
This is the Accepted Manuscript of a conference paper presented at

the 2020 IEEE International Conference on Industrial Engineering

and Engineering Management, 14-17 December 2020, Singapore,

published by IEEE.

 Abstract –The existing literature on distributed scheduling

mainly focuses on the performance measures makespan, total

completion time, or costs. Due date related objectives that are

gaining in importance in the industry have not been

considered to a similar extent. In this contribution, we present

a model formulation of the distributed job shop scheduling

problem with due date consideration and present adapted

greedy heuristics as well as a genetic algorithm to solve large

problem instances. Computational experiments are carried

out to assess the performance of the model and the algorithms.

The heuristics and metaheuristics show promising results in

reasonable computation times, with the genetic algorithm

outperforming the other heuristics. The results indicate that

managers should consider incorporating due date related

objectives in the decision-making process of production

planning and scheduling in distributed manufacturing.

Keywords – Multi-factory scheduling, distributed

scheduling, distributed job shop, due date objective, greedy

heuristic, genetic algorithm

I. INTRODUCTION

 Manufacturing firms are increasingly distributed in

geographical terms and operate multiple factories, as a

result of globalization and increased customer demands for

fast order delivery [1], [2]. This decentralization of

production facilities offers advantages such as lower costs,

proximity to customers, and flexibility but also poses new

challenges regarding planning and scheduling of

production in the factories. Scheduling orders in multi-

factory networks involve more steps than the already

complex task of scheduling jobs in a single factory [2], [3].

Before sequencing jobs on machines locally, the orders (as

jobs) need to be assigned to a factory. The problems vary

in complexity, depending on the manufacturing principle or

configuration, similar to the single-factory case. This article

focuses on the job shop configuration, which is typical for

various industries and also present in distributed networks

[4], [5]. In a job shop, a set of n jobs have to be

manufactured, each with its own routing on the m

machines. Single-factory job shop scheduling has been

studied extensively by scholars ever since the heuristic by

Jackson in 1956 [6]. Distributed scheduling has recently

gained the attention of scholars, for recent reviews refer to

[2], [7].

 We provide a short review of relevant studies for this

article that have been published on the multi-factory or

distributed job shop scheduling problem (DJSP): Jia et al.

[8] developed genetic algorithms (GA) to minimize

makespan and costs. Chan et al. examined the DJSP with

flexible routings and makespan objective with a GA [9].

Then, [10] focused on a GA to minimize the total

completion time of all jobs in the DJSP. In [11], a tabu

search and simulated annealing algorithm were hybridized.

Two models and three greedy heuristics were proposed for

the DJSP with a makespan objective in [12]. Wu et al. [13]

examined different chromosome representations in GAs for

the DJSP with a makespan objective.

 As this short and selective review indicates, previous

studies have primarily focused on the performance

measures makespan (Cmax) or total completion time (∑ 𝐶𝑗).

However, the manufacturing industry is evolving quickly

and trends like Industry 4.0 led to a situation where for

many manufacturing firms, timely deliveries without

delays are at least as important as optimal utilization of

machine capacities and swift completion of production

orders (Cmax) [14]. Earliness and tardiness of orders have

different effects on the present and future performance of

firms (see Fig. 1). Both objectives should be addressed in

order to reach an optimal control of production towards

meeting due dates.

 To advance in this promising research area, we

formulate the problem as a MILP model with a due date

objective in this contribution and adapt several heuristics

from the literature on classical job shop scheduling for the

DJSP Additionally, we propose two adapted greedy

heuristics and a genetic algorithm to solve large problem

instances efficiently. Experiments are conducted to

evaluate the performance of the algorithms using the well-

known instances of Taillard [15] and Fisher and Thompson

[16].

 The remainder of this paper is structured as follows: In

Section 2, the mathematical model is presented and

described. Section 3 contains the adapted and developed

algorithms and heuristics, whereas Section 4 presents

numerical experiments and results. Section 5 concludes the

paper with an outlook on further research opportunities.

