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ABSTRACT

The Partial Relaxation approach has recently been proposed to solve
the Direction-of-Arrival estimation problem [1, 2]. In this paper,
we investigate the outlier production mechanism of the Partially Re-
laxed Deterministic Maximum Likelihood (PR-DML) Direction-of-
Arrival estimator using tools from Random Matrix Theory. An ac-
curate description of the probability of resolution for the PR-DML
estimator is provided by analyzing the asymptotic stochastic behav-
ior of the PR-DML cost function, assuming that both the number of
antennas and the number of snapshots increase without bound at the
same rate. The finite dimensional distribution of the PR-DML cost
function is shown to be Gaussian in this asymptotic regime and this
result is used to compute the probability of resolution.

1. INTRODUCTION

Direction-of-Arrival (DoA) estimation is a major area of research
mainly due to its wide spread applications in radar, sonar, seismol-
ogy, electronic surveillance and mobile communication [3–6]. Sev-
eral high resolution algorithms, such as Multiple Signal Classifica-
tion (MUSIC) [7], the minimum variance method of Capon [8], Es-
timation of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [9] have been proposed [10, 11]. However, the perfor-
mance of conventional “low-cost” methods strongly degrades when
two or multiple sources are closely spaced [12,13]. This is due to the
fact that conventional spectral search based approaches ignore the
dependence between the sources, hence the interference, and there-
fore treat multi-source scenarios as single source scenarios.

The Partial Relaxation (PR) framework was introduced to
overcome the aforementioned disadvantages of the conventional
spectral-based DoA methods [1, 2]. Instead of ignoring the pres-
ence of multiple sources, the PR approach considers both the signal
impinging from the current direction of interest as well as the in-
terfering ones. To reduce the computational demand, the manifold
structure of the undesired signal components is relaxed, whereas
the manifold structure of the desired signal component is kept un-
changed. The multi-dimensional optimization problem reduces to a
one-dimensional problem that admits a simple spectral based grid
search applicable to any array geometry.

The main objective of this paper is the performance characteri-
zation of the recently introduced PR-DML technique in the thresh-
old region, whereby both the number of samples per antenna and the
Signal-to-Noise Ratio (SNR) take moderate values. This region is
typically characterized by a systematic appearance of outliers in the
DoA estimates, which are mainly caused by the incapability of re-
solving closely spaced sources. In [14], the probability of resolution
of the PR-DML method was investigated by studying the stochastic
behavior of the corresponding cost function for Gaussian distributed
observations. The analysis in [14] is asymptotic in both the number

of antennas and the number of snapshots. In this paper, we follow
a similar approach as in [14] and utilize tools from Random Matrix
Theory (RMT) to compute the asymptotic stochastic behavior of the
PR-DML cost function whereby both the number of snapshots and
the number of antennas are large quantities but their quotient con-
verges to a fixed finite value. In contrast to [14] where the second
order asymptotic behavior of the PR-DML cost function is computed
numerically, we provide a closed-form expression for the variance
and a suitable approximation for the closed-form expression of the
covariance.

The paper is organized as follows. The signal model is intro-
duced in Section 2 followed by the description of the PR-DML DoA
estimation technique in Section 3. The asymptotic stochastic behav-
ior of the PR-DML cost function is given in Section 4 followed by an
expression for the probability of resolution in Section 5. Simulation
results are presented in Section 6. Finally, Section 7 concludes this
paper.

