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1 Department of Power, Electronic and Communication Engineering, Faculty of Technical Sciences,
University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia;
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Abstract: Remote sensing applications have gained in popularity in recent years, which has resulted
in vast amounts of data being produced on a daily basis. Managing and delivering large sets of
data becomes extremely difficult and resource demanding for the data vendors, but even more
for individual users and third party stakeholders. Hence, research in the field of efficient remote
sensing data handling and manipulation has become a very active research topic (from both storage
and communication perspectives). Driven by the rapid growth in the volume of optical satellite
measurements, in this work we explore the lossy compression technique for multispectral satellite
images. We give a comprehensive analysis of the High Efficiency Video Coding (HEVC) still-image
intra coding part applied to the multispectral image data. Thereafter, we analyze the impact of the
distortions introduced by the HEVC’s intra compression in the general case, as well as in the specific
context of crop classification application. Results show that HEVC’s intra coding achieves better
trade-off between compression gain and image quality, as compared to standard JPEG 2000 solution.
On the other hand, this also reflects in the better performance of the designed pixel-based classifier in
the analyzed crop classification task. We show that HEVC can obtain up to 150:1 compression ratio,
when observing compression in the context of specific application, without significantly losing on
classification performance compared to classifier trained and applied on raw data. In comparison,
in order to maintain the same performance, JPEG 2000 allows compression ratio up to 70:1.

Keywords: HEVC; intra coding; JPEG 2000; high bit-depth compression; multispectral satellite
images; crop classification; Landsat-8; Sentinel-2

1. Introduction and Motivation

Satellite imaging has experienced proliferation in the recent period and there are more possibilities
for realization of its applications than ever before. However, data burden is expected to become even
greater in the future with the advancement of sensors with higher spatial resolutions and more
measurement bands. Therefore, there is a need to revisit and possibly complement some previous
findings that were related to efficient satellite image compression, like ones presented in [1], or more
recently in [2], and offer users more insights into effects of different choices in such case. Of particular
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interest is the field of lossy image compression where high compression ratios can be easily achieved,
but at the cost of inevitable information loss. However, the question remains what level of image quality
degradation could be acceptable for some remote sensing application, and even more importantly,
how sensitive such application would be on the particular choice of an image compression strategy.
This paper tries to offer some answers to such questions and tracks possibilities of using one of the
latest, industry confirmed, general purpose coding standard, which could be expected to be easily
accessible to broad community of users, and easy to implement in custom, application dependant,
processing frameworks. More exactly, we present a comparative study in which the effectiveness of
the intra coding part of the High Efficiency Video Coding (HEVC) standard [3,4] is analyzed against the
well established JPEG 2000 lossy compression [5,6], under two selected application scenarios:

(a) HEVC as a general purpose lossy compression solution for medium and high resolution
multispectral satellite images acquired by the Landsat-8’s OLI [7,8], and Sentinel-2’s multispectral
instrument (MSI) [9,10], which are considered as frequently used and freely available image
sources; and

(b) HEVC as an application oriented lossy compression solution for thematic mapping,
i.e., pixel-based crop classifications like the ones presented in [11,12]—however with an important
difference that multispectral time series in our study consist of lossy compressed reflectance
measurements as compared to original (uncompressed or lossless) measurements that were used
in the referred studies.

The choice of the second application scenario has been influenced by the fact that the
corresponding classifier design, and the subsequent production phases, where the trained model
is going to be deployed, require large volumes of data. Therefore, such tasks could easily benefit
from the effective lossy image compression, resulting in the more efficient data handling. They could
also benefit from the possible side effects, like the noise cancelling, leading to the better classifier
performance, as in [13,14]. Naturally, this could be only possible if such lossy compression classification
approach, usually denoted as compress-then-analyze, would prove to be not highly sensitive to the
expected information loss. Thus, the aim of this work is to offer an application oriented insight into
specific compression vs. classification performance trade-off in the pixel-based crop classification tasks,
through estimation of the corresponding classification performance sensitivity, similarly as in [15].
Also, since we advocate the use of the standardized compression solutions, instead of custom-made
codecs that cannot benefit to such extent from the large community support (optimized hardware
implementations and continuously maintained software libraries), HEVC effectiveness is tested against
the JPEG 2000, which has been often utilized in Earth Observation (EO) data distribution systems.

Besides the possible advantages arising from utilizing the baseline (still-image) HEVC intra mode,
we also point out that the particular thematic mapping application that has been chosen in this study
represents a sort of typical remote sensing tasks. However, it has not been frequently analyzed from
the application perspective of the general data compression community. Moreover, currently there is
not so much research on this topic, and a comprehensive analysis of the compression effects on remote
sensing applications has been relatively scarce. Therefore, the EO community could benefit from more
interest of the compression community for the specific application oriented compression scenarios,
as well as from the comprehension of how some finely tuned and well established (off-the-shelf) data
compression technique could effect different bands of acquired multispectral images, and to what
extent this choice could be expected to have influence on some particular remote sensing application.

Results presented in this paper confirm that HEVC, as a hybrid and feature rich method based on
transform and predictive coding techniques, outperforms transform based JPEG 2000 compression
approach that has been currently used in some ground-based data distribution systems and has
been considered as a general purpose solution for lossless or lossy satellite image compression.
The presented results confirm initial assumptions regarding HEVC’s applicability and effectiveness
in lossy compression of multispectral images, opening possibly new research directions towards its
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application in hyperspectral image compression. However, even more importantly, presented results
give a new perspective on the possibilities of exploiting general purpose lossy compression solutions,
like HEVC, in contemporary ground segment data distribution operations, oriented towards users
interested in different levels of quality of service, like in the standard streaming application scenarios.

The rest of the paper is organized as follows. In Section 2, a brief discussion on the current
state and future trends in the field of satellite image compression has been given, specifically
placing in a given context HEVC as one of the possible compression solution for the future EO data
distribution systems. Review of other related coding techniques has been given in the same section.
In the Section 3, the underlying data, used as part of experiments, has been briefly described and
motivated. Experimental setup and methods used in this study are explained in Section 4. It includes
the design characteristics of the crop classification method, that is used as an example of application
oriented benchmark in this work, as well as settings of the codecs used for the compression purpose.
The results, and additional discussions of the outcomes of this study, are emphasized in Section 5.
Presented results in this work include both quantitative and qualitative assessments of compression
effects on the image quality, as well as on the overall accuracy of the considered crop thematic maps.
The paper is concluded in Section 6, with a short reference to the possible future research directions.

2. Provisioning of EO Data Through Lossy Compression Schemes in the Ground Segment

Broadly speaking, utility of an image compression scheme is mostly affected by the type of data
and planned application. Essentially it goes down to the amount of useful information inherent in
the data, as compared to the overall data quantity [16], sometimes requiring a global, mission specific
approach in a quest for an optimal compression trade-off [17].

2.1. Downlink Related Work

Downlink systems, Figure 1, usually prefer lossless or near-lossless image coding designed in
such a way to ensure high fidelity of possible applications. Due to a limited on-board power capacity,
low complexity compression schemes, e.g., [18–24], have been the main choice towards the practical
implementation. For example, in such restricted environment, even JPEG 2000 has been considered
a too complex method. Consequently, the Consultative Committee for Space Data Systems (CCSDS) has
been constituted to research on a family of recommended compression schemes specifically designed
for space data systems. Works like these [25–27] developed by CCSDS have emerged, following
a general paradigm of low complexity requirements in order to facilitate applications such as on-board
compression. Aforementioned approaches are just some of the wide range of different coding choices
that meet requirements imposed by power-constrained EO missions, with a limited hardware resources
specifically designed to function in orbit. However, those techniques are often used with compression
ratios that could be considered as moderate [28], sometimes also due to the the nature of the lossless
compression itself. Nevertheless, limited bandwidths and ever-growing data volumes make these
methods inevitable in today’s EO missions. As a consequence of the huge increment in the data-rate of
the new generation sensors (despite that the lossless or near-lossless compression algorithms have
been traditionally preferred for on-board compression scenarios), a research effort targeting lossy
on-board compression has been reported in [29,30]. Also, lossy extensions of CCSDS standards have
been proposed [26,31], however still bearing in mind available on-board technologies related with
tolerance to solar radiation and low power consumption, e.g., see [32]. As a matter of fact, it is generally
accepted that the lossy coding schemes can be (if required) derived from the corresponding lossless
modes through introduction of a suitable quantization (or coefficient truncation) scheme [31,33].

2.2. Focusing towards the Users Side Compression

As opposed to the constraints related to the on-board processing and downlink communication
requirements, end-user oriented EO applications, that are placed at the other end of the data
distribution chain, offer much broader range of design possibilities. Liberating from the tendency
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to suggest low-power codec solutions, and approaching closer to end-users, different compression
options may appear, especially considering theoretically unlimited resources in the cloud where
complexity is no longer a critical issue during the encoding step. Thus, low-complexity requirement
imposed over on-board solutions can be significantly relaxed, which can be particularly suited for
a more complex compression algorithms that are trying to achieve better trade-off between image
quality and compression ratio.

Figure 1. General scheme of Earth Observation (EO) communication and data distribution system.

Traditionally, those methods are mainly based on various decorrelating transforms [34,35], leading
to wide range of different coding approaches, where usual precondition for efficiently going below the
nominal entropy rate of the source is to decorrelate acquired measurements in spatial and/or spectral
domain. In particular, general purpose coding schemes, originally designed to be applicable in broader
progressive lossless-to-lossy use-case scenarios, such as EZW [36], SPIHT [37–39] or SPECK [40,41],
proved to be useful in achieving higher compression ratio requirements, however bringing in
higher processing and memory requirements when compared to less complex on-board solutions
(see Section 2.1). Aforementioned research has established that, among transform coding architectures,
many systems usually follow a general coding pipeline in which, at the first stage, a suitable transform
is applied in the spectral domain (e.g., wavelets or some covariance-based decorrelation method
like Karhunen-Loève transform (KLT) [42] or its low-complexity approximation named Pairwise
Orthogonal Transform [43,44]), which is afterwards followed by some of the standard coding schemes
(EZW, SPIHT, SPECK). Similarly, JPEG 2000 can be deployed in order to compress each of the
previously computed, spectrally decorrelated, image components (usually by implicitly performing an
additional 2D spatial transform on each of resulting channels from the first step, followed by rate or
quality allocator, and entropy coder), leading to three-dimensional (3-D) decorrelation [13,35,45,46].
In particular, a combination of spectral decorrelator such as KLT in conjunction with JPEG 2000 proved
to provide state-of-the-art performance according to [13,43]. Other noteworthy research efforts are also
reported in [47–50].
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In addition, authors note that very few works utilize standard video coding schemes,
or any similar hybrid-based approaches (combination of predictive coding and transform coding),
as a compression choices for high-dimensional satellite data. More precisely, we found out only work
presented in [51] worth mentioning. However it does not use HEVC as a base codec setting.

