MAN 
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Name Service-Hardware Mapping (1-M) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The second 
version of this functionality produces only one to many mappings, i.e. one 
service can be mapped to multiple piece of hardware (e.g. spread over 
multiple machines). This may be advantageous in cases such as were a 
single ‘big’ machine is more expensive than multiple smaller machines. 

Additional 
Information 

N/A 

Table 135 – System Requirement (5) for Pattern Generator 

 Id Level of detail Type Actor Priority 

REQ-T5.1-PG-06 System and 
Software 

FUNC ROL-04 DES 

Name Service-Hardware Mapping (M-1/Pods) 

Description The main process in Pattern Generation is mapping the different 
components (services) to potentially suitable hardware. The third version 
of this functionality produces only many to one mappings, i.e. multiple 
services can be co-located on a single piece of hardware. This may be 
advantageous when services perform high-volume data transfers that 
would be expensive over a network. 

Additional 
Information 

N/A 

Table 136 – System Requirement (6) for Pattern Generator 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-01 System PERF/ 
NONFUNC 

ROL-02 MAN 

Name Response Time and Workload 

Description The service provided by the data applications (e.g. recommender system) 
must have enough speed so consumers will not notice the time taken by the 
request. This implies that the Data Scientist should be able to dictate what 
are the required levels of QoS, selecting them from available metrics and 
appropriate levels for them.  

Additional 
Information 

This requirement poses initially the feature of metric selection and insertion 
at the Data Toolkit layer, for the Data Scientist to express their desires. Then 
the annotated Playbook gets passed to the following components (primarily 
ADW). Inside the Application Dimensioning Workbench, an initial candidate 
solution set is created, its estimated QoS level is enriched and the solution 
set is returned to the Data Scientist for final selection. Workload features 
(e.g. maximum/average etc. number of concurrent users) should also be 
able to be specified in order for the system to estimate the anticipated QoS 
levels for the desired range of application level workload. 
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This indicates that per category of data service or data service+analytics 
function a suitable selection of workload and QoS metrics should be 
performed and supported across the system (including also other 
components like monitoring) 

Table 137 – System Requirement (1) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-02 System NONFUNC 
/ PERF 

ROL-04 MAN 

Name Scalability and configurability of stress tests for load injection 

Description The system should have knowledge of a mapping between workload and 
QoS levels of the data services and algorithms (in order also to support REQ-
SY-DW-02). Therefore, it should be able to launch stress tests against the 
data services that can easily scale to support the client sizes needed. 
Furthermore, different parameters of workload should be able to be 
determined  

Additional 
Information 

Given that different data services exist in the project ecosystem, different 
baseline benchmarking tools should be identified per case. Following their 
selection, they need to be configured based on the respective workload 
parameters and scaled based on an abstracted generic approach (e.g. 
Docker containerization and Docker swarm approach) 

Table 138 – System Requirement (2) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-03 System FUNC ROL-04 MAN 

Name Dimensioning output 

Description The Dimensioning workbench should provide a list of candidate 
dimensioning suggestions along with the expected QoS levels towards the 
ADS Deploy component (and eventually the Application Engineer role), for 
the former to filter them based on an extra set of criteria and the latter to 
perform the final selection. 

Additional 
Information 

Upon reception of the playbook with the service graph, ADW needs to 
estimate QoS level based on the results obtained through REQ-SYS-DW-02 
and populate the respective fields. The operation should be offered through 
a REST service interface for automating the process and hiding complexities.  

Table 139 – System Requirement (3) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SY-DW-04 System FUNC ROL-04 MAN 

Name Monitoring requirements for dimensioning 
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Description The Dimensioning workbench should have a means to obtain monitoring 
information from the deployed data services and application components 
for a given deployment to extract training data for the performance models. 
The rationale of the requirement is that for every needed metric (workload 
oriented e.g. number of current users, requests etc. or QoS oriented e.g. 
response time, throughput) in the model the respective endpoint should 
exist from which the monitoring component would extract metrics values. 
This applies to both actual runtime and benchmarking phase 

Additional 
Information 

Relevant Tools affected: Data services, application components, triple 
monitoring engine. 

Table 140 – System Requirement (4) for ADW Core 

 Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-01 Software FUNC ROL-04 MAN 

Name Load injector dockerization 

Description To support a generic load injection process as indicated by REQ-SY-DW-02, 
“dockerization” of the respective load generators per type of service needs 
to be performed. Thus, a specific Docker container image per needed load 
generator tool needs to be provided, along with a unified process for 
feeding the per case load description file based on the Docker API and 
configuration process.   

Additional 
Information 

N/A 

Table 141 – System Requirement (5) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-02 Software FUNC ROL-04 MAN 

Name Service structure specification 

Description The service graph specification coming as input from the Process Modelling 
and Data Toolkit should follow the Docker Compose specification, to be 
understandable by the Dimensioning workbench. Following, the 
Dimensioning phase should add the respective candidate resource 
deployment options as additional custom metadata in the file to be used by 
the Deployment selection.  The same applies for the benchmarking runs, 
which should be based on the same format (even without the inclusion of 
the PM and Data Toolkits). All requirements needed for deploying the 
benchmarking environment should be described using this common agreed 
standard. 

Additional 
Information 

N/A 

Table 142 – System Requirement (6) for ADW Core 
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Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-03 Software FUNC ROL-04 MAN 

Name Representative nature of gathered data samples 

Description In order to create representative and accurate performance models, 
dataset creation from benchmarking should take into account different 
conditions such as applied workloads, configuration aspects of the service, 
deployment options etc. In this way different bottlenecks may be examined, 
and the final decision making can be adapted per case of service usage. 

Additional 
Information 

N/A 

Table 143 – System Requirement (7) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-04 Software FUNC ROL-04 ENH 

Name Deployment time for stress tests 

Description The overhead added by the benchmarking setup should be negligible and 
not included in the measurement process. 

Additional 
Information 

Since the deployment phase is done in a containerized manner, the time 
used in instructions different than launching the benchmark or storing data 
should not be significant. 

Table 144 – System Requirement (8) for ADW Core 

 
 

Id Level of 
detail 

Type Actor Priority 

REQ-SO- ADW-05 Software FUNC ROL-04 ENH 

Name Benchmarking Workflow implementation 

Description During the benchmarking phase, there should be a controlled manner in 
which the various combinations described in REQ-SY-DW-02 and REQ-SO-
ADW-03 are enforced during an automated process in order to ease data 
collection. 

Additional 
Information 

 

Table 145 – System Requirement (9) for ADW Core 
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 Id Level of detail Type Actor Priority 

REQ-AV-01 System and 
Software 

USE ROL-04 MAN 

Name Interactive and Responsive UI 

Description The system should provide an interactive UI that should adapt to different 
devices and displays in order to provide a proper operation of the solution 
and a good user experience. 

Additional 
Information 

N/A 

Table 146 – System Requirement (1) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-02 System and 
Software 

FUNC ROL-04 MAN 

Name Automatic graph selection 

Description Appropriate graphs and reports should automatically be selected for 
different data sets. 

Additional 
Information 

N/A 

Table 147 – System Requirement (2) for Adaptable Visualizations 

 Id Level of detail Type Actor Priority 

REQ-AV-03 System and 
Software 

FUNC ROL-04 MAN 

Name Live data for different data sources 

Description The system should be able to display live data obtained from application 
probes, resource probes and data operations probes. 

Additional 
Information 

Adaptable selection of sources should be possible both in terms of 
application, resources or data operations, as well as in terms of the datasets 
selected and visualized per each one of these cases. Combinations should 
also be enabled. 