2. SIGNAL MODEL

Consider an antenna array equipped with M sensors and K imping-
ing narrowband signals that satisfy M>K. The source signal at
time instant n is denoted by s(n)=[s1(n),...,sK(n)]T∈CK . The
corresponding DoAs of the signals are denoted by θ=[θ1,...,θK ]T.
Furthermore, the full-rank steering matrix is given by A(θ)=
[a(θ1),...,a(θK)]∈CM×K where a(θi)∈CM denotes the sensor
array response for the i-th impinging signal. The number of sources
K is assumed to be known. The received baseband signal x(n)∈CM
at the n-th time instant is given by

x(n)=A(θ)s(n)+n(n), n=1,...,N, (1)

whereN denotes the number of snapshots and n(n)∈CM the sensor
noise. Assuming that signal and noise variables are statistically in-
dependent zero-mean circularly symmetric Gaussian distributed, the
covariance matrix of the received signal R∈CM×M is given by

R=E
{

x(n)xH(n)
}

=ARsA
H+σ2IM ,

where Rs=E
{
s(n)sH(n)

}
denotes the covariance of the transmit-

ted signal and σ2IM is the noise covariance matrix. Since the true
covariance matrix is unavailable in practice, the sample covariance
matrix R̂= 1

N

∑N
n=1x(n)xH(n) is used instead.

3. PARTIALLY RELAXED DETERMINISTIC MAXIMUM
LIKELIHOOD

In the framework of PR, not only the signals from the desired direc-
tions but also the dependence between the sources, hence the inter-
ference is considered [1]. However, the structure of the interfering



signals is relaxed and consequently the computational complexity of
the multi-source criteria is greatly reduced. Unlike in conventional
Deterministic Maximum Likelihood (DML) and Stochastic Maxi-
mum Likelihood (SML) DoA estimation criteria, the steering matrix
A is not described by a fully structured array manifold. Instead, A
describes the partially relaxed array manifold

ĀK=
{

A |A=[a(ϑ),B], a(ϑ)∈A1, B∈CM×(K−1)
}
,

which still retains some geometric structure of the sensor array [2].
Applying the PR approach to the conventional DML method and
optimizing with respect to the relaxed signal part B yields the con-
centrated PR-DML cost function [1, 2]

η̂(θ)=
1

M

M−K+1∑
k=1

λ̂k(θ), (2)

where P⊥a (θ) denotes the orthogonal projection matrix and the
eigenvalues of the modified sample covariance matrix R̂(θ)=

P⊥a (θ)R̂P⊥a (θ) are sorted in non-descending order 0=λ̂1(θ)≤···≤
λ̂M (θ). The K DoA estimates are given by the K arguments that
correspond to the K deepest local minima of the concentrated ob-
jective function in (2). An efficient implementation of the PR-DML
method is provided in [1].

The distinct true eigenvalues of the modified true covariance
matrix R(θ)=P⊥a (θ)RP⊥a (θ) are denoted by 0=γ0(θ)<γ1(θ)<
···<γM̄(θ)(θ) and their corresponding multiplicities are given by
Km(θ), form=0,...,M̄(θ). The number of distinct true eigenvalues
of the modified true covariance matrix R(θ) amounts to M̄(θ)+1

and the sum of the multiplicities satisfies
∑M̄(θ)
m=0Km(θ)=M . The

non-necessarily Hermitian M×M positive definite square root of
the modified true covariance matrix R(θ) can also be expressed us-
ing the singular value decomposition

R(θ)1/2=P⊥a (θ)R1/2=

M̄(θ)∑
r=0

√
γr(θ)Ur(θ)V

H
r (θ),

where Ur(θ)∈CM×Kr(θ) and Vr(θ)∈CM×Kr(θ) generate the left
and right orthonormal basis of R(θ)1/2.

4. ASYMPTOTIC BEHAVIOR OF THE PARTIALLY
RELAXED DETERMINISTIC MAXIMUM LIKELIHOOD

COST FUNCTION

In the following, the asymptotic behavior of the cost function in
(2) is derived for the case where M,N→∞, M/N→c, 0<c<∞.
The covariance matrix R̂(θ) is assumed to have uniformly bounded
spectral norm for all M . Furthermore, the covariance matrix can be

equivalently expressed as R̂(θ)=R(θ)1/2 ZZH

N

(
R(θ)1/2

)H
, where

Z denotes anM×N matrix of i.i.d. Gaussian random variables with
law CN (0,1).

