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1. Introduction 

The vegetation productivity of terrestrial ecosystems allows quantification of the conversion 

of carbon dioxide (CO2) in the atmosphere to plant biomass and reflects the ability to fix atmospheric 

CO2 from vegetation, which is an important variable for estimating the global carbon budget, and it 

is also an important ecological indicator for estimating the Earth’s carrying capacity and the 

sustainable development of terrestrial ecosystems. There are mainly three types of vegetation 

productivity models, i.e. empirical models based on the statistical relationship between vegetation 

productivity and climate factors (Lieth, 1975; Uchijima and Seino, 1985), process models based on 

the ecophysiological processes of plant growth（McGuire et al., 1996; Running and Hunt, 1993; 

Liu et al., 1997), and the light use efficiency (LUE) models based on absorbed photosyntheticallly 

active radiation (APAR) and LUE （Potter et al., 1993; Prince and Goward, 1995; Zhao and Running, 

2010; Xiao et al., 2004; Yuan et al., 2007）. 

The global gross primary productivity (GPP) and net primary productivity (NPP) products here 

were estimated from a LUE based algorithm and a long-term series of global land and terrestrial 

satellite (GLASS) leaf and index (LAI) and fraction of absorbed photosynthetically active radiation 

(FPAR) products from 1981 to 2018. The products had a spatial resolution of 0.05 degree in every 

8 days. In the estimation of LUE, the effect of the fraction of diffuse solar radiation on LUE were 

taken into account by adding the clearness index (CI) factor. 

2. Algorithm description 

GPP and NPP were estimated by improved Multisource Data Synergized Quantitative-Net 

Primary Productivity (MuSyQ-NPP) algorithm, which is a LUE model and has been validated by 

Cui et al. (2016) and Yu et al. (2018). Many studies have found that the LUE of diffuse solar 

radiation is higher than that of direct solar radiation (Xin et al., 2016; He et al., 2013). The 

consideration of the effect of the fraction of diffuse solar radiation on LUE might improve the 

accuracy of GPP and NPP estimation, especially in cloudy areas, such as tropical evergreen 

broadleaf forests. Wang et al. (2020) recently compared three LUE estimate approaches and found 

that the parameterization approach with the clearness index (CI) could improve LUE and GPP 

estimation. Therefore, based on the study of Wang et al. (2020), we estimated LUE by adding the 

CI to improve the accuracy of GPP estimation (Figure 1).  



 

Figure 1. Diagram of GPP and NPP estimation with the improved MuSyQ-NPP algorithm 

2.1 GPP estimation 

GPP (gC/m2d) was estimated according to LUE and absorbed photosynthetically active 

radiation (APAR). 

𝐺𝑃𝑃 = 𝐿𝑈𝐸 × 𝐹𝑃𝐴𝑅 × 𝑃𝐴𝑅                              (1) 

where 𝐿𝑈𝐸  is actual light use efficiency (gC/MJ), FPAR is the fraction of absorbed 

photosynthetically active radiation by vegetation, and PAR is incident photosynthetically active 

radiation (MJ/m2d).  

𝐿𝑈𝐸 was calculated with a parameterization approach, in which the maximum LUE without 

stress was determined according to the vegetation type and clearness index (CI), and the actual LUE 

was estimated by multiplying the temperature stress and water stress. The CI was adopted to reflect 

the effect of diffuse light fraction in the incident solar radiation on LUE. 

     (2) 

The formula in the bracket represents the maximum LUE (LUEmax), which is calculated by 

weighting LUEmax for sunlit leaves (𝐿𝑈𝐸𝑚𝑎𝑥
𝑠𝑢  , gC/MJ) and LUEmax for shaded leaves (𝐿𝑈𝐸𝑚𝑎𝑥

𝑠ℎ  , 

gC/MJ). 𝐿𝑈𝐸𝑚𝑎𝑥
𝑠𝑢  and 𝐿𝑈𝐸𝑚𝑎𝑥

𝑠ℎ  were simultaneously optimized by Shuffled Complex Evolution 

method developed at the University of Arizona (SCE-UA) optimization algorithm (Duan et al., 1992) 

and data from FLUXNET2015 dataset (https://fluxnet.fluxdata.org/data/). CI and (1-CI) are the 

weight coefficients. CI is clearness index, which represents the fraction of solar incident radiation 

on the surface of the earth (𝑆𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒, MJ/m2d) to the extraterrestrial radiation at the top of the 

atmosphere (𝑆𝑊𝑡𝑜𝑝, MJ/m2d). 