Table 148 – System Requirement (3) for Adaptable Visualizations 
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9 Baseline Technologies 

This chapter shortly presents the baseline technologies to be used to introduce the ground 
for the proposed work and to ensure that non-conflicting (in terms of functional properties 
and integration with other components) technologies will be used. It does not simply state 
some state-of-the-art technologies but rather links them under the context of BigDataStack 
and what BigDataStack can get from them. 

9.1 Computing Resources Management 

Public clouds (such as GCP38 or IBM Cloud39) offer infrastructure-as-a-service (IaaS). IaaS is a 
pay-per-use service model to consume virtual computational (e.g., virtual machines), storage 
and networking resources. This service provides high levels of QoS and wide variety of 
resource types (e.g., machines with different memory, CPU and acceleration chipset 
features).  

OpenStack40 is an open source software that aims to create private and public clouds. It lets 
companies to create an IaaS in their data centre. OpenStack lets you add servers, network 
and storage components easily and efficiently to your cloud. It controls large pools of 
compute, storage, and networking resources throughout a data centre, managed through 
a dashboard or via the OpenStack API. 

Container management/orchestration platforms are becoming popular solutions to make it 
easier provisioning and managing cloud applications. Some examples are Kubernetes41, 
Docker Swarm42, Amazon ECS43, or Mesosphere Marathon44. These typically provide an API 
for developers to upload, organize, run, scale, manage and stop containers. They also 
normally provide a command line interface (CLI) and a web console to configure and monitor 
the performance of the services and resources of the platform, such as: 

- container deployment and configuration, 
- performance monitoring, 
- cluster management and scaling, 
- logging, and 
- container lifecycle management. 

Kubernetes is the most popular and widespread container orchestration platform; its main 
purpose is to schedule container (process) execution in a single machine or a cluster of 
machines and optimize (maximize the utilization) of the resources of the cluster. Everything 
in the platform is treated as an API object representing a concrete instance of a resource type 
in the cluster: 

- Kubernetes Pods are the simplest object to be managed by Kubernetes. A pod is a group 
of related containers (processes) collocated on a Kubernetes cluster’s node, sharing 

                                                 
38 GCP (Google Cloud Platform). https://cloud.google.com 
39 IBM Cloud. https://www.ibm.com/cloud/ 
40 Open Stack. https://www.openstack.org/ 
41 Kubernetes. https://kubernetes.io/ 
42 Docker Swarm. https://docs.docker.com/engine/swarm/ 
43 Amazon ECS (Elastic Container Service). https://aws.amazon.com/en/ecs/ 
44 Mesosphere Marathon. https://mesosphere.github.io/marathon/ 
 

http://searchitoperations.techtarget.com/definition/Docker-Swarm
https://cloud.google.com/
https://www.ibm.com/cloud/
https://www.openstack.org/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/en/ecs/
https://mesosphere.github.io/marathon/
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storage/network and a specification for how to run the containers45. Replica sets are the 
number of pod instances running and represent the way to scale out/in deployments. 

- Kubernetes Namespaces support multiple virtual clusters on the same physical cluster. 
Namespaces are used to organize objects in a cluster and provide a way to divide cluster 
resources to isolate environments and better ensure Quality of Service (QoS).  

- Kubernetes Services describe how to access sets of pods and can describe ports and load-
balancers.  

Kubernetes scheduler is built around the concept of managing CPU and memory resources at 
a container level. Every Kubernetes cluster’ node (instances to schedule containers to) is 
assigned an amount of schedulable memory and CPU. At deployment time, every container 
specifies how much memory and CPU it will request. And the scheduler finds the best fit given 
the allocated CPU and memory on the nodes. 

Kubernetes defines the CPU and MEMORY resources using basic constructs [53]: The request 
value specifies the min value you will be guaranteed; the limit value specifies the max value 
you can consume (i.e., a CPU quota or a memory limit) and the value applications should be 
tuned to use. 

Kubernetes defines several different quality of service (QoS) tiers based on how request and 
limit are specified [53]: Best-Effort, Guaranteed and Burstable. 

While those are the basic constructs, different applications have different needs and data 
driven applications should consume these resources in an “intelligent” way. 

9.2 Storage Resources Management 

As we base our infrastructure on Kubernetes (see previous section), we need to tackle usage 
of storage by the application through the Containers Orchestrators perspective.  

The current model for persistent storage for containers is settling out on attaching volumes 
(LUNs) to a container and formatting that volume with a file system.  Through the container 
engine, the file system is exposed as a mount point within the container.  Storage could be 
taken from local disks (e.g. a volume created using an LVM) or from external storage 
presented to the container server/node.  

To make it easier to plug in storage interfaces into the Container Platform, K8S created the 
CSI.  The aim of the Container Storage Interface (CSI) is to provide a common standard to 
connect container orchestration platforms (COs) like Kubernetes, Docker Swarm and Mesos 
to a plugin and ultimately to persistent storage (see previous section).  

Theoretically, with a standardised communication protocol, storage vendors will only need to 
write a plugin to a single specification.  CSI sets out the definition of how to talk to the plugin; 
exactly how the plugin is managed or operates is up to the storage provider.  CSI provides the 
following capabilities. 

- Dynamic provisioning and decommissioning of volumes. 
- Attachment and detachment of volumes from a host node. 
- Mounting and unmounting of a volume from a host node. 

 

                                                 
45 https://kubernetes.io/docs/concepts/workloads/pods/pod/ 

https://kubernetes.io/docs/concepts/workloads/pods/pod/
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This technology enables us in BigDataStack to create flexible and dynamic management for 
the storage resources needed by the different workloads of the applications. 

9.3 Data-driven Network Management 

Data-driven network management regards a set of functions related to optimal network setup 
to cover the operational requirements of analytic processes in terms of efficient data 
exchange. In most of the cases, analytic process deployments are realised within a data centre 
(DC) environment and do not impose strict requirements in terms of layer-3 routing 
mechanisms. Optimal network flows’ setup and management must be realised within a DC 
environment. Towards this direction, Software Defined Networking Mechanisms (SDN) can 
be applied along with network management mechanisms (e.g. enforcement of network 
policies) supported by the Orchestration Engine. 

For instance, in case of Kubernetes, a network policy is a specification of how groups of pods 
can communicate with each other and other network endpoints. Network Policy resources 
use labels to select pods and define rules which specify what traffic should be allowed. In case 
of application of SDN-based mechanisms, OpenFlow46 is considered as the dominant 
communications protocol that gives access to the forwarding plane of a network switch or 
router over the network. OpenFlow enables network controllers to determine the path of 
network packets across a network of switches. 

The adopted set of solutions for Data-driven Network Management is going to be well bound 
to the orchestration solution to be designed and implemented within BigDataStack, 
guaranteeing the support of novel and intelligent network management mechanisms, 
applicable to data-intensive and network-intensive processes. 

9.4 Dynamic Orchestrator 

Orchestration (as an infrastructure management service) refers to the enablement and the 
coordinated handling of various optimizations inside the platform. Examples of such 
optimizations are the placement (or allocation) of tasks to computing resources, decisions 
regarding parallelization degrees of parallelizable tasks/services, load balancing, algorithm 
selection, and more. In the state of the art, such optimizations are handled in a way that we 
call “service-driven”. This means that the optimization functions, the criteria, and the system 
setup are built around basic features such as CPU power, network bandwidth, and 
task/service requirements to optimize certain metrics (e.g. latency) with regard to the 
examined service.  

Related works [46][47] exploit obvious known synergies such as the fact that running tasks on 
low-CPU nodes can increase processing time or the fact that overloading certain links can 
create bottlenecks. Apart from the fact that such concrete optimizations have rarely been 
handled homogeneously or investigated in a common context, there are also gaps towards 
making them data-driven rather than service-driven. 

