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 Abstract –The existing literature on distributed scheduling 

mainly focuses on the performance measures makespan, total 

completion time, or costs. Due date related objectives that are 

gaining in importance in the industry have not been 

considered to a similar extent. In this contribution, we present 

a model formulation of the distributed job shop scheduling 

problem with due date consideration and present adapted 

greedy heuristics as well as a genetic algorithm to solve large 

problem instances. Computational experiments are carried 

out to assess the performance of the model and the algorithms. 

The heuristics and metaheuristics show promising results in 

reasonable computation times, with the genetic algorithm 

outperforming the other heuristics. The results indicate that 

managers should consider incorporating due date related 

objectives in the decision-making process of production 

planning and scheduling in distributed manufacturing. 

 

Keywords – Multi-factory scheduling, distributed 

scheduling, distributed job shop, due date objective, greedy 

heuristic, genetic algorithm 

I.  INTRODUCTION 

 Manufacturing firms are increasingly distributed in 

geographical terms and operate multiple factories, as a 

result of globalization and increased customer demands for 

fast order delivery [1], [2]. This decentralization of 

production facilities offers advantages such as lower costs, 

proximity to customers, and flexibility but also poses new 

challenges regarding planning and scheduling of 

production in the factories. Scheduling orders in multi-

factory networks involve more steps than the already 

complex task of scheduling jobs in a single factory [2], [3]. 

Before sequencing jobs on machines locally, the orders (as 

jobs) need to be assigned to a factory. The problems vary 

in complexity, depending on the manufacturing principle or 

configuration, similar to the single-factory case. This article 

focuses on the job shop configuration, which is typical for 

various industries and also present in distributed networks 

[4], [5]. In a job shop, a set of n jobs have to be 

manufactured, each with its own routing on the m 

machines. Single-factory job shop scheduling has been 

studied extensively by scholars ever since the heuristic by 

Jackson in 1956 [6]. Distributed scheduling has recently 

gained the attention of scholars, for recent reviews refer to 

[2], [7]. 

 We provide a short review of relevant studies for this 

article that have been published on the multi-factory or 

distributed job shop scheduling problem (DJSP): Jia et al. 

[8] developed genetic algorithms (GA) to minimize 

makespan and costs. Chan et al. examined the DJSP with 

flexible routings and makespan objective with a GA [9]. 

Then, [10] focused on a GA to minimize the total 

completion time of all jobs in the DJSP. In [11], a tabu 

search and simulated annealing algorithm were hybridized. 

Two models and three greedy heuristics were proposed for 

the DJSP with a makespan objective in [12]. Wu et al. [13] 

examined different chromosome representations in GAs for 

the DJSP with a makespan objective. 

 As this short and selective review indicates, previous 

studies have primarily focused on the performance 

measures makespan (Cmax) or total completion time (∑ 𝐶𝑗). 

However, the manufacturing industry is evolving quickly 

and trends like Industry 4.0 led to a situation where for 

many manufacturing firms, timely deliveries without 

delays are at least as important as optimal utilization of 

machine capacities and swift completion of production 

orders (Cmax) [14]. Earliness and tardiness of orders have 

different effects on the present and future performance of 

firms (see Fig. 1). Both objectives should be addressed in 

order to reach an optimal control of production towards 

meeting due dates. 

 To advance in this promising research area, we 

formulate the problem as a MILP model with a due date 

objective in this contribution and adapt several heuristics 

from the literature on classical job shop scheduling for the 

DJSP Additionally, we propose two adapted greedy 

heuristics and a genetic algorithm to solve large problem 

instances efficiently. Experiments are conducted to 

evaluate the performance of the algorithms using the well-

known instances of Taillard [15] and Fisher and Thompson 

[16].  

 The remainder of this paper is structured as follows: In 

Section 2, the mathematical model is presented and 

described. Section 3 contains the adapted and developed 

algorithms and heuristics, whereas Section 4 presents 

numerical experiments and results. Section 5 concludes the 

paper with an outlook on further research opportunities. 

 
Fig. 1. Cost effects (excerpt) of due date violation 

 

II.  PROBLEM DEFINITION AND        

MATHEMATICAL MODEL 

 The problem under consideration is modeled as a 

mixed-integer linear programming model, which adopted 

the processing constraints (7) and (8) from [12]. Each 

machine can only process one job at the same time. 