In RMT it is well known that under all the previously mentioned
assumptions, the empirical eigenvalue distribution of R̂(θ) is almost
surely close to an asymptotic non-random distribution which is abso-
lutely continuous with density qM (x,θ) [15]. With increasing num-
ber of snapshots and therefore decreasing c=M/N , qM (x,θ) tends
to concentrate around the true eigenvalues forming different eigen-
value clusters. The number of eigenvalue clusters increases with de-
creasing c as clusters begin to split [16]. Assuming there are S dis-
tinct clusters, the support of the clusters is given by the set of S dis-
joint compact intervals S(θ)=

[
x−1 (θ),x+

1 (θ)
]
∪···∪

[
x−S (θ),x+

S (θ)
]
.

Furthermore, it can be observed that each modified true and distinct
eigenvalue γm(θ) is associated to only one cluster. However, one
cluster may be associated to multiple true eigenvalues which results
in a non-bijective correspondence [16]. For sufficiently small c, there
exist exactly as many clusters as distinct true eigenvalues M̄(θ) [16].

In order to distinguish between the eigenvalues that are consid-
ered by the PR-DML cost function in (2) and the remaining ones it is
crucial that the (M−K+1)-th modified sample eigenvalue asymp-
totically splits from the (M−K+2)-th one, which can be formalized
as follows. We assume that there exists an integer m(θ) such that
M−K+1=

∑m(θ)
r=0 Kr(θ), and the cluster associated to the eigen-

value γm(θ)(θ) separates from the one associated to γm(θ)+1(θ) in
the asymptotic eigenvalue distribution of R̂(θ).

Let us consider the asymptotic stochastic behavior of the random
real-valued L×1 vector

η̂
(
θ̄
)
=
[
η̂
(
θ̄1

)
,...,η̂

(
θ̄L
)]T

, (3)

where θ̄=
[
θ̄1,...,θ̄L

]T denotes a set of L points within the Field of
View (FoV). Under the previously mentioned assumptions and as
M,N→∞, M/N→c and 0<c<∞, the random vector η̂(θ̄) in (3)
converges in distribution to a multivariate standardized Gaussian dis-
tribution

MΓ−1/2(θ̄)(η̂(θ̄)−η̄(θ̄))→N (0,IL). (4)

In the following we provide expressions for the asymptotic mean
η̄(θ̄) of the random vector η̂(θ̄) in (3) (first oder asymptotic be-
havior) and the corresponding L×L asymptotic covariance matrix
Γ
(
θ̄
)
/M2 (second order asymptotic behavior).

4.1. First Order Asymptotic Behavior

In [14] it was shown shown that the PR-DML cost function η̂(θ) in
(2) becomes asymptotically close to its deterministic counterpart

η̄(θ)=
1

M

m(θ)∑
r=1

Kr(θ)γr(θ)

1− 1

N

M̄(θ)∑
j=m(θ)+1

Kj(θ)
γj(θ)

γj(θ)−γr(θ)


(5)

in the sense that |η̂(θ)−η̄(θ)|→0 almost surely pointwise in θ as
M,N→∞ at the same rate. Furthermore, we define the asymptotic
mean (first order asymptotic behavior) of the random vector η̂

(
θ̄
)

in
(3) as

η̄(θ̄)=[η̄(θ̄1),...,η̄(θ̄L)]T. (6)

4.2. Second Order Asymptotic Behavior

In the following, the nature of the fluctuation of the PR-DML cost
function η̂(θ̄) in (3) around its asymptotic mean η̄(θ̄) in (6) is stud-
ied in the asymptotic regime whereM,N→∞ at the same rate. Tak-
ing z∈C+≡{z∈C : Im(z)>0}, we define ω(z,θ) as the unique so-
lution of

z=ω(z,θ)

(
1− 1

N
tr
{
R(θ)(R(θ)−ω(z,θ))−1}),

on the set C+. Consider the limit of ω(z,θ) as z goes to the real axis
and the analytical extension to C\{0}∪S(θ). Furthermore, let us
introduce the negatively oriented contour C(θ) that encloses theM−
K+1 smallest sample eigenvalues of R̂(θ) only. The covariance can
be computed according to the following Theorem.