Fig. 1. Cost effects (excerpt) of due date violation

II. PROBLEM DEFINITION AND

MATHEMATICAL MODEL

 The problem under consideration is modeled as a

mixed-integer linear programming model, which adopted

the processing constraints (7) and (8) from [12]. Each

machine can only process one job at the same time.

Although transporting work-in-process orders to another

factory in case of disruptions or loss of machine capacity

may be possible, it is in most cases not economically

Earliness TardinessDue Date

Storage costs, cost of tied-

up capital, storage risk

Contractual penalties, loss of

reputation, loss of future profits

Multi-factory Job Shop Scheduling With Due Date Objective

Jacob Lohmer1, Daniel Spengler1, Rainer Lasch1

1Chair of Business Management, esp. Logistics, Technische Universität Dresden, Dresden, Germany

 jacob.lohmer@tu-dresden.de

feasible and not permitted in the model. The factories are

homogeneous and equipped in the same way. Demand is

deterministic and static. The following list of notation is

used in the model:

J Number of jobs i, j = {1, 2, … , 𝐽}

M Number of machines m, n = {1, 2, … , 𝑀}

S Number of factories s = {1, 2, … , 𝑆}

𝑝𝑖,𝑚 Processing time of job i on machine m

𝑎𝑖,𝑚,𝑛 Binary variable: 1 if for job i machine m is used

immediately after machine n, 0 otherwise

𝐷𝑖 Due date of job i

L A large positive number

The decision variables are as follows:

𝑋𝑖,𝑗,𝑚 Binary variable: 1 if job j is processed on

machine m after job i, 0 otherwise

𝑌𝑖,𝑠 Binary variable: 1 if job i is assigned to factory

s, 0 otherwise

𝐶𝑖,𝑚 Continuous variable for the completion time of

the operation of job i on machine m

𝐶𝑚𝑎𝑥,𝑖 Continuous variable for the completion time of

job i

𝐸𝑖 Earliness of job i

𝑇𝑖 Tardiness of job i

V Total due date deviation of the schedule

The MILP model is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑉 = ∑(𝐸𝑖 + 𝑇𝑖)

𝐽

𝑖=1

 (1)

Subject to:

 𝐶𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥
𝑚

𝐶𝑖,𝑚 ∀𝑖 (2)

 𝐶𝑚𝑎𝑥,𝑖 + 𝐸𝑖 − 𝑇𝑖 = 𝐷𝑖 ∀𝑖 (3)

 ∑ 𝑌𝑖,𝑠 = 1

𝑆

𝑠=1

 ∀𝑖 (4)

 𝐶𝑖,𝑚 ≥ 𝑝𝑖,𝑚 ∀𝑖, 𝑚 (5)

 𝐶𝑖,𝑚 ≥ 𝐶𝑖,𝑛 + 𝑝𝑖,𝑚 ∀𝑖, 𝑚, 𝑛 ≠ 𝑚|𝑎𝑖,𝑚,𝑛 = 1 (6)

𝐶𝑗,𝑚 ≥ 𝐶𝑖,𝑚 + 𝑝𝑗,𝑚 − 𝐿(3 − 𝑋𝑖,𝑗,𝑚 − 𝑌𝑖,𝑠 − 𝑌𝑗,𝑠)

∀𝑚, 𝑠, 𝑖 < 𝐽, 𝑗 > 𝑖
(7)

𝐶𝑖,𝑚 ≥ 𝐶𝑗,𝑚 + 𝑝𝑖,𝑚 − 𝐿(2 + 𝑋𝑖,𝑗,𝑚 − 𝑌𝑖,𝑠 − 𝑌𝑗,𝑠)

∀𝑚, 𝑠, 𝑖 < 𝐽, 𝑗 > 𝑖
(8)

 𝑌𝑖,𝑠 ∈ {0,  1} ∀𝑖, 𝑠 (9)

 𝑋𝑖,𝑗,𝑚 ∈ {0,  1} ∀𝑖 < 𝐽, 𝑗 > 𝑖, 𝑚 (10)

𝐶𝑖,𝑚 ≥ 0; 𝐸𝑖 ≥ 0; 𝑇𝑖 ≥ 0 ∀𝑖, 𝑚 (11)

 Equation (1) is the objective function. The constraint

(2) specifies that 𝐶𝑚𝑎𝑥,𝑖 is the latest completion time of one

of the individual processing steps on one of the machines.