2.3. Applications Oriented Lossy Compression—Related Work

Although higher compression gains may be achieved using lossy compression, there is always
a question to what extent some artifacts introduced by the specific compression algorithm affect
a certain type of application. Some previous works, that provide insights into this important question,
and which could be considered as closely related in the context of the presented study, are given
in [15,52–55]. In [15], as well as [56], it was shown that a small amount of lossy compression
can have beneficial effects for the overall performance of crop thematic mapping. This was also
independently confirmed by the experimental results of our study. However, in comparison to [15],
we have considered different types of compression methods and application scenarios. On the other
hand, regarding the specific task of crop thematic mapping, in comparison to [15] our study considers
only a multitemporal classification scenario, which can be considered as a more realistic one, as opposed
to a single-date classification approach, since it is well known that the plant’s phenology is captured
much better by independent observations made throughout the vegetation season. Also, according
to [15], multitemporal information allows one to utilize much higher compression ratios in comparison
to single-date classification, and still achieve almost the same classification performance as in the
case of original data. One of the main conclusions in [52] was that the level of scene fragmentation
determines the acceptable level of lossy compression, which is consistent with the general rule of
thumb that image’s scene complexity determines the overall information content (entropy of the
image), and thus level of required spatial details for successful, discirminative classification. Related to
the mentioned fragmentation aspect, scene content complexity was also considered by the first set of
experiments in our study, which involves algorithms benchmarking against satellite images with the
varying scene content, captured at the approximately same time by the image sensors with varying
spatial and spectral characteristics. In addition, influence of lossy compression on the quality of
different vegetation indices, which also represent potentially valuable features for crop classification,
was analyzed in [53,54]. Favoring image channels that contain more task specific information was also
proposed in [54], where the group of channels characteristic for vegetation was encoded at a higher bit
rate than the remaining one.

Besides the above mentioned methods, there were also many others which have evaluated
compression efficiency against the specific remote sensing tasks like classification [35,43,55,57–60],
image segmentation [61], atmospheric parameter retrieval [14,62], spectral unmixing [63], endmember
extraction [64], vegetation [53,54] and spectral [65] indices computation, and biophysical variables
estimation [66]. In [59] it was concluded that in the context of the general applications it is hard to
define optimal level of image quality that should be preserved by the lossy compression. As a
possible answer to this open question, authors in [59] have proposed a general, unsupervised
classification-accuracy based method for image quality assessment, which could provide some
indicators regarding effectiveness of different elements of the considered compression procedures.
In [59] it was also pointed out that the spectral decorrelation usually removes peaks from spectral
signatures of hyperspectral measurements, even at high reconstructed image qualities. On the other
hand, Ref. [60] proposed a specific classification oriented lossy compression approach, inspired
by optimal signal representation in the spectral domain. This approach was later extended in [67].
An overview of the contemporary approaches for measuring how classification accuracy is affected
by the compression can also be found in a recent study in [68]. In addition, they establish a
prediction model between the features extracted from compressed images and the corresponding
classification accuracy.
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2.4. HEVC as a Matter of Choice

Generally speaking, role of an efficient compression scheme would be to enable and facilitate
deployment of other technologies that are expected to be highly dependant on the efficient and
timely distribution of image data, and which would possible benefit from the achieved reduction
in the required storage, energy consumption, data access and processing time. This could prove
to be extremely important for data vendors, but even more so for individual users, on-demand
service providers, or third party stakeholders in general. At the same time, positioning at the ground
segment could open the access to the larger compression community that could also be crucial for
the implementation of new forms of compression techniques that at the time being have not been
considered in the RS applications, e.g., HEVC. In that sense, this work aims to position itself on the
link between the EO data service providers and the end-users, see Figure 1. Also, in the context of this
work, we consider classification task just as one of the possible user specific applications that could
benefit from the reduced data burden that is easily achieved by the lossy compression of multispectral
satellite images. In addition, as the remote sensing technologies advance, new applications require
constant improvement of existing coding schemes, allowing higher compression gains, which usually
(however not necessarily) comes at the price of higher complexity.

Eventually, it is important to note that widely accepted industry standards for image and
video compression could ensure interoperability and can be adopted by the broader community
of EO practitioners. At the same time, it is more likely to be implemented in a custom, application
dependant, processing framework, since they usually come with the open source reference software,
e.g., [69]. This implies that efficient, fast and reliable implementation of the standardized codecs may
be realized with much less effort than implementing custom based codec from the ground. By doing
so, schemes such as HEVC may be deployed efficiently, making available to process large amount of
data utilizing computationally complex features like those incorporated in HEVC. Hence, building
compression processing unit, on cloud or locally on a workstation (or even personal computer),
is significantly facilitated since available computing power comes at reasonable cost. Efficient widely
used and industry accepted compression techniques are therefore easier to be integrated in the existing
infrastructure, or implemented using existing equipment. In addition, even though HEVC has high
computational complexity, it is highly parallelizable and implementation friendly scheme [70,71]
(it uses integer logic with shifts and additions). For example, work that implements fast and efficient
HEVC encoder was described in [72].

Emerging from the above, in our research, we consider the use of standardized and ubiquitous,
industry accepted solution such as HEVC. Technical specifications for the data distribution and
management of the most spaceborne programs has identified JPEG 2000 as a straightforward
compression solution, e.g., [73]. In this work we want to show that more recent, state-of-the-art
standardized compression schemes may provide performance improvement compared to the
JPEG 2000. Given the current computing technologies, besides HEVC’s higher computational
complexity, it is practically feasible to use such scheme in a ground-based satellite data distribution
chain. Hence, we have done comparative study in which we analyze effectiveness of the HEVC
standard. We show that using intra-band (still-image) coding part of HEVC can improve compression
gain over the JPEG 2000 coding scheme which is specified as a baseline (and mostly used) compression
method for EO data distribution at the ground segment. Indeed, HEVC has been reported to perform
better than any other international standardized coding scheme currently on the market. It was
reported in [74] that HEVC intra coding reduced the average bit rate by 17% compared to H.264/AVC,
23% compared to JPEG-2000, 30% compared to JPEG-XR, and 44% compared to classic JPEG. However,
the previous work has been focused on the HEVC’s performance evaluation by using representative test
set of standard photographic still images. Furthermore, with the completion of its second version that
supports up to 16 bits per pixel (b/p) [75], it became available to other specialized applications besides
standard consumer data, such as remote sensing applications among others [76]. Thus, in this work,
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we quantify HEVC’s intra coding performance, however this time applied on a set of multidimensional
satellite data.

3. Datasets Preparation and Design

3.1. General Compression Performance Evaluation Dataset

The set of test images, which have been used by the first group of experiments, consists of the
selected image scenes presented in Table 1. Similar set was originally proposed in [77] with the aim
of having a representative collection of the scene content variations in order to derive the optimal
estimates of the tasselled cap transformation parameters, specifically adapted to the corresponding
Landsat-8 TOA reflectances. Therefore, in this paper, it was also considered as a suitable image
collection for the general analysis of the compression effects in the case of the proposed HEVC solution.
In line with the above mentioned, the set of images includes variety of scenes consisting of different
land use and land cover classes (LULC), corresponding to urban areas, crop fields, mountainous
forests, water bodies of different size, bare soil and various urban features, Table 1.

Table 1. Characteristics of scenes and images used in general compression performance comparisons.

Scene
No. Location Description Landsat-8

Path/Row
Landsat-8
Acq. Date

Sentinel-2A/B
Granule ID

Sentinel-2A/B
Acq. Date

1 Jiangxi, China Poyang lake, urban and
vegetation areas 121/40 10 April T50RMT/R132 7 April

2 Jiangxi, China Poyang lake, urban and
vegetation areas 121/40 31 July T50RMT/R132 31 July

3
Northern
Nebraska,
South Dakota

Variety of crop fields,
urban areas, airport and
bare soil

31/30 8 July T14TLN/R055 10 July

4
Northern
Nebraska,
South Dakota

Variety of crop fields,
urban areas, airport and
bare soil

31/30 9 August T14TLN/R055 9 August

5 West Virginia
Mountainous forests,
water bodies and urban
features

16/34 12 May T17SPB/R097 14 May

6 West Virginia
Mountainous forests,
water bodies and urban
features

16/34 29 June T17SPB/R097 18 June

7 North
Carolina

Agricultural holdings,
forest and water bodies 16/35 12 May T17SPV/R097 14 May

8 North
Carolina

Agricultural holdings,
forest and water bodies 16/35 29 June T17SPV/R097 18 June

9 Idaho Large water bodies and
crop fields 39/31 14 June T12TUM/R127 10 June

10 Idaho Large water bodies and
crop fields 39/31 30 June T12TUM/R127 25 June

11 Indus River
Basin

Indus River, extensive
crop fields 152/41 8 July T42RVR/R021 7 August

12 Indus River
Basin

Indus River, extensive
crop fields 152/41 25 August T42RVR/R021 27 August

However, all images were always used and analyzed as a whole, and the corresponding image
quality metrics were aggregated at the scene level, which makes the class specific analysis of the
corresponding compression effects hard to follow. Nevertheless, some of the selected scenes are
mutually discriminative enough, thus allowing a generalization of results and analysis to a wide range
of image contents. In addition to Landsat-8 multispectral images, corresponding to the specific scenes
in Table 1, an additional subset of the benchmark dataset was designed. It consists of Sentinel-2 images
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of the same ground areas that were closest in space and time to the specified Landsat-8 scenes (images
listed in the last two columns of Table 1). Thus, the proposed dataset has been designed to conduct the
first group of experiments aim to objectively characterize HEVC’s general compression performance in
comparison to the baseline JPEG 2000 solution. Visual preview of selected images is given in Figure 2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Figure 2. Visual overview of the scenes 1–12 in Table 1. True color illustrations (a–l) correspond to 60 m
Sentinel-2 image channels. Some contain clouds and haze due to the adopted selection criteria which
favours the Sentinel-2 images that were the ones closest in time to the original Landsat-8 counterparts.

