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Abstract. Battery Electric Vehicles (BEVs) is a promising technology. However, it suffers 

from low range characteristics thus increasing the anxiety to prospect customers and hindering 

its market penetration. To overcome this challenge, a range extender that can generate 

additional power to charge the battery could be the solution. This brief review article will 

highlight the prospects and challenges of range extender technology for electric vehicles. A 

number of automobile manufacturers have launched their Range Extended Electric Vehicles 

(REEVs) models and the detailed comparison will be given. Several types of range extenders 

will be discussed, including the internal combustion engine, microturbine, and fuel cell. Lastly, 

this report will suggest the use of Low Temperature Combustion (LTC) i.e Homogeneous 

Charge Compression Ignition (HCCI) engine be utilised as range extenders for electric 

vehicles. 

 

 

 

1. Prospects and challenges of REEVS 

One advantage of using range extender technology is its ability to lower the capital costs of BEVs by 

downsizing the battery. It is generally known that the battery capacity of BEVs will be compromised 

in design. If the battery is over-capacity, the weight and the initial cost will increase. Yet, if the battery 

is under-capacity, the overall efficiency will decrease. This is because the engine will be used more 

frequently than the battery. As a result, the overall efficiency will be lower as the output of mechanical 

energy by the engine in REEVs must be converted further by the power converter. Therefore, the 

progress in range extenders will greatly affect the design of battery capacity for electric vehicles. 

 An example of an electric vehicle equipped with a range extender is Chevrolet Volt released in 

2014. As can be seen in table 1, its battery capacity can only cover less than 60 km driving range. For 

comparison, Renault Fluence ZE (an electric vehicle without range extender) can achieve as far as 185 

km. However, the range extender used in Chevrolet Volt is able to increase its total driving range to 

more than 480 km despite its battery capacity is 27% lower than the Renault Fluence. Table 2 shows 

the comparison between REEVs and EVs as well as ICE vehicles. Normal EVs without range extender 

has driving range maximum up to 210 km, while ICE vehicles can be driven to more than 700 km. The 

application of EVs in real-world has long been limited by this range anxiety issue. However, with the 

assistance of range extenders, the driving range can increase significantly. 
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Table 1. Comparison between two electric vehicles with and without a range extender [1]. 

Model Released 

Year  

Range 

extender 

Battery 

capacity 

Battery 

range 

Total range 

 

Chevrolet Volt 2014 1.4 L SI 

engine 

16 kWh < 60 km > 480 km (with range extender) 

Renault Fluence 

ZE 

2015 N/A 22 kWh 185 km 185 km (without range extender) 

 

 

Table 2. Comparison of several EV models [2]. 

Model Year Price Driving Range 

Ford Focus ICE 2014 $20,000 760 km 

BMW i3 2013 $41,350 160 km (with range extender 310 

km) 

Chevrolet Volt (E-

REV) 

2010 $34,995 80 km (with range extender 670 

km) 

Opel Ampera (E-

REV) 

2011 €39,990 80 km (with range extender 500 

km) 

Nissan Leaf 2010 $28,980 200 km 

Ford Focus Electric 2013 $35,995 120 km 

Renault Zoe 2013 €20,990 210 km 

Fiat 500e 2013 $31,800 60 km 

Chevrolet Spark EV 2013 $26,685 130 km 

 

2. Types of range extenders systems 

 

2.1. Internal combustion engine (ICE) 

The range extender for electric vehicles in the form of an internal combustion engine is available in 

numerous engines. Figure 1 shows the basic concept of range extended electric vehicles (REEVs) 

using conventional internal combustion engine concept.  

 
Figure 1. Principle of REEVs with internal combustion engine, adapted from [1]. 
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The engine and a generator are connected to the power converter. If the battery is sufficient, the 

engine will not be used. On the contrary, when the battery is running low, the engine will be activated 

to generate mechanical energy. A generator then converts the mechanical energy into electrical energy 

that can either be stored or used by the electric motor to run the vehicle. 

Despite the common use of Spark Ignition (SI) engine as a range extender, one interesting option is 

offered by Wankel engine. The concept of the Wankel engine used for range extender is shown in 

figure 2. As for diesel engine, its high emission characteristics and bigger construction hinder its 

application as range extenders. 

 

 
Figure 2. Wankel range extender system [3]. 

 

2.2. Free piston  

The concept of free-piston motors is like conventional internal combustion engine except that the 

piston and connecting rod move linearly as shown in figure 3. 

 

 
Figure 3. The basic principle of free-piston motors [4]. 

 

The German Aerospace Center developed free-piston motors by combining 2-stroke combustion 

with a linear generator and a gas spring with two pistons moving in opposing directions [4]. The 

valves are controlled electromagnetically. Since the movement of the free piston enables for a variety 

of stroke and compression ratio, the engine could be optimised for different performance needs. 

Therefore, the efficiency of free-piston motors will be higher compared to the conventional engine. In 

addition to that, noise and vibrations can be reduced as the pistons move linearly in opposite 

directions.  
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Figure 4. shows the two types of Free Piston Linear Generator (FPLG) developed for the range 

extender. Figure 4 (a) is a separate FPLG in which the system has two separate FPLG modules with 

two combustion chambers, while figure 4 (b) is a central FPLG where the system has one central 

combustion chamber. 

 

 
Figure 4. Two types of free-piston motors (a) separate (b) central [5]. 

 

2.3. Micro turbine 

The Micro Turbine works in the same way as internal combustion engine in which it converts the 

chemical energy into mechanical energy. This energy is then used by the generator to produce 

electricity. The advantages of MGT is its continuous burning, fuel flexibility and very low emissions 

thus eliminating exhaust after treatment. Since the exhaust after treatment is not required, the oil 

circuit can be omitted and the unit becomes compact, light and relatively affordable [5]. 