The earliness or tardiness of each job is calculated in (3).

Then, (4) ensures that each job can only be assigned to one

factory. Constraint (5) determines that at least the

corresponding processing time must have elapsed before a

job can be transferred to the next machine. The following

machining step can be terminated at the earliest when the

production time for this step has elapsed, in addition to all

previous processing times (6). Constraint sets (7) and (8)

indicate that a machine can only process one job at a time:

If two orders i and j are processed in the same factory and j

is processed on machine m after i, then j must be completed

at least by its processing time p on machine m later than i.

Constraint sets (9), (10) and (11) specify the decision

variables of the model.

 The model can be extended to focus on minimizing

costs of due date deviation (early or late completion). If a

specific weighting factor can be assigned to each customer

order (indicating the importance of different customer

orders), the model (with the remaining parameters and

decision variables unchanged) can be adapted to:

𝑤𝐸,𝑖 Weighting factor for earliness of job i

𝑤𝑇,𝑖 Weighting factor for tardiness of job i

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑉𝑔  =   ∑ 𝑤𝑇,𝑖 ⋅ 𝑇𝑖 + ∑ 𝑤𝐸,𝑖 ⋅ 𝐸𝑖

𝐽

𝑖=1

𝐽

𝑖=1

 (12)

 As the determination of the weighting factors is very

subjective, we focus on the first model without weighting

factors in this contribution. Nevertheless, the adaption

highlights the flexibility and simplicity of the developed

MILP model.

III. HEURISTICS AND META-HEURISTICS

A. Heuristics (Two-stage iterative approaches)

 One way to reduce the complexity of the problem is by

taking an iterative solution approach. The two decisions in

the DJSP are split into two phases to find near-optimal

solutions in reasonable computation times. First, jobs are

assigned to factories, followed by the sequencing of jobs on

machines. Here, the assignment rule significantly

determines the quality of the solution. Allocating the jobs

according to descending due dates does not lead to a

promising solution. Alternatively, the jobs can be sorted

according to their sum of processing times. The difference

between this makespan and the due date (“slack”) is then

used to determine the assignment sequence. In this way, the

flexibility in planning is enhanced by preferring urgent jobs

- at the expense of longer idle times for jobs with a lot of

slack - when creating the plan. However, as the machines

are still unscheduled when jobs are assigned, measuring the

specific earliness of jobs is not trivial. Therefore, we solely

focus on the tardiness of jobs for the used assignment rule,

which is conceptually similar to the NEH2 rule [17] that

performed well for the distributed permutation flow shop

scheduling problem. The main difference is the order in

which the jobs are selected, which is minimum slack, i.e.,

the buffer time. Then, the first s orders are assigned to the

s plants one by one in order to separate the most urgent jobs

and avoid interference. Each factory receives one urgent

job first to ensure that the urgent jobs are started

immediately. Subsequently, for the next job in the sorted

list, the assignment that leads to the earliest completion

time is computed. Various priority/dispatching rules may

be used for this calculation. However, rules like

FIFO/FCFS or SPT do not yield good results in the context

of due date consideration. We focus on rules that include

slack and can be used intuitively to meet due dates:

 Minimum slack (MSLACK): MSLACK iteratively

checks the slack of all jobs and selects the job with the

least slack whenever a machine is free. This includes

observing the other restrictions like the machine

sequence of each job.

 Slack per remaining processing time (S/RPT): S/RPT

divides the remaining slack by the sum of outstanding

raw processing times, to avoid the tendency of

MSLACK to prefer long processing steps over shorter

ones. The jobs are then sorted in ascending order of this

quotient and assigned accordingly.