Theorem 1. According to the above definitions, consider an L×L
matrix Γ

(
θ̄
)

with entries

[
Γ
(
θ̄
)]
p,q

=
−1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

∂z
(
ω1,θ̄p

)
∂ω1

∂z
(
ω2,θ̄q

)
∂ω2

×

×log(1−Ω(ω1,ω2))dω1dω2, (7)

where p,q=1,...,L, Cω(θ)=ω(C(θ),θ),

z(ω,θ)=ω

1− 1

N

M̄(θ)∑
r=1

Kr(θ)
γr(θ)

γr(θ)−ω

,
and

Ω(ω1,ω2)=

M̄(θ̄p)∑
i=1

M̄(θ̄q)∑
j=1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)
γj
(
θ̄q
)(

γi
(
θ̄p
)
−ω1

)(
γj
(
θ̄q
)
−ω2

) ,
with κij

(
θ̄p,θ̄q

)
= 1
N

tr
{
Vi

(
θ̄p
)
VH
i

(
θ̄p
)
Vj

(
θ̄q
)
VH
j

(
θ̄q
)}
∈R. As-

suming that Γ(θ̄) is invertible and that the spectral norm of Γ(θ̄)−1

is bounded in M , vector MΓ(θ̄)−1/2
(
η̂(θ̄)−η̄(θ̄)

)
converges in

distribution to a multivariate standardized Gaussian random vector
for fixed L and M,N→∞, M/N→c, 0<c<∞.

Proof. The proof can be obtained by using the approach in [17].
Also see [18, Theorem 2]. �

In Section 4.2.1 we provide a closed-form expression for the
variance of the PR-DML cost function followed by an approxima-
tion of the closed-form expression for the covariance that is valid for
sufficient small c=M/N in Section 4.2.2.

4.2.1. Closed-Form Solution for the Variance

Motivated by the fact that the complex double contour integral in (7)
simplifies for the special case where p=q we compute a closed-form
expression for the variance according to the following Theorem.

Corollary 1.1. For the special case where θ̄p=θ̄q , the computation
of the asymptotic variance of the PR-DML cost function simplifies to

[
Γ
(
θ̄
)]
p,p

=
1

N

m(θ̄p)∑
r=1

Kr

(
θ̄p
)
γ2
r

(
θ̄p
)

− 1

N2

m(θ̄p)∑
r=1

Kr

(
θ̄p
)
γ2
r

(
θ̄p
) M̄(θ̄p)∑
l=m(θ̄p)+1

Kr

(
θ̄p
)
γ2
r

(
θ̄p
)(

γr
(
θ̄p
)
−γl

(
θ̄p
))2 . (8)

4.2.2. Approximated Closed-Form Solution for the Covariance

Let us consider the more general case of the covariance in (7) for
p,q=1,...,L. Instead of numerically computing the complex double
contour integrals in (7) as it was done in [14], we express the log-
arithm log(1−Ω(ω1,ω2)) of the integrand in (7) as a Taylor expan-
sion and only consider the terms of the integrand that involve 1/N or
1/N2. This is motivated by the closed-form solution of the asymp-
totic variance obtained in (8) which only involves expressions that
vanish with N at rates 1/N and 1/N2. Using the Taylor expansion
of the logarithm, the integrand in (7) is written as a rational function
which allows to approximate the closed-form solution of the covari-
ance by using conventional residue calculus [19]. In order to solve

the integral in (7), we define A(ω,θ)= 1
N

∑M̄(θ)
r=1 Kr(θ)

γ2r (θ)

(γr(θ)−ω)2

which allows to write [Γ(θ̄)]p,q in (7) as

[
Γ
(
θ̄
)]
p,q

=
−1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

(
1−A

(
ω1,θ̄p

))
×

×
(
1−A

(
ω2,θ̄q

))
log(1−Ω(ω1,ω2))dω1dω2. (9)

The logarithm in the integrand of (9) can be expressed as a Taylor
expansion according to the following Lemma.

