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Abstract—Target detection Wireless Sensor Networks (WSNs),
where binary decisions are transmitted to declare the presence or
absence of a given target, are expected to have a fundamental
role in the Internet of Things (IoT) era. However, their simplicity
makes these networks very susceptible to malicious attacks, while
the problem is aggravated in the presence of intelligent malicious
nodes that adapt their strategy depending on the behavior of
other nodes in the network. In this paper, first, we analytically
demonstrate that dependent and independent malicious nodes have
the same impact on the overall performance of target detection
WSNs in terms of detection and false alarm rates. Then, taking
into account that dependent malicious users cannot be detected by
conventional algorithms, we introduce an effective algorithm that
detects malicious nodes in the network regardless of their type
and number. Finally, theoretical and simulation results are provided
to show the effects of dependent malicious nodes and analyze the
performance of the proposed algorithm compared to existing state-
of-the-art works.

I. INTRODUCTION

We are moving towards a new Internet of Things (IoT) era that
is characterized by the interconnection among physical objects
and enabled by sensors embedded in these objects. This paradigm
shift has caused a significant increase in the size and number of
wireless sensor networks (WSNs), creating an expectation of 50
billion connected devices by 2020 [1], [2]. However, the unparal-
leled proliferation of wireless networks implies a huge volume
of data traffic and, therefore, stresses the need for data-light
solutions. To that end, target detection WSNs are consistently
gaining ground in an effort to disseminate the information without
overloading the network.

Target detection WSNs are widely applied in several fields,
including agriculture, health care and transportation, among others
[3]–[5]. Unlike sensors in conventional WSNs that typically
transmit detailed measurements (e.g., temperature, humidity, oxy-
gen levels), the sensors in target detection WSNs are triggered
by the existence of a specific event, i.e., when measurements
exceed a given threshold. Hence, as their main role lies in the

1This work is funded by CellFive (TEC2014-60130-P), IoSense (692480) and
AGAUR (2014-SGR-1551).

monitoring and identification of a specific target, the sensors may
transmit information to the fusion center in a binary form (zero or
one) regarding the target status (absent or present), reducing the
amount of transmitted data and the power consumption at sensor
nodes [6].

A. Motivation

The simplicity of target detection WSNs makes them ideal
candidates for a wide range of IoT applications. Nonetheless, due
to their low complexity and the broadcast nature of the wireless
medium, these networks are more prone to security attacks, since
heavy security protocols that induce huge overhead and consume
valuable power resources cannot be employed [7], [8]. Mali-
cious nodes constitute a major threat for the WSN performance
[9], as they are insider attackers that passed all conventional
authentication protocols and became legitimate members [10].
More specifically, malicious nodes usually generate false alarm or
misdetect correct alarms (either intentionally or unintentionally)
and provide this information to the fusion center. Consequently,
as the fusion center centrally processes this information in order
to issue a global decision [11], fake reports by malicious nodes
may significantly affect the reliability of this decision [12], [13].

In light of the above discussion, the design of novel solutions
that protect the network against any malicious behavior has
become of utmost importance, motivating the research activity to-
wards this direction [14]- [24]. The majority of these works aim at
identifying the abnormal activity in the network, considering that
malicious nodes follow a specific strategy and act independently
of the normal nodes in the network. However, as malicious nodes
evolve, they are able to adopt more sophisticated and intelligent
strategies, adapting their behavior in the network [25]1. More
specifically, intelligent malicious nodes have the ability to adjust
their reports according to the reports overheard by other nodes in
the network. Therefore, in case that their decisions are not going

1Please note that although [25] has been introduced for Cooperative Spectrum
Sensing in cognitive radio networks, it is completely applicable in target detection
WSNs.
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to affect the global decision in the fusion center, they may act as
honest nodes, complicating further their detection.

B. Related Work
Independent malicious nodes have been widely investigated in

the literature. One effective approach that does not require their
detection is the optimization of the most common fusion rule
(i.e., K-out-of-N rule). This approach has been adopted in [14],
where the decision threshold is optimized to minimize the false
alarm rate, having as a constraint the misdetection probability.
Despite its good performance, the specific approach requires
prior knowledge about the percentage of malicious nodes in the
network and the local performance of all nodes. Another common
detection approach is the construction of reputation tables [15],
[16]. These schemes assume the presence of some nodes with
a high security level, which are considered as an evaluation
base. These witness nodes are in charge of identifying misbehav-
ing nodes by monitoring their local performance. Alternatively,
maximum likelihood estimation is applied to detect malicious
nodes in [17], which requires prior information and induces extra
complexity in the process.