To support data-driven overall orchestration and data-driven solutions of specific 
optimization problems (e.g. placement), we propose techniques to identify the synergies 
between characteristics of data analytics and system KPIs, e.g. functions that represent how 
data I/O volumes affect the CPU-intensity of certain tasks etc. We will provide the basis for 

                                                 
46 https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/  

https://www.opennetworking.org/technical-communities/areas/specification/open-datapath/
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using such data-related synergies for all system orchestration aspects by defining machine-
readable profile specifications (hereinafter referred to as Synergy Profile) for profiling 
homogenously all entities (e.g. nodes, algorithms, network links, application tasks) that are 
involved in data-driven orchestration. A rule-based approach for triggering runtime 
optimizations based on the monitored data will be delivered. We will also define interfaces 
and procedures where the Dynamic Orchestrator communicates to other controllers to create 
and maintain the Synergy Profiles. The baseline technologies that will support the Sinergy 
Profiler implementation and integration are preliminary defined as the following:  

- Drools as the rule engine for triggering orchestration actions that must be enforced 
over the operational application based on real-time monitoring data. 

- Kubernetes and Mesosphere DC/OS for application placement and container 
orchestration. 

- LeanXcale will provide an interface for data services deployment. 
- OpenFlow for network functions recompilation. 
- OpenStack will support live migration procedures. 

9.5 Triple Monitoring 

To be able to maintain a good quality and perform best adaptation based on the change that 
could happen in a system, metrics need to be taken continuously and exposed to the 
component involved in the evaluation of quality and adaptation. In the context of 
BigDataStack, tracking information will be performed by the Triple monitoring engine. Three 
different groups of metrics need to be tracked: infrastructure information, data operation 
(data produced by applications running on the platform) and all data involved in database 
transactions. 

Since these metrics are produced by applications with different purposes, specifications, 
functionalities and technologies, two approaches will be used, the first is to use probe to 
directly ingest metrics into the monitoring collector. The second approach is to provide a 
sanitizer to prepare metrics conforming with the specification of the collector and ingest 
them. This sanitizer will act as a unified APΙ. 

The triple monitoring engine has an input REST API which is an entry point of the system and 
an output REST API for exposing data to all applications data consumer. The monitoring 
should provide an efficient and fast way of transferring metrics from the input to the 
manager that handle all the logics of the engine. The big number of metrics from different 
sources must be organized chronologically and presented to a correct format for their 
visualization. We've been interested by two main technologies: 

Prometheus is a technology for monitoring management, which includes metrics collection 
facilities. This technology will be very convenient for the following reasons47: 

• Powerful queries: A flexible query language (NoSQL based) allows slicing and dicing of 
collected time series data. 

• Efficient storage: Prometheus stores times series in memory and on local storage in 
an efficient custom format. Scaling is achieved by function sharing and federation. 

• Extensive integration: Many existing exporters allow bringing data from third-party 
application to its collector. 

                                                 
47 Prometheus. https://prometheus.io/ 

https://prometheus.io/


 
 Project No 779747 (BigDataStack) 

 D2.2 – Requirements & State of the Art Analysis – II 

 Date: 18.12.2018 

 Dissemination Level: PU 

 

 page 82 of 102 bigdatastack.eu 

• Push gateway: In case it’s impossible to scrape metrics (using probe), metrics can be 
exposed to the Prometheus collector by this mechanism48. 

The manager needs a persistent connection with the output REST API, a connection oriented 
based technology will be used. RabbitMQ will be very convenient because of the following49: 

• Availability in many languages and platform. 
• Asynchronous Messaging: Supports multiple messaging protocols, message queuing, 

delivery acknowledgement, flexible routing to queues, multiple exchange type. Those 
features allow for publish/subscribe communication and high-speed asynchronous I/O 
engines, in a tiny library. 

• Distributed Deployment: Deploy as clusters for high availability and throughput; 
federate across multiple availability zones and regions. 

Persistent data need to be stored for later use, since all REST API within triple monitoring 
engine use JSON format and metrics don't have the same structure because of their 
respective origin, a convenient technology for saving these data will be using a database that 
handle JSON format to facilitate data transfer within the triple monitoring engine and to allow 
polymorphism. Based on the amount of data arriving per second and the huge quantity of 
operation that need to be perform MongoDB will be very efficient [48]. 

As said before, the triple monitoring engine provides two REST interfaces.  

• The first has the goal of receiving data from different sources and sending them to the 
Netdata collector (plugin). This interface will be the input of the monitoring engine. 
The API keeps data in memory until it is consumed by the plugin. Applications (data 
producers) will have access to this API for sending their measurements.  

• The second interface provides the output of the monitoring engine to applications 
(consumers). This interface has two kinds of connection to serve results: a REST API 
and a Publish/Subscribe mechanism that is connection-oriented service.   

                                                 
48 Prometheus https://prometheus.io/ 
49 RabbitMQ https://www.rabbitmq.com/  

 

https://prometheus.io/


 
 Project No 779747 (BigDataStack) 

 D2.2 – Requirements & State of the Art Analysis – II 

 Date: 18.12.2018 

 Dissemination Level: PU 

 

 page 83 of 102 bigdatastack.eu 

 

Figure 3. Netdata role in triple monitoring 

Netdata is a system for health and performance monitoring of distributed real-time systems. 
It provides real-time insights of everything happening on the system it runs (including 
applications such as web and database servers), using interactive web dashboards [7]. 
Netdata main capabilities are gathering data from different sources and exposing them 
through a REST API. Netdata architecture is extensible through plugins to read measurements 
(metrics) from different sources. In Figure 3 , the component named “BigDataStack plugin” is 
an adapter that needs to be deployed to ingest data into Netdata. 

9.6 Applications & Data Services Deployment 

Application and Data Services Deployment is concerned with how to deploy the user’s 
application onto the cloud infrastructure, as well as subsequent re-deployment in cases 
where the initial deployment did not meet the user’s quality of service requirements. It 
belongs within the realization engine of the overall BigDataStack platform. More precisely, it 
is comprised of two main components:  

I. ADS-Ranking: A component that ranks different possible deployment configurations 
of the user’s application on the cloud hardware (referred to as candidate deployment 
patterns) such that we can select the most suitable one given the user’s requirements. 
In a redeployment scenario, this component re-ranks and selects a new candidate 
deployment pattern that solves issues identified with the previous deployment. 

II. ADS-Deployment: A component that takes the best candidate deployment pattern 
and physically deploys it on the cloud infrastructure. Meanwhile, in a re-deployment 
scenario, this service facilitates the transition of one-or-more already deployed user 
services to a new configuration based on an updated candidate deployment pattern. 

9.6.1 ADS-Ranking 

What is ADS-Ranking? ADS-Ranking is a component that is concerned with how best to deploy 
the user’s application onto the cloud based on information about the application and cluster 
characteristics. From a practical perspective, its role is to identify which - of a range of 
potential deployment options - is the best for the current user, given their stated (hard) 
requirements and other desirable (soft) characteristics (e.g. low cost or high throughput). 
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ADS-Ranking is strongly coupled to the Application & Data Services Dimensioning (ADS-
Dimensioning) component of BigDataStack that sits above it in the overall architecture stack. 
The main output of ADS-Dimensioning is a series of candidate deployment patterns (ways 
that the user’s application might be deployed). It is these deployment patterns that ADS-
Deploy takes as input, and subsequently selects the best one to deploy. In practice, this is 
accomplished using state-of-the-art supervised machine learning techniques to rank the 
candidate deployment patterns, which model the relationships between the features of each 
candidate deployment pattern and the user requirements/preferences. ADS-Ranking is also 
used for application re-deployment in cases where a previously selected deployment was 
deemed unsuitable, for example, because the provided quality of service was too low or the 
cost too high. In this case, ADS-Ranking updates the underlying model with evidence from the 
failing deployment and re-ranks the candidate deployment patterns with the aim of finding a 
new one that will provide superior performance.  