                                         (3) 
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                    (5) 

𝑆𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is from ERA-Interim dataset. TD represents the time period of a day, and TD = 

60*60*24 = 86400 seconds. 𝑆0̅  represents solar radiation constant, equal to 1367W/m2. 𝜔0  is 

solar Horizon at Sunrise. 𝜑 is latitude. 𝛿 is solar declination. 

𝑓(𝑇) is a temperature stress factor. The growth performance of vegetation is influenced by 

the average temperature (T, ℃) (Potter et al., 1993). 
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Topt (℃) is the optimum growth temperature, which is average temperature when vegetation grows 

best. We counted the average temperature in the month when LAI reached the maximum for 

different vegetation types first, and then SCE-UA optimization algorithm was used to optimize the 

Topt value for different vegetation types (Table 1). 

𝑓(𝑊) describes the water stress factor and can be obtained by the following formula: 

)/(5.05.0)( pEEWf                                (7) 

where 𝐸  represents the actual evapotranspiration (mm), which is calculated from a modified 

Penman-Monteith approach (Zhang et al., 2009) using the GLASS LAI products. 𝐸𝑝 represents the 

potential evapotranspiration (mm), which is derived from the Priestley and Taylor equation 

(Priestley and Taylor, 1992)0. 𝑓(𝑊) is forced to be equal to 1.0 when it exceeds 1.0. 

FPAR is from the GLASS FPAR product. PAR (MJ/m2d) was calculated from 𝑆𝑊𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

using the following formula.  

surfaceSWPAR  48.0                                 (8) 

2.2 NPP estimation 

NPP (gC/m2d) is the net flow of carbon entering the plants from the atmosphere and represents 

the remainder after deducting the organic matter consumed by plant autotrophic respiration from 

GPP. 

aRGPPNPP                                      (9) 

where 𝑅𝑎 (gC/m2d) is the autotrophic respiration. It can be separated into two parts, maintenance 

respiration 𝑅𝑚  and growth respiration 𝑅𝑔 , which refer to the energy necessary to maintain 

biomass and the energy converting assimilates into new structural plant constituents, respectively 

(Cui et al., 2016). 

 Ra=Rm+Rg= ∑ Rm j+Rg                            （10） 
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Where Mi is the live biomass of plant component i, which is calculated by LAI and annual 

maximum LAI for each pixel. rm,i is maintenance respiration coefficient for component i, Q is 

the temperature sensitivity factor, T is the daily average temperature and Tb is the base temperature.  

Growth respiration Rg was considered to be proportional to the difference between GPP and 

maintenance respiration Rm: 

Rg=γ( GPP - Rm )                                 （12） 

Where γ is the growing respiration efficient and is defined as 0.25.  

2.3 Water stress factor estimation 

In order to determine the water stress factor in formula (7), evapotranspiration and potential 

evapotranspiration were estimated. Daily actual evapotranspiration was estimated by a modified 

Penman-Monteith approach with biome-specific canopy conductance (Zhang et al., 2009). 

Evapotranspiration was partitioned into soil evaporation and canopy transpiration by partitioning 

available energy A using vegetation cover fraction Fc. Available energy components for canopy 

(Acanopy) and soil (Asoil) surface were generated using: 

AFA  ccanopy
                                    (13) 

AFA  )(1 csoil                                  (14) 

where A is approximated as net radiation Rn consisting both net shortwave radiation and net 

longwave radiation as soil heat flux is nearly zero in daily scale, and Fc was estimated from remote 

sensed LAI data.  

The Penman-Monteith equation was used to generate vegetation transpiration as: 
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where λEcanopy (W m-2) is the latent heat flux of canopy, △ (Pa K-1) is the slope of the curve relating 

saturated water vapor pressure esat (Pa) to air temperature T (K), ρ (kg m-3) is air density, Cp (J kg-1 

K-1) is the specific heat of air at constant pressure, VPD (Pa) is the vapor pressure deficit of air, ga 

(m s-1) is aerodynamic conductance, γ (Pa k-1) is psychometric constant, and gc (m s-1) is canopy 

conductance.  