 Slack per remaining operations (S/OPN): Another way

to modify MSLACK is by integrating the number of

remaining operations in the calculation. Jobs are then

sorted according to the remaining slack for each

remaining process step.

 The following steps are similar for all heuristics. Each

job is assigned to a factory and the resulting completion

times determined. Once all jobs are assigned, the sequence

for each factory is determined, either by again using the

three presented rules or by using more sophisticated

approaches like the GH1 heuristic [12] presented next.

B. Two-stage greedy heuristic (GH1)

Greedy heuristics have been successfully applied to

many combinatorial problems and usually derive a

performant solution in a reasonable amount of time. For the

problem at hand, we use an encoding scheme for GH1 that

consists of as many permutations as factories are available.

Each value in the permutation represents an operation and

each job appears as often as it needs operations processing.

As the quality of the algorithm depends on a performant

starting solution, the start permutation is randomly mixed.

Subsequently, the operations are iteratively inserted into

the sequence of operations in each factory. Naderi and

Azab [12] use an additional rule for job-factory

assignments based on the smoothing of workload and

consider each machine separately. We use GH1 with the

MSLACK rule in this article to focus on the minimization

of due date deviations.

C. Greedy heuristic (integrated approach)

 So far, the presented heuristics and rules focused on a

two-stage approach. We now turn to an integrated approach

of assigning jobs to factories and sequencing jobs on

machines in each factory. A greedy heuristic (GH3 by [12])

was adapted to the examined problem with a due date focus.

The job-factory assignment is based on minimum slack and

the shortest cycle times in the plants. The processing

sequences of the jobs are calculated in each iteration using

the GH1 procedure, where all plants are considered in each

step. The procedure of the algorithm is as follows:

 First, one job is assigned to each factory. Again, jobs

with minimum slack are selected first and the makespan is

calculated based on their processing times. The next job is

then assigned to the factory with the shortest makespan

after the assignment of the respective job. This is done by

adding each operation to the previous sequence and

inserting it in all possible positions, without, however,

changing the previously determined sequence. For each

position in the sequence, the makespan is recorded and then

compared with the other position to select the best solution.

If several positions lead to the same (best) solution, the

earliest is chosen. This selection enables the jobs that are

scheduled subsequently to be completed as early as

possible and potential delays can be avoided. Unlike the

two-stage algorithm GH1, GH3 does not depend on a

random start sequence.

To specifically focus GH3 on due dates, we created a

further adaption, denoted as GH3_SlackMin: The job-

factory assignment is made after calculating the slack of all

orders. Each job is iteratively assigned to each factory and

scheduled using the exchange procedure. Then the

remaining slack of all jobs is cumulated for the sequence.

The job is assigned to the factory where the slack is

maximized, that is, where flexibility is higher compared to

the other locations. In this way, avoiding tardy orders is

especially considered.

D. Genetic algorithm adapted for the DJSP with due date

objective

 Genetic algorithms (GA) are popular meta-heuristics

for scheduling problems due to their ability to investigate

large solution spaces and simultaneously apply local search

methods. We use a simple chromosome encoding for the

adapted GA (based on [8]) aimed at the DJSP with a due

date objective:

{'1j03' '2j01' '2j05' '1j04' '2j01' '1j02' '1j02' '1j03' '1j04' '2j05'}

 The first number indicates the factory, followed by the

job number. The first appearance of the job number

indicates the first operation, the second appearance the

second operation and so on. The fitness value that is

calculated for each chromosome refers to the due date

deviation of each developed schedule. Rather than

randomly assigning a job to a factory during initialization

and only changing this assignment rarely using global

mutation, we modify the crossover and mutation operators

to maintain a more extensive search space for the

algorithm.

 The initial job assignment is done separately for each

chromosome in GA_adapted (see Fig. 2). In the iterations,

two chromosomes are selected for the crossover process

and the subsequences are exchanged. The feasibility of the

new solution is checked and in case of a violation (i.e., job

operations now spread among more than one factory), the

crossover procedure overwrites the previous factory

assignment for all further genes of this job. Thus, each

generation explores new options for factory assignment

using the crossover operator. Additionally, the best

chromosome from the last iteration and the best

chromosome overall are transferred to the next generation.

