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Abstract. In mathematics, the Riemann hypothesis is a conjecture that the Riemann

zeta function has its zeros only at the negative even integers and complex numbers

with real part % Many consider it to be the most important unsolved problem in

pure mathematics. The Robin’s inequality consists in o(n) < €Y x n x Inlnn where
o(n) is the divisor function and v ~ 0.57721 is the Euler-Mascheroni constant. The
Robin’s inequality is true for every natural number n > 5040 if and only if the Riemann
hypothesis is true. We demonstrate the Robin’s inequality is true for every natural
number n > 5040. Consequently, we show the Riemann hypothesis is true.

Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part % Many consider it to be the most important unsolved
problem in pure mathematics [1]. It is of great interest in number theory
because it implies results about the distribution of prime numbers [1]. It was
proposed by Bernhard Riemann (1859), after whom it is named [1]. It is one
of the seven Millennium Prize Problems selected by the Clay Mathematics
Institute to carry a US 1,000,000 prize for the first correct solution [1]. The
divisor function o(n) for a natural number n is defined as the sum of the
powers of the divisors of n,

o(n)=> k

k|n

where k | n means that the natural number & divides n [6]. In 1915, Ra-
manujan proved that under the assumption of the Riemann hypothesis, the
inequality,

o(n) <e’ xnxlInlnn

holds for all sufficiently large n, where v ~ 0.57721 is the Euler-Mascheroni
constant [3]. The largest known value that violates the inequality is n = 5040.
In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and
only if the Riemann hypothesis is true [3]. Using this inequality, we show that
the Riemann hypothesis is true.
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2 Results

Theorem 2.1  Given a natural number n = pi* X p5? X ... x p&m such that
P1,P2, - - ., Pm are prime numbers, then we obtain the followmg inequality

a(n) < TP
" i P 1

Proof For anatural number n = pi* xpg?X...xp%" such that p1, pa, . .., Pm
are prime numbers, then we obtain the followmg formula
m o a;+1
P’ 1
2.1 = i -
(21) o) = J[*—
=1
from the Ramanujan’s notebooks [2]. In this way, we have that

a;+1 -1

(2.2) |- —— eI

i=1 p

However, for any prime power p;*, we have that

p;lr‘rl 1 p;l i+1 - Di

< — = )
pitx(pi—1) pf xpi—1) pi—1

Consequently, we obtain that

o(n) i
<11 .
K il
|
Theorem 2.2  Given some prime numbers p1,ps, ..., Pm, then we obtain
the following inequality,
iy Pi — 1 6

Proof Given a prime number p;, we obtain that
P _ pzz
pi—1  p}—pi
and that would be equivalent to

P p;
pi—pi prP—1—(pi—1)

and that is the same as

p? _ p?

pi=1-(i—1)  (p—1)x (Z=L 1)
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which is equal to
p? v
21 21 i —
(pi —1) x ((22_1) -1) (pi —1) x (22_1) x (11— (5271))

that is equivalent to

v o1
2—1 i~y p2 _ (ps—1)
(pi —1) x (’;1_1) x (1 — (5?_1)) pi—1 1- 7;’?71
which is the same as
2
D; 1 1 1
S I e R el P .
i — T Di (pi+1)
and finally
1 (N B VR

X =
(17171'2) 1_m (17171'2) Di
In this way, we have that

m m m
; 1 i +1

Di _ H — « H ;i + ]

il e N =
However, we know that
m o0
1 1
11 <11
) ;)
i=1 1 i j=1 1 Py

where p; is the 4" prime number and we have that
o0

12
fita-3

)
j=1 1= b;

as a consequence of the result in the Basel problem [6]. Consequently, we
obtain that

m

2 m
4 11
]I p11<776><][pz+.
P -1 P

Theorem 2.3 For x > 10%, we have

1
Zf<ln1nx+7—ln;

p<z

where p < x means all the primes lesser than or equal to x.

Proof For z > 2, we have

1
Zf<lnlnx+B+

p<z

Inx
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where
B =0.2614972128.. ..

is the (Meissel-)Mertens constant, since this is a proven result in Lemma 2.1
from the article reference [3]. This the same as

1 5
Zf<lnlnx+'y—0+—

Inx
p<z
that is the same as
1 5
Z* <Inlhz+~y-(C—-—)
Inx
p<z

where C' > 1.51957520514, because of v > B. If we analyze C' — ﬁ, then
this complies with

>ln3

) )
C - s >=1.51957520514 — e > 1.51957520514 — 108 3

for > 10® and thus, we would have

1 3
Zf<ln1nx+7—ln§.

p<z
|

Definition 2.4  We recall that an integer n is said to be squarefree if for
every prime divisor p of n we have p? { n, where p? { n means that p? does
not divide n [3].