The spatial correlation among neighbors has been also inves-
tigated as a means of detecting malicious nodes in [18], where
the network is divided into clusters and each node monitors the
behavior of all the neighbors within its cluster. Nodes within
a cluster exchange information about their performance and,
accordingly, a node is identified as malicious if the majority
decides that its behavior significantly deviates from the rest of
the neighbors. Similar cluster-based approaches have been also
proposed in [19]–[22]. However, composing clusters, monitoring
neighbors and exchanging data consume valuable time-energy
resources and increase complexity and overhead in WSNs. In
the same context, the identification of the malicious users that
deviate from the normal performance can be performed centrally
by the fusion center by employing histogram information [23] or
kernel functions [24] about the data distribution.

The aforementioned works, despite their satisfactory perfor-
mance against independent malicious nodes, cannot deal effec-
tively with dependent malicious nodes that adapt their behavior
according to the reports received by other nodes. To the best of
our knowledge, the case of dependent malicious nodes has only
been considered in [25], where the authors propose a detection
algorithm based on the monitoring of the history of local node
decisions. The core idea of the algorithm lies in counting the
number of mismatches in pairwise comparisons during a large
time window, as normal nodes are expected to have similar
number of mismatches, while the mismatches of a malicious
node should be substantially different. Although the algorithm
copes efficiently with both dependent and independent malicious
nodes, there are several assumptions and conditions that should
be satisfied: i) there should be a single malicious node within
the network, ii) normal nodes should have almost identical local
performance, iii) malicious identification can be performed after
a large time window, and iv) the selected thresholds to detect

the abnormalities should be carefully optimized. These conditions
and assumptions limit the application of the algorithm in more
complex networks and stress the need for novel security solutions.
Thus, as a conclusion, SoA algorithms have assumptions and
limitations that do not hold in practical applications. Therefore,
we will propose an algorithm that is able to overcome the
limitations of the SoA algorithms and is based on practical
assumptions and scenarios.

C. Contribution
In this paper, motivated by the importance of security in WSNs,

we introduce a novel detection scheme for malicious nodes in
target detection WSNs. The operation of the proposed scheme is
based on altering the reporting order of all nodes in the network
on a periodic basis. More specifically, as the nodes communicate
their local decisions to the fusion center consecutively [26],
the performance of an intelligent node heavily depends on its
reporting turn (e.g., the later the node transmits the report, the
more information has collected by other reports). As a result,
periodic changes in the reporting order are expected to have an
impact on the behavior of malicious nodes, while normal nodes
will remain unaffected.

The proposed scheme consists in three phases: i) detection
phase, where the nodes classified as normal, dependent mali-
cious and independent malicious, ii) identification phase, where
the particular strategy of each malicious user is identified, and
iii) potential countermeasures to alleviate the impact of malicious
activity in the network. It is worth noting that the proposed
scheme is able to detect dependent malicious nodes regardless
of their number and strategies and withdraws the assumption of
identical local performance for normal nodes, without inducing
extra overhead nor increasing the complexity of the network. The
contributions of our work can be summarized as follows:
• We analyze the performance of the WSNs in the presence

of independent and dependent malicious nodes, providing a
mathematical formulation for the local and global network
performance.

• We prove that, although the intelligent behavior of dependent
malicious users complicates their detection, it does not
increase the performance degradation of the WSN compared
to other types of malicious activity.

• We analytically formulate the relationship between the local
performance (i.e., detection and false-alarm probabilities)
and the reporting turn.

• We introduce a novel scheme that effectively detects and
identifies multiple malicious nodes regardless of their type.

The rest of the paper is organized as follows. Section II presents
the system model of the considered WSN. The different malicious
node types along with their mathematical models are discussed
in Section III. In Section IV, we analyze the performance of the
WSN in the presence of malicious nodes, while, in Section V,
we introduce the novel malicious-detection algorithm. Simulation
results are provided and discussed in Section VI, and conclusions
are drawn in Section VII.
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II. SYSTEM MODEL

We consider a WSN with star topology, consisting of N sensor
nodes, i.e., S = { sn : 1 ≤ n < N} and a fusion center. We
assume that all nodes report to the fusion center in a collision-
free Time Division Multiple Access (TDMA) manner, which is
compatible with the IEEE 802.15.4 standard [27]. The fusion
center plays the role of the network coordinator and transmits
beacons to mark the beginning of each frame. Then, the node
reports take place within the Guaranteed Time Slots2 of the
Contention Free Period of the frame, as shown in Fig. 1.
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Fig. 1. An example of a typical target detection WSN

We focus on a target detection WSN where all nodes measure
the binary status of a specific target, which can be either Present
(H1) or Absent (H0). Each node processes its individual mea-
surements in order to make a local binary decision, denoted by
ln, where

ln =

{
1, target-present
0, target-absent

(1)

The set of local binary decisions made by all nodes is denoted
by L = { ln : 1 ≤ n < N}.

The local performance of each node sn is assessed by the local
detection (Pdn ) and false-alarm (Pfn ) probabilities. The former
defines the probability that the target is correctly identified as
present by a given node n (i.e., Pdn = Pr{ln = 1|H1}), while
the latter is the probability that the target is falsely identified
as present by the node, when it is actually absent (i.e., Pfn =
Pr{ln = 1|H0}).