 Fig. 2. The general outline of GA_adapted.

 The succeeding chromosome is assessed regarding its

fitness value after crossover and after mutation. The old

chromosome is replaced if the new one outperforms it. This

facilitates the movement of chromosomes towards a better

solution and the crossover procedure prevents an excessive

restriction of the search space.

 In mutation, a better chromosome is taken over from

the next generation with a certain probability. The selection

probability is determined using a ranking of chromosomes

based on their fitness value that is then transformed into a

vector of selection probabilities (p) using the following

equation [18]:

𝑝𝐿𝑖𝑛𝑅𝑎𝑛𝑘,𝑖 =
𝛼 + (

𝑟𝑎𝑛𝑘𝑖

(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 − 1)
) × (𝛽 − 𝛼)

𝑃𝑜𝑝𝑆𝑖𝑧𝑒

 with 𝛼 = 2 − 𝛽; 0 ≤ 𝛼 ≤ 1, 1 ≤ 𝛽 ≤ 2

 The greater 𝛽 is, the greater the probability of selecting

the best chromosome. If 𝛼 = 0, the worst chromosome is

never selected for mutation or crossover. For 𝛼 = 0.01, the

best chromosome is twice as likely to be selected than the

median, which does not restrict the search space too much

as all chromosomes might be selected. All steps in the

iteration procedure occur for a fixed set of iterations and the

algorithm is terminated if no improvement is determined

for several iterations. The parameters of the GA were

determined using several small instances of the MILP

model and led to the following specifications:

TABLE I

PARAMETERS OF THE GENETIC ALGORITHM (GA_ADAPTED)

Population size 300

Number of generations 100

Termination criterion 20 iterations without improvements

α 0.01

β 1.99

Crossover probability 0.9

Mutation probability 0.9

IV. EXPERIMENTAL EVALUATION AND

DISCUSSION

 In this section, we use conducted experiments to

evaluate the performance of the model and the proposed

heuristics. We start with the evaluation of the model on

small instances before we move on to larger instances to

compare the performance of the heuristics. The model was

formulated and solved using CPLEX 12.10, whereas the

algorithms were coded in MATLAB. All runs were

conducted with a PC with 1.6 GHz i5-8250 CPU and 8 GB

of RAM. The performance measure used in this

contribution is the relative percentage deviation (RPD),

with Alg as an indicator for the objective value of the tested

algorithm and Min as the best solution that was obtained by

any algorithm for the given problem instance:

𝑅𝑃𝐷 =
𝐴𝑙𝑔 − 𝑀𝑖𝑛

𝑀𝑖𝑛
 × 100

 So far, there are no benchmark sets for the DJSP taking

due dates into account. Therefore, we created some smaller

instances to test the MILP model. Parameters include jobs

(J), machines (M), factories (S) and the processing time

𝑝𝑖,𝑚, which was randomly set to U (1,99). Setting realistic

due dates has a significant impact on the quality of the

solution. We experimented with this parameter and set a

value of 120% of the sum of processing times of each job

for the tested small instances. For the larger instances, this

value was increased to a maximum of 200% to take into

account the increasing number of orders and potentially

more scheduling conflicts. The time limit for the model and

the algorithms was set at 3600 seconds.

Table II indicates the results of the MILP model for the

small instances. The model is able to solve the smaller

instances to optimality, whereas for the larger models,

CPLEX fails to determine the optimum solution (at least in

the case of 2 factories). Regarding the complexity of the

model, it is quadratic in J, but linear in M and S. For

example, for the instance 10x4x2, the number of constraints

is 870. The variables amount to 200 binary, 70 integers, and

60 continuous. The most influential parameter on the

complexity of the model is the number of jobs J.