Lemma 1. The logarithm in the integrand of (9) can be expressed
as Taylor expansion of Ω(ω1,ω2) around zero

log(1−Ω(ω1,ω2))=−
∞∑
k=1

Ωk(ω1,ω2)

k
, (10)

which converges since |Ω(ω1,ω2)|<1 for ω1∈Cω(θ̄p)=ω(C(θ̄p),θ̄p)
and ω2∈Cω(θ̄q)=ω(C(θ̄q),θ̄q).

Proof. See [20, Appendix 1]. �

Furthermore, we separate between the terms of the integrand in
(9) that involve 1/Nr , r=1,2 and the terms that involve higher order
factors 1/Nr , r>2. The approximated closed-form solution of the
asymptotic covariance in (7) is given by

[
Γ
(
θ̄
)]
p,q

=
1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

(
Ω(ω1,ω2)+

1

2
Ω2(ω1,ω2)

−
(
A
(
ω2,θ̄q

)
+A
(
ω1,θ̄p

))
Ω(ω1,ω2)

)
dω1dω2+O

(
c3
)

(11)

which can be solved in closed-form by integrating term by term us-
ing conventional residue calculus [19].

Lemma 2a. The integration of the first term in (11) yields

Υ1

(
θ̄p,θ̄q

)
=

1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

Ω(ω1,ω2)dω1dω2

=

m(θ̄p)∑
i=1

m(θ̄q)∑
j=1

κij
(
θ̄p,θ̄q

)
γi
(
θ̄p
)
γj
(
θ̄q
)
.

(12)

Lemma 2b. Introducing Bik(θ)= γi(θ)γk(θ)
γk(θ)−γi(θ)

and Cjrik (θ̄p,θ̄q)=

κij(θ̄p,θ̄q)κkr(θ̄p,θ̄q)Bik(θ̄p)Bjr(θ̄q) for compact notation, the
integration of the second term in (11) yields

Υ2

(
θ̄p,θ̄q

)
=

1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

Ω2(ω1,ω2)dω1dω2

=

m(θ̄p)∑
i=1

m(θ̄q)∑
j=1

M̄(θ̄p)∑
k=m(θ̄p)+1

M̄(θ̄q)∑
r=m(θ̄q)+1

Cjrik
(
θ̄p,θ̄q

)

+

M̄(θ̄p)∑
i=m(θ̄p)+1

M̄(θ̄q)∑
j=m(θ̄q)+1

m(θ̄p)∑
k=1

m(θ̄q)∑
r=1

Cjrik
(
θ̄p,θ̄q

)

−
m(θ̄p)∑
i=1

M̄(θ̄q)∑
j=m(θ̄q)+1

M̄(θ̄p)∑
k=m(θ̄p)+1

m(θ̄q)∑
r=1

Cjrik
(
θ̄p,θ̄q

)

−
M̄(θ̄p)∑

i=m(θ̄p)+1

m(θ̄q)∑
j=1

m(θ̄p)∑
k=1

M̄(θ̄q)∑
r=m(θ̄q)+1

Cjrik
(
θ̄p,θ̄q

)
.