Although transporting work-in-process orders to another 

factory in case of disruptions or loss of machine capacity 

may be possible, it is in most cases not economically 
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feasible and not permitted in the model. The factories are 

homogeneous and equipped in the same way. Demand is 

deterministic and static. The following list of notation is 

used in the model: 
 

J Number of jobs i, j = {1, 2, … , 𝐽} 

M Number of machines m, n = {1, 2, … , 𝑀} 

S Number of factories s = {1, 2, … , 𝑆} 

𝑝𝑖,𝑚 Processing time of job i on machine m 

𝑎𝑖,𝑚,𝑛 Binary variable: 1 if for job i machine m is used 

immediately after machine n, 0 otherwise 

𝐷𝑖 Due date of job i 

L  A large positive number 
 

The decision variables are as follows: 
 

𝑋𝑖,𝑗,𝑚 Binary variable: 1 if job j is processed on 

machine m after job i, 0 otherwise 

𝑌𝑖,𝑠 Binary variable: 1 if job i is assigned to factory 

s, 0 otherwise 

𝐶𝑖,𝑚 Continuous variable for the completion time of 

the operation of job i on machine m 

𝐶𝑚𝑎𝑥,𝑖  Continuous variable for the completion time of 

job i 

𝐸𝑖 Earliness of job i 

𝑇𝑖 Tardiness of job i 

V Total due date deviation of the schedule 
 

The MILP model is as follows: 
 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑉 =  ∑(𝐸𝑖 + 𝑇𝑖)

𝐽

𝑖=1

 (1) 

Subject to: 

 𝐶𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥
𝑚

𝐶𝑖,𝑚   ∀𝑖 (2) 

 𝐶𝑚𝑎𝑥,𝑖 + 𝐸𝑖 − 𝑇𝑖 = 𝐷𝑖   ∀𝑖 (3) 

 ∑ 𝑌𝑖,𝑠 = 1

𝑆

𝑠=1

  ∀𝑖 (4) 

 𝐶𝑖,𝑚 ≥ 𝑝𝑖,𝑚  ∀𝑖, 𝑚 (5) 

 𝐶𝑖,𝑚 ≥ 𝐶𝑖,𝑛 + 𝑝𝑖,𝑚  ∀𝑖, 𝑚, 𝑛 ≠ 𝑚|𝑎𝑖,𝑚,𝑛 = 1 (6) 

 
𝐶𝑗,𝑚 ≥ 𝐶𝑖,𝑚 + 𝑝𝑗,𝑚 − 𝐿(3 − 𝑋𝑖,𝑗,𝑚 − 𝑌𝑖,𝑠 − 𝑌𝑗,𝑠)  

∀𝑚, 𝑠, 𝑖 < 𝐽, 𝑗 > 𝑖 
(7) 

 
𝐶𝑖,𝑚 ≥ 𝐶𝑗,𝑚 + 𝑝𝑖,𝑚 − 𝐿(2 + 𝑋𝑖,𝑗,𝑚 − 𝑌𝑖,𝑠 − 𝑌𝑗,𝑠) 

∀𝑚, 𝑠, 𝑖 < 𝐽, 𝑗 > 𝑖 
(8) 

 𝑌𝑖,𝑠 ∈ {0,  1}  ∀𝑖, 𝑠 (9) 

 𝑋𝑖,𝑗,𝑚 ∈ {0,  1}  ∀𝑖 < 𝐽, 𝑗 > 𝑖, 𝑚 (10) 

 
𝐶𝑖,𝑚 ≥ 0;  𝐸𝑖 ≥ 0;  𝑇𝑖 ≥ 0  ∀𝑖, 𝑚 (11) 

 Equation (1) is the objective function. The constraint 

(2) specifies that 𝐶𝑚𝑎𝑥,𝑖 is the latest completion time of one 

of the individual processing steps on one of the machines. 

The earliness or tardiness of each job is calculated in (3). 

Then, (4) ensures that each job can only be assigned to one 

factory. Constraint (5) determines that at least the 

corresponding processing time must have elapsed before a 

job can be transferred to the next machine. The following 

machining step can be terminated at the earliest when the 

production time for this step has elapsed, in addition to all 

previous processing times (6). Constraint sets (7) and (8) 

indicate that a machine can only process one job at a time: 

If two orders i and j are processed in the same factory and j 

is processed on machine m after i, then j must be completed 

at least by its processing time p on machine m later than i. 

Constraint sets (9), (10) and (11) specify the decision 

variables of the model. 