Since Sentinel-2A/B were still not operational at the time when the original scenes in [77] were
proposed, we have selected measurements from 2018 when both satellites were available, with the
acquisition dates that were closest to the original ones made by Landsat-8 in [77]. It should be noted
that in [77], for some of the location listed in Table 1, only one acquisition was selected, while for some
others there were up to two acquisitions relatively close in time. Therefore, for all of the scenes of the
dataset used in this study, we have selected two close acquisitions for each Landsat-8 and Sentinel-2 in
order to have richer test environment with more samples of representative LULC categories in the
given scenes.

All selected images are Level-2 atmospherically corrected image products, containing surface
level reflectances, stored as 16 b/p integers. Selection of multispectral images of the same test sites,
but originating from two different satellite instruments, was motivated by the fact that Sentinel-2 and
Landsat-8 imagers have different spatial resolutions, which could enable comparison of compression
effects under different spatial resolution scenarios. In addition, individual channels of Sentinel-2
images are also of varying spatial resolutions, which was taken into account in results presentation,
where in addition to performance measures aggregated at the scene level over all channels, the results
corresponding to the groups of image channels with different spatial resolutions are also presented.

In case of Landsat-8 images, experiments were performed on all OLI based bands except
panchromatic channel 8 and cirrus channel 9 [8], e.g., on all atmospherically corrected Level-2 image
products of spatial resolution of 30 m [78]. These include 4 VNIR (visual and near-infrared) and 2 SWIR
(shortwave infrared) narrowband channels, and one coastal/aerosol channel 1.

In case of Sentinel-2 images [9], those originating from both Sentinel-2A, as well as -2B, were used
interchangeably in order to find an image with the acquisition time closest to the corresponding
Landsat-8 image of the same area. Although Sentinel-2 images were selected to match with Landsat-8
acquisitions (path and row in the corresponding world reference system), it should be noted that, due to
higher spatial resolution, Sentinel-2 images cover significantly lower area, of approximately 100 km
by 100 km, as compared to Landsat-8’s 185 km wide swath and 170 km long range. Sentinel-2 MSI
channels [10], that were used in this study, include all channels that were available after atmospheric
correction, at different spatial resolutions (10, 20 and 60 m). Thus, at 10 m spatial resolution, in total
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4 VNIR channels were used, consisting of three B02-B04 narrowbands, and somewhat wider B08;
at 20 m resolution 7 VNIR channels were used (B02-B07, B8a) and additional 2 SWIR channels
(B11 and B12), thus in total nine channels; while at 60 m all channels except B08 and B10 were utilized,
i.e., in total 11 channels of which 9 VNRI and 2 SWIR. As specified in [73] and illustrated in [10],
at 20 m resolution only 6 channels B05-B8a and B11-B12 are originally acquired by the MSI, while the
rest of 5 channels are synthesized from the original higher resolution 10 m measurements. Similar also
holds for 60 m image channels, where out of 11 utilized channels only the image channels B01 and B09
are acquired at original, nominal spatial resolution, while the rest of nine 60 m image channels, that
are delivered as part of Level-2 atmospherically corrected Sentinel-2 image product, are synthesized
through adequate postprocessing.

Intrinsic spatial resolutions of Sentinel-2 image bands are: 10,980 × 10,980, 5490 × 5490,
1830 × 1830 pixels, corresponding to spatial resolutions of 10, 20, and 60 m respectively. On the
other hand, intrinsic spatial resolution of Landsat-8 OLI images is not fixed and varies around
≈ 7800 × 7900 pixels. In addition, substantial part of Landsat-8 images is always occupied by
no-data regions (along the corners of the scene), which is not always the case with Sentinel-2 images.
To be more precise, it turns out that in our dataset Sentinel-2 images are barely occupied with such no
data regions. From the compression point of view, such regions have high information redundancy,
and therefore are easy to compress, which could be considered as a source of the potential positive
bias in the overall evaluation of the compressed image quality. However, the same influence is present
in the case of all analyzed compression scenarios, and therefore if present it could be considered as
a relative one, which is a more favourable option for performance comparison of different methods.
Also, according to corresponding product specifications, like [78], original data are always distributed
in the predefined format that is adopted by the end-user community, which makes the use of standard,
of-the-shelf codec implementations, more suitable, as opposed to some optimal, custom solutions,
which would have a special treatment of such no-data regions.

Most of the above presented information related to characteristics of multispectral image products,
that were utilized in the first type of experiments, also hold for the data that were used in the
second type of experiments (pixel-based classification) described in Section 4.2. Therefore, in the
next subsection, only the specific differences arising from the characteristics of the chosen application
scenario will be additionally discussed and highlighted.

3.2. Crop Thematic Mapping Dataset

The second group of experiments relies on time series of multispectral images corresponding to
the specific ground test site (area) where additional field level data were collected. Selected satellite
images were used as the source of reflectance data for the design of pixel-based crop classification
models, which are mutually compared and benchmarked against different lossy compression scenarios,
utilizing the proposed HEVC and the chosen baseline JPEG 2000 solutions. As the result, constructed
classification models differ only in the type of the training data that were used for their estimation.
Thus, they differ in the degree to which different compression types influence the performance
sensitivity of the chosen type of classification model (random forest), which belongs to the widely
accepted and utilized family of learning machines that are present in many contemporary pixel-based
thematic mapping systems.

Due to the varying cloud cover and limited vegetation season, only a relatively small subset of all
available images for the chosen test site was utilized. In total, two different time series of Sentinel-2A
images were chosen, corresponding to two adjacent and spatially overlapping relative orbits R036 and
R136, respectively. Two orbits cover the main agricultural region in the Republic of Serbia, known
as Vojvodina. Acquisition dates and the percent of cloud coverage for the two described Sentinel-2A
multispectral time series are shown in Figure 3.

Orbits from Figure 3 have some spatial overlapping, as illustrated in Figure 4, however they were
used separately and independently in all experiments. This was done, since the field level data were
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distributed uniformly over the whole region of interest, but also since images corresponding to one
relative orbit have significant percent of no-data region pixels, and therefore were expected to achieve
higher compression ratios in comparison to images from the other one. Also, having two classification
experiments with almost the same ground-truth data, but different image sources, enables one to
additionally assess stability of the obtained results and their significance.
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Figure 3. Acquisition dates and the percentage of cloud coverage (CC) for the selected Sentinel-2A
images in the crop thematic mapping. Data correspond to images with small CC from two adjacent
relative orbits of Sentinel-2A in 2016, i.e., time series R036 and R136. Since the winter wheat harvest
season in Serbia usually starts in the beginning of June, and in R036 were no cloud free acquisitions
before the end of the June, in order to improve winter wheat classification R036 also includes one
snow-free image from the winter period.

(a) (b)
Figure 4. Degree of spatial overlap between two adjacent Sentinel-2A relative orbits, (a) R036 and
(b) R136. Shown 20 m images were acquired on 28th and 25th August 2016, as parts R036 and R136.

As the result, two distinct classification datasets were designed and prepared by labeling
individual pixels from the images in multispectral time series, i.e., by using ground-truth crop
type labels extracted from the corresponding shapefiles that were labeled at the level of individual
agricultural plots/parcels.

Characteristics of utilized Level-2 image products were already described in Section 3.1. However,
it should be mentioned that the second type of experiments does not include Landsat-8 images, due to
relatively small size of agricultural parcels in Vojvodina, which in the case of Landsat-8 can be only
a few pixels wide, see [11]. Therefore, in order to eliminate possible influence of the spectral mixing
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effects onto performed compression sensitivity analysis, we have decided to exclude Landsat-8 from
thematic mapping experiments, since there was no possibility to only exclude pixels laying in the crop
field boundaries, due to the highly narrow shape of agricultural plots and the general lack of pixels
within the fields in the case of Landsat-8.

Field level data consist of manually labeled plots corresponding to five predefined crop types
(wheat, maize, sugar beet, sunflower, soybean) and an additional class corresponding to other land
cover types. Each of the labeled plots was planted with only one crop type, and there was no double
cropping. Labels were assigned to individual pixels inside the parcel, and their distribution per each
of the categories, as well as distribution of number of corresponding agricultural parcels per each of
the categories, are shown in the lower part of Tables 2 and 3. For example, note the table entries in the
rows denoted by the symbols “R036” and “R136”, corresponding to the total number of the parcels
falling into paths of the two distinct orbits of interest, respectively.

Table 2. Number of agricultural fields per each of the categories in 10-fold cross-validation of mapping
experiments. Partition subsets, denoted by No, consist of manually labeled crop fields from two
different relative orbits in Figure 4, R036 and R136. Abbreviations: Ma-Maize, Wh-Wheat, So-Soybean,
Sb-Sugar beet, Sn-Sunflower, Ot-Other.

No Ma Wh So Sb Sn Ot Σ No Ma Wh So Sb Sn Ot Σ

1 26 28 14 4 11 8 91 1 23 25 11 2 11 8 80
2 26 28 14 4 11 8 91 2 23 25 11 2 11 8 80
3 26 28 14 4 11 8 91 3 23 25 11 2 10 8 79
4 26 27 14 4 11 8 90 4 23 25 11 2 10 8 79
5 26 27 14 4 11 8 90 5 23 25 11 2 10 8 79
6 26 27 14 4 10 8 89 6 22 25 11 2 10 8 78
7 26 27 14 4 10 8 89 7 22 25 11 2 10 8 78
8 26 27 14 3 10 8 88 8 22 24 11 1 10 7 75
9 26 27 14 3 10 8 88 9 22 24 11 1 10 7 75
10 25 27 14 3 10 8 87 10 22 24 11 1 10 7 75

R036 259 273 140 37 105 80 894 R136 225 247 110 17 102 77 778

Table 3. Number of labeled pixels in 103 per each of the categories of random partition in Table 2.