Local decisions are reported to the fusion center, which em-
ploys a fusion rule in order to make a global decision G regarding
the target status. In general, target WSNs usually employ the K-
out-of-N fusion rule, according to which the target is identified

2Note that the IEEE 802.15.4 standard specifies only 7 collision-free slots
per frame. Hence, without loss of generality we consider that if N > 7, the
measurement reports may be completed over successive frames.

as present when the number of positive reports (indicating the
presence of the target) exceeds a specific predefined threshold,
denoted by K. The K-out-of-N fusion rule can be formulated
mathematically as

G =

{
1 ≡ target-present, if

∑N
n=1 ln ≥ K

0 ≡ target-absent, if
∑N
n=1 ln < K

(2)

where G is the global decision.

Similar to the local decisions, we define the global detection
(PD) and false-alarm (PF ) probabilities, expressed, respectively,
as

PD =

N∑
i=K

(N
i )∑

j=1

∏
n∈A(N,i)

j

Pdn
∏

n/∈A(N,i)
j

(
1− Pdn

)
(3)

and

PF =

N∑
i=K

(N
i )∑

j=1

∏
n∈A(N,i)

j

Pfn
∏

n/∈A(N,i)
j

(
1− Pfn

)
, (4)

where A
(N,i)
1 , A

(N,i)
2 , ..., A

(N,i)

(N
i )

represent all the possible
(
N
i

)
combinations of i integers drawn from the interval [1, N ].

These two probabilities are combined to estimate the probabil-
ity of correct global decision (PCD), which is usually introduced
as a comprehensive metric to describe the reliability of the
network, given as

PCD = PH1
PD + PH0

(1− PF ), (5)

where PH1
is the probability that the target is actually present,

and PH0
represents its complementary probability.

III. MALICIOUS NODES STRATEGIES

The reliability of the global decision depends on the accuracy
of the local reports and can be significantly degraded by the
presence of malicious nodes. Nodes are characterized as malicious
if they systematically report an incorrect local decision to the
fusion center. Even though in some cases malicious behavior
may be unintentional (e.g., due to a hardware malfunction),
malicious nodes usually provide false information intentionally,
in order to manipulate the global decision, based on specific
strategies. A malicious node may either adopt an independent
strategy, unaffected by the local decision of other nodes, or may
follow a more intelligent adaptive approach. The key strategies
for independent and dependent malicious nodes will be described
in Sections III-A and III-B, while a specific example of malicious
behavior will be given in Section III-C.

A. Independent Malicious Strategies

Independent malicious nodes determine their local decision
without taking into consideration the behavior of the other nodes
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in the network. There are three popular types of independent
malicious strategies: i) always-one, where the malicious node
always reports that the target is present [28], ii) always-zero,
where the malicious node always reports that the target is absent
[28], and iii) always-false, where the malicious node always report
a false status (i.e., the opposite status than the one detected) [14],
[29].

For the above strategies, the local decision ln can be expressed
as

ln =


1 , n ∈ IO
0 , n ∈ IZ
H, n ∈ IF

(6)

where IO, IZ and IF refer to the subsets of independent ma-
licious nodes with strategy always-one, always-zero and always-
false, respectively. Furthermore, H represents the false target-
status.

B. Dependent Malicious Strategies

The same strategies apply with some modifications in the
case of dependent malicious nodes. Dependent nodes adapt their
behavior based on the local decisions of the other nodes of the
network, in order to reduce the likelihood of being detected.
Hence, they act maliciously only when they can affect the global
decision; otherwise they act honestly and report the actual target
status. When the nodes report to the fusion center using TDMA
(as in our scenario), dependent malicious nodes cannot listen to
the local decisions of all others in order to determine their course
of action. In particular, a dependent malicious node scheduled
to report on the tth time slot must decide how to behave (i.e,
honestly or maliciously) based on the previous t − 1 local
decisions. Thus, the behavior of the malicious node is significantly
affected by its reporting turn.

Let us define Γt as the sum of the first t − 1 reported local
decisions, i.e., Γt =

∑t−1
n=1 ln. Accordingly, the local decision

issued by a dependent malicious node that has the tth reporting
turn can be expressed as

ln =




1 , n ∈ DO ,
0 , n ∈ DZ ,
H , n ∈ DF ,

ifK − (N − t+ 1) ≤ Γt < K

H , otherwise

(7)

where DO, DZ and DF refer to the subsets of dependent
malicious nodes with always-one, always-zero and always-false
strategies, respectively. As shown in (7), the behavior of a
dependent malicious node, regardless of its strategy, depends on
the value of Γt. Given the K-out-of-N fusion rule, the dependent
malicious node chooses to act honestly and report a correct local
decision (H) in the following two cases:

i) Γt ≥ K: In this case, the number of reported ‘1’s in the first
t−1 slots exceeds (or is equal to) the detection threshold K.