 The model can be extended to focus on minimizing 

costs of due date deviation (early or late completion). If a 

specific weighting factor can be assigned to each customer 

order (indicating the importance of different customer 

orders), the model (with the remaining parameters and 

decision variables unchanged) can be adapted to: 
 

𝑤𝐸,𝑖 Weighting factor for earliness of job i  

𝑤𝑇,𝑖 Weighting factor for tardiness of job i 

 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑉𝑔  =   ∑ 𝑤𝑇,𝑖 ⋅ 𝑇𝑖 + ∑ 𝑤𝐸,𝑖 ⋅ 𝐸𝑖

𝐽

𝑖=1

𝐽

𝑖=1

 (12) 

 

 As the determination of the weighting factors is very 

subjective, we focus on the first model without weighting 

factors in this contribution. Nevertheless, the adaption 

highlights the flexibility and simplicity of the developed 

MILP model. 

III.  HEURISTICS AND META-HEURISTICS 

A.  Heuristics (Two-stage iterative approaches) 

 One way to reduce the complexity of the problem is by 

taking an iterative solution approach. The two decisions in 

the DJSP are split into two phases to find near-optimal 

solutions in reasonable computation times. First, jobs are 

assigned to factories, followed by the sequencing of jobs on 

machines. Here, the assignment rule significantly 

determines the quality of the solution. Allocating the jobs 

according to descending due dates does not lead to a 

promising solution. Alternatively, the jobs can be sorted 

according to their sum of processing times. The difference 

between this makespan and the due date (“slack”) is then 

used to determine the assignment sequence. In this way, the 

flexibility in planning is enhanced by preferring urgent jobs 

- at the expense of longer idle times for jobs with a lot of 

slack - when creating the plan. However, as the machines 

are still unscheduled when jobs are assigned, measuring the 

specific earliness of jobs is not trivial. Therefore, we solely 

focus on the tardiness of jobs for the used assignment rule, 

which is conceptually similar to the NEH2 rule [17] that 

performed well for the distributed permutation flow shop 

scheduling problem. The main difference is the order in 

which the jobs are selected, which is minimum slack, i.e., 

the buffer time. Then, the first s orders are assigned to the 

s plants one by one in order to separate the most urgent jobs 

and avoid interference. Each factory receives one urgent 

job first to ensure that the urgent jobs are started 

immediately. Subsequently, for the next job in the sorted 



 

list, the assignment that leads to the earliest completion 

time is computed. Various priority/dispatching rules may 

be used for this calculation. However, rules like 

FIFO/FCFS or SPT do not yield good results in the context 

of due date consideration. We focus on rules that include 

slack and can be used intuitively to meet due dates: 
 

 Minimum slack (MSLACK): MSLACK iteratively 

checks the slack of all jobs and selects the job with the 

least slack whenever a machine is free. This includes 

observing the other restrictions like the machine 

sequence of each job. 

 Slack per remaining processing time (S/RPT): S/RPT 

divides the remaining slack by the sum of outstanding 

raw processing times, to avoid the tendency of 

MSLACK to prefer long processing steps over shorter 

ones. The jobs are then sorted in ascending order of this 

quotient and assigned accordingly. 

 Slack per remaining operations (S/OPN): Another way 

to modify MSLACK is by integrating the number of 

remaining operations in the calculation. Jobs are then 

sorted according to the remaining slack for each 

remaining process step. 
 

 The following steps are similar for all heuristics. Each 

job is assigned to a factory and the resulting completion 

times determined. Once all jobs are assigned, the sequence 

for each factory is determined, either by again using the 

three presented rules or by using more sophisticated 

approaches like the GH1 heuristic [12] presented next. 

B.  Two-stage greedy heuristic (GH1) 

Greedy heuristics have been successfully applied to 

many combinatorial problems and usually derive a 

performant solution in a reasonable amount of time. For the 

problem at hand, we use an encoding scheme for GH1 that 

consists of as many permutations as factories are available. 

Each value in the permutation represents an operation and 

each job appears as often as it needs operations processing. 

As the quality of the algorithm depends on a performant 

starting solution, the start permutation is randomly mixed. 

Subsequently, the operations are iteratively inserted into 

the sequence of operations in each factory. Naderi and 

Azab [12] use an additional rule for job-factory 

assignments based on the smoothing of workload and 

consider each machine separately. We use GH1 with the 

MSLACK rule in this article to focus on the minimization 

of due date deviations. 