No Ma Wh So Sb Sn Ot Σ No Ma Wh So Sb Sn Ot Σ

1 9.5 16.8 19.0 5.3 3.5 1.7 55.9 1 21.0 9.2 3.6 1.8 10.1 1.6 47.2
2 22.3 13.5 4.2 3.3 9.0 4.0 56.1 2 5.2 26.2 4.1 6.2 2.2 2.0 46.1
3 21.1 14.5 10.7 5.4 2.0 2.5 56.1 3 22.3 6.4 2.9 1.0 7.3 6.5 46.5
4 24.4 7.8 4.4 2.4 10.0 6.1 55.2 4 14.7 17.5 5.2 0.4 2.5 6.4 46.8
5 9.5 20.5 4.1 13.8 2.9 4.1 55.0 5 5.2 11.4 9.9 3.5 7.7 8.9 46.6
6 12.3 23.5 3.1 5.6 3.9 7.3 55.7 6 14.9 17.6 5.1 2.3 2.4 4.0 46.3
7 9.5 26.1 4.4 5.0 2.6 8.0 55.6 7 7.7 16.0 14.4 0.8 2.7 4.3 45.9
8 15.1 15.7 7.0 7.3 9.1 2.4 56.7 8 25.9 9.4 4.3 0.4 3.7 2.3 46.0
9 12.6 25.4 10.8 1.2 2.5 2.5 55.1 9 11.8 9.5 9.4 3.5 5.7 7.0 46.9
10 15.4 19.5 9.3 3.0 1.9 7.1 56.3 10 10.0 24.8 6.5 0.6 2.4 2.4 46.8

R036 151.9 183.5 76.8 52.4 47.3 45.8 557.9 R136 138.7 147.9 65.3 20.9 46.9 45.5 465.1

Final benchmark dataset of the labeled pixels, corresponding to the multispectral time series R036
and R136, which was utilized in all classification (thematic mapping) experiments, was obtained by
random partitioning of original labeled dataset into ten disjunctive subsets. Partitioning was performed
at the plot level in order to avoid that some pixels from the same field enter into another partition subset.
Consequently, distribution of pixels corresponding to different crop types is not completely uniform
over the 10 different, randomly generated subsets of the partition, Table 3. However, distribution of
number of plots that are corresponding to different crop types over the 10 different subsets of the
partition is approximately uniform, as illustrated by the entries in different rows of the Table 2.
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The same subsets of the random partition shown in Table 3 were used in all performed experiments
for training and testing of classification models, and the average results obtained by the corresponding
10-fold cross-validation performance evaluation procedure were reported in all cases.

4. Experimental Setup and Methods

As previously stated, experiments are divided into two groups, or experimental setups, illustrated
in Figure 5. In the following we give a detailed descriptions of all steps and explore the motivations
for conducted numerical analyses presented in Section 5.
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Figure 5. Processing workflows for comparison of High Efficiency Video Coding (HEVC)’s intra
coding against widely accepted lossy compression solutions: (a) general performance comparison and
(b) application oriented comparison.

4.1. First Set of Experiments—General Coding Performance Comparison

This experimental setup was designed in order to perform the general rate-distortion performance
comparison of the HEVC’s still-image intra-band coding, relative to the standard band-per-band
JPEG 2000 lossy compression. Objective compression performance is measured by the means of
Peak Signal-to-Noise Ratio (PSNR) vs. compression ratio curves. PSNR formulation is given with
10log10

L2

MSE , MSE is mean squared error, and L represents the dynamic range of pixel intensities,
e.g., 216 − 1 for 16 b/p input data. Besides aiming at the objective assessment of lossy compression
effect, we have also analyzed compression artefacts introduced by different coding approaches.
A performance analysis utilizes multispectral satellite image dataset described in Section 3.1.

In the case of JPEG 2000, as the baseline lossy compression solution, a reference
JPEG 2000 implementation made by [79], version 2.3.0, was used with default set of encoder
parameters. Such setup includes Reversible Color Transformation (RCT) and 5/3 wavelet filter,
and number of wavelet resolutions (discrete wavelet transform (DWT) decomposition level) is set to 6.
Wavelet transform is applied to the whole image, thus single tile/segment is used, and the resulting
wavelet transform coefficients are grouped into code-blocks (rectangular regions in the sub-band
wavelet domain) of size 64 × 64. In addition, quality control parameter Q, which corresponds to the
desired PSNR level, is set to some of the discrete values in the range between [30, 136] [dB], with the
step size of 2 [dB] in-between different experiments. This gives 54 unique lossy compression quality
levels obtained by JPEG 2000 per each multispectral image, per each of image bands. It is important
to note that the input quality parameter is targeted value, however exact reconstruction quality level
should be precisely calculated after image reconstruction by performing decoding process, e.g., see
Figure 5a.

For comparison purpose only, in our general coding performance experiments we also included
CCSDS-122.0.B1 image compression standard (we use CCSDS to refer to the given standard). It is
based on similar coding scheme as JPEG 2000 (both are wavelet-based codecs), however with several
features specifically adopted to reduce its complexity [28]. Implementation of the standard, used in
our experiments, is Bit Plane Encoder (BPE) [80]. In contrast to JPEG 2000 wavelet transform, CCSDS
uses integer 9/7 wavelet filter with maximum number of decomposition levels set to 3 (as defined
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by standard). As a quality regulation parameter, compression ratio in terms of b/p is used. In total,
55 different quality levels were obtained during experiments. CCSDS has been used in frame-based
setup (with only one transform segment consisting of all image blocks), which is the most similar to
computation of DWT in JPEG 2000. However, coding blocks in CCSDS are limited to 8 × 8 pixels.
We have also performed some experiments in strip-based mode (with transform segments in form
of strips or lines consisting of image blocks collected in raster order). However, those results were
noticeably lower in terms of achieved PSNR vs. compression ratio performance.

The implementation of the HEVC’s encoder and decoder according to the standardized bit-stream
is represented by the HM-15.0+RExt-8.1 reference software [69]. The set of tools is restricted to intra
coding only by using encoder_intra_main_rext.cfg configuration setup, a.k.a. all intra (AI), which is the
preferred configuration of the HM codec for still images. In our experiments, we use default coding
settings with the respect of the given intra configuration and HM reference software. Tiles are not
used in HM experiments. Essentially, the standardized version of HEVC [3] accepts input data
up to 16 b/p, which makes it suitable for the applications that use high-dimensional and high
bit-depth satellite data. Thus, it is also very important not to downsample satellite images prior
to compression since some sensitive visual information can be lost, and this is the main reason why
we have to use the range extension (RExt) version of HEVC [75]. Therefore, code is build with
RExt_HIGH_BIT_DEPTH_SUPPORT and with ExtendedPrecision flag set to 1, in order to accommodate
16 b/p extension as suggested in [81]. Quality control has been given by the means of the input
quantization parameter Qp, where we vary its value in the range of [−48, 51] with step size of
2 in-between experiments. Note that RExt version of HEVC extends Qp for high bit-depth inputs to
negative values by performing additional internal offset calculations before mapping Qp to actual
quantization step size. Thus, we obtain 50 different quality levels in our experiments, which resulted
in variety of compression ratios, from near lossless to high compression ratios. Although, within
HEVC standardization process, common test conditions for HEVC range extensions [81] have been
specified in order to have unified experimental setup used by multiple groups, we have not complied
strictly with this process, especially as we turn to the specific application which is not covered under
the given specification. In addition, it only defines two tiers of quality estimates (each tier uses
only 4 Qp values taken in-between −37 and −16), which in our use-case is not enough to cover
wider range of compression ratios and to precisely obtain application’s sensitivity to the introduced
compression distortion.

Also, used default configuration of the reference codecs resulted in the best coding performance
for both JPEG 2000, CCSDS, and HEVC. It should be mentioned that JPEG 2000 and CCSDS in all
settings were used without an additional spectral decorrelation step before actual band-by-band
image compression, which also holds for the proposed HEVC. Although there are many examples
of custom encoders from the literature that suggest such spectral decorrelation step, it is usually in
the context of hyperspectral images. In such case, there is much more redundancy present in the
spectral domain than in the case of multispectral images. Also, since baseline JPEG 2000 performs
only spatial decorrelation, HEVC analyses were focused only on the still-image coding and no spectral
decorrelation was considered, e.g., utilization of inter coding mode. That part of the codec is left for
our future research.

Therefore, in our setup we use per-band coding, meaning that each band is compressed individually
as a separate file. Considering HEVC as video based codec, we could also re-arrange all bands of
an image, resembling standard video sequence, and thereafter code all bands jointly as a sequence
of bands resulting in one compressed file (although still by using intra mode only to code all bands).
However, we observed that overhead information introduced by band-by-band compression is
negligible when compared to the sequence coding, and almost identical performance has been obtained.
Thus we chose to code bands individually to be consistent with current EO systems which are organized
in a manner to perform per-band distribution. Similarly can be said for the video based Motion-JPEG
2000 (MJP2) [82], where MJP2 only defines file format for sequences of JPEG 2000 images, and where
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each image is coded as an independent JPEG 2000 codestream. Thus, results are obtained on per-band
basis, and aggregated over image.

Regarding the PSNR vs. compression ratio performance diagrams that will be presented in
Section 5.1, it should be emphasized that the presented PSNR values are averages, computed over all
satellite images in Table 1. However, averaging in the case of the Landsat-8 and the Sentinel-2A/B
images is slightly different, due to the fact that analyzed Sentinel-2A/B image products have varying
number of image channels per each of the supported spatial resolutions of 10, 20, and 60 m (4, 9, and
11 channels, respectively). Thus, in the case of Sentinele-2A/B, in order to have a more representative
average, PSNRs of individual channels where first averaged over the same spatial resolution, and then
three distinct PSNR values were aggregated in the final PSNR of the same image.