Hence, the target will be detected as present by the fusion
center, regardless of the malicious node’s local decision.

ii) Γt < K−(N−t+1): In this case, the number of reported ‘1’s
in the first t−1 slots is so low that, even if all the remaining
nodes (including the malicious one) report ‘1’, the threshold
cannot be reached and the target will be detected as absent.

On the other hand, if K − (N − t+ 1) ≤ Γt < K, the dependent
malicious node will act maliciously since there is still a chance
to affect the global decision.

C. Malicious Behavior Example

For a better understanding of the dependent malicious nodes, let
us consider a WSN consisting of N = 4 nodes {s1, s2, s3, s4}
that report to the fusion center in that order. In this example,
we assume that s3 is a dependent always-one malicious node
(i.e., s3 ∈ DO) and that the target is absent (H0). The malicious
node is scheduled at the third reporting turn (t = 3), thus being
able to hear from nodes s1 and s2 before making its own local
decision. Table II lists all possible local decisions, as well as the
corresponding global decisions, for two values of the detection
threshold (K = 2 and K = 3).

For K = 2, in Case 1, nodes s1 and s2 have reported the target
absent (‘0’). The malicious node selects to report ‘1’, since in that
case, it has the potential (depending on the report of s4) to affect
the outcome of the global decision, given that K = 2 (i.e., the
fusion center must receive at least two ‘1’s to declare the target
present). In Cases 2 and 3, the malicious node also reports ‘1’,
knowing with certainty that its contribution will affect the final
decision, regardless of the action of s4. Finally, in Case 4, the
first two nodes have reported ‘1’, meaning that the global decision
will be ‘1’, regardless of the reports of nodes s3 and s4. In that
case, the malicious node chooses to act honestly and report the
actual target status (i.e., H0).

The same concepts apply for K = 3, however, in that case,
the fusion center must receive at least three ‘1’s to consider the
target present. Hence, the malicious node will act honestly only
in Case 1, when there is no possibility of affecting the global
decision. This happens because the first two nodes have reported
the target absent and, even if both nodes, s3 and s4, report ‘1’s,
the number of 1’s will never equal to the threshold K = 3. In
all the other cases, the malicious node will always report ‘1’ as
there is always a probability to obtain a global decision of ‘1’.

IV. PERFORMANCE ANALYSIS IN PRESENCE OF MALICIOUS
NODES

In this section, we examine the importance of combating
against the malicious nodes in WSNs, by exploring their impact
the performance in terms of detection and false alarm proba-
bilities. Specifically, in Section IV-A, we study the impact of
dependent behavior on the local performance of malicious nodes,
whereas in Section IV-B we show that dependency does not affect
the overall performance of the network. Finally, in Section IV-C,
we optimize the selection of the detection threshold K, in order
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TABLE I
AN EXAMPLE FOR A WSN OF 3 NORMAL NODES AND A SINGLE DEPENDENT

ALWAYS-ONE MALICIOUS NODE.

H0, K = 2

Node ID s1 s2 s3 s4 FC
and Type Normal Normal Malicious ∈ DO Normal Global Decision
Case 1 0 0 1 1/0 1/0
Case 2 0 1 1 1/0 1/1
Case 3 1 0 1 1/0 1/1
Case 4 1 1 0 1/0 1/1

H0, K = 3
Node ID s1 s2 s3 s4 FC
and Type Normal Normal Malicious ∈ DO Normal Global Decision
Case 1 0 0 0 1/0 1/0
Case 2 0 1 1 1/0 1/0
Case 3 1 0 1 1/0 1/0
Case 4 1 1 1 1/0 1/1

to minimize the impact of malicious behavior on the system’s
performance.

A. Impact of Malicious Behavior on Local Performance

For the different types of malicious strategies described in
the previous section, the local detection probability P

(t)
dn

of a
malicious node that has the tth reporting turn is given by

P
(t)
dn

=



1 , n ∈ IO orDO
0 , n ∈ IZ or IF

1−
N ′∑
i=α

(N′
i )∑

j=1

∏
n∈B(N′,i)

j

Pdn
∏

n/∈B(N′,i)
j

(
1− Pdn

)
, n ∈ DZ orDF

, (8)

whereas the local false alarm probability P
(t)
fn

can be expressed
as

P
(t)
fn

=



1 , n ∈ IO or IF
0 , n ∈ IZ orDZ
N ′∑
i=α

(N′
i )∑

j=1

∏
n∈B(N′,i)

j

Pfn
∏

n/∈B(N′,i)
j

(
1− Pfn

)
,n ∈ DO orDF

,

(9)

where α = min{K − (N − t+ 1), 0}, N ′ = min{K − 1, t− 1}
and B

(N ′,i)
1 , B

(N ′,i)
2 , ..., B

(N ′,i)

(N′
i )

represent all the possible
(
N ′

i

)
combinations of i integers drawn from the interval [1, N ′].