Literature Review Machine Learning: Machine learning refers to the field of approaches that 
automatically learn solutions to problems using prior data [22]. Machine learning has become 
closely linked with information retrieval, as many tasks in information retrieval can be 
formulated in a manner that can be tackled by machine learning approaches, e.g. categorising 
documents [23] or learning how to rank documents [24]. Moreover, machine learned 
approaches have shown to be effective for many of these tasks [25]. Indeed, commercial Web 
search engines like Google and Bing use machine learned models to drive their search 
rankings. An important concept within machine learning is that of a feature. A feature is some 
property about the subject of the learning. For example, for information retrieval ranking 
problems, the features might be about the documents or user queries. An example of a query 
feature is query length, while a document feature might be its PageRank [26] score. For the 
purposes of ADS-Ranking that we are concerned with here, our features are derived from the 
‘predicted performance’ information within each candidate deployment pattern, i.e. 
estimations about how effective a candidate deployment pattern is likely to be. 

Literature Review Learning-to-Rank: Learning to rank (LTR) approaches use machine learning 
to tackle item ranking problems [25]. In an information retrieval setting, this typically involves 
ranking documents with respect to relevancy, although other ranking criteria are possible. 
The aim of learning to rank approaches is to improve a given item ranking with respect to 
some property. This is achieved by re-ranking an initial ranking such that items with the 
desired property are promoted into the top ranks. 

In their simplest form, learning to rank techniques use initial item rankings for a set of topics, 
features about the individual items within those rankings, and relevance assessments about 
the individual items for each topic, to form a ranking model. This model can then be applied 
to unseen item rankings, re-ranking them to increase some desired ranking property. When 
building (or training) a model, an initial item ranking is created, referred to as the sample. A 
sample should have high recall in terms of items with the desired ranking property, e.g. for 
relevancy-based rankings, the sample should contain many relevant documents [27]. 
However, these documents do not need to appear within the top ranks; indeed, it is the aim 
of LTR to achieve this through re-ranking. Next, features about each of the items are 
extracted. An effective feature should aid in distinguishing the items that have the desired 
property, e.g. relevance to the query. In effect, the LTR approach aims to find a combination 
of these features that leads to effective ranking. Indeed, given the sample and its features, a 
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learning to rank approach will try different combinations of those features to find those that 
lead to increased effectiveness when ranking the sample. LTR approaches repeat this process 
for many document samples to find the feature combination that leads to improved 
effectiveness across all those samples. This feature combination is referred to as the ranking 
model. The idea is that the resultant ranking model will generalise to unseen sample rankings, 
if the training samples are representative of the types of rankings encountered. The ranking 
model can be updated with new samples over time, which is referred to as 
Active/Reinforcement Learning. 

Learning to rank approaches can be categorised into three different types. Each type of 
approach uses a different strategy to evaluate the sample ranking. These types are point wise, 
pair wise and list wise. Point wise techniques learn on a per-item basis, i.e. each item is 
considered independently. Pair wise techniques optimise the number of pairs of items 
correctly ranked. List wise techniques optimise the entire ranking list at one time. Prior work 
has indicated that list wise techniques learn more effective Models [25]. 

Within ADS-Ranking we use learning-to-rank techniques to produce models to rank different 
candidate deployment patterns for the user. In a re-deployment scenario, Active Learning 
and Reinforcement Learning are used to adapt the ranking model on-the-fly to enable the 
re-ranking of deployment patterns. 

Selected Technologies: For BigDataStack, the ADS-Ranking component will be built on top of 
the open source Apache Spark framework and will be written in Java. ADS-Ranking will be 
deployed as a real-time stream processing service using Spark Streaming, which assesses 
candidate deployment patterns for different user applications and emits a single selected 
pattern for each. In this way, the component will be scalable to high-demand periods, as well 
as extensible. The component will be operationalized as a series of transformers within the 
Spark service, divided into: transformers for converting candidate deployment patterns into 
features; the learning of ranking models based on those features; and the application of those 
models for ranking during service operation. Model training will be implemented using Spark 
MLib.   

9.6.2 ADS-Deployment 

Cloud application service orchestration frameworks manage all dependencies and 
relationships between components of the application, facilitating infrastructure-centric 
orchestration in the cloud. They provide a solution for the provisioning and management 
(from deployment to adaptation) of complex applications in the cloud. We use the concept of 
“service template” or “application chart” to refer to the specification of the service structure 
and “orchestration” to the management of the behaviour of IT infrastructure services where 
the application is deployed and operated.  

OpenStack Heat50 and AWS CloudFormation51 are based on specific language descriptors. 
TOSCA52 specification provides a language to describe application service components and 
their relationships using a service topology. This specification also provides mechanisms to 

                                                 
50 Openstack Heat. https://wiki.openstack.org/wiki/Heat, 
51 AWS CloudFOrmatio.  https://aws.amazon.com/cloudformation/,  
52 OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) , https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca 
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describe management procedures that create or modify services using orchestration 
processes. Popular cloud tools such as OpenStack Heat conform to this specification. 

jClouds53 is a toolkit that facilitates interoperability with different cloud tools. It gives 

developers the freedom to create applications that are portable across clouds while giving 
you full control to use cloud-specific features. It is an open source multi-cloud library for the 
Java platform. 

Docker54 is a technology for operating-system-level virtualization and a popular alternative to 

package and manage applications through its lifecycle. Docker uses the resource isolation 
features of the Linux kernel to allow independent “containers” to run within a single Linux 
instance and therefore avoiding the overhead of managing multiple virtual machines (VMs). 
To achieve this, Docker let developers package and deploy libraries and any other 
configuration and dependency at operating system level with the application code. 

Container orchestration solutions are based on the concept of Docker containers. Docker 
Swarm55 is the native container orchestrator of Docker. Swarm uses the same Docker 
interface, which enables transparent scalability from Docker use to Swarm use.  Swarm 
manager is responsible for the management of a cluster of so-called Docker hosts over which 
it distributed the containers for execution. 

Kubernetes56 is the most popular container orchestration solution. Kubernetes scheduler runs 
as a process alongside the other master components such as the API server. A Kubernetes 
pod models an application-specific “logical host” and contains one or more application 
containers which are relatively tightly coupled. Pods can also be exposed as Kubernetes 
services, which father facilitates the management of containerized application services. 
Kubernetes charts offer a way to model, deploy and manage the life-cycle of complex 
containerized applications (i.e. consisting of several inter-related containers, pods and 
services). Helm57 is the open source library implementing this capability. It offers an API to 
deploy applications on Kubernetes and manage their life-cycle. By means of Helm, developers 
can install, delete and upgrade whole applications/services with one command.  

Other solutions for application management in the cloud are Alien4Cloud58, supporting 
application SLA (service level agreement) specification, and Serf59, offering a decentralized 
solution for cluster management, failure detection, and orchestration; Cloudify60, Chef61 and 
Puppet62, on the other hand, are general purpose infrastructure configuration solutions which 
provide very flexible automated application lifecycle management.  