Since in the most of the currently operational ground based image distribution systems user
specified image orders are usually provided in the form of bulk downloads, in Section 5 compression
ratio (CR) is computed over all lossy compressed images, without averaging. Such CR values
correspond exactly to the possible use case scenario, like the one considered in this paper, where due to
the specific characteristics of the crop thematic mapping, time series were required to be downloaded
as a whole for the purpose of developing analyzed classifier instances.

4.2. Second Set of Experiments—Crop Thematic Mapping

The other set of experiments is oriented towards the analysis of the compression induced distortion
effects on the specific thematic mapping application. Experiments are conducted on the proposed
Sentinel-2A benchmark dataset given in Section 3.2. Since presented analysis also aims to offer
application oriented comparison of HEVC’s performance, as the foundation for the second set of
experiments, a classic problem of pixel-based crop classification in multispectral satellite images
using time series of georeferrenced surface reflectance measurements has been chosen. Such data
capture the time varying phenology of the plants and make required category discrimination much
more effective. In order to simplify the experimental setup, and enable a fair comparison in terms
of sensitivity of classification performance to various effects caused by different lossy compression
scenarios, instead of object-based classification approach we have decided to rely on pixel-based
classifier. As opposed to object-based approach, it performs feature space partitioning by using
measurements aggregated only at the level of individual pixel, which eliminates possible improvements
that could arise from incorporation of pixel’s neighbourhood, or enhancements resulting from the
postprocessing of pixel-based decisions at the object level. However, such pixel-based approach is
widely accepted solution, which is used in many operational thematic mapping systems.

Thus, classification performance, which is intended to be used as an indicator of the thematic
mapping’s sensitivity to compression effects, is influenced only by the quality of measurements at
the level of individual pixels, and not by the spatial resolution of the sensor nor the structure of
pixel’s neighbourhood. However, through comparison of classifier’s performance with the same
type of decision system utilizing original, uncompressed data, such pixel-based classifier is still
capable of highlighting and reflecting the level of preserved quality of original measurements after
compression, relative to the uncompressed baseline. Potentially, this could be very important in some
other applications besides thematic mapping, which could be oriented more towards computation
of plants’ biophysical parameters, or that would rely on multispectral satellite images with coarser
spatial resolution than Sentinel-2. On the other hand, experimentally measured performance of
such pixel-based classification approach does not reflect the effects of compression on simple image
primitives like edges and textures, which could be important in the case of higher resolution sensors
and predefined or learned object-based image descriptors. However, such effects are possible to
estimate in other ways, including visual inspection of higher resolution lossy compressed images and
their comparison with their coarser resolution counterparts, like Landsat-8 images of the same scene.
Therefore, this was particularly considered in the set of the conducted experiments of the first type,
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described in Section 4.1‚ where the compression performance was analyzed from the general, and not
an application oriented perspective.

As the type of an adequate classification model for the specified thematic mapping task was
used random forest [83], which possesses high generalization capability due to its intrinsic ensemble
structure and the fact that decision trees [84] are particularly suitable for partitioning of feature space
based on simple, yet very informative features corresponding to time varying spectral signatures of
the Earth’s surface.

In order to remove any classification performance bias coming from the specific classifier design
or feature extraction pipeline, in all conducted experiments was used the same classification setting
as proposed in [11]. It consists of feature level fusion that extracts surface reflectance measurements
corresponding to the same image pixel from all bands of all images in the corresponding time series.
This step is followed by an ensemble type random forest classifier with 100 trees of variable depth
(adaptive splitting until all leaves are pure or contain only two samples), and splitting criterion
based on the Gini index and sampling of

√
d random features in each node, where d is the total

dimensionality of the feature space. Classification was implemented in the Python programming
language, using library [85].

However, since individual bands of Sentinel-2 images have varying spatial resolutions
(see Section 3.2), before final feature extraction all multispectral images were: (1) compressed at
their nominal spatial resolution (except in the case of classification model based on uncompressed
image data), and afterwards (2) in the case of 20 m and 60 m Sentinel-2 image channels additionally
upsampled to spatial resolution of 10 m using nearest neighbour interpolation method. The second
step is necessary since we are interested in exploiting as much of available spatial information during
the decision process, e.g., fine signal variations present in 10 m image channels are valuable in the
presence of small crop fields. We would also like to add that the practical implementation of this step
does not require allocation of new memory, since 20 m and 60 m image pixels are just indexed several
times during the feature extraction process, in accordance with their spatial position in the physical
coordinate system. Thus, classifier decisions were made at the highest level of detail, i.e., at the level of
pixels with 10 m of spatial resolution.

Each of the experiments that are introduced in this subsection correspond to the performance
analysis of the selected random forest classifier that was trained and tested using the labeled benchmark
dataset described in Section 3.2, which was initially randomly partitioned into 10 subsets in order to
enable classifier performance evaluation based on 10-fold cross-validation procedure. It should be
noted that each of the experiments is utilizing different type of source data, i.e., the same Sentinel-2A
multispectral images (time series), but with different type and level of lossy compression. Thus,
the performance of the baseline classification model is evaluated using uncompressed image data,
while the rest of experiments are conducted using lossy compressed image time series, obtained
with different sets of encoding control parameters in each experiment, i.e., by varying HEVC and
JPEG 2000 configurations. These configurations were varied in the same manner as in the case of the
first set of general compression experiments that were described in Section 4.1. The only difference is
that instead of both Landsat-8 and Sentinel-2A/B data, in classification experiments only Sentinel-2A
data were utilized.

Since for the selected area we have collected two separate image time series, denoted as R036
and R136, each of the above mentioned experiments was conducted twice, once for each of the two
Sentinel-2A relative orbits. Alternative option would be to combine all these measurements together.
However, as already mentioned before, using data from R036 and R136 separately gives possibility to
mutually compare results of two individual classification analyses under similar experimental setting.
Also, combining data from R036 and R136 would slightly reduce the overall number of training and
test samples per each class in the benchmark dataset. Therefore, such alternative dataset design
strategy was avoided.
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5. Results Analysis and Discussion

All results are presented according to the plan of experiments developed and presented in Section 4
with level of presentation details adapted to the large number of numerical simulations.

5.1. General Compression Performance Comparison

From the perspective of the general compression performance, results from the first set of
experiments, Figure 5a, confirm initial hypothesis that HEVC still-image intra band coding can
be considered as an adequate standardized solution for effective lossy compression of multispectral
satellite images.

5.1.1. PSNR vs. CR—Results

Figure 6 and Table 4 neatly summarize the codecs general performance over the two proposed
image datasets corresponding to—Landsat-8 and Sentinel-2A/B, which were described in detail in
Figure 2 and Table 1. Presented results also highlight variations in compression performance due to
differences in the type of studied image sensors.
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Figure 6. Average Peak Signal-to-Noise Ratio (PSNR) vs. compression ratio performance of the
proposed High Efficiency Video Coding (HEVC), baseline JPEG 2000, and the Consultative Committee
for Space Data Systems (CCSDS) 122.0.B1 standard, over: (a) Landsat-8 and (b) Sentinel-2A/B part of
the dataset described in Figure 2 and Table 1.

Table 4. Achieved compression ratios (CR) at the same level of PSNR. Performance of HEVC is
expressed relative to JPEG 2000 and CCSDS 122.0.B1 CRs over two parts of the proposed dataset.

Landsat-8 CRs

PSNR HEVC JPEG 2000 Rel. Diff. [%] CCSDS Rel. Diff. [%]

55 229.84 89.04 158.13 93.19 146.63
60 60.66 37.14 63.33 39.78 52.48
65 26.29 19.68 33.59 19.30 36.22
70 15.04 12.36 21.68 11.56 30.10

Sentinel-2A/B CRs

PSNR HEVC JPEG 2000 Rel. Diff. [%] CCSDS Rel. Diff. [%]

55 103.94 66.17 57.08 65.02 59.85
60 34.11 26.69 27.80 21.46 58.94
65 16.57 13.69 21.04 10.48 58.11
70 9.84 8.34 17.99 6.56 50.00
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5.1.2. PSNR vs. CR—Analysis and Discussion

Regarding the performance comparison between JPEG 2000 and CCSDS image coding standards,
from Figure 6, we can observe that CCSDS codec perform on par with JPEG 2000 over the majority
of the CRs. The CCSDS results were close, or sometimes even lower, to the results obtained by the
JPEG 2000. Therefore, this codec was left out from the further discussion, e.g., classification sensitivity
analysis. In addition, at higher CRs we note significant deterioration in performance for CCSDS codec.
However, it is expected since CCSDS was not designed to operate on such high CRs.

As measured by preserved image quality, HEVC has shown greater resilience to information
loss, i.e., ability to achieve higher CRs at approximately the same image quality levels as compared to
JPEG 2000. Thus, it can be seen that Landsat-8 images, Figure 6a, tend to be compressed more efficiently,
e.g., have higher compression ratios for the same level of PSNR, when compared to their Sentinel-2
counterparts, Figure 6b. Therefore, relative difference between HEVC and JPEG 2000 performance is
higher when benchmarked exclusively over Landsat-8 part of the adopted general purpose dataset,
which is also summarized in Table 4. This could be explained by the presence of no-data regions,
which are always found in Landsat-8 images (dark/blank areas in the corners of the scene, present
due to orientation of satellite orbits with respect to the image reference system). In contrast, this is not
always the case for Sentinel-2 images (especially in the proposed Sentinel-2A/B part of our general
performance comparison dataset, which turns out to have a very low proportion of no-data regions).
Such blank, uniform regions are naturally easier to be compressed by using block based approach
(characteristic for HEVC), as opposed to wavelet decomposition that is performed on an image as
a whole (in the selected baseline JPEG 2000).

