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The problem

• Should patient i receive treatment?
• Traditionally, this is answered by

1. estimate p(y = 1 | x)
2. if high -> treat
3. if low -> no treat
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The problem

4/17



The problem

5/17



Additional examples ...

• prognosis, e.g., chemotherapy in breast cancer (later)
• diagnosis, e.g., prostate cancer
• banking/finance, e.g., loan application
• autonomous driving, e.g., misinterpreting road signs
• . . .
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Decision Theory (Pauker and Kassirer, 1975)

• Step 1: estimate p(y = 1 | x)
• Step 2: classify p(y = 1 | x) ≥ t
• t = UTN−UFP

UTN−UFP+UTP−UFN
= H

H+B = 1
1+ B

H

Truth

Predict UTP UFP
UFN UTN
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Toy example: The recipe can fail

Posterior mean boundaries for standard Bayes logistic model (blue) when
targeting t = 0.3 (1:2.3 ratio). Shaded regions represent 90% highest
predictive density (HPD) intervals. Data simulated from
p(y = 1|x1, x2) = x2

x1+x2
, where x1, x2 ∼ U [0, 1] and n = 5000.
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Tailored Bayes I

Data {(yi , xi) : i = 1, . . . , n}. The association between y and x is
described through the following generalized logistic loss

`(yi , pwi ) = −(pwi )yi (1− pwi )1−yi (1)

• pwi = p(yi = 1|xi ; β) = (exp{xT
i β}/1 + exp{xT

i β})wi

• wi ∈ [0, 1] are datapoint-specific weights

βj ∼ N (0, 1002), (j = 1, . . . , d = parameters)
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Tailored Bayes (Hand and Vinciotti, 2003) I

wi = exp
{
− λ(pu(xi)− t)2

}
• pu(xi) = p(yi = 1|xi)
• t is the target threshold. It captures how we weigh the relative

harms of false-positive and false-negative results
• λ ≥ 0 is a tuning parameter. For λ = 0 we recover the standard

logistic regression model
• In practice, pu(xi) needs to be estimated
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Toy example

Posterior mean boundaries for standard Bayes (blue) and Tailored Bayes
(yellow) when targeting t = 0.3.
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Breast cancer prognostication

• Data
• Train: 4718 invasive breast cancer.
• Test: 3810 subjects from an independent cohort.

• Outcome 10-year breast cancer–specific mortality.
• The covariates are

• age at diagnosis (years)
• tumor grade (I, II, III)
• number of positive lymph nodes
• presentation (screening vs. clinical)
• type of adjuvant therapy (chemotherapy, endocrine therapy, or

both).
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Breast cancer prognostication

Difference in Net Benefit (NB) for various t values. A positive difference
means Tailored Bayes (TB) outperforms standard Bayes (SB).
NB = TPt

n −
FPt

n
t

1−t (Vickers and Elkin, 2006). The units on the y axis
may be interpreted as the difference in benefit associated with one patient
who would die without treatment and who receives therapy.
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Contributions I

• A key aim of precision medicine is to tailor clinical management.
• Here we present a framework to tailor model development

incorporating misclassification costs into Bayesian modelling.
• Attractive features that make it flexible, easy-to-use, and widely

applicable:
• Relies solely on calculating, wi - robust to different choices,

wi = exp{−h(pu(xi), t)}.
• Bayesian: hierarchical modelling and incorporation of external

information.
• Generic:

1. Implemented in any learning framework (not necessarily
Bayesian).
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Contributions II

2. Not restricted to logistic loss. The scheme can be used to adapt
any loss.

• Current work: Implications for variable selection.
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’TailoredBayes’ -
https://github.com/solonkarapa/TailorBayes

solon.karapanagiotis@mrc-bsu.cam.ac.uk
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