 

                                                 
53 Apache jClouds. https://jclouds.apache.org/ 
54 Docker. https://www.docker.com/ 
55 Docker Swarm. https://docs.docker.com/engine/swarm/ 
56 Kubernetes. http://kubernetes.io/ 
57 Helm. https://helm.sh/ 
58 Alien4Cloud. http://alien4cloud.github.io/ 
59 Serf. https://www.serf.io/ 
60 Cloudify. http://docs.getcloudify.org/3.3.1/intro/what-is-cloudify/ 
61 Chef. https://www.chef.io/chef/ 
62 Puppet. https://puppet.com/ 
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9.7 Distributed Storage & Analytics 

ACID database systems providing transactional semantics had been to the foreground for 
many decades. However, after the evolve of the cloud computing ecosystem, application 
components could scale in numerous nodes and serve highly intense workloads, thus 
requiring from the persistent storage systems to be able to handle these intensive loads. 
Traditional database systems however rely on the two-phase-commit [28, 29] as the de facto 
atomic commit protocol. The latter inevitably introduces increased latency, which makes it 
slow, as it requires two rounds of messages between the coordinator and the participants of 
the transaction. Additionally, the existence of a central coordinator to manage the transaction 
lifecycle during the commit phase makes the protocol very difficult to scale adequately to be 
able to handle numerous nodes. This limited scalability of transactions offered by traditional 
database systems lead to the emergence of new data management technologies, frequently 
known as NoSQL, that trade the lack of support for ACID transactions for scalability, thus 
delegating consistency checks and transactional management on the application level. 

To overcome these limitations, during the last decade, quite a few solutions that try to 
combine scalable transactional support without sacrificing consistency, such as Percolator 
[30] or Spanner [31] have been proposed.  However, they continue to suffer from the 
limitations as most of them still rely on variations of the two-phase-commit protocol, which 
inherently introduces increased latency by design or having a centralized transactional 
manager like Omid [32] and Apache Tephra [33], which prevents them from being able to 
scale linearly when large deployments are needed. Finally, others make use of expensive 
hardware for requesting time events, like Spanner, Deuteronomy and LEAP. 

Moreover, traditional database systems providing transactional capabilities, thus serving 
OLTP workloads ensuring ACID properties, rely on locking mechanism to provide the required 
isolation level. This means that heavy analytical queries will prevent write operations on the 
database until the formers finish, and vice versa, intensive operational workloads prevent 
analytical queries to be executed, as each of these types of queries block each other. To 
overcome this limitation, enterprises used to make use of ETLs to take a snapshot of the data, 
duplicate it in a data warehouse and perform the analytical operations on the latter. However, 
the past few years have witnessed a rise in demand for real-time Big Data Analytics for real-
time business intelligence with a large range of research terms being adopted [34]. The goal 
is to develop tools that enable analytical processing over data that should be most up to date, 
thus processing data as soon as they arrive into the system [35]. Even if most systems claim 
to have real-time capabilities [36], they should be considered “near-real-time” as they still 
rely on an update process to acquire the latest data snapshot. As organizations increasingly 
require analytics on fresh operational data to derive timely insights, the notion of hybrid OLTP 
and OLAP databases have emerged, currently most known as HTAP (Hybrid Transaction and 
Analytical Processing) that does not involve the use of some kind of ETLs which are cost-
expensive and introduce data duplication while they do not provide analytical processing over 
real-time data at the very end. Hyper [37] and SAP HANA [38] are typical HTAP database 
systems. The limitation of Hyper however is that it cannot be scaled horizontally as it must be 
deployed on a single machine, while SAP HANA suffers under intensive OLTP workloads and 
performs worse than a single-node typical database system.  
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To overcome all these challenges, LeanXcale63, which is a relational data base on top of a key-
value store, is capable of handling write-intensive workloads, exploiting its ultra-scalable 
transactional management engine with its ability to linearly scale to 100s of nodes, while 
ensuring ACID properties and data coherence. Moreover, it provides tools for analytical 
processing as an integral part of the data store, which can exploit both inter- and intra-query 
parallelism, to provide real-time Big Data Analytics, thus truly implement the “just-in-time 
warehousing” model. LeanXcale internal OLAP engine is also distributed and each instance 
can be co-located with a corresponding data node, thus exploiting data affinity for improved 
performance. Moreover, its internal key-value storage engine can distribute its data load, by 
splitting, and merging data regions, whilst moving them across its data nodes on the runtime.  
During this process, the data store is fully operational, and no performance overhead is being 
noticed. Thus, the online re-distribution of the data load is performed seamlessly from the 
application point of view. Finally, for the application developers to use the distributed engine, 
an Elastic JDBC driver is provided, which implements all functionalities that can be found in 
traditional relational database management systems. Moreover, an additional driver can be 
used for directly accessing the internal key-value data store, which skips the overhead 
introduced by the Query Engine of the platform for improved performance. 

9.8 Live Migration 

Live migration is a pervasive technique in the realm of virtual machines, allowing transparent 
movement of virtual machine instances (VMs) from one physical machine to another with 
negligible service disruption (hence the term live). Live migration describes a mean to transfer 
a running VM from one physical host to another host without interrupting the VM execution 
and transparent to the VM’s users. The required information is transferred over the network 
(e.g., Ethernet) and includes an option to use an encrypted connection. 

With recent trends toward scalability and distributed microservices, containerization has 
quickly become a lightweight and widely adopted alternative to VMs or physical nodes as the 
unit of deployment. The biggest benefit of containers, is that they can be quickly created and 
destroyed in large numbers, and therefore relocating a container/pod in Kubernetes is only 
possible by disposing of the source pod, then recreating a new pod of the same type/template 
from scratch (see Section 8.1). Application developers need to design around this fact by not 
relying on longevity of pod-local state and by storing any necessary data into pod-
independent persistent storage, such as an external database. Along with the fact that there 
are many scenarios that would benefit from the ability to relocate active pods, the work on 
developing live migration for containers has started, but it’s still in the early stages.  

9.9 Data Cleaning 

Data quality and verification is of major importance given that it affects the complete data 
path: storage, processing, analytics results, decision-making, etc. It poses many challenges in 
several phases of data management. In contrast to the much more researched modelling and 
analysis phases, the quality analysis and verification step is often seen as a sore point, even 
though without it the modelling and analysis phases could be of limited value. If the data are 
not verified and of acceptable quality (e.g. missing values, outliers etc.), the conclusions might 
be associated with a high level of uncertainty or even reduced to garbage. 

                                                 
63 https://www.leanxcale.com/ 
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In this project, we will develop mechanisms to evaluate the data quality, in terms of 
completeness and accuracy. These approaches will exploit artificial neural networks (ANN) 
and Deep Learning (DL) techniques, taking advantage of the work done on Natural Language 
Processing (NLP), to extract latent features that correlate different fields, and identify possible 
defects in the content. Furthermore, by harnessing the power of Machine Learning (ML) and 
DL, the proposed approach will automate the process of data harmonization, an approach to 
data quality that improves the condition and utilization of the data. Data Harmonization is 
about creating a single source of truth. It works by absorbing diverse data from various 
sources, brushing away any inconsistencies, purifying it and presenting it as an integrated 
whole. Artificial Intelligence and ML can simplify and automate this operation, thereby 
speeding up the process of data modelling. 

Over the past few years, both industry and academia have shown great interest on 
researching different aspects of data cleaning and applying new methods, including but not 
limited to new abstractions [1]–[4], interfaces [5], [6], approaches for scalability [7]–[10], or 
even crowdsourcing techniques [11]–[13]. The main differentiator comes from the error 
definition itself; on one hand, quantitative techniques are used for anomaly detection and 
outlier exposure, using statistical methods (e.g. a value that is more than three standard 
deviations from the mean should be an error), on the other hand qualitative techniques use 
a rule-based approach, to detect errors (e.g. A man can never give birth to a child). Once 
errors are detected, they can be corrected using a script, a human crowd or human experts. 
There are even situations that a hybrid of two or more approaches yields better results. 