An initial observation that can be confirmed is that, for inde-
pendent types (IO, IZ and IF ), the detection and false alarm
probabilities do not depend on t (the reporting turn), since they
do not listen to other nodes in the network. On the other hand, the
reporting turn t plays a significant role in the local performance
of the dependent malicious nodes, i.e, DO, DZ and DF .

The above equations clearly describe the effect of the depen-
dency of malicious nodes on their local performance. Conven-
tional malicious detection algorithms can easily identify malicious
nodes if they have very poor local performance compared to the
rest of the nodes. The poor local performance can be represented
by a high local false alarm probability (as in IO), a low local

detection probability (as in IZ ), or both of them (as in IF ).
Thus, dependent malicious nodes aim to improve their local
performance as much as possible, without losing the intention to
mislead the global decision. From equations (8) and (9), we can
clearly observe that dependent malicious nodes exhibit a better
local performance with respect to independent nodes, as shown
below.

i) For the always-one strategy, the false alarm probability is
higher for independent malicious nodes (IO : P

(t)
fn

= 1)
with respect to dependent malicious nodes (DO : P

(t)
fn

< 1).
ii) For the always-zero strategy, independent malicious nodes

have a lower detection probability (IZ : P
(t)
dn

= 0) with
respect to dependent malicious nodes (DZ : P

(t)
dn

> 0).
iii) For the always-false strategy, independent malicious nodes

have a worse local performance in terms of both probabilities
(IF : P

(t)
dn

= 0, P
(t)
fn

= 1) with respect to dependent
malicious nodes (DF : P

(t)
dn

> 0, P
(t)
fn

< 1).
Focusing on the dependent malicious nodes, the reporting turn

has an essential role in determining their local performance.
Intuitively, as the reporting turn of a malicious node is delayed,
the malicious node will have the opportunity to hear from more
nodes, thus being able to make a better decision. The worst case
for a dependent malicious node is to have the first reporting turn.
In this case, it will not listen other reports and, consequently, it
will act as an independent malicious node. On the other hand,
having the last reporting turn constitutes the best case for a
dependent malicious node, since it will be able to listen to all
other nodes before sending its report.

B. Impact of Malicious Behavior on Overall Performance
In the previous section, we examined the impact of malicious

behavior on the local performance, showing that dependent strate-
gies generally improve the performance of malicious nodes. Now,
the question is: does dependency of a malicious node on other
nodes increase its influence on the overall performance of the
WSN? The direct answer is no, and this can be interpreted as
follows.

According to (7), a dependent malicious node will act as a
normal (honest) node in two cases, depending on the counter
Γt: i) if Γt ≥ K or ii) if Γt < K − (N − t + 1). Hence, the
probability that a dependent malicious node behaves normally,
denoted by PDN , can be expressed as

PDN = Pr{Γt ≥ K}+ Pr{Γt +N − t+ 1 < K}. (10)

Notice that, in the first case, the number of reported ‘1’s already
exceeds the threshold K and, hence, the global decision is ‘1’,
regardless of the decisions made by the malicious node and the
other nodes occupying the time slots after t. Similarly, in the
second case, even if we assume that all the nodes occupying the
time slots after t−1 report the target as present, the reported ‘1’s
will never exceed the threshold K. As a result, in both cases, the
decision made by a dependent malicious node when behaving
normally will never affect the reliability of the global decision.

September 6, 2016 DRAFT
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On the other hand, the probability that a dependent malicious
node behaves as an independent malicious node (PDI ) can be
expressed as

PDI = 1− PDN = Pr{K − (N − t+ 1) ≤ Γt < K}. (11)

The range of K − (N − t + 1) ≤ Γt < K implies that the
number of received ‘1’s at the fusion center by the time slot t is
not enough yet to make the global decision. Therefore, the local
decision made by the malicious node will be effective. Thus, we
can conclude that the influence of the malicious node will be the
same whether it is dependent or independent as long as it follows
the same strategy (i.e, always-one, always-zero or always-false).

It is worth mentioning that PD and PF in the presence of
malicious nodes can be still computed by (3) and (4), respectively,
regardless of the total number of malicious node or their specific
strategies. However, the local performance of each node, i.e., Pdn
and Pfn should be carefully substituted based on its type, as
described in (8) and (9).

C. Optimizing the detection threshold K

The detection threshold K has a strong impact on the reli-
ability of the global decision, but its optimal selection is not
straightforward. For instance, high values of K lead to a reduced
overall false alarm probability PF , which may improve the correct
decision by the fusion center (see (5)). On the other hand, high K
values also cause a decrease of the overall detection probability
PD, which has a negative impact of performance. Similarly, low
values of K will again have a contrasting effect on the probability
of a correct decision. Thus, the most appropriate selection of K
should be obtained through optimization in order to maximize the
reliability of the global decision.

