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Abstract. In mathematics, the Riemann hypothesis is a conjecture that the Riemann

zeta function has its zeros only at the negative even integers and complex numbers

with real part % Many consider it to be the most important unsolved problem in

pure mathematics. The Robin’s inequality consists in o(n) < €Y x n x Inlnn where
o(n) is the divisor function and v ~ 0.57721 is the Euler-Mascheroni constant. The
Robin’s inequality is true for every natural number n > 5040 if and only if the Riemann
hypothesis is true. We prove the Robin’s inequality is true for every natural number
n > 5040 when 15 t n, where 15 { n means that n is not divisible by 15. More specifically:
every counterexample should be divisible by 229 x 313 x 58 x k1 or either 220 x 313 x ky
or 220 x 58 x k3, where k1, k2 and k3 are not equal to 7 and 15 tki, 3tk and 51 k3.

Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part % Many consider it to be the most important unsolved
problem in pure mathematics [1]. It is of great interest in number theory
because it implies results about the distribution of prime numbers [1]. It was
proposed by Bernhard Riemann (1859), after whom it is named [1]. It is one
of the seven Millennium Prize Problems selected by the Clay Mathematics
Institute to carry a US 1,000,000 prize for the first correct solution [1]. The
divisor function o(n) for a natural number n is defined as the sum of the
powers of the divisors of n,
o(n)="> "k

k|n

where k | n means that the natural number & divides n [5]. In 1915, Ra-
manujan proved that under the assumption of the Riemann hypothesis, the
inequality,

o(n) < e’ xnxlInlnn

holds for all sufficiently large n, where v =~ 0.57721 is the Euler-Mascheroni
constant [3]. The largest known value that violates the inequality is n = 5040.
In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and
only if the Riemann hypothesis is true [3]. Using this inequality, we show an
interesting result.
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2 Results

Theorem 2.1  Given a natural number n = pi* X p5? X ... x p&m such that
P1,P2, - - ., Pm are prime numbers, then we obtain the followmg inequality

a(n) < TP
" i P 1

Proof For anatural number n = pi* xpg?X...xp%" such that p1, pa, . .., Pm
are prime numbers, then we obtain the followmg formula
m o a;+1
P’ 1
2.1 = i -
(21) o) = J[*—
=1
from the Ramanujan’s notebooks [2]. In this way, we have that

a;+1 -1

(2.2) |- —— eI

i=1 p

However, for any prime power p;*, we have that

p;lr‘rl 1 p;l i+1 - Di

< — = )
pitx(pi—1) pf xpi—1) pi—1

Consequently, we obtain that

o(n) i
<11 .
K il
|
Theorem 2.2  Given some prime numbers p1,ps, ..., Pm, then we obtain
the following inequality,
iy Pi — 1 6

Proof Given a prime number p;, we obtain that
P _ pzz
pi—1  p}—pi
and that would be equivalent to

P p;
pi—pi prP—1—(pi—1)

and that is the same as

p? _ p?

pi=1-(i—1)  (p—1)x (Z=L 1)
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which is equal to

2 _ p;
(pi— D x (B -1 (= 1) x fogy x (1- =)
that is equivalent to
p; _ 1
(i — 1) x gy x (1— B0y pi=1 71— =y
which is the same as
p? 1 B 1 1
p2—1" 1 (p%j) 1 7p1—2 1 (pi}H)

and finally

1 1 B 1 P + 1.

— >< p—
(1-p7%) 1= (;Dz‘}f’l) (1-pi? Di
In this way, we have that

m m

i 1 z—f—l
p :Hl 1—[110

Pl

However, we know that

=1+ Pi = 1—p;

where p; is the j' prime number and we have that

as a consequence of the result in the Basel problem [5]. Consequently, we
obtain that

m

sz'—l F H

i=1

Definition 2.3 We recall that an integer n is said to be squarefree if for
every prime divisor p of n we have p? { n, where p? { n means that p? does
not divide n [3].