TABLE II

RESULTS OF THE MILP MODEL ON SMALL INSTANCES

J M S
Model

V Time (s) Opt. Gap (%)

6 3 2 8 0,11 0

6 4 2 49 0,30 0

8 3 2 64 0,41 0

8 4 2 1723 4,22 12,5

10 3 2 435 21,11 19,7

10 4 2 241 14,23 43,9

10 3 3 68 1,08 0

10 4 3 59 1,36 89,8

12 3 2 548 329,19 1,6

12 4 2 371 53,72 14,5

12 3 3 128 6,36 16,4

12 4 3 40 3,03 0

For z=1 to PopSize do

Create pool of operations through random job assignment (Encoding)

Generate chromosome through random permutation of operations

Test chromosome for fitness

Endfor

Sort chromosomes of initial population according to fitness

For g=1 to NbGen do

Select best chromosome as first chromosome for new generation

Calculate selection probability through Linear Ranking Method

Generate new population through Crossover and Mutation

Sort chromosomes of new generation according to fitness

If no new best chromosome is found for 20 consecutive operations

Break

Endif

Endfor

TABLE III

OBJECTIVE VALUES OF THE ALGORITHMS ON LARGER INSTANCES

Inst. Algorithms

 MSLACK S/RPT, S/OPN GH1_MSLACK GH3 GH3_SlackMin GA_adapted

10x10 2453 2453 2160 2278 2085 1754

ft06 35 35 29 44 42 8

ft06 11 11 9 8 8 5

ft10 1537 1537 1687 1379 2204 1247

ft10 562 562 686 962 549 473

ft10 585 585 662 700 520 215

ft20 1886 1886 1608 1227 756 1044

tai15 1840 1540 1732 1473 2010 2903

tai15 1545 1930 1226 1947 984 987
tai50 10198 12274 13935 infs. infs. 9558

Average RPD 95% 99% 85% 116% 86% 15%

 All the heuristics were able to solve the small instances

in ≤1 s, mostly with the optimal solution. Therefore, and

due to space restrictions, we only present the values of the

MILP model in Table II and do not present the heuristics.

To evaluate the heuristics and meta-heuristics for larger

instances, we derived a second set of ten instances based on

the benchmark instances of Taillard [15], denoted as “tai”

in Table III, as well as Fisher and Thompson [16], denoted

as “ft”. The results of the best performing heuristics and the

meta-heuristic are displayed in Table III. The values in bold

represent the best performance value found (Min). Table IV

indicates the different instances with the parameter values

used. Here, DDO represents the due date offset used.

TABLE IV

THE INSTANCES USED FOR THE HEURISTICS EVALUATION

Instance J M S DDO

10x10 10 10 2 500 time units

ft06 6 6 2 120%

ft06 6 6 3 120%

ft10 10 10 2 120%

ft10 10 10 3 120%

ft10 10 10 4 120%

ft20 20 5 5 150%

tai15 15 15 2 150%

tai15 15 15 3 150%

tai50 50 15 5 200%

The genetic algorithm GA_adapted performed best overall

and was able to determine the best solution in 7 of 10

instances. The total RPD for GA_adapted is also the lowest

at 15%. Due to the high number of generations, the

computational times of GA_adapted are also the longest on

average. The second best performing heuristic is

GH1_MSLACK, which was run for 20 times for each

problem instance to generate different random start

sequences and assess the solution quality comprehensively.

 If we specifically compare the two-stage algorithm

GH1_MSLACK with the integrated algorithms GH3 and

GH3_SlackMin, we find that for medium problem sizes the

integrated approach does not perform better than the two-

stage approach. The integrated approaches only outperform

the two-stage approach on larger instances with more than

ten orders where the advantage of iterative assignment to

factories and sequencing is exploited.

 The simple heuristic rules MSLACK, S/RPT, and

S/OPN show promising results in very short computation

times (< 1 𝑠) . Interestingly, they even outperform the

greedy heuristics in some instances. This may be caused by

the due date objective, which is explicitly considered in the

three rules. The greedy heuristics were originally designed

to minimize the makespan and therefore arrange jobs to be

completed as early as possible, which might lead to

earliness and thus to a deterioration of the objective value.