Theorem 2.5 Given a squarefree number n = q1 X ... X ¢p such that
q1,92,---,qm are odd prime numbers and the greatest prime divisor of n is
greater than 7, then we obtain the following inequality

7.‘.2

gxixa(n)ge'yxnxlnln@xn).
Proof This proof is very similar with the demonstration in Theorem 1.1
from the article reference [3]. By induction with respect to w(n), that is the
number of distinct prime factors of n [3]. Put w(n) = m [3]. We need to
prove the assertion for those integers with m = 1. From the equation (2.1),
we obtain that

(2.3) on)=(qa+1)x(g2+1)x...x(gm+1)

when n = q; X g2 X ... X ¢p,. In this way, for any prime number p; > 11, then
we need to prove

203 1
(2.4) % X 5 X (1+ E) <e¥ xInln(2 x p;).

For p; = 11, we have that

7T2

3 1
F X 5 X (1+ﬁ) Se'y Xlnln(22)
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is actually true. For another prime number p; > 11, we have that

1 1
1+ — 1+ —
1+ <(+4)
and
€” x Inln(22) < e” x Inln(2 x p;)

which clearly implies that the inequality (2.4) is true for every prime number
p; > 11. Now, suppose it is true for m — 1, with m > 1 and let us consider the
assertion for those squarefree n with w(n) =m [3]. Solet n =q1 X ... X gm
be a squarefree number and assume that ¢; < ... < ¢, for ¢, > 7.
Case 1:¢y, >In(2X 1 X ... X ¢m—1 X Gm) = In(2 X n).
By the induction hypothesis we have
2

3
inx(ql—&—l)x. cX(Gm-1+1) < eVXxq1X. . Xgm_1xXInIn(2xq1q1 X. . X gm—1)

and hence
w2 3
KX7X(Q1+1)X"'X(QW—1+1)x(Qm+1)S
€' X qr X ... X o1 X (@ +1) xInln(2 X q1 X ... X Gr—1)
when we multiply the both sides of the inequality by (g, + 1). We want to
show that

[\

€' X g X oo X o1 X (Gm+1) xInIn(2x ¢1 X ... X gp—1) <
VX qr X X Gm—1 X @ XInIN(2X g1 X ... X Gm—1 X qm) = €7 Xnx1Inln(2 xn).
Indeed the previous inequality is equivalent with
Gm XInIn(2 X q1 X ... X @1 X qm) = (gm +1) xInln(2 X ¢1 X ... X @m-1)
or alternatively

Gm X (InIn(2 X 1 X ... X ¢gm—1 X ¢m) —Inln(2 X ¢1 X ... X @rm—1))

>
In g, -
Inln(2 x g1 X ... X gm—1)
In gy, ’
From the reference [3], we have that if 0 < a < b, then
Inb—Ina 1 |
2.5 = — > .
(25) b—a (b—a)/a t b

We can apply the inequality (2.5) to the previous one just using b = In(2 x
1 X ... X @m—1Xqm) and a =In(2 X g1 X ... X ¢n—1). Certainly, we have that
In(2 X g1 X ... X @m—1 X qm) —In(2 X q1 X ... X 1) =
2Xq X .o X qm—1 X @
2Xqr X ..o X Qm—1

In this way, we obtain that
Gm X (InIn(2 X 1 X ... X @1 X ¢m) —InIn(2 X q1 X ... X Grm—1))
In g,

In

=Ingy,.

>
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dm
In2xq X...xqm)

Using this result we infer that the original inequality is certainly satisfied if
the next inequality is satisfied
qm S Inln(2 X q1 X ... X gm-1)
In(2x g1 X...%X¢qm) — Ing,,

which is trivially true for ¢, > In(2 X ¢1 X ... X gm-1 X ¢m) [3]-

Case 2 :q,, <In(2X q1 X ... X ¢m—1 X Gm) = In(2 X n).

We denote by ¥(z) the logarithm of the product of all primes lesser than or
equal to z [5]. By definition, we know that ¥(¢m,) > In(2Xq1 X. . . X @1 X Gm)-
However, we know that x > 9(z) for 0 < x < 10® [5]. Hence, we need to prove

7T2

Fxﬁxa(n)ge'yxnxlnln@xn)
when g¢,,, > 108 is the greatest prime divisor of n. If we apply the logarithm
to the both sides of the previous inequality

2 m
ln(%) + jz:;(ln(qj +1)—Ing;) + lng <y+Inlnin(2 x n).
From the reference [3], we note that
pit+l gt 1
111(p1+1)—1np1:/ - < —.
p1 t D1