As it follows, a data cleaning process consists of two phases: i) the error detection, and ii) the 
error repairing. Concerning error detection, the techniques used can be classified based on 
three main questions [14]:  

1. what to detect, 
2. how to detect it, and 
3. where to detect.  

What to detect refers on error type, namely integrity constraints, missing or duplicate values 
etc. The how to detect question indicates the level of automation in the system. While most 
methods can be fully automated, like detecting violations of functional dependencies [15], in 
some others the human element is necessary [16]. Where to detect covers the business logic 
layer, where errors can be detected in the original source (i.e. the original database) or the 
target (i.e. the data warehouse) [17], where business logic is defined (e.g. an error on the total 
budget assumes that some aggregates must be in place). 

On the second phase, while repairing errors, the main questions are: 

A. what to repair,  
B. how to repair, and 
C. where to repair.  

The first question considers what the learning algorithm assumes. If it has complete 
confidence in the business rules, then everything diverging from the rules is flagged as an 
error [4]. If the algorithm trusts the data, then it can relax the constraints to “fit” the data 
[18]. Finally, there’s the option to explore both relaxing business rules and conforming to 
them [19]. The how to repair question refers once again to the automation level of the 
process, where automated techniques can be deployed, or the human element shows up, 
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even if they are training learning models to carry out the job [20]. Conclusively, the where to 
repair question aims to answer if the repairs will be made in place, effectively destructing the 
original database, or a model is defined to describe possible repairs. 

Where Artificial Intelligence (AI) and pattern recognition is concerned, machine learning is 
often used to improve the efficiency and accuracy of the data. For instance, ActiveClean [21] 
utilizes appropriate methods to select the most valuable data, while iteratively updates ML 
models given newly clean data. This way, data models can be correctly produced from a small 
subset of the data and be as accurate as they would be if the full dataset was employed. 

To facilitate the implementation of such intricate deep learning algorithms, a suitable 
framework will be used. The prevailing option is that of Google’s Tensorflow64. Several 
implementations like Yahoo!’s TensorFlowOnSpark65 or SparkNet66 allows this framework to 
run in a distributed way over a Spark cluster, thus, making it totally compatible with the 
BigDataStack’s platform. Yahoo!’s implementation seems superior because it requires 
minimal change in the original TensorFlow code. 

Finally, some of the challenges that need to be addressed are those that pose scalability 
issues, user engagement, processing of semi-structured or unstructured data, streaming data 
and new privacy regulations or security concerns [15]. 

9.10 Big Data Layout 

Today’s best practices to deploy and manage cloud compute and storage services 
independently leaves us with a problem: it means that potentially huge datasets need to be 
shipped from the storage service to the micro service to analyse data. If this data needs to be 
sent across the WAN then this is even more critical. Therefore, it becomes of ultimate 
importance to minimize the amount of data sent across the network, since this is the key 
factor affecting cost and performance in this context. Many cloud-based SQL services, for 
example Amazon Athena67, bill users according to the amount of data scanned in object 
storage, outlining the importance of this metric. There are currently three main approaches 
to limit the number of bytes sent from the storage to Spark. (Note we focus on object storage 
although this can also be applied more broadly).  

The first is to use specialized column based formats such as Parquet68 and ORC69. These 
formats provide column wise compression, which significantly reduces the number of bytes 
to be sent. They also support column pruning, so that only columns requested by a query 
need to be sent to Spark. Finally, they sometimes support specialized metadata which can be 
used to filter columns following query predicates.  Parquet can provide more than an order 
magnitude performance improvement over other formats such as csv70. 

                                                 
64 https://www.tensorflow.org/ 
65 https://github.com/yahoo/TensorFlowOnSpark 
66 https://github.com/amplab/SparkNet 
67 https://aws.amazon.com/athena/pricing/ 
68 https://parquet.apache.org/ 
69 https://orc.apache.org/ 
70 http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/ 
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The second approach is to use Hive style partitioning to name the objects using a certain 
convention. In this case, information about object contents is encoded into object names. For 
example, if we partition per a date column then each object will contain data records with 
the same date, and the date is encoded in the object name. Spark SQL understands this 
convention and can filter the set of objects retrieved when query predicates apply to 
partitioning columns. This can significantly reduce the number of objects sent to Spark and 
the number of bytes shipped (for more information see IBM’s recent blog post71).  

The third approach is called Data Skipping and it can complement the first two approaches. 
This approach utilizes metadata to track information about objects and their dataset columns 
which can then be used for data skipping i.e. to show that an object is not relevant to a query 
and therefore does not need to be accessed from storage or sent on the network from object 
storage to Spark. IBM Research implemented Data Skipping technology in the context of the 
IOStack H2020 project72.  To make it efficient, we indexed the metadata, so that during query 
execution, can quickly filter out irrelevant objects from the list of objects to be accessed by 
the query. Note that this technique applies to all data formats, and avoids touching irrelevant 
objects altogether (see our presentation73 at the Spark Summit, where Databricks announced 
Data Skipping support in their platform. 

To get good Data Skipping one typically needs to pay attention to Data Layout. Data layout 
refers to all details regarding the storage of the data including object size, format, Hive style 
partitioning, and data partitioning, i.e. the assignment of data records to objects. We focus 
now on data partitioning. For any given query, we would like the records which satisfy the 
query to be grouped together in a small set of objects, so that the remaining objects can be 
skipped. In general, we need to partition the data so that it gives as much as possible data 
skipping for an incoming stream of queries (i.e. a workload), not just a single query. Note that 
the various queries may have conflicting requirements. Moreover, the workload changes over 
time, as does the data. 

This multi-dimensional partitioning and indexing problem has been addressed in the past with 
space-filling curves. Techniques based on Space-filling curves74 such as Z-order curves (or 
Morton curves75) map a multi-dimensional space into a single indexing dimension 
represented by an encoding string (the metadata). These techniques can handle varying data 
density by issuing a geohash code of varying length. Possible usage of these techniques is to 
convert a given query bounding box into a one-dimensional code range and to use it against 
the indexed data. However, the main drawback of these techniques in the fact that the chosen 
space filling curve and the dataset points completely determines the partitioning. In addition, 
the query history is not considered. Also, one cannot dynamically change the way partitioning 
is done, and Space-filling curves treat all dimensions in a symmetric way so no way to “prefer” 
one dimension over the other (e.g., to achieve metadata compactness and to fit the 
representation to the query distribution). 

                                                 
71 https://www.ibm.com/blogs/bluemix/2018/06/big-data-layout/ 
72 http://iostack.eu/ 
73 https://databricks.com/session/using-pluggable-apache-spark-sql-filters-to-help-gridpocket-users-keep-up-
with-the-jones-and-save-the-planet 
74 http://wwwmayr.informatik.tu-muenchen.de/konferenzen/Jass05/courses/2/Valgaerts/Valgaerts_paper.pdf 
75 “Z-order curves.” https://en.wikipedia.org/wiki/Z-order_curve 
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Recently data partitioning for the specific purpose of data skipping has become an active 
research area, and there has been significant work to define the problem and various 
approaches to solve it. A fundamental paper shows that the general problem is NP-hard, but 
devises a heuristic algorithm which performs well in practical use cases [49, 50].  A follow-on 
paper shows how improve the layout further for handle column based formats76.  