The optimization problem can be formulated as a maximization
problem as

max
K

PCD, (12)

which can be rewritten by substituting the value of PCD from (5)

max
K

(
PH1PD + PH0(1− PF )

)
, (13)

which can be solved by setting the first derivative equal to 0, i.e.,
∂PCD

∂K = 0, as

∂PCD
∂K

= PH1

∂PD
∂K

− PH0

∂PF
∂K

= 0. (14)

As K is an integer, ∂PD

∂K can be expressed as

∂PD
∂K

= PD(K + 1)− PD(K), (15)

which can be seamlessly obtained using (3) as

∂PD
∂K

= −
(N
K)∑
j=1

∏
n∈A(N,K)

j

Pdn
∏

n/∈A(N,K)
j

(
1− Pdn

)
. (16)

Similarly, ∂PF

∂K can be computed using (4) as

∂PF
∂K

= −
(N
K)∑
j=1

∏
n∈A(N,K)

j

Pfn
∏

n/∈A(N,K)
j

(
1− Pfn

)
. (17)

Substituting (16) and (17) in (14), the optimal value of the
detection threshold (K∗) that maximizes the probability of a
correct global decision should satisfy the following equation

(N
K)∑
j=1

(
− PH1

∏
n∈A(N,K)

j

Pdn
∏

n/∈A(N,K)
j

(
1− Pdn

)
+PH0

∏
n∈A(N,K)

j

Pfn
∏

n/∈A(N,K)
j

(
1− Pfn

))
= 0. (18)

The optimal value of K can be computed through an exhaustive
search algorithm, as it cannot be formulated in a closed form
expression, mainly due to the assumption of non-identical local
performance among nodes.

V. PROPOSED MALICIOUS-DETECTION SCHEME

As the local performance of intelligent dependent malicious
nodes varies, their behavior cannot be combated by conventional
schemes. In this section, we introduce an effective algorithm that
is able to identify malicious nodes regardless of their type, without
inducing any extra overhead, energy consumption or complexity.
The proposed algorithm is performed in three consecutive phases:
i) malicious node detection, ii) malicious strategy identification,
and iii) countermeasures. The three phases of the proposed
algorithm are explained in detail in the remaining part of this
section.

A. The Detection Phase

The main idea of the proposed scheme lies in the fact that
the local performance of dependent malicious nodes depends on
their reporting turn, unlike normal and independent malicious
nodes that remain unaffected. Hence, allowing the fusion center to
change the reporting turn of the nodes facilitates the detection of
intelligent nodes with adaptive behavior, while independent ma-
licious nodes can be also detected due to their poor performance.
To that end, in our scheme, the reporting order in the network
changes every T rounds.

As the fusion center is not aware of the actual target status, we
introduce the indicator σn that counts the number of ‘1’s received
from each node n to evaluate its local performance (i.e. detection
and false alarm probabilities). This indicator is zero-initialized
and updated at each reporting round i as

σn,i =

{
σn,i−1 + 1 , if ln = 1

σn,i−1 , otherwise
. (19)

Since the reporting order changes every T rounds, the proba-
bility ρ̂n that node n reports 1 can be estimated as
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ρ̂n =
σn,T
T

, (20)

and can be computed theoretically for a normal node as

ρn = PH1
Pdn + PH0

Pfn . (21)

Notice that ρn is the theoretical value, while ρ̂n represents the
estimated value.

By substituting in (21) the corresponding values of Pdn and Pfn
( (8) and (9), respectively), we may obtain the ρn for the different
strategies of independent and dependent malicious nodes as

ρn =



1 , n ∈ IO
0 , n ∈ IZ
PH0

, n ∈ IF
PH1

+ PH0
P

(t)
fn
, n ∈ DO

PH1
P

(t)
dn
, n ∈ DZ

PH1
P

(t)
dn

+ PH0
P

(t)
fn
, n ∈ DF

(22)

Apparently, only dependent malicious nodes have values of ρn
that are affected by the reporting turn. Such an initial observation
leads to a seamless detection of dependent malicious nodes. Then,
independent malicious nodes can be detected due to their very bad
performance compared to other normal nodes, based on (22).

Algorithm 1: Pseudocode of DMND algorithm
Initialization: Define T , ∆, i = 1, I = {}, IO = {},
IZ = {}, IF = {}, DO = {}, DZ = {}, DF = {} ;
Start reporting ;
if i is a multiple of T then

for n = 1 to N do
estimate ρ̂n,i
if ρ̂n,i > ρ̂n,i−T + ∆ or ρ̂n,i < ρ̂n,i−T −∆ then
D = D + sn
run DMNI algorithm

else
run IMNI algorithm

end
end
randomly change the reporting order;

end
i = i+ 1;
Resume reporting;

The detection phase can be more concisely described through
the pseudocode in Algorithm 1. The proposed algorithm, called
Dependent Malicious Nodes Detection (DMND), separates the
nodes in two subsets: i) dependent malicious nodes, and ii) normal
nodes and independent malicious nodes. After each set of T re-
porting rounds, the estimated ρ̂n is compared to the corresponding
previous value for each node. If the difference between them
is larger than ∆, the node is identified as dependent malicious

node. The parameter ∆ is added as an error margin in order to
avoid a false identification of dependent malicious nodes, which
may occur due to estimation errors. However, the value of ∆
should not be large, in order to ensure the detection of dependent
malicious nodes. The selection of ∆ will be discussed in detail
in Section V-D.