C.  Greedy heuristic (integrated approach) 

 So far, the presented heuristics and rules focused on a 

two-stage approach. We now turn to an integrated approach 

of assigning jobs to factories and sequencing jobs on 

machines in each factory. A greedy heuristic (GH3 by [12]) 

was adapted to the examined problem with a due date focus. 

The job-factory assignment is based on minimum slack and 

the shortest cycle times in the plants. The processing 

sequences of the jobs are calculated in each iteration using 

the GH1 procedure, where all plants are considered in each 

step. The procedure of the algorithm is as follows: 

 First, one job is assigned to each factory. Again, jobs 

with minimum slack are selected first and the makespan is 

calculated based on their processing times. The next job is 

then assigned to the factory with the shortest makespan 

after the assignment of the respective job. This is done by 

adding each operation to the previous sequence and 

inserting it in all possible positions, without, however, 

changing the previously determined sequence. For each 

position in the sequence, the makespan is recorded and then 

compared with the other position to select the best solution. 

If several positions lead to the same (best) solution, the 

earliest is chosen. This selection enables the jobs that are 

scheduled subsequently to be completed as early as 

possible and potential delays can be avoided. Unlike the 

two-stage algorithm GH1, GH3 does not depend on a 

random start sequence.  

To specifically focus GH3 on due dates, we created a 

further adaption, denoted as GH3_SlackMin: The job-

factory assignment is made after calculating the slack of all 

orders. Each job is iteratively assigned to each factory and 

scheduled using the exchange procedure. Then the 

remaining slack of all jobs is cumulated for the sequence. 

The job is assigned to the factory where the slack is 

maximized, that is, where flexibility is higher compared to 

the other locations. In this way, avoiding tardy orders is 

especially considered. 

D.  Genetic algorithm adapted for the DJSP with due date 

objective 

 Genetic algorithms (GA) are popular meta-heuristics 

for scheduling problems due to their ability to investigate 

large solution spaces and simultaneously apply local search 

methods. We use a simple chromosome encoding for the 

adapted GA (based on [8]) aimed at the DJSP with a due 

date objective: 
 

{'1j03' '2j01' '2j05' '1j04' '2j01' '1j02' '1j02' '1j03' '1j04' '2j05'} 
 

 The first number indicates the factory, followed by the 

job number. The first appearance of the job number 

indicates the first operation, the second appearance the 

second operation and so on. The fitness value that is 

calculated for each chromosome refers to the due date 

deviation of each developed schedule. Rather than 

randomly assigning a job to a factory during initialization 

and only changing this assignment rarely using global 

mutation, we modify the crossover and mutation operators 

to maintain a more extensive search space for the 

algorithm.  

 The initial job assignment is done separately for each 

chromosome in GA_adapted (see Fig. 2). In the iterations, 

two chromosomes are selected for the crossover process 

and the subsequences are exchanged. The feasibility of the 

new solution is checked and in case of a violation (i.e., job 

operations now spread among more than one factory), the 

crossover procedure overwrites the previous factory 

assignment for all further genes of this job. Thus, each 

generation explores new options for factory assignment 



 

using the crossover operator. Additionally, the best 

chromosome from the last iteration and the best 

chromosome overall are transferred to the next generation. 

 Fig. 2. The general outline of GA_adapted. 

 The succeeding chromosome is assessed regarding its 

fitness value after crossover and after mutation. The old 

chromosome is replaced if the new one outperforms it. This 

facilitates the movement of chromosomes towards a better 

solution and the crossover procedure prevents an excessive 

restriction of the search space. 

 In mutation, a better chromosome is taken over from 

the next generation with a certain probability. The selection 

probability is determined using a ranking of chromosomes 

based on their fitness value that is then transformed into a 

vector of selection probabilities (p) using the following 

equation [18]: 

𝑝𝐿𝑖𝑛𝑅𝑎𝑛𝑘,𝑖  =  
𝛼 + (

𝑟𝑎𝑛𝑘𝑖

(𝑃𝑜𝑝𝑆𝑖𝑧𝑒 − 1)
) × (𝛽 − 𝛼)

𝑃𝑜𝑝𝑆𝑖𝑧𝑒
 

      with 𝛼 = 2 − 𝛽;      0 ≤ 𝛼 ≤ 1, 1 ≤ 𝛽 ≤ 2  

 The greater 𝛽 is, the greater the probability of selecting 

the best chromosome. If 𝛼 = 0, the worst chromosome is 

never selected for mutation or crossover. For 𝛼 = 0.01, the 

best chromosome is twice as likely to be selected than the 

median, which does not restrict the search space too much 

as all chromosomes might be selected. All steps in the 

iteration procedure occur for a fixed set of iterations and the 

algorithm is terminated if no improvement is determined 

for several iterations. The parameters of the GA were 

determined using several small instances of the MILP 

model and led to the following specifications: 
 