The canopy conductance gc, is influenced by gsx (maximum stomatal conductance of leaves at the 

top of canopy), LAI, absorbed shortwave radiation, and VPD, which can be described as: 
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where KQ is the extinction coefficient for photosynthetically active radiation, Qh is the 

photosynthetically active radiation at the top of canopy, Q50 and D50 are the values of absorbed 

photosynthetically active radiation and water vapor deficit when stomatal conductance is half its 

maximum value, respectively. KQ, Q50, and D50 were assigned to 0.6, 2.6 MJ m-2 d-1 and 800 Pa, 

respectively (Zhang et al., 2008). Values of ga and gsx were considered as biome specific and 

assigned constant values for different vegetation types by referring to Zhang et al. (2008). 

Soil evaporation was calculated using a soil evaporation equation described in Zhang et al. (2009) 



and Mu et al. (2010), which is described as: 
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where λEsoil (W m-2) is the latent heat flux of soil, RH is the relative humidity of air with values 

ranging from 0 to 1, k (Pa) is a parameter to fit the complementary relationship and is empirically 

adjusted for different vegetation types, and gtotc (m s-1) is the corrected value of total aerodynamic 

conductance as described by Zhang et al. (2010).  

Potential evapotranspiration, Ep, was calculated using the Priestley and Taylor equation (Priestley 

and Taylor, 1972): 

γ
AλE
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                                 (18) 

where the Priestley-Taylor coefficient φ was set to 1.26 following Priestley and Taylor (1972). 

 

Table 1. The parameter values of the different vegetation types. 

Vegetation type 𝐿𝑈𝐸𝑚𝑎𝑥
𝑠𝑢  (gC/MJ) 𝐿𝑈𝐸𝑚𝑎𝑥

𝑠ℎ  (gC/MJ) Topt (℃) 

CRO 1.114  2.913  26 

CSH 0.552  2.446  20 

DBF 0.680  3.030  20 

DNF 0.403  1.700  15 

EBF 0.706  3.079  25 

ENF 0.678  3.020  15 

GRA 0.603  2.833  18 

MF 0.795  2.917  17 

OSH 0.366  1.807  16 

SAV 0.615  2.914  20 

WET 0.603  2.833  18 

WSAV 0.562  2.810  19 

 

3. Input Data 

The input data include remote sensing data, meteorology data, elevation data and land cover 

data, which are listed in Table 2. 

Table 2. The data used in the algorithm of GPP and NPP estimation 

Data Name Unit 
Temporal 

resolution 

Spatial 

resolution 

Data 

Source 

FPAR —— 8d 0.05° 
GLASS 

LAI m2/m2 8d 0.05° 

temperature 
K 12h 0.75° 

ERA-

Interim 

dewpoint temperature K 12h 0.75° 
ERA-

Interim 

Surface net solar radiation MJ/m2 12h 0.75° 
ERA-

Interim 



Surface net thermal radiation MJ/m2 12h 0.75° 
ERA-

Interim 

Surface solar radiation downwards MJ/m2 12h 0.75° 
ERA-

Interim 

Land cover product —— 1yr 0.05° MCD12C1 

DEM km  1km GLOBE 

 

3.1 GLASS LAI and FPAR Products 

The Global Change Data Processing and Analysis Center of Beijing Normal University 

generated and published the GLASS product set (Liang et al., 2013), and LAI and FPAR are two 

products in the GLASS product set. The GLASS LAI products include two categories. The GLASS 

MODIS product was calculated from MODIS surface reflectance data, and the GLASS MODIS LAI 

product, which includes data from 2000 to 2015, was provided in a sinusoidal projection at a spatial 

resolution of 1 km and a temporal resolution of 8 days. The other dataset was derived from the 

Long-Term Data Record (LTDR) of the Advanced Very High Resolution Radiometer (AVHRR) 

reflectance data (GLASS AVHRR). The latest version of the GLASS AVHRR LAI product, which 

includes data from 1981 to 2018, was provided in a geographic latitude/longitude projection at a 

spatial resolution of 0.05° and a temporal resolution of 8 days. The latest version of the GLASS 

AVHRR LAI product was used in this study (http://www.glass.umd.edu/LAI/AVHRR/). The 

comparison of the GLASS AVHRR LAI products against the LAI values derived from the high-

resolution reference maps demonstrated that the GLASS AVHRR LAI values were more accurate 

than the National Centers for Environmental Information (NCEI) AVHRR LAI, the Global 

Inventory Monitoring and Modeling System (GIMMS3g) LAI and the Long-term Global Mapping 

(GLOBMAP) LAI values (Xiao et al., 2017). 