 Further adjustments or new algorithm designs seem

promising in this context. Other metaheuristics could also

be meaningfully applied to the DJSP. For example,

adaptations of simulated annealing or iterated greedy

heuristics have performed well on related problem settings

and may be considered [19], [20]. The need for

standardized benchmark instances for the DJSP with a

focus on due date related objectives has also become

apparent.

V. CONCLUSION

 Research on distributed scheduling in a job shop

configuration that also considers due dates is scarce.

However, ensuring on-time delivery is becoming

increasingly important for several manufacturing industries

and there is a need for models and algorithms that focus on

due dates. In this contribution, we developed and presented

a MILP model for the DJSP with a due date objective.

Several heuristics from the single-factory scheduling

literature were adapted to the specific problem at hand.

Additionally, a genetic algorithm was presented to solve

larger instances of the DJSP effectively. The scheduling

model and the algorithms can be readily applied in real-

world settings, where manufacturing is distributed among

several factories. In this way, industries can advance

towards modern configurations of manufacturing systems.

The experimental results indicate that the heuristics and

metaheuristics provide promising solutions in reasonable

computation times. They are better suited for large problem

instances than the exact model. Future research should deal

with heterogeneous factories, where different machine

types or processing times are present in the factories as well

as stochastic and dynamic demand. Besides, additional

characteristics should be considered in the model to make

the problem setting more realistic.

 This could also include multi-objective problems, as

many practical settings in the industry are subject to

multiple objectives. For instance, it might be worth striving

to find a balance between efficient manufacturing with a

high machine utilization, focusing on makespan, and the

fulfillment of customer requested delivery dates, e.g.

tardiness.

ACKNOWLEDGMENT

 This research was supported by the EU project iDev40. The

project iDev40 has received funding from the ECSEL Joint

Undertaking (JU) under grant agreement No 783163. The JU

receives support from the European Union’s Horizon 2020

research and innovation program. It is co-funded by the

consortium members, as well as grants from Austria, Germany,

Belgium, Italy, Spain and Romania. The content of this article

does not reflect the official opinion of the Joint Undertaking

ECSEL. Responsibility for the information and views expressed in

the article lies entirely with the authors.

REFERENCES

[1] J. Olhager and A. Feldmann, ‘Distribution of manufacturing

strategy decision-making in multi-plant networks’, Int. J. Prod.

Res., vol. 56, no. 1–2, pp. 692–708, 2018,
DOI.10.1080/00207543.2017.1401749.

[2] J. Behnamian and S. M. T. Fatemi Ghomi, ‘A survey of multi-

factory scheduling’, J. Intell. Manuf., vol. 27, no. 1, pp. 231–
249, 2016, DOI.10.1007/s10845-014-0890-y.

[3] R. Ruiz, Q.-K. Pan, and B. Naderi, ‘Iterated Greedy methods for

the distributed permutation flowshop scheduling problem’,
Omega, vol. 83, pp. 213–222, Mar. 2019,

DOI.10.1016/j.omega.2018.03.004.

[4] Z. X. Guo, W. K. Wong, Z. Li, and P. Ren, ‘Modeling and
Pareto optimization of multi-objective order scheduling

problems in production planning’, Comput. Ind. Eng., vol. 64,

no. 4, pp. 972–986, 2013, DOI.10.1016/j.cie.2013.01.006.
[5] T.-K. Liu, Y.-P. Chen, and J.-H. Chou, ‘Solving Distributed and

Flexible Job-Shop Scheduling Problems for a Real-World
Fastener Manufacturer’, IEEE Access, vol. 2, pp. 1598–1606,

2015, DOI.10.1109/access.2015.2388486.

[6] J. R. Jackson, ‘An extension of Johnson’s results on job IDT
scheduling’, Nav. Res. Logist. Q., vol. 3, no. 3, pp. 201–203,

Sep. 1956, DOI.10.1002/nav.3800030307.