TABLE I 

PARAMETERS OF THE GENETIC ALGORITHM (GA_ADAPTED) 

 

Population size 300 

Number of generations 100 

Termination criterion 20 iterations without improvements 

α 0.01 

β 1.99 

Crossover probability 0.9 

Mutation probability 0.9 

 

 

IV.  EXPERIMENTAL EVALUATION AND 

DISCUSSION 

 In this section, we use conducted experiments to 

evaluate the performance of the model and the proposed 

heuristics. We start with the evaluation of the model on 

small instances before we move on to larger instances to 

compare the performance of the heuristics. The model was 

formulated and solved using CPLEX 12.10, whereas the 

algorithms were coded in MATLAB. All runs were 

conducted with a PC with 1.6 GHz i5-8250 CPU and 8 GB 

of RAM. The performance measure used in this 

contribution is the relative percentage deviation (RPD), 

with Alg as an indicator for the objective value of the tested 

algorithm and Min as the best solution that was obtained by 

any algorithm for the given problem instance: 
 

𝑅𝑃𝐷 =  
𝐴𝑙𝑔 − 𝑀𝑖𝑛

𝑀𝑖𝑛
 × 100 

 

 So far, there are no benchmark sets for the DJSP taking 

due dates into account. Therefore, we created some smaller 

instances to test the MILP model. Parameters include jobs 

(J), machines (M), factories (S) and the processing time 

𝑝𝑖,𝑚, which was randomly set to U (1,99). Setting realistic 

due dates has a significant impact on the quality of the 

solution. We experimented with this parameter and set a 

value of 120% of the sum of processing times of each job 

for the tested small instances. For the larger instances, this 

value was increased to a maximum of 200% to take into 

account the increasing number of orders and potentially 

more scheduling conflicts. The time limit for the model and 

the algorithms was set at 3600 seconds.  

Table II indicates the results of the MILP model for the 

small instances. The model is able to solve the smaller 

instances to optimality, whereas for the larger models, 

CPLEX fails to determine the optimum solution (at least in 

the case of 2 factories). Regarding the complexity of the 

model, it is quadratic in J, but linear in M and S. For 

example, for the instance 10x4x2, the number of constraints 

is 870. The variables amount to 200 binary, 70 integers, and 

60 continuous. The most influential parameter on the 

complexity of the model is the number of jobs J. 
 

TABLE II 

RESULTS OF THE MILP MODEL ON SMALL INSTANCES 

 

J M S 
Model 

V Time (s) Opt. Gap (%) 

6 3 2 8 0,11 0 

6 4 2 49 0,30 0 

8 3 2 64 0,41 0 

8 4 2 1723 4,22 12,5 

10 3 2 435 21,11 19,7 

10 4 2 241 14,23 43,9 

10 3 3 68 1,08 0 

10 4 3 59 1,36 89,8 

12 3 2 548 329,19 1,6 

12 4 2 371 53,72 14,5 

12 3 3 128 6,36 16,4 

12 4 3 40 3,03 0 

For z=1 to PopSize do 

Create pool of operations through random job assignment (Encoding) 

Generate chromosome through random permutation of operations 

Test chromosome for fitness 

Endfor 

Sort chromosomes of initial population according to fitness 

For g=1 to NbGen do 

Select best chromosome as first chromosome for new generation 

Calculate selection probability through Linear Ranking Method 

Generate new population through Crossover and Mutation 

Sort chromosomes of new generation according to fitness 

If no new best chromosome is found for 20 consecutive operations 

Break 

Endif 

Endfor 



TABLE III 

OBJECTIVE VALUES OF THE ALGORITHMS ON LARGER INSTANCES 

 

Inst. Algorithms 

 MSLACK S/RPT, S/OPN GH1_MSLACK GH3 GH3_SlackMin GA_adapted 

10x10 2453 2453 2160 2278 2085 1754 

ft06 35 35 29 44 42 8 

ft06 11 11 9 8 8 5 

ft10 1537 1537 1687 1379 2204 1247 

ft10 562 562 686 962 549 473 

ft10 585 585 662 700 520 215 

ft20 1886 1886 1608 1227 756 1044 

tai15 1840 1540 1732 1473 2010 2903 

tai15 1545 1930 1226 1947 984 987 
tai50 10198 12274 13935 infs. infs. 9558 

Average RPD 95% 99% 85% 116% 86% 15% 
  

 All the heuristics were able to solve the small instances 

in ≤1 s, mostly with the optimal solution. Therefore, and 

due to space restrictions, we only present the values of the 

MILP model in Table II and do not present the heuristics. 