We also remark that HEVC brings substantial savings in the required rate in comparison to
JPEG 2000, as it can be seen from Figure 6 and Table 4. In particular, for mid compression ratios
(high PSNR range, between 65 [dB] and 70 [dB]), HEVC brings from 17.99% up to 33.59% savings
in the required rate with respect to JPEG 2000 (as measured by the relative difference in achieved
compression ratios over Sentinel-2A/B and Landsat-8 parts of the proposed benchmark dataset,
respectively, Table 4). Furthermore, HEVC achieves up to 63.33% reduction in rate over JPEG 2000,
for high compression ratios (low PSNRs) represented by the 60 [dB] entry in Table 4 corresponding
to the results obtained over Landsat-8 part of the proposed dataset. As it can be seen from Figure 6
and Table 4, savings are even higher at 55 [dB], but this range of image quality is already below the one
desirable for crop thematic mapping applications (see Section 5.2). Thus, for very high compression
ratios HEVC can achieve even up to 158.13% of rate improvement over JPEG 2000, as measured over
Landsat-8 images, which is lower for Sentinel-2 images and goes to 57.08%, due to already mentioned
lower presence of no-data regions that are characteristic for Landsat-8 images.

Additionally, in Figure 6 we can see that the performance on very low compression ratios (around
2–3) does not show significant difference between the two benchmarked codecs. Moreover, JPEG 2000
was able to slightly outperform HEVC, as shown in the zoomed part of the diagrams in Figure 6.
However, performance for very low compression ratios should be additionally investigated in greater
detail, e.g., by benchmarking obtained lossy compression results with the lossless versions of the
same codecs, which should be considered as a more appropriate design choice for the described,
specific operational range. Our assumption is that the same compression ratios could be achieved
by lossless modes, leading to a perfect reconstruction. Also, lossless modes usually posses less
computational complexity. However, such analysis is left out from this study and could be part of
potential future work.

5.1.3. Resolution Effects—Results

Since Sentinel-2 image products contain image channels with varying spatial resolutions,
this specific property was exploited to additionally investigate effects of the pixel size on the
compression performance. These results are summarized in Figure 7, where for each spatial resolution
of 10, 20, and 60 m, computed average PSNRs are depicted against the achieved compression ratios.
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Figure 7. Compression performance comparison over satellite images with different spatial resolutions.
Pixel resolutions of 10, 20, and 60 m correspond to channels of Sentinel-2A/B images listed in Table 1.

5.1.4. Resolution Effects—Analysis and Discussion

We can see that both codecs perform better on higher resolutions (blue lines). Moreover, HEVC
(represented by dotted lines) always shows higher performance margin in comparison to JPEG 2000
(dashed lines), at all spatial resolutions (which was already expected based on the results presented
in Figure 6). However, HEVC’s advantage is particularly exaggerated at the highest level of details,
corresponding to 10 m spatial resolution, where, e.g., at 60 [dB] we can see significantly higher margin
between HEVC and JPEG 2000’s compression ratios, as compared to other spatial resolutions. This was
natural to expect, since images with higher spatial resolution have higher presence of uniform image
regions, and these regions are also expected to have larger size (image extent in pixels) in comparison
to images with coarser spatial resolution of 20 m, or 60 m per pixel.

5.1.5. Visual Comparison—Results

As an adequate testbed for qualitative assessment of the benchmarked codecs we have selected
an image region with the complex scene content, corresponding to agricultural holdings, forest and
water bodies in North Carolina, entry No 7 form Table 1. Visual illustrations of the obtained results
are presented in Figure 8, where true color composites of original images are ordered according to
Sentinel-2 image spatial resolutions (10, 20, and 60 m) and the selected, representative levels of PSNR
(56, 60 and 70 [dB]). True color composites of lossy compressed 30 m Landsat-8 image of the same
region are also presented in Figure 9.

5.1.6. Visual Comparison—Analysis and Discussion

As expected, visual inspection of results in Figures 8 and 9 reveals that in the case of both codecs
the presence of compression artefacts is becoming more significant after the mid-range of 60 [dB]
(the last two columns). Also, compression effects are dependant on spatial resolution, and the perceived
rate of image degradation is higher towards the lower resolutions of 20, and 60 m, even at the same
level of PSNR (e.g., Figure 8e,h or Figure 8f,i).

However, it is particularly interesting to note that, based on visual comparison, HEVC
outperforms JPEG 2000 even at the same level of PSNR, consistently over all spatial resolutions.
This is easiest to see at 60 [dB], even at the highest spatial resolution of 10 m, Figure 8b. In addition,
savings introduced by the HEVC’s higher compression ratio over JPEG 2000 at the same PSNR level
of 60 [dB], were already shown to be 27.80%, Table 4. Thus, besides the significant gain in achieved
compression ratios in the case of the proposed HEVC solution, visual inspection confirms that the
object boundaries are also better preserved, i.e., object boundaries in the image are much sharper and
have a more precise shape with less visual distortions (blurring effect). For example, lake and field
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boundaries in the upper part of Figure 8b, and objects at smaller spatial scale. For the best comparison,
10 m images in Figure 8b should be analyzed enlarged, side by side, at the computer screen.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Visual comparison of HEVC and JPEG 2000 at the same level of PSNR. The first column
corresponds to Sentinel 2 images of 10, 20, and 60 m generated at high PSNR of 70 [dB]. In the
second column are images with 60 [dB], while in the last column are images with approximate lower
borderline quality of 56 [dB]. Each pair of rows (3 in total) represents satellite images at exclusively one
of the following spatial resolutions: 10 m (a–c), 20 m (d–f), and 60 m (g–i), respectively. The first row
in each pair corresponds to obtained HEVC results, e.g., the first row of (a–c), while the second row in
each pair is reserved for JPEG 2000 results with the same level of PSNR and spatial resolution (e.g.,
10 m for (a–c)). Presented image detail was taken from the test scene No 7 in Table 1, Figure 2g.
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(a) (b) (c)
Figure 9. HEVC (upper row) vs. JPEG 2000 (lower row) on the example of an 30 m Landsat-8 image
detail corresponding to the same area as shown in Figure 8. Results are the most comparable to those
shown in Figure 8d–f. Columns (a–c) correspond to PSNR of 70, 60, and 56 [dB], respectively.

Differences in compression effects among HEVC and JPEG 2000 at high PSNR of 70 [dB] are
definitely more subtle (the first column in Figure 8). However, based on objective assessment there is
still significant relative difference in achieved compression ratios between HEVC and JPEG 2000 at
this high PSNR range (from 17.99% up to 21.68% according to Table 4).

Regarding comparison over 30 m Landsat-8 image, Figure 9, it is worth mentioning that by visual
inspection at mid and low PSNR range it is easier to become aware of blocking artifacts introduced by
HEVC, in comparison to 20 m or even 60 m Sentinel-2 images with same image quality in Figure 8
(e.g., compare Figure 8h and Figure 9b). Latter is rather strange, since 30 m image contains four times
more pixels than a 60 m one. However, it can be explained by the scale of objects present in the
scene and the fact that a 60 m image channel inherently already has significant amount of spectral
mixing (less features of the scene geometry), i.e., only large scale scene details are recorded in the
uncompressed original image.

Again, HEVC shows better ability to preserve image details (e.g., lake boundaries), however it
is less obvious than in the case of 10 m and 20 m Sentinel-2 images due to lower spatial resolution
(especially at lower PSNRs, the last two columns). As expected, results also reveal that at lower spatial
resolutions and PSNR levels more blocking effects are present. E.g., when the upper image in Figure 9b
with a 60 [dB] is enlarged next to the upper image in Figure 9a (which at 70 [dB] is very close to the
30 m uncompressed original).

5.2. Application Oriented Compression Performance Comparison

In addition to the general compression performance analysis, it is also tempting to validate
previously presented results from the standpoint of some practical remote sensing application. Thus,
in the following are the analyses measuring sensitivity of the specific remote sensing classification task
in the presence of lossy compressed input data. The same set of experiments, illustrated in Figure 5b
and described in Section 4.2, was conducted twice, independently over two different subsets R036 and
R136 of the prepared ground-truth dataset introduced in Section 3.2.

5.2.1. Classification Sensitivity—Results

Performed analyses consist of benchmarking classifiers’ performance against the lossy compressed
images generated by the HEVC and the JPEG 2000. This means that for the each of the codecs’
configurations (driven by different values of the corresponding quality control parameters), datasets
R036 and R136 were lossy compressed each time, and the new instance of the same learning model
type was trained and tested.
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Thus, in Figure 10, for each experiment (classifier instance), a pair of values corresponding to
the overall classification accuracy (OA) and the achieved compression ratio (CR) was plotted. For the
sake of completeness, in Table 5, are also provided results of the two classifier instances based on the
original, uncompressed image data, while their OAs are plotted by the solid red lines in Figure 10.
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Figure 10. Sensitivity of classification performance, as illustrated by the overall classification accuracies
(OAs) against the compression ratios (CRs) achieved by the HEVC intra and the JPEG 2000 image
codecs. Diagrams (a,b) and (c,d) correspond to experiments based on time series R036 and R136, while
the solid red lines denote OAs of the “original” classifier instances reported in Table 5. Higher CRs are
given in log scale in (b,d).

Table 5. Accuracy assessment matrices for two classifier instances based on the original, uncompressed
time series data, R036 and R136. Symbols are the same as in Table 2. Values represent number of pixels
in 103. Column labels denote classifier decisions, while the row labels represent true crop categories.
Overall accuracy (OA), Cohen’s Kappa statistic (KP) and the KP confidence intervals (CI) are given at
the bottom of the table.