[7] J. Lohmer and R. Lasch, ‘Production planning and scheduling
in multi-factory production networks: a systematic literature

review’, Int. J. Prod. Res., pp. 1–27, Jul. 2020,

DOI.10.1080/00207543.2020.1797207.
[8] H. Z. Jia, A. Y. C. Nee, J. Y. H. Fuh, and Y. F. Zhang, ‘A

modified genetic algorithm for distributed scheduling

problems’, J. Intell. Manuf., vol. 14, no. 3–4, pp. 351–362, 2003,
DOI.10.1023/A:1024653810491.

[9] F. T. S. Chan, S. H. Chung, and P. L. Y. Chan, ‘Application of

genetic algorithms with dominant genes in a distributed
scheduling problem in flexible manufacturing systems’, Int. J.

Prod. Res., vol. 44, no. 3, pp. 523–543, 2006,

DOI.10.1080/00207540500319229.
[10] L. De Giovanni and F. Pezzella, ‘An Improved Genetic

Algorithm for the Distributed and Flexible Job-shop Scheduling

problem’, Eur. J. Oper. Res., vol. 200, no. 2, pp. 395–408, 2010,

DOI.10.1016/j.ejor.2009.01.008.

[11] F. T. S. Chan, A. Prakash, H. L. Ma, and C. S. Wong, ‘A hybrid

Tabu sample-sort simulated annealing approach for solving
distributed scheduling problem’, Int. J. Prod. Res., vol. 51, no.

9, pp. 2602–2619, 2013, DOI.10.1080/00207543.2012.737948.

[12] B. Naderi and A. Azab, ‘Modeling and heuristics for scheduling
of distributed job shops’, Expert Syst. Appl., vol. 41, no. 17, pp.

7754–7763, 2014, DOI.10.1016/j.eswa.2014.06.023.

[13] M. C. Wu, C. S. Lin, C. H. Lin, and C. F. Chen, ‘Effects of
different chromosome representations in developing genetic

algorithms to solve DFJS scheduling problems’, Comput. Oper.

Res., vol. 80, pp. 101–112, 2017,

DOI.10.1016/j.cor.2016.11.021.

[14] Z. X. Guo, C. Yang, W. Wang, and J. Yang, ‘Harmony search-

based multi-objective optimization model for multi-site order
planning with multiple uncertainties and learning effects’,

Comput. Ind. Eng., vol. 83, pp. 74–90, 2015,

DOI.10.1016/j.cie.2015.01.023.
[15] E. Taillard, ‘Benchmarks for basic scheduling problems’, Eur.

J. Oper. Res., vol. 64, no. 2, pp. 278–285, Jan. 1993,

DOI.10.1016/0377-2217(93)90182-M.
[16] R. Fisher and G. Thompson, ‘Probabilistic Learning

Combinations of Local Job-shop Scheduling Rules’, Ind.

Sched., pp. 225–251, 1963.
[17] B. Naderi and R. Ruiz, ‘The distributed permutation flowshop

scheduling problem’, Comput. Oper. Res., vol. 37, no. 4, pp.

754–768, 2010, DOI.10.1016/j.cor.2009.06.019.
[18] J. Grefenstette, ‘Rank-based selection’, in Handbook of

Evolutionary Computation, 1st editio., T. Back, D. B. Fogel, and

Z. Michalewicz, Eds. Oxford, UK: Oxford Univ. Press, 1997, p.
Chap C2.4.

[19] V. Fernandez-Viagas and J. M. Framinan, ‘A bounded-search

iterated greedy algorithm for the distributed permutation
flowshop scheduling problem’, Int. J. Prod. Res., vol. 53, no. 4,

pp. 1111–1123, 2015, DOI.10.1080/00207543.2014.948578.

[20] Q.-K. Pan, L. Gao, L. Xin-Yu, and J. M. Framinan, ‘Effective
constructive heuristics and meta-heuristics for the distributed

assembly permutation flowshop scheduling problem’, Appl. Soft

Comput., vol. 81, p. 105492, 2019,
DOI.10.1016/j.asoc.2019.105492.