(13)



Lemma 2c. IntroducingKr(θ)=Kr(θ)γ
2
r (θ) for compact notation,

the integration of the third term in (11) yields

Υ3

(
θ̄p,θ̄q

)
=
−1

(2πj)2

∮
Cω(θ̄p)

∮
Cω(θ̄q)

(
A(ω1,θ̄p)+A(ω1,θ̄q)

)
Ω(ω1,ω2)dω1dω2

=
1

N

m(θ̄p)∑
r=1

Kr
(
θ̄p
) M̄(θ̄p)∑
i=m(θ̄p)+1

m(θ̄q)∑
j=1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)
γj
(
θ̄q
)(

γi
(
θ̄p
)
−γr

(
θ̄p
))2

+
1

N

m(θ̄q)∑
r=1

Kr
(
θ̄q
)m(θ̄p)∑
i=1

M̄(θ̄q)∑
j=m(θ̄q)+1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)
γj
(
θ̄q
)(

γj
(
θ̄q
)
−γr

(
θ̄q
))2

− 1

N

M̄(θ̄p)∑
r=m(θ̄p)+1

Kr
(
θ̄p
)m(θ̄p)∑
i=1

m(θ̄q)∑
j=1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)
γj
(
θ̄q
)(

γi
(
θ̄p
)
−γr

(
θ̄p
))2

− 1

N

M̄(θ̄q)∑
r=m(θ̄q)+1

Kr
(
θ̄q
)m(θ̄p)∑
i=1

m(θ̄q)∑
j=1

κij
(
θ̄p,θ̄q

) γi
(
θ̄p
)
γj
(
θ̄q
)(

γr
(
θ̄q
)
−γj

(
θ̄q
))2 .

(14)
Corollary 1.2. The approximated closed-form solution of the
asymptotic covariance in (7) yields[

Γ
(
θ̄
)]
p,q

=Υ1

(
θ̄p,θ̄q

)
+

1

2
Υ2

(
θ̄p,θ̄q

)
+Υ3

(
θ̄p,θ̄q

)
+O

(
c3
)
, (15)

where Υ1

(
θ̄p,θ̄q

)
is given in (12), Υ2

(
θ̄p,θ̄q

)
in (13) and Υ3

(
θ̄p,θ̄q

)
in (14).

Remark It can be observed, that the approximated closed-form
solution in (15) is equivalent to the closed-form expression of the
asymptotic variance in (8) for θ̄p=θ̄q . The approximated closed-
form solution of the asymptotic covariance is only valid for suf-
ficient small quotient c=M/N and if there exists separation be-
tween γm(θ̄p)

(
θ̄p
)
, respectively γm(θ̄q)

(
θ̄q
)
, and adjacent eigenval-

ues. However, in contrast to the numerical solution in [14], the ap-
proximated closed-form solution of [Γ(θ̄)]p,q in (11) still provides a
valid estimate on the asymptotic covariance in case of no separation
as illustrated in the simulations.

5. PROBABILITY OF RESOLUTION
To analyze the outlier production mechanism of the PR-DML
method we examine the probability of resolution as one possible
application of the results derived in the previous section [21]. Let
us study a scenario with two sources K=2 located at θ1 and θ2.
Considering the minimization problem in (2), loss of resolution is
declared if the cost function evaluated at the mid-angle (θ1+θ2)/2
is lower than evaluated at both true DoAs θ1 and θ2 [22]. The con-
straint to declare resolution can compactly be written as uH η̂(θ̄)<0
where u=[1/2,1/2,−1]T and θ̄=[θ1,θ2,(θ1+θ2)/2]T, respectively.
Utilizing the previously obtained asymptotic stochastic behavior of
the PR-DML cost function in (4), the asymptotic probability density
function (pdf) of the test quantity uHη̂(θ̄) can easily be computed
for M,N→∞ at the same rate [23](

uHΓ
(
θ̄
)
u
)−1/2(

uHη̂
(
θ̄
)
−uHη̄

(
θ̄
))
→N (0,1).