B. The Identification Phase

After the completion of the detection phase, the dependent
malicious nodes have been separated from the rest of the nodes
(i.e., independent malicious or normal nodes). The second phase
of the proposed algorithm includes the identification of the
specific strategy of each malicious node. This is of paramount
importance for the fusion center, enabling it to take the appropri-
ate countermeasures to improve the global reliability (explained
in Section V-C).

At this point, two identification algorithms are defined, for the
classification of the independent and dependent malicious nodes,
respectively.

1) Independent Malicious Nodes Identification (IMNI) Algo-
rithm: Algorithm 2 contains the pseudocode of the IMNI algo-
rithm, that aims to identify the specific strategy of independent
malicious nodes. The key to determining the malicious strategy
of each node lies in the value of ρn. As indicated in (22),
an independent malicious node that belongs to IO should have
ρn = 1, while an independent malicious node that belongs to
IZ should have ρ̂n = 0. If ρ̂n is equal to PH0 with an error
margin ∆, the corresponding node is added to IF . Otherwise,
the corresponding node is considered a normal node.

Algorithm 2: Pseudocode for IMNI algorithm

foreach sn 6∈ D do
switch ρ̂n,T do

case ρ̂n,T = 1
IO = IO + sn;

case ρ̂n,T = 0
IZ = IZ + sn;

case PH0
−∆ ≤ ρ̂n,T ≤ PH0

+ ∆
IF = IF + sn;

endsw
otherwise

sn is normal;
endsw

endsw
end

2) Dependent Malicious Nodes Identification (DMNI) Algo-
rithm: Algorithm 3 provides the pseudocode for the DMNI
algorithm, aiming to specify the strategy of dependent malicious
nodes. Recall that a dependent malicious node will act exactly
as an independent malicious node if its reporting turn is the first.
Thus, DMNI algorithm schedules each dependent malicious node
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to the first reporting turn and checks the estimated ρ̂n. If it is equal
to 1, the corresponding node is added to DO. If it is equal to 0, the
corresponding node is added to DZ . Otherwise, for 0 < ρ̂n < 1,
the corresponding node is added to DF .

Algorithm 3: Pseudo code of DMNI algorithm

foreach sn ∈ D do
set t = 1;
if i is a multiple of T then

switch ρ̂n,T do
case ρ̂n,T = 1
DO = DO + sn;

case ρ̂n,T = 0
DZ = DZ + sn;

endsw
otherwise
DF = DF + sn;

endsw
endsw

end
end

C. The Countermeasures Phase

The intuitive action to be taken by the fusion center after
identifying malicious nodes is to discard their reported decisions.
However, by knowing the exact strategy of each node, it is
possible to extract useful information on the status of the target,
thus improving the reliability of the global decision.

In the case of independent nodes, reports from always-one and
always-zero malicious nodes should be always ignored, since they
are made regardless of the actual target status. However, reports
from always-false malicious nodes are always opposite to the
actual target status and can, thus, provide truthful information
once inverted.

In the case of dependent nodes, it is important to detect when
the nodes act honestly or maliciously. Clearly, when the malicious
node acts honestly, the reported information is accurate and can
be taken into account by the fusion center. On the other hand,
when the dependent nodes act maliciously, the same principles
described for independent nodes apply. In other words, reports
from always-false nodes should be inverted, whereas reports from
the other two strategies should be ignored.

As a further action, the fusion center can reorder the reporting
turns of dependent malicious nodes in such a way so as to
maximize the probability of being honest. Referring to (7) and
(10), the probability that a dependent malicious node reports a
honest decision increases for higher values of t. Thus, setting t to
the maximum value, i.e, t = N , the probability that a dependent
malicious node acts honestly will be maximized. In other words, a
dependent malicious node scheduled to report on the last time slot
will have a higher chance of behaving honestly, since its decision
will take into account the reports of all the previous nodes.

Substituting t = N in (11), the probability that a dependent
malicious node acts maliciously decreases to the probability that
ΓN = K−1. On the other hand, the probability that a dependent
malicious node will be honest will be increased to be equal to
the probability that ΓN ≥ K or ΓN < K − 1.

D. Determining the parameters T and ∆

The two important parameters, T and ∆, have a significant
influence on the performance of the proposed algorithms. In
fact, T should be large enough in order to better evaluate the
performance of each node. However, very high values of T may
delay the detection and identification of the malicious nodes,
which, in turn, prolongs their negative effects on the overall
performance of the WSN. Similarly, ∆ should be carefully
selected, as low or large values of ∆ may lead to misdetecting
some malicious nodes or identifying normal nodes as malicious.
It is worth highlighting here that both parameters are related
to each other, since increasing the value of T should decrease
the sufficient value of ∆ that maximizes the performance of the
proposed scheme.