R036 Ma Wh So Sb Sn Ot R136 Ma Wh So Sb Sn Ot

Ma 148.6 0.4 1.5 0.2 0.9 0.1 Ma 137.0 0.3 0.5 0.0 0.6 0.1
Wh 0.5 181.6 0.6 0.0 0.3 0.4 Wh 0.3 146.7 0.0 0.0 0.2 0.7
So 4.7 0.3 67.0 1.4 3.2 0.2 So 0.9 1.4 60.6 0.1 2.0 0.3
Sb 0.6 0.1 0.5 51.0 0.2 0.0 Sb 0.0 0.0 0.2 20.5 0.1 0.0
Sn 1.3 0.4 0.4 0.3 44.7 0.1 Sn 1.0 0.5 0.1 0.2 45.0 0.1
Ot 4.9 3.1 0.3 0.1 0.8 36.6 Ot 0.5 8.4 0.2 0.1 0.0 36.2

OA = 94.95% KP = 0.94 CI = [0.9339 0.9354] OA = 95.90% KP = 0.95 CI = [0.9471 0.9456]

5.2.2. Classification Sensitivity—Analysis and Discussion

Based on Figure 10, it can be said that the initial assumption regarding the possibility of lossy
compression having a positive impact on the classification performance at low compression ratios
proved to be valid, since the compression side effects (e.g., noise canceling) led to better classifier
performance at lower CRs, in the case of both benchmarked codecs and for the both R036 and R136
test subsets. Also, in Figure 10 we can see that the JPEG 2000 performs quite well for the CRs of
up to 35:1 (dashed lines), mostly without any loss in performance when compared to the original
classifiers, which were trained and tested on the uncompressed data (red lines). At the same time,
HEVC (dotted lines) can achieve the same (or even better) classification accuracy in comparison to the
original classifiers (OA’s represented by the red lines), even at compression ratios of up to 70:1, leading
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to a nearly 100% relative improvement in achieved CR (potential savings) over JPEG 2000. The range of
compression ratios leading to such OAs, which are close to the ones achieved by the original classifiers,
could be regarded as the first operational range, when considered in the context of the selection of
an optimal compression strategy. Therefore, points towards the end of the described range should
be regarded as the effective codec configuration choices for efficient distribution of the lossy image
data applied in crop thematic mapping. Moreover, since high temporal resolution signatures of the
vegetation pixels require dense image time series, any potential savings in storage and communication
requirements could be significant in the case of the constrained time or memory resources.

On the other hand, JPEG 2000 is able to provide sufficiently high classification accuracies when
data are compressed with CRs of up to 60:1 for R036, or 70:1 for R136, maintaining OA within the
acceptable loss margin of 0.5%. However, HEVC has demonstrated ability to maintain approximately
the same classification performance (losing no more than 0.5% of accuracy) for CRs of up to 150:1,
in the case of R036, and up to 140:1, for R136 test subset, as in Figure 10. It is a limit after which
distortions begin to have significant influence on the overall classification performance. For example,
in comparison to HEVC, at same CR JPEG 2000 loses on OA are around 1.5% and 1.2% for R136 and
R036, respectively.

Therefore, breaking points of HEVC and JPEG 2000 curves in Figure 10 could be considered
as the examples of the indicators designed to measure codec’s expected performance in application
oriented lossy compression scenarios. Implications of the presented sensitivity analyses, conducted
over both R036 and R136, confirm that at the relatively high CRs (which are determined by the
application specific, performance loss margin) the proposed HEVC based solution is able to better
preserve features important for more accurate classification, as compared to the JPEG 2000, when
the same CR has been accounted for—leading to the higher savings in storage and communication
requirements of the ground based data distribution segment.

Although it may not be considered to be of significant practical importance for the considered
application task, codecs’ behavior for the higher compression ratios (with loss margin larger than the
0.5% of the overall accuracy of the original classifier) is also shown in Figure 10b,d.

In the context of the crop thematic mapping, spatial dependant relationships may be an important
part to analyze in more detail. However, significance of the particular, individual image channels and
the impact of the level of distortion introduced during compression at different spatial resolutions on
the overall classification accuracy will be the subject of our future work, especially from the standpoint
of adaptive control parameter selection for optimal compression performance and classifier design.

5.2.3. Crop Thematic Maps—Results

Besides the comparative quantitative analyses presented in Figure 10, in order to further discuss
the performance of HEVC and JPEG 2000 based solutions, we also provide a type of qualitative
assessment of the achieved classification performance. It is based on the visual inspection of the
obtained crop thematic maps and their differences, see Figure 11.

As the result of HEVC’s higher effectiveness, as shown in Section 5.1, it was expected that HEVC
based lossy compressed images should also generally provide better application oriented performance
(higher quality crop thematic maps). In particular, it was expected that even at low CRs, where there is
less difference between HEVC’s and JPEG 2000’s performance, visual inspection of the corresponding
thematic maps should also reveal better visual quality of classification maps produced using HEVC
encoded images. This was the main motivation for illustrations presented in Figure 11, which have
confirmed described initial assumptions, and gave additional insights into complex relationship
between lossy compressed image quality and classification performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(l) (m) (n)

(o) (p) (q)

(r) (s) (t)
Figure 11. Illustration of the compression effects on the quality of generated crop thematic maps. Each
of the columns 2–4 gives visual insights into sensitivity at achieved image compression ratios (CRs)
of approximately 25:1, 75:1, and 200:1, respectively. Classification map (e) in the first column is based
on the the original, uncompressed image time series, shown in (a). Images (b–d) and (f–h) are the
NIR-red-green false color composites of the same scene detail produced by the HEVC and the JPEG 2000
for the considered CRs, respectively. Similarly, group of images (i–k) are the crop thematic maps made
by classifier instances tbased on the proposed HEVC solution, while the maps (o–q) are the results of
applying JPEG 2000. Differences between HEVC based classification maps (i–k), as well as JPEG 2000
based maps (o–q), in comparison to the original map (e) are illustrated by the yellow pixels in (l–n) for
the HEVC, and (r–t) for the JPEG 2000.
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5.2.4. Visual Comparison of Classification Maps—Analysis and Discussion

Examples in Figure 11 were selected in order to indicate an important fact - that the classification
maps obtained by the HEVC and the JPEG 2000 with approximately the same CRs (around 25:1,
75:1, and 200:1) result in the crop thematic maps that are visibly more accurate in the case of the
HEVC compression. This can be confirmed by the visual comparison of the corresponding difference
images, computed between the map produced by original classifier and each of the maps produced by
HEVC and JPEG 2000 based solutions (obtained at the same CR), i.e., by comparison of: Figure 11l vs.
Figure 11r; Figure 11m vs. Figure 11s; and Figure 11n vs. Figure 11t. Difference images reveal changes
in decision maps made by the original classifier (relying on uncompressed data), Figure 11e, and the
maps produced by the three selected lossy compression instances of the same classification model,
illustrated in Figure 11i–k,o–q.

Thus, by inspection of the given pairs of figures, it is clear that at all considered CRs (corresponding
to different columns of Figure 11), there are always more yellow pixels (dissimilarities) in the case of
JPEG 2000, as opposed to HEVC based solution. It is interesting to see that differences are also visible
in the case of low compression ratio, e.g., 25:1, where HEVC produces visually better map, compare
Figure 11l against Figure 11r, even that classifiers’ OA is approximately the same at the given CR,
e.g., see Figure 10. The same trend is even more exaggerated at the higher CR’s (column 3–4), where
according to the previously presented results HEVC achieves even better level of the corresponding
quality-compression trade-off against JPEG 2000. However, it should also be noted that in both
cases, at low CRs (second column) classification maps are the most sensitive to compression effects
affecting fine image details, like the boundaries between fields or the lines corresponding to roads.
This is understandable, since at the boundaries of different objects in the scene there is naturally
more spectral mixing and it is harder to delineate different categories in the corresponding feature
space, which makes them the most sensitive to any signal variations. On the other hand, as expected,
higher CRs result in noisier maps, or even complete misclassification. Again, smaller fields, which
are harder to delineate, are more suspectable to errors. In addition to the above discussion, we would
also like to note that the presented map differences at lower CRs (higher PSNR) are not necessarily
corresponding to classification errors, since the map in Figure 11e does not represent the ground-truth,
but the decisions of the original classifier instance (which is also prone to errors), while the previously
presented quantitative analyses revealed that the small amount of lossy compression can have a noise
canceling effect and bring additional improvements in the overall classification performance.

5.3. Classification Results from the Statistical Significance Perspective

Since presented sensitivity analyses in Section 5.2 were based on extensive numerical simulations,
there is a question of statistical significance of difference between results corresponding to different
classifier instances, i.e., lossy compression experiments driven by different values of corresponding
HEVC and JPEG 2000 control parameters, Figure 5b.

In total, for each R036 and R136 dataset there were 104 unique numerical experiments,
50 corresponding to HEVC and 54 to JPEG 2000, covering approximately the same range of image
quality levels. Each of the reported outcomes, plotted in Figure 10, represents the statistically
cross-validated classification performance measure, i.e., in the given case overall accuracy (OA).
However, for the purpose of measuring statistical significance of difference between each pair of
conducted experiments, we have decided to analyse another aggregate performance measure, the
Cohen’s Kappa coefficient [86], which compactly integrates both “type I” and “type II” classification
errors into one representative performance measure, i.e., efficiently aggregates the off-diagonal
elements present in the corresponding accuracy assessment matrix of each experiment. Thus, for each
pair of the experiments, represented by the estimated Kappa coefficients, the null hypothesis of two
Kappa values being the same was tested with the level of 5% of statistical significance. Results of
all statistical tests are graphically presented by the upper triangular matrix in Figure 12, with circles
denoting the positive outcomes (rejection of null hypothesis).
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Figure 12. Results of the tests of statistical significance of difference among the classification results
produced by the crop thematic mappers based on the HEVC and the JPEG 2000. Missing entries indicate
pairs of experiments with non-significant differences. Coloured circles above the main diagonal indicate
rejections of the null hypothesis, and denote the pairs of experiments with significantly different
classification performance. Tests were based on the Cohen’s Kappa statistic and the significance level
of 5%. Black circles on the main diagonal correspond to the tests of all 104 experiments against the
classification results expected to be produced by chance, while the circles in red correspond to the tests
against original classifier based on the uncompressed image data in the time series R036. Other regions
are coloured according to the type of test (exclusively within the HEVC based results, light and dark blue;
or exclusively within the JPEG 2000, the green ones). Orange and yellow regions are the crosswise tests
between the HEVC and the JPEG 2000. Aligned above the test matrix is the bar diagram representing
compression ratios (CRs) achieved by the each of the experiments. Interpretations of regions illustrated
by different colours and discussion of tests implications are given in Section 5.3.1.
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Thus, when present, circles above the main diagonal denote that the experiments’ outcomes (Kappa
coefficients) were significantly different, while the elements on the main diagonal (except the first
one) denote that the each of the associated experiments resulted in classification that was significantly
different from the one expected by chance. Finally, indices of the first element in the 105 × 105 test
matrix in Figure 12 denote the original classifier, based on the uncompressed image data from the time
series R036.