In addition, note also that ln(%) < 1. In order to prove this, it is enough to

prove that

1
- ln7<7—|—lnlnln(2><n)
P<qm p

However, we know that
v+ Inlng, <v+Inlnln(2 x n)

since ¢, < In(2 x n) and therefore, we would only need to prove that

Z +ln§ <~ +Inlng,,

p<Qm
that is the same as
1
Z - <vy+Inlng, —In=
P<qm

which is true according the Theorem 2.3 z = ¢,,, > 10%. In this way, we finally
show the Theorem is indeed satisfied. [ |

Theorem 2.6 Given a natural number n = 2% x 3%2 x 593 x 7% > 5040
such that a1, a9,as3,a4 > 0 are integers, then the Robin’s inequality is true for
n.
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Proof Given a natural number n = p{* x p5? x ... X p%m > 5040 such that
P1,P2, - - -, Pm are prime numbers, we need to prove that
n
L) < e’ xInlnn
n

that would be the same as

m
bi
2.6 —— < e’ xInlnn
(2.6 1,
=
according to Theorem 2.1. Given a natural number n = 2% x 3%2 x 5% > 5040
such that a1, a9, a3 > 0 are integers, we have that

m

i <2><3><5
izlpi—1*1><2><4

= 3.75 < ¢ x InIn(5040) ~ 3.81.

However, we know for n > 5040, we have that
€’ x Inln(5040) < e” x Inlnn

and thus, the proof is completed for that case. Hence, we only need to prove for
every natural number n = 2% x 3%2 x 5% x 7% > 5040 such that a1, asz,a3 > 0
and a4 > 1 are integers. In addition, we know the Robin’s inequality is true
for every n such that 7% | n for 1 < k < 6 [4] (this article has been published
in the journal Integers in the volume 18). Therefore, we need to prove this
case for those natural numbers n such that 77 | n. In this way, we have that

m

Di <2><3><5><7
izlpi—1*1><2><4><6

=4.375 < ¢? x Inln(77) ~ 4.65.

However, we know for n > 5040 and 77 | n, we have that
¢’ x InIn(7") < e’ x Inlnn

and thus, the proof is completed. [ |

Theorem 2.7  The Robin’s inequality is true for every natural number
n > 5040.

Proof Given a natural number n = p{* x p5? x ... X p%m > 5040 such that
P1,P2, - - -, Pm are prime numbers, then we will prove the Robin’s inequality is
true for n. We know this true when the greatest prime divisor of n is lesser
than or equal to 7 according to Theorem 2.6. Therefore, the remaining case
is when the greatest prime divisor of n is greater than 7. We need to prove
the inequality (2.6) for that case. In addition, the inequality (2.6) would be
true when

2 mn . 1
W— XH£<€7XIHIHTL
6 P
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according to Theorem 2.2. Using the properties of the equation (2.2), we
obtain that will be equivalent to

2 /
71-—><m<e'y><lnlnn

6 n’
where n’ = g1 X ... X g, is the squarefree representation of n. However, the
Robin’s inequality has been proved for all integers n not divisible by 2 (which
are bigger than 10) [3]. Hence, we need to prove when 2 | n’. In addition, we
know the Robin’s inequality is true for every n such that 2% | n for 1 < k < 19
[4] (this article has been published in the journal Integers in the volume 18).
Consequently, we only need to prove that for all n > 5040 such that 220 | n

and thus, we have that

n/

e’ xn' x Inln(2 x 5) <e’xn xInlnn

because of 219 x % < n when 22° | p and 2 | n/. In this way, we only need to

prove that
2 /
% xo(n') <e¥ xn' xInln(2 x %)

According to the equation (2.3) and 2 | n’, we have that

2 / / /
—x3x0(%)§e”’x2x%xlnln(2x%)

6
which is the same as
2 3 / / /
%x§><a(%)§e"*x%xlnln(2x%)
which is true according to the Theorem 2.5. To sum up, we have finally proved
the Robin’s inequality is true for every natural number n > 5040. [ |

Theorem 2.8 The Riemann hypothesis is true.

Proof If the Robin’s inequality is true for every natural number n > 5040,
then the Riemann hypothesis is true [3]. Hence, the Riemann hypothesis is
true due to Theorem 2.7. ]

Conclusions

The practical uses of the Riemann hypothesis include many propositions
known true under the Riemann hypothesis, and some that can be shown
equivalent to the Riemann hypothesis [1]. Certainly, the Riemann hypothe-
sis is close related to various mathematical topics such as the distribution of
prime numbers, the growth of arithmetic functions, the Lindel6f hypothesis,
the large prime gap conjecture, etc [1]. In this way, a proof of the Riemann hy-
pothesis could spur considerable advances in many mathematical areas, such
as the number theory and pure mathematics [1].
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