In 2017, as part of IOStack, IBM Research independently developed the notion of k-d tree 
partitioning which uses query history to choose the partitioning columns and dataset medians 
as cutting points for partitioning77. In parallel, a paper was published by an MIT team which 
used a similar approach and similarly applied it to Apache Spark for data skipping [51]. The 
work in this paper went beyond previous work by providing an adaptive approach to 
repartition datasets on the fly according to a cost model. A recent companion paper covers 
how their technique can be applied to join processing [52].  

This is a cutting-edge research area which is also promising in terms of its applicability to 
analytics on real world big datasets. We plan to undertake further research in this area as well 
as apply it to a commercial setting. 

9.11 Real-time CEP 

Streaming engines are used for real-time analysis of data collected from heterogeneous data 
sources with very high rates. Given the amount of data to be process in real-time (from 
thousands to millions of events per second), scalability is a fundamental feature for data 
streaming technologies. In the last decade, several data streaming systems have been 
released. StreamCloud [39] was the first system addressing the scalability problem allowing 
a parallel distributed processing of massive amount of collected data. Apache Storm78 and 
later Apache Flink79 followed the same path providing commercial solutions able to distribute 
and parallelize the data processing over several machines to increase the system throughput 
in terms of number of events processed per second. Apache Spark added streaming capability 
onto their product later80. Spark approach is not purely streamed, if fact it divides the data 
stream into a set of micro batches and repeat the processing of these batches in loop. 

The streaming engine for the BigDataStack platform will be a scalable complex event 
processing (CEP) able to run in federated environments and to aggregate and correlate real-
time events with structured and non-structured information stored in BigDataStack stores. 

BigDataStack CEP we will be built upon the streaming engine owned by UPM that will be 
extended to run in federated environments and perform correlation on the edge closer to the 
data sources. Furthermore, techniques will be developed to reduce the access latency to the 
BigDataStack data stores increasing the efficiency of the correlation among real time data and 
data at rest. 

The metrics exported by UPM’s CEP technology are the following:  

• CPU_LOAD: percentage of CPU used by an Instance Manager (CEP Worker). One value 
per IM 

                                                 
76 Skipping-oriented partitioning for columnar layouts VLDB 2016 https://dl.acm.org/citation.cfm?id=3025123 
77 IOStack. http://iostack.eu/deliverables/send/3-deliverables/31-d4-3-summary-and-demonstration-of-results 
78 http://storm.apache.org/ 
79 Apache Flink. https://flink.apache.org/ 
80 Apache Spark. https://spark.apache.org/streaming 
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• Subquery # Tuple Received: Number of tuple received by a sub-query.  One value per 
sub-query instance.    

• Operator # Tuple Received: Number of tuple received by a streaming operator.  One 
value per operator instance. 

• Operator Latency: Time taken by a streaming operator to process a tuple.  One value 
per operator instance. 

9.12 Predictive and Process Analytics 

In the predictive and process analytics component of the project there are two main goals to 
be achieved: Predictive Analytics and Process Analytics. Following is a brief introduction to 
the tools and technologies which will be used for the above. 

9.12.1 Predictive Analytics 

In Predictive Analytics, the main goal is the selection of a correct algorithm from a set of 
available algorithms and model hyper-parameter tuning. To this end Predictive Analytics will 
utilize the resources of the Spark libraries. 

To begin, tools from Spark SQL81, Dataframes and Datasets Guides will be used such as 
sampling a feature of Hive. When data volume is large, the need to find a subset of data to 
speed up data analysis becomes apparent. Here it comes to a technique used to select and 
analyse a subset of data to identify patterns and trends. In Hive, there are three ways of 
sampling data: random sampling, bucket table sampling, and block sampling. 

Finally, tools from the Spark MLib library will be used such as Cross-Validation, Train-
Validation Split, and Approximate Nearest Neighbour Search etc. better described in the Spark 
documentation under: Model selection and tuning and Extracting, transforming and selecting 
features.  

9.12.2 Process Analytics (Process Mining) 

In Process Analytics, the main goal is to enhance, optimize process models derived from the 
process modelling framework and to discover process models from raw event log files. For 
the enhancement and optimization phase to take place an event log for the process itself will 
be required from the global tracker consisting of the steps taken for the application in each 
component of the architecture. 

For these tasks a tool such as ProM (which is short for Process Mining framework) [40] will be 
a good candidate. ProM is an Open Source framework for process mining algorithms. 

The ProM framework integrates the functionality of several existing process mining tools and 
provides many additional process-mining plug-ins. The ProM framework supports multiple 
formats and multiple languages, e.g., Petri nets, EPCs, Social Networks, etc. The plug-ins can 
be used in several ways and combined to be applied in real-life situations.  

 

9.13 Seamless Analytics Framework 

Typically, logical data sets of IoT data will become too big to be kept in a single “storage entity” 
(e.g., a database for Cloudant, or a bucket/container for Object Storage). Therefore, 

                                                 
81 Spark SQL. https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#supported-hive-features 
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accessing a single logical data set may require targeting a continually changing and possibly 
large set of storage entities, thus rendering difficult the access to the data. To hide this 
complexity, the seamless storage driver analyses queries and maps them to exactly the 
storage entities that contain relevant data. 

Figure shows an example where data is ingested with the Watson IoT Platform within 
multiple Cloudant databases with a daily bucketing interval. Using the seamless storage 
driver, which implements the data sources API82 (a pluggable mechanism for accessing 
structured data though Spark SQL), a user can write simple and intuitive queries against the 
logical dataset without needing to refer to the various underlying databases. Moreover, the 
driver analyses the queries and accesses only the relevant databases are accessed. 

 

Figure 4. Data ingestion in Watson IoT Platform 

9.14 Application Dimensioning Workbench 

For the Load injector case, we will utilize Docker Swarm as an easy mean to scale stress tests 
towards the target application/data service. For each case/category that needs to be tested, 
the respective tool from a wide set of available ones can be used to understand and 
implement a load, to cater for the different range of application types. Thus, baseline Docker 
images will be used, prepared in advance for the specific baseline tool case, in which the load 
file will be injected based on the test scenario. As an example, targeting at the project data 
stores, YCSB will be one candidate towards the LXS case while Jmeter jmx files may be used 
to target application level components such as web servers or for example the case of HTTP 
requests against the IBM Object store. One of the main benefits of this approach is that we 
separate the Load Injector framework from the baseline load generation tool, thus being able 
to reuse the former in different cases of the latter. Another benefit is the easy scale up of the 
Docker Swarm service approach to cater for extreme test conditions and avoidance of client-
side bottleneck phenomena. 

                                                 
82 https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html 
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With relation to other baseline technology aspects, we anticipate inputs coming in and out of 
the dimensioning tool to be based on the Docker service manifest template (Docker 
Compose), to indicate service structure, component interconnection and naming. To extend 
the level of information in the file, we will also abide by the Docker specification (e.g. to 
include size of the resource per service element), but also inclusion of further metadata based 
on the custom metadata structure of the specification. 

For the case of the dimensioning workbench front end, one candidate tool refers to Node-
RED that can be used to easily create custom dashboards and integrate between different 
services, while performing the various transformation and adaptation tasks needed (e.g. to 
understand the input file, start the testing process and generate the output file). This tool is 
expected to be used mainly for coordinating the various actions and presenting results to the 
user and not for the core modelling work which would be performed in the backend. For the 
case of the Modelling Engine backend, dimensioning models are anticipated to be based on 
artificial neural networks. To this end, candidate technologies include tools such as GNU 
Octave, an open source equivalent of Matlab, while other candidates include the Tensorflow 
library. Selection will be performed during the project. Potential integration of ML within 
Node-RED (e.g. through the usage of node-red-contrib-machine-learning node) will also be 
investigated. However, given that the latter primarily deal with classification aspects (and not 
regression ones as expected to be used by Dimensioning), this approach would need to be 
based on a concept such as QoS (Quality of Service) class categories. 