The GLASS AVHRR FPAR product was calculated from GLASS AVHRR LAI products 

(http://www.glass.umd.edu/FAPAR/AVHRR/), and it has the same spatial and temporal resolution 

as the GLASS AVHRR LAI product. A comparison of the GLASS AVHRR FPAR and the other 

FPAR values derived from high-resolution reference maps demonstrated that the GLASS AVHRR 

FPAR product provided a better performance than the NCEI AVHRR FPAR product and the 

GIMMS3g FPAR product (Xiao et al., 2018). 

3.2 MODIS Land Cover Product 

The combined Terra and Aqua MODIS Land Cover Climate Modeling Grid (MCD12C1) 

Version 6 data product adopts the same algorithm as the land cover type (MCD12Q1) Version 6 data 

product and provides a spatially aggregated and reprojected version, which can be downloaded from 

https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/ (Damien et al., 2018). It contains three 

classification schemes: that of the International Geosphere-Biosphere Programme (IGBP), that of 

the University of Maryland (UMD), and the leaf area index (LAI).The IGBP classification product 

from 2001 to 2018 was used to produce global GPP and NPP products, which provides 17 land 

cover classifications with an annual interval and a spatial resolution of 0.05°, and we used the 

product in 2001 as a replacement for the period from 1981-2000 since there was no product for 

before 2001 (Figure 2). 



 

Figure 2. The global land cover map of the IGBP classification schemes. The full name of each land cover type is 

as follows: EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; 

DNF: deciduous needleleaf forest; MF: mixed forest; CSH: closed shrubland; OSH: open shrublands; WSAV: woody 

savanna; SAV: savanna; GRA: grassland; WET: permanent wetland; CRO: cropland; UA: urban area; C/NV: 

cropland-natural vegetation mosaic; SI: snow and ice; BSV: barren or sparsely vegetated. 

3.3 Meteorological Data 

The ERA-Interim product was used as the meteorological input data. It is the global 

atmospheric reanalysis data generated by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) from 1979 to 2019 and can be downloaded from 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (Berrisford et al., 2011). In our 

research, the daily dewpoint temperature and air temperature, surface net solar radiation, surface net 

thermal radiation, and surface solar radiation downward were obtained by averaging the 12 hour 

data. A bilinear interpolation was used to produce the 0.05° data since the spatial resolution of these 

data was 0.75°, and the effect of altitude was also taken into account in the interpolation of 

temperature. The relative humidity was calculated from the dewpoint temperature and temperature. 

3.4 DEM Data 

The DEM data were derived from the Global Land One-Kilometer Base Elevation (GLOBE) 

Version 1.0 (http://www.ngdc.noaa.gov/mgg/topo/globe.html). The GLOBE DEM is a global 

dataset covering from 180° west to 180° east longitude and 90° north to 90° south latitude; the 

spatial resolution of these data was 1 km (Hastings and Dunbar, 1999), and the data were aggregated 

to the spatial resolution of 0.05°. 

 

4. Output Data 

The output data was global GPP and NPP products from 1981 to 2018. The detail information 

of the products is as below: 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/


Name: 5-km global GPP and NPP products 

Period: 1981-2018 

Projection: geographic latitude/longitude; 

Spatial resolution: 0.05°; 

Temporal resolution: 8 days; 

Data format: Tiff; 

Data type: integer (16bit); 

Upper left coordinates: -180°E, 90°N; 

Scale factor: 100; 

Unit: gCm-2d-1. 

 

5. Preliminary validation 

To evaluate the MuSyQ GPP product, we downloaded the FLUXNET2015 dataset 

(https://FLUXNET.fluxdata.org/). This dataset includes observation data of the carbon flux and 

other climate data from 2003 to 2014 from 212 global FLUXNET sites.  

We extracted the FLUXNET GPP data for those sites where the land cover types matched 

the MCD12C1 data and compared the FLUXNET GPP with the MuSyQ GPP. The results showed 

that R2 is 0.559 and root mean square error (RMSE) is 2.782 gC/m2d (Figure 3). However, there 

was a large-scale difference between the in situ GPP observations and the 0.05 degree remote 

sensing data. The GPP observation source area ranged from tens of meters to several kilometers, 

which varied with changes in instrument height, wind direction and wind speed. At the same time, 

the internal heterogeneity of pixels in 5 km remote sensing data is large, which leads to many mixed 

pixels. The inconsistency between the scale of the remote sensing pixel and the in situ GPP 

observation inevitably leads to uncertainty in the validation results. 

 

Figure 3. The comparison between MuSyQ GPP and FLUXNET GPP 
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