 

2.4. Fuel cells 

In addition to using conventional engine and turbine, the range extender can be supplied by the fuel 

cell. Unlike other range extender technology, a fuel cell converts the chemical energy directly into 

electrical energy thus eliminating the necessity of mechanical energy conversion. Moreover, compared 

to BEVs and Fuel Cell Electric Vehicles (FCEVs), a report from Offer et. Al. [6] suggested that 

normal EVs with a downsized fuel cell as a range extender will be more economically attractive by 

2030. Imperial Racing Green project in Imperial College, UK has designed and tested a fuel cell range 

extender on a motorsport electric vehicle [7]. A polymer electrolyte membrane was selected as the fuel 

cell range extender and connected to the battery pack. Polymer electrolyte is considered a 

sophisticated technology to be implemented as a range extender. Hydrogen can be the alternative to 

substitute the polymer electrolyte. However, this study has shown the possibility of fuel cell extender 

to be used in an electric vehicle using polymer electrolyte. 

 

2.5. Summary 

Table 3 below compares the four range extender systems mentioned above. For the most lightweight 

and compact, Wankel offers the best feature with a power density of 860 W/kg. However, its 

efficiency is the lowest with only 19-27%. The highest efficiency can be achieved using a fuel cell. 

The fuel cell also gives relatively high density with 650 W/kg, the second in the list. Moreover, a fuel 

cell does not need exhaust after treatment and has very good characteristics in terms of noise, vibration 

and harshness. However, its production cost is very costly and suffers from the flexibility of the fuel 

that can be used. As for microturbines, it is more suitable to be applied in REEVs with small batteries 

since the turbine requires relatively bigger space and volume. Therefore, the use of conventional 

internal combustion engine, in this case, SI engine, is still the preferred choice. Although its efficiency 

is not as high as fuel cell, the efficiency of the SI engine is comparable to other range extender systems 

and more affordable due to its mass production unit. 
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Table 3. Comparison of range extender technologies [5]. 

 

3. Research opportunity in REEVs technology 

As previously discussed above, the internal combustion engine is still the preferred choice to be used 

as range extenders for electric vehicles. However, most researches investigating ICE engine as range 

extender units are mainly conducted using conventional SI engine. Low Temperature Combustion 

(LTC) concept has received much attention in the last decade due to its prospects. Yet, its application 

is not widely used in electric vehicles as the range extender. 

One of LTC technology that attracts numerous attentions is Homogeneous Charge Compression 

Ignition (HCCI) engine [8]. HCCI is developed to contend the existing SI and CI engines. The major 

concept of HCCI is to combine the best features of both SI and CI engines, offering a promising high-

efficiency engine with low NOx and PM emissions. Not only can HCCI engines be operated using 

gasoline fuels, but it is also compatible with diesel conventional fuels, making it possible with most 

alternative fuels such as biofuels and biodiesels. HCCI engine has surely the prospect to provide 

gasoline-like low emissions, while at the same time achieve diesel-like efficiencies.  

 The implementation of HCCI engines is, however, hard to be implemented due to two reasons. 

Firstly, the primary difficulty is their auto-ignition timing. HCCI engine does not have an external 

device to start the ignition such as spark plug (SI engine) or injector (CI engine), thus the timing of 

auto-ignition for HCCI engine is more complex. The timing for air and fuel to auto-ignite in HCCI 

engine is controlled by the chemical kinetics of the mixtures. Therefore, HCCI engines require more 

complicated combustion control. 

 The second challenge with HCCI engines is their narrow operating ranges. This is the result of the 

difficulties to control its combustion phasing, especially at low and high loads. At low loads, the 

temperature of combustion is too low to achieve complete combustion. Misfire will occur and the 

incomplete combustion will increase the emissions of carbon monoxide and hydrocarbons. At high 

loads, the heat release is too fast leading to noisy and unstable combustion. Consequently, knock will 

occur, and thermal efficiency will decrease due to the increase of heat losses. Therefore, the HCCI 

engine operating range is limited by a misfire at low loads and knock at high loads. 

 The use of HCCI engine as range extenders allows the engine to run in a narrow operating range 

without having to switch the engine to conventional mode i.e. SI or CI mode. One research group that 

 

Micro 

Turbine 

Free Piston Fuel Cell Wankel SI 

Separate Central 

Efficiency 25 – 35 % 31 – 33 % 33 – 34 % 60 %  19 - 27 % 20 - 30 % 

Packaging 

variability 
some some some 

large 

amount 
none none 

Volume power 

density 
95 W/l 250 W/l 280 W/l 825 W/l 640 W/l 315 W/l 

Power density 400 W/kg 290 W/kg 350 W/kg 650 W/kg 860W/kg 430-500 W/kg 

Production cost over ICE slightly over ICE 
very 

expensive 

cheap due to easy 

mass production 

cheap due to easy 

mass production 

Emissions – after 

treatment 

no after 

treatment 
catalyst 

no after 

treatment 
catalyst catalyst 

Flexibility of fuel is possible 
is possible with full 

advantage 
not possible 

is possible but not 

full advantage 

is possible but not 

full advantage 

Noise – Vibration 

– Harshness 

(NVH) 

good mid very good mid slightly bad 

Scalability mid-good good mid-good good good 

Dynamics 
slow, 10 - 90 

s 
fast,  < 1 s 

mid, 3 - 30 

s 
fast,  < 1 s fast,  < 1 s 
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initiated studies utilising HCCI engine as range extenders in electric vehicles is Michigan Technology 

University. Their published papers can be found in these references [9-11]. 
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