9.15 Process modelling framework 

KIE (Knowledge Is Everything) is an umbrella project. KIE contains the following different but 
related projects offering a complete portfolio of solutions for business automation and 
management: 

- Drools is a business rule management system with a forward-chaining and backward-
chaining inference-based rules engine, allowing fast and reliable evaluation of business 
rules and complex event processing.  

- jBPM is a flexible Business Process Management suite allowing you to model business 
goals by describing the steps that need to be executed to achieve those goals. 

- OptaPlanner is a constraint solver that optimizes use cases such as employee rostering, 
vehicle routing, task assignment and cloud optimization. 

- Drools Workbench is a full featured web application for the visual composition of custom 
business rules and processes. 

- UberFire is a web-based workbench framework inspired by Eclipse Rich Client Platform. 

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows 
executing business processes using the BPMN 2.0 specification. It can run in any Java 
environment, embedded in an application or as a service.  jBPM is also not just an isolated 
process engine. Complex business logic can be modelled as a combination of business 
processes with business rules and complex event processing. It can be combined with the 
Drools project to support one unified environment that integrates these paradigms where 
one can model business logic as a combination of processes, rules and events. It supports 
adaptive and dynamic processes that require flexibility to model complex, real-life situations 
that cannot easily be described using a rigid process. 
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KIE is a full suite and regarding our needs it includes a rules engine, a modelling & execution 
environment, and several adapters (out of the box REST service task).  Although jBPM is a 
BPMN 2.0 tool, it seems that declarative modelling is possible when combined with Drools. 
This enables to select a specific set of rules to execute at a specific point in the workflow using 
the native features of Drools. 

At this early phase, it seems as an appropriate base framework to use towards building the 
processing modelling framework. A more thorough testing and analysis is ongoing while other 
platforms are under testing as well (i.e., node-red, dpil). Other technologies needed to 
support all the functions required are under research and dependent on the selections of 
other components of the architecture. 

Node-RED83 is a programming tool for wiring together hardware devices, APIs and online 
services in new and interesting ways. It is a browser-based tool that provides a drag-and-drop 
interface for selecting nodes from a palette and wiring them together.  

Node-RED is open source software released under the Apache 2.0 license. Although initially 
targeted for Internet of Things environments, it is highly extensible and has been successfully 
been employed in a wide range of applications. 

 

Figure 5. Node-red programming example 

Node-RED will provide a visually appealing and effective User Interface fulfilling all key 
requirements of the Process Model Framework. This will allow us to only focus on 
BigDataStack functionality and avoid having to build an advanced tool from scratch. 

                                                 
83 https://nodered.org/  

https://nodered.org/
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9.15.1 Building Blocks Palette 

The Process Model Framework will make all building blocks in a suitable palette. The building 
blocks will be classified in comprehensive categories and it will be possible to apply filters on 
them. Users will drag-and-drop a building block from the palette into the editor. Visual hints 
will make apparent what connections between the blocks are allowed. The Process Model 
Framework will constantly validate the edited model and provide clear error messages to the 
user. 

It is to be expected that during the project the list of building blocks will undergo many 
changes. The Process Model Framework based on Node-RED will be designed in such a way, 
so that it can easily and quickly adapt to the changes. 

9.15.2 Output Format 

The Process Model Framework will export the designed model into an output format suitable 
for all subsequent layers in the architecture. The following notations could be considered: 

- Drools84 (business rule management system language) 
- BPMN (Business Process Model Notation) 
- DPIL (Declarative Process Intermediate Language) 

The exported model will be used by subsequent layers of the architecture. The notation must 
be so selected that it imposes as few requirements to these layers as possible. Also, the 
notation must be flexible enough to support requirement changes. For these reasons, it is 
suggested that a simple Drools file is used. Drools is a widely-used system and allows the 
creation of both simple and advanced rules notations. It supports adding metadata to rules, 
which will allow adding BigDataStack properties to model steps. It will finally be easy to read 
and process the exported model from all subsystems of the architecture. 

9.16 Data Toolkit  

The main objective of the Data Toolkit is to design and support data analysis workflows. Such 
analysis workflows are designed based on the business requirements that will drive the 
process modelling. The set of high level business process analysis steps already identified, 
along with the indications for the data analysis algorithms that must be used per step, must 
be detailed in a scientific basis leading to the production of an end-to-end analysis workflow 
that can be realised over an application’s orchestrator. Such an end-to-end analysis workflow 
is defined as the analysis playbook within BigDataStack. 

Playbooks consist of a set of data mining and analysis processes, interconnected among each 
other in terms of input/output data streams/objects. It is represented in the form of an 
analysis application graph (following concepts from cloud applications deployment and 
orchestration) that includes the set of individual processes as nodes of the graph along with 
their binding/dependencies in the form of virtual links.  

Playbooks should let data scientists design and develop complex analytic processes by 
combining set of available or under development analytic functions/primitives. This should 
include characteristics related to input data parameters (type of data sources without any 
binding), output data parameters, analysis configuration parameters, execution substrate 

                                                 
84 https://www.drools.org/  

https://www.drools.org/
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requirements and the software packages. Following, interconnection of such nodes leads to 
the production of the playbook (overall graph).  

A strict requirement regards the capacity to support various technologies/programming 
languages for development of analytics processes, given the existence and dominance of set 
of them (e.g., R, Python, Java, Scala). The developed analytics processes have also to be 
deployable over big data computing frameworks (e.g. Apache Spark, Apache Flink). 

The data toolkit can be implemented based on existing open source solutions along with their 
appropriate extension and customisation. Such solutions include -among others- tools like 
Conductor85 that supports orchestration of micro-services-based process flows, OpenCPU86 
that is a system for embedded scientific computing and reproducible research. The exact tool 
to be adopted must be decided according the specification of the overall architectural 
solution of BigDataStack. 

9.17 Adaptable Visualizations  

The Adaptive Visualisations will be implemented as a web Single Page Application (SPA). 
JavaScript libraries will be used for a fast loading, interactive and adaptable user interface 
(e.g. React or AngularJS) and for data visualization (e.g., Highcharts or D3).  The following 
diagram depicts the main technologies to implement the application. 
 

 
 

The application will be implemented with React87 javascript library. React is a modern 
javascript library that encourages good architectural design and follows a component-based 
approach. It makes it easy to design, debug and test fast interactive applications. For the 
graphs, Highcharts88 library will be used. Highcharts is a widely used, royalty-free commercial 
javascript library for creating impressive interactive web diagrams. It supports numerous 
diagram types that we expect to cover all BigDataStack needs. Should a more advanced or 
custom diagram is needed, the D3.js89 library will be employed. For both Highcharts and D3.js 
ready-made components for React are available. 

For certain use-cases visualization of real-time data is required. The following diagram depicts 
the components that will implement the real-time visualizations. 
 

                                                 
85 https://netflix.github.io/conductor/  
86 https://www.opencpu.org/  
87 https://reactjs.org/  
88 https://www.highcharts.com/  
89 https://d3js.org/  
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A Spark Cluster will be set-up that will read data from a data source through an appropriate 
API. The Spark Cluster will provide the Spark Streams that will process the data and produce 
the appropriate aggregations to be pushed in an intermediate database. A Spring Boot 
application will consume the aggregated data and will provide a Web Socket interface to the 
React Application. This will allow the real-time update of the visualization without the user 
having to refresh the page. 
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