Theorem 2.4  Given a squarefree number n = q1 X ... X ¢p such that
q1,G2, - --,qm are odd prime numbers, 3 t n, 5 { n and the greatest prime
divisor of n is greater than 7, then we obtain the following inequality

7.‘.2

€X§xa(n)§e'yxnxlnln(2xn).
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Proof This proof is very similar with the demonstration in Theorem 1.1
from the article reference [3]. By induction with respect to w(n), that is the
number of distinct prime factors of n [3]. Put w(n) = m [3]. We need to
prove the assertion for those integers with m = 1. From the equation (2.1),
we obtain that

(2.3) on)= (g1 +1)x(g2+1)x...x(gm+1)

when n = q; X g2 X ... X ¢p,. In this way, for any prime number p; > 11, then
we need to prove

2
3 1
(2.4) %x 5 (1 ) <& xInin(2 x py).
For p; = 11, we have that
2 3 1
% x 5% (14 37) <€ x Inln(22)
is actually true. For another prime number p; > 11, we have that
1 1
1+—)<(1+—
1+ <1+

and
e’ xInln(22) < e” x Inln(2 x p;)

which clearly implies that the inequality (2.4) is true for every prime number
p; > 11. Now, suppose it is true for m — 1, with m > 1 and let us consider the
assertion for those squarefree n with w(n) =m [3]. Solet n =¢1 X ... X g,
be a squarefree number and assume that ¢; < ... < g, for g, > 7.

Case1:q, >In(2 X ¢ X ... X @1 X ¢m) = In(2 x n).

By the induction hypothesis we have

2

™ 3
€X§><(CI1+1)><~ X (Ggmo1+1) < ETX@I X X @1 XInIn(2Xq1q1 X . X Gm—1)

and hence

2 3
7><7
6 2

VX qr X .. X qm—1 X (gm+1) xInln(2 X ¢ X ... X Gm-1)

X (g1 +1) XX (gm-1+1) X (gm +1) <

when we multiply the both sides of the inequality by (¢, + 1). We want to
show that

€T X g X oo X 1 X (Gm+1) xInln(2 x ¢1 X ... X gr—1) <
ETX @ X X G—1 X @ XInIn(2X g1 X ... X @1 X @) = €7 xnx1Inln(2 xn).
Indeed the previous inequality is equivalent with
Gm XInIn(2 X q1 X ... X @1 X qm) 2 (gm +1) xInln(2 X ¢1 X ... X @m—1)
or alternatively

Gm X (InIn(2 X 1 X ... X @1 X ¢m) —InIn(2 X q1 X ... X Grm—1))
In g,

>
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Inln(2 x g1 X ... X gm-1)

In g,
From the reference [3], we have that if 0 < a < b, then
Inb—Ina 1 bdt 1
2.5 = — > -
(25) b—a  (b—a) /a t b

We can apply the inequality (2.5) to the previous one just using b = In(2 x
1 X X qm—1Xqm)and a =In(2 X ¢ X ... X ¢n-1). Certainly, we have that

In(2Xxqr X ..o X Gme1 X q¢n)—In(2X g1 X ... X gpm-1) =
HQXIhX-'-XQm—lXQm

2Xqr X ... X Q-1
In this way, we obtain that

gm X (InIn(2 X g1 X ..o X Gm—1 X @) —InIn(2 X g1 X ... X ¢m—1))
In g,
dm
In(2xq1 X...Xqm)
Using this result we infer that the original inequality is certainly satisfied if
the next inequality is satisfied

1

=Ingn,.

>

qm < Inln(2 X g1 X ... X gm—1)
In(2xq1 X...X¢qm) — In g,

which is trivially true for ¢, > In(2 X ¢1 X ... X gm-1 X qm) [3]
Case 2 :¢;, <In(2X @1 X ... X ¢m—1 X Gm) = In(2 X n).
We need to prove

2
z><gxwge"’xlnln@xn).
n
We know that % <16= %. Nevertheless, we could have that

2 2 2

§><—J(n) X£<74><6><o(n) X£:7a(3x5xn) ><7T—§67><1n1n(2><n)
2 n 6 IXHXn 6 3XdHXn 6
where this is possible because of 34 n and 5t n. If we apply the logarithm to
the both sides of the inequality, then we obtain that

2 m
1n(%)+(ln(3+1)fln 3)+(In(5+1)~In5)+» (In(gj+1)~Ing;) < y+mnInln(2xn).

j=i

From the reference [3], we note that

pit+l gt 1
1n(p1+1)—lnp1:/ — < —.

p1 t b1
2

In addition, note also that In(%-) < % In order to prove this, it is enough to
prove that

1 1 1

1 1 1
5+ 3 5+a+...+—§Zf—i—gv—i—lnlnln@xn)

™ p<gm
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where p < ¢, means all the prime lesser than or equal to ¢,,. However, we
know that

v+ Inlng, <v+Inlnln(2 x n)

since ¢, < In(2 x n) and therefore, we would only need to prove that

1
Z - <~y+Inlng,

P<gm

which is true according to the Lemma 2.1 from the article reference [3]. In
this way, we finally show the Theorem is indeed satisfied. [ |

Theorem 2.5 Given a natural number n = 2% x 3%2 x 5% x 7% > 5040
such that ay,az,as,aq > 0 are integers, then the Robin’s inequality is true for
n.