The predicted probability of resolution is therefore obtained by com-
puting the cumulative distribution function (cdf) [24]

Pres=Pr
(
uHη̂

(
θ̄
)
<0
)

=

∫ 0

−∞
fuHη̂(θ̄)(x)dx, (16)

where fuH η̂(θ̄)(x) denotes the asymptotic pdf of the test quantity.
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Fig. 2. Uncorrelated Sources, Number of Snapshots N=100

6. SIMULATION RESULTS
In this Section, the predicted probability of resolution in (16) is
compared to the simulated one. A Uniform Linear Array (ULA)
equipped with M=10 sensors and two uncorrelated and closely
spaced sources at θ=[45°,50°]T are considered. The transmit-
ted signals are zero-mean and statistically independent with unit
power and the SNR is given by SNR=1/σ2

n. The separation
boundary is defined as the smallest SNR that provides separa-
tion between the eigenvalue clusters associated to the m

(
θ̄l
)
-th true

eigenvalue and larger adjacent true eigenvalues for l=1,2,3 and
θ̄=[45°,50°,47.5°]T . For SNR values smaller than the separation
boundary it is not possible to distinguish between the eigenvalues
that are considered by the PR-DML cost-function and the remaining
ones.

Figures 1 and 2 depict the probability of resolution versus the
SNR for N=10 and N=100 snapshots. As expected, the probabil-
ity of declaring resolution increases with increasing number of snap-
shots. We observe that from our expressions it is possible to predict
the probability of resolution remarkably well in both scenarios. Even
in case of no separation our prediction of the probability of resolu-
tion in (16) that utilizes the approximated closed-form solution of
the covariance in (11) is close to the actual one.

7. CONCLUSION
In this paper we have investigated the asymptotic behavior of the
PR-DML DoA estimator under the setting of RMT where both the
number of snapshots and the number of sensors go to infinity at the
same rate. The finite dimensional distribution of the PR-DML cost
function has been derived with closed-form expression for the vari-
ance and approximated closed-form expression for the covariance.
Furthermore, the asymptotic probability distribution of the PR-DML
method was used to characterize the probability of resolution in the
threshold region, where the generation of outliers causes a perfor-
mance breakdown.



8. REFERENCES

[1] M. Trinh-Hoang, M. Viberg, and M. Pesavento, “Partial Relax-
ation Approach: An Eigenvalue-Based DOA Estimator Frame-
work,” IEEE Transactions on Signal Processing, vol. 66, no.
23, pp. 6190–6203, Dec. 2018.

[2] M. Trinh-Hoang, M. Viberg, and M. Pesavento, “An Im-
proved DoA Estimator Based on Partial Relaxation Approach,”
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, pp. 3246–3250, Apr. 2018.

[3] A. M. Rembovsky, A. V. Ashikhmin, V. A. Kozmin, and S.M.
Smolskiy, Radio Monitoring: Problems, Methods and Equip-
ment, Lecture Notes in Electrical Engineering. Springer US,
2009.

[4] H. Van Trees, Optimum Array Processing: Part IV of Detec-
tion, Estimation, and Modulation Theory, Detection, Estima-
tion, and Modulation Theory. Wiley, 2004.

[5] H. Krim and M. Viberg, “Two Decades of Array Signal Pro-
cessing Research: The Parametric Approach,” IEEE Signal
Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996.

[6] P.-J. Chung, M. Viberg, and J. Yu, “DOA Estimation Methods
and Algorithms,” in Academic Press Library in Signal Process-
ing, A. M. Zoubir, M. Viberg, R. Chellappa, and S. Theodor-
idis, Eds., vol. 3 of Academic Press Library in Signal Process-
ing, pp. 599 – 650. Elsevier, 2014.

[7] R. Schmidt, “Multiple Emitter Location and Signal Parameter
Estimation,” IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, pp. 276–280, Mar. 1986.

[8] J. Capon, “High-Resolution Frequency-Wavenumber Spec-
trum Analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp.
1408–1418, Aug. 1969.

[9] R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parame-
ters Via Rotational Invariance Techniques,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp.
984–995, Jul. 1989.

[10] L. C. Godara, “Application of Antenna Arrays to Mobile Com-
munications, Part II: Beam-Forming and Direction-of-Arrival
Considerations,” Proceedings of the IEEE, vol. 85, no. 8, pp.
1195–1245, Aug. 1997.
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