5.3.1. Analysis of Observed Patterns and Discussion of Their Implications

Figure 12 shows that in the most cases experiments based on different (lossy compressed) input
data resulted in different classification performance. Presented illustration also reveals that for some
choices of codecs’ configuration parameters (varied in the defined range of values by the constant
step size) there appear small “clusters” of empty circles, i.e., experiments resulting in classification
performance that could be regarded as the same in the statistical sense. However, the most interesting
insight is that observed clusters can be visually grouped into different “compression comparison
zones”, or regions, illustrated by different colours in Figure 12. Moreover, the regions seem to be not
arbitrary, but aligned with the experiments corresponding to different working regimes (compression
ratios) of the compared HEVC and JPEG 2000 image codecs. Therefore, besides the test matrix, upper
part of Figure 12 also includes the graphical illustration of the computed CR for each experiment
(the bar diagram that is aligned with the matrix columns and shown in the log scale). The bar
diagram also has an additional purpose, to delineate matrix columns (i.e., rows) corresponding to
experiments considering HEVC and JPEG 2000. Therefore, with the help of the bar diagram, it is easy
to distinguish between the two, by considering the two distinctive parts of the diagram—the first one
on the left, representing the HEVC related CRs, and the second one on the right, depicting considered
JPEG 2000 configurations.

In Figure 12 we have identified several regions, which is also reflected in the choice of the selected
colours. Thus, the light blue and the dark blue regions correspond to the tests of statistical significance
among the experiments exclusively utilizing the HEVC based data with different CRs, while the light
green and the dark green correspond to the experiments exclusively based on the JPEG 2000 input data.
The remaining regions, the orange one and the “L” shaped yellow one, correspond to crosswise tests
among experiments based on different configurations of the HEVC and the JPEG 2000.

Last, but not the least important, is the group of tests illustrated by the red colour, the first row of
the test matrix in Figure 12. It illustrates the significance of difference among all 104 “lossy classifiers”
and the “original” classifier (based on the uncompressed image data and represented by the the
first element of the test matrix, i.e., by the first “missing” circle in the first row). The red region, i.e.,
the first row, reveals that there are more empty spaces (missing circles) among the set of columns
in the first row that are representing the HEVC solution, as opposed to the one associated with the
JPEG 2000. This is another confirmation that among the HEVC based classifiers operating at the
relatively moderate compression ratios (up to 16:1), there are more classifiers that can achieve the
classification performance that is (in the statistical sense) the same as as the one achieved by the
original classifier—as compared to the JPEG 2000, which has only one empty circle in the red region of
the given example in Figure 12 (at CR of 13:1). Moreover, when compared by using described Kappa
based tests of statistical significance, it is also clear that the bar values (CRs) corresponding to the
missing red circles in Figure 12 grow faster in the case of the HEVC, as compared to the CR entries
preceding the missing red circle in the case of the the JPEG 2000. This is in full accordance with the
results and implications of the previously discussed sensitivity analysis in Figure 10a, where the HEVC
was able to preserve the OAs close to the original one much longer, in comparison to the JPEG 2000
(up to significantly higher CRs).

We would also like to note that in the Figure 10a the breaking points of the HEVC and the
JPEG 2000 performance with respect to the OA of the original classifier (red line), were at CRs of
70:1 and 35:1, respectively, Figure 10a. In both cases, these values are significantly higher than the
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above mentioned Kappa based CRs with similar interpretation, in Figure 12. This indicates that
establishing equivalence between lossy compression based solutions and original classifier, besides
being application dependant also requires careful consideration of the adopted metrics. However,
we should also emphasize that the red circles in the first row of Figure 12 do not indicate to what extent
an experiment with the OA close to the one achieved by the original classifier is different (like in the
case of the red circle in column 32 of the test matrix, closely corresponding to the HEVC’s CR limit of
70:1). However, in the given case, based on Figure 10a, we can say that their (OA) performance is
almost the same.

In the column direction, the triangular light blue HEVC region in Figure 12 ends at CR of ≈ 130:1
(column 34 of the test matrix), while the light green JPEG 2000 region ends at CR of ≈ 53:1 (column 92).
The shared characteristic of both triangular regions is that they correspond to relatively low CRs, as well
as to the statistical tests performed exclusively among the pairs of experiments based on the same type
of compression algorithm (HEVC or JPEG 2000).

The fact that in the light blue and the light green matrix regions there is a significant number of
missing circles is also interesting and indicates that many of the classifier instances could be regarded
as mutually equivalent at relatively low CRs. In that sense, the following hypothesis could also be
established. Let us consider the HEVC based classifier with CR closest to the previously discussed
performance limit of 70:1 (highest CR in Figure 10a at which OA is still the same as the one of the
original classifier). The closest experiment to this point in Figure 12 is the red circle in column 32 of
the test matrix (to be precise, this circle has CR of ≈ 75:1). According to previous discussion, this
experiment results in classification that is statistically different from the original one (due to the
presence of the red circle). However, the test matrix in Figure 12 also shows that in the second row of
the same column 32 there is a missing light blue circle, which indicates that (in the statistical sense) the
classification performance of the HEVC classifier with CR of 75:1 in column 32 could be the same as the
performance of the HEVC based mapper with very low CR of less than 2:1 in the column 2 (i.e., the one
denoted with the black circle in the row 2). Since CR of 2:1 should be expected to produce an image
with very high PSNR and very close to the original (uncompressed) one, it could be said that based
on Figure 12 the performance of the HEVC based mappper at CR of 70:1 is very close to the original
classifier. Moreover, the same also holds for the column 33 in Figure 12 with CR of 99:1, where the
similar type of the equivalence with the original classifier could be established.

Finally, the limit of the light blue region at CR of ≈130:1 is very close to the HEVC CR limit of
150:1, which according to Figure 10a corresponds to the lower bound of the 0.5% OA performance loss
margin in Figure 10a. On the other hand, the dark blue HEVC region in Figure 12, characterized by
no missing circles, starts at the column 35 of the test matrix, and corresponds to the CR of ≈ 170:1.
Since 150 is an exact average of the two values (130 and 170), results of the tests in Figure 12 indirectly
confirm that the HEVC’s CR limit of 150:1 (determined from the HEVC curve in Figure 10a by the 0.5%
accuracy loss margin) corresponds exactly to the HEVC experiment that would be positioned on the
border between the light blue and the dark blue region in Figure 12. This result is also interesting since
it provides an empirical answer to the question what should be considered as an acceptable level of
the performance loss (in the terms of the overall classification accuracy) in the case of the thematic
mapping based on lossy compression in comparison to the original classifier. Since the loss margin
level of 0.5% has been previously proposed, presented results could be regarded as an empirical
confirmation of these findings.

In the same line with the above mentioned, based on Figure 10a, CR limit of the JPEG 2000
is estimated to be around 60:1 (corresponding to the 0.5% drop in performance with respect to the
original classifier), which is almost exactly the value that is obtained as the average of the CR values
corresponding to the last column in the light green region of the test matrix in Figure 12 (column 92,
CR 53:1), and the first column in the dark green region (column 93, CR 78:1) of the same matrix.

Regarding the rest of the entries in Figure 12, it is noticeable that in the case of the both HEVC
and the JPEG 2000, when mutually compared at relatively low CRs (experiments determined by the
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row and column indices of the rectangular, orange region) there is a larger number of statistically
similar codec configurations. However, it is also interesting that the empty circles are mostly clustered
along the vertical or horizontal lines, which implies that at this high PSNR range there are some
classifier instances that have almost the same performance as several classifiers based on the other
type of encoder. Nevertheless, it is clear that the CR bars corresponding to row indices representing
HEVC in this orange region are significantly higher than the bars representing CRs of the compared
JPEG 2000 solutions (corresponding to column indices).

The dark blue and the dark green matrix regions confirm that the both HEVC and the
JPEG 2000 mappers at high CRs produce classification results that are statistically significantly different
among themselves, as well as in comparison to the original classifier. The same conclusion holds
in the case of the HEVC vs. JPEG 2000 crosswise tests, represented by the “L” shaped yellow region
in Figure 12, where there were confirmed only two non-significant entries, which could be regarded as
possible outliers.

6. Conclusions and Future Work

In this work we gave comprehensive analysis of the HEVC still-image intra coding part applied to
the multispectral image data. Obtained results were compared with standard JPEG 2000 solutions, and
significantly better compression performance has been observed. In addition, specific crop classification
task has been considered as an additional measure of HEVC’s performance against JPEG 2000.
We showed that HEVC is able to outperform JPEG 2000 with regard to the preservation of features
important for accurate classification. According to the obtained results, HEVC has demonstrated ability
to maintain approximately the same classification accuracy for CR up to 150:1, which for JPEG 2000
on the same test set and the same accuracy has been shown to be up to 70:1 of CR. Results of the
qualitative analysis based on visual inspection have also proved that HEVC can be regarded as a better
compression solution. Even at the same level of PSNR (which also means higher CR in the case of
HEVC), HEVC results were able to visually demonstrate higher level of the preserved image details in
comparison to the JPEG 2000.

In future research, we plan to analyze in details the impact of the particular (individual) image
channels and the level of distortion introduced during compression at different resolutions on
classification accuracy. In particular, our research efforts will be oriented towards adaptive parameter
selection for optimal compression performance considering different image scales with different level
of useful information. Also, we will explore additional HEVC’s features, and we will try to investigate
different strategies on how to improve coding gain (including inter-based prediction). In that way,
our plan will be to compare some custom coding approach based on the transform-based spectral
decorrelation (which is considered as a state-of-the-art approach), with spectral decorrelation based
on the standardized block-based prediction achieved by utilizing HEVC inter coding mode. Part of
our focus will also be on HEVC’s complexity reduction from the algorithmic standpoint of view.
As we have successfully showed that the certain level of image quality degradation can be acceptable,
we will also continue to investigate the effects of the HEVC compression on other applications in
remote sensing. In that sense we believe that this work will contribute to the introduction of the
lossy compression based solutions in the ground segment of the currently operational satellite image
distribution systems.
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