Proof Given a natural number n = p{* x p5? x ... X p%m > 5040 such that

P1,P2, .- -, Pm are prime numbers, we need to prove that
@ <€’ xInlnn
n
that would be the same as
2.6 — _<¢¢’"xInlnn
(26) U pi—1

according to Theorem 2.1. Given a natural number n = 2%t x 32 x 5% > 5040
such that a1, as,as > 0 are integers, we have that

m

Di <2X3X5
P =1 T I x2x4

= 3.75 < e x Inln(5040) ~ 3.81.

However, we know for n > 5040, we have that
€7’ x Inln(5040) < €” x Inlnn

and thus, the proof is completed for that case. Hence, we only need to prove for
every natural number n = 2% x 392 x 5% x 7%¢ > 5040 such that a;,as2,a3 >0
and a4 > 1 are integers. In addition, we know the Robin’s inequality is true
for every n > 5040 such that 7% | n for 1 < k < 6 [4] (this article has been
published in the journal Integers in the volume 18). Therefore, we need to
prove this case for those natural numbers n such that 77 | n. In this way, we
have that

m

Di <2><3><5><7
izlpi—1*1><2><4><6

=4.375 < ¢? x Inln(77) ~ 4.65.

However, we know for n > 5040 and 77 | n, we have that
¢’ x InIn(7") < e’ x Inlnn

and thus, the proof is completed. [ |
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Theorem 2.6  The Robin’s inequality is true for every natural number
n > 5040 when 15 t n. More specifically: every counterezample should be
divisible by 229 x 313 x 58 x k1 or either 229 x 313 x ko or 220 x 58 x k3, where
k1, ko and k3 are not equal to 7 and 151 k1, 3t ks and 51 k3.

Proof Given a natural number n = pj* x pg? x ... X p%m > 5040 such that
P1,P2,- .-, Pm are prime numbers, then we will check the Robin’s inequality
for n. We know this true when the greatest prime divisor of n is lesser than
or equal to 7 according to Theorem 2.5. Another case is when the greatest
prime divisor of n is greater than 7, 3t n and 5 { n. We need to prove the
inequality (2.6) for that case. In addition, the inequality (2.6) would be true
when

™ rrpitl
— X —— < e’ xInlnn
o 1%

according to Theorem 2.2. Using the properties of the equation (2.2), we
obtain that will be equivalent to
72 o)
6 n’
where n’ = ¢ X ... X ¢, is the squarefree representation of n. However, the
Robin’s inequality has been proved for all integers n not divisible by 2 (which
are bigger than 10) [3]. Hence, we need to prove when 2 | n’. In addition, we
know the Robin’s inequality is true for every n > 5040 such that 2* | n for
1 < k <19 [4] (this article has been published in the journal Integers in the
volume 18). Consequently, we only need to prove that for all n > 5040 such
that 220 | n and thus, we have that

<e’ xInlnn

TL/

e’ xn' x Inln(2 x 5) <e¥xn' xInlnn

’
n

because of 2 x % < n when 22 | n and 2 | n/. In this way, we only need to

prove that
2 /
% x o(n') <e¥ xn' xInln(2 x %)

According to the equation (2.3) and 2 | n’, we have that

2 Tl/ / !

7%><3><o—(5)§e”y><2><%><lnln(2><%)

which is the same as

72 3 n' Lo n'

G ><2><o(2)§e X5 x Inln(2 x 2)
which is true according to the Theorem 2.4. In addition, we know the Robin’s
inequality is true for every n > 5040 such that 3' | n and 5/ | n for 1 <i < 12
and 1 < j < 7 [4] (this article has been published in the journal Integers in the
volume 18). To sum up, we have finally proved this result as the remaining

only option. ]
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