To evaluate the heuristics and meta-heuristics for larger 

instances, we derived a second set of ten instances based on 

the benchmark instances of Taillard [15], denoted as “tai” 

in Table III, as well as Fisher and Thompson [16], denoted 

as “ft”. The results of the best performing heuristics and the 

meta-heuristic are displayed in Table III. The values in bold 

represent the best performance value found (Min). Table IV 

indicates the different instances with the parameter values 

used. Here, DDO represents the due date offset used. 
 

TABLE IV 

THE INSTANCES USED FOR THE HEURISTICS EVALUATION 

 

Instance J M S DDO 

10x10 10 10 2 500 time units 

ft06 6 6 2 120% 

ft06 6 6 3 120% 

ft10 10 10 2 120% 

ft10 10 10 3 120% 

ft10 10 10 4 120% 

ft20 20 5 5 150% 

tai15 15 15 2 150% 

tai15 15 15 3 150% 

tai50 50 15 5 200% 

 

The genetic algorithm GA_adapted performed best overall 

and was able to determine the best solution in 7 of 10 

instances. The total RPD for GA_adapted is also the lowest 

at 15%. Due to the high number of generations, the 

computational times of GA_adapted are also the longest on 

average. The second best performing heuristic is 

GH1_MSLACK, which was run for 20 times for each 

problem instance to generate different random start 

sequences and assess the solution quality comprehensively.  

 If we specifically compare the two-stage algorithm 

GH1_MSLACK with the integrated algorithms GH3 and 

GH3_SlackMin, we find that for medium problem sizes the 

integrated approach does not perform better than the two-

stage approach. The integrated approaches only outperform 

the two-stage approach on larger instances with more than 

ten orders where the advantage of iterative assignment to 

factories and sequencing is exploited.  

 The simple heuristic rules MSLACK, S/RPT, and 

S/OPN show promising results in very short computation 

times (< 1 𝑠) . Interestingly, they even outperform the 

greedy heuristics in some instances. This may be caused by 

the due date objective, which is explicitly considered in the 

three rules. The greedy heuristics were originally designed 

to minimize the makespan and therefore arrange jobs to be 

completed as early as possible, which might lead to 

earliness and thus to a deterioration of the objective value.  

 Further adjustments or new algorithm designs seem 

promising in this context. Other metaheuristics could also 

be meaningfully applied to the DJSP. For example, 

adaptations of simulated annealing or iterated greedy 

heuristics have performed well on related problem settings 

and may be considered [19], [20]. The need for 

standardized benchmark instances for the DJSP with a 

focus on due date related objectives has also become 

apparent. 

V.  CONCLUSION 

 Research on distributed scheduling in a job shop 

configuration that also considers due dates is scarce. 

However, ensuring on-time delivery is becoming 

increasingly important for several manufacturing industries 

and there is a need for models and algorithms that focus on 

due dates. In this contribution, we developed and presented 

a MILP model for the DJSP with a due date objective. 

Several heuristics from the single-factory scheduling 

literature were adapted to the specific problem at hand. 

Additionally, a genetic algorithm was presented to solve 

larger instances of the DJSP effectively. The scheduling 

model and the algorithms can be readily applied in real-

world settings, where manufacturing is distributed among 

several factories. In this way, industries can advance 

towards modern configurations of manufacturing systems. 

The experimental results indicate that the heuristics and 

metaheuristics provide promising solutions in reasonable 

computation times. They are better suited for large problem 

instances than the exact model. Future research should deal 

with heterogeneous factories, where different machine 

types or processing times are present in the factories as well 

as stochastic and dynamic demand. Besides, additional 

characteristics should be considered in the model to make 

the problem setting more realistic.  

 This could also include multi-objective problems, as 

many practical settings in the industry are subject to 

multiple objectives. For instance, it might be worth striving 



 

to find a balance between efficient manufacturing with a 

high machine utilization, focusing on makespan, and the 

fulfillment of customer requested delivery dates, e.g. 

tardiness. 
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