Notice that the estimation of ρn can be represented as a mean
estimation problem, where T is the sample size and ∆ is the
margin error. Therefore, the relation between ∆ and T can be
expressed as [30]

∆ = tζ/2
γ√
T
, (23)

where γ represents the standard deviation of the sample, and ζ =
1− CL

100 where CL is the confidence level of the estimation process.
The value of tζ/2 is obtained from Student’s t tables [30]. Typical
values of the confidence level are 0.90, 0.95 and 0.99.

Based on (23), for a given value of T , the maximum allowed
error margin ∆ is computed as follows: i) choose a confidence
level, ii) compute ζ, iii) obtain tζ/2 from Student’s t tables (use
degrees of freedom of T −1), iv) compute the standard deviation
of the samples γ, and v) substitute in (23) and compute ∆.

VI. SIMULATION AND ANALYTICAL RESULTS

The performance of the proposed algorithm is evaluated in this
section through analytical results and Monte Carlo simulations.
We start by showing the impact of different malicious strategies
on the overall performance when no defense policy is applied.
After that, we focus on dependent malicious node, showing their
local performance and describing how they elude the fusion center
by acting as normal nodes in some cases. The performance of the
proposed algorithm is then discussed and compared to other well-
known algorithms in the literature.

The considered WSN consists of N = 10 nodes, with M < N
nodes being malicious. Initially, normal nodes will be assumed
to have identical local performance, whereas non-identical normal
nodes will be considered later-on. Considering the detection and
false alarm probabilities as indicators of the local performance, a
node is considered normal if and only if Pdn > 0.5 and Pfn <
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0.5. Otherwise (i.e. if Pdn < 0.5 or Pfn > 0.5), the corresponding
node is considered a malicious node [14], [31]. With that in mind,
in our scenario, the identical local performance for normal nodes
is represented by Pdn = 0.8 and Pfn = 0.15. The probability
that the monitored target is present is assumed to be 0.3.

A. Global performance under the presence of malicious nodes

Fig. 2 plots the probability of a correct global decision versus
the detection threshold (K) for different numbers of always-one
malicious nodes. A general observation that can be taken is that
if M ≥ K (the number of always-one malicious nodes is greater
or equal to the detection threshold), the probability of a correct
decision is equal to PH1

= 0.3. This is due to the fact that if
M ≥ K, there are always at least K ‘1’s at the fusion center
at each round, which makes the global decision always ‘1,’ and
consequently, PD = 1 and PF = 1. By substituting these values
in (5), the correct global decision probability should equal to
PH1

= 0.3, as confirmed in Fig. 2. However, if K is tuned to be
larger than M , the overall performance is improved. Specifically,
when K > M , both PD and PF start decreasing with a higher
influence on PF , which improves PCD as in Fig. 2. However,
after the optimal value of K, the performance is degraded, since
higher falues of K reduce PD.
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Fig. 2. The correct global decision probability (PCD) of a WSN of 10 nodes
(M of them are always-one malicious) versus the detection threshold (K).

Similar to Fig. 2, Figs. 3 and 4 show the effect of always-zero
and always-false malicious nodes, respectively, on the probability
of a correct global decision. In Fig. 3, for M > N − K, the
number of reported ‘1’s is at most K − 1, making the global
decision always ‘0’. Thus, both PD and PF are equal to ‘0’ in
that case. Substituting these values in (5) results in a probability
of a correct global decision that is equal to PH0 = 0.7, as shown
in Fig. 3. On the other hand, if M ≤ N − K, the number of
reported ‘1’s may be equal to (or exceed) K, which increases both
PD and PF , with the impact on PD being stronger. Below the
optimal value of K, the increase in PF will cause the reduction
of PCD.

As mentioned earlier, always-false malicious nodes cause the
worst performance compared to the other two strategies. This is
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Fig. 3. The correct global decision probability (PCD) of a WSN of 10 nodes
(M of them are always-zero malicious) versus the detection threshold (K).
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Fig. 4. The correct global decision probability (PCD) of a WSN of 10 nodes
(M of them are always-false malicious) versus the detection threshold (K).

because (as the name implies) they always provide incorrect local
decisions to the fusion center. The curves shown in Fig. 4 can be
grouped in two different groups: i) the cases where the malicious
nodes represent the minority (M < N

2 ), and ii) the cases where
the malicious nodes represent the majority (M ≥ N

2 ) . In the first
group, the sever effect on the global decision occurs if K ≤ M
or K > N − M . In the first case (i.e. K ≤ M ), malicious
nodes can turn PF to 1, making PCD equal to PH0 = 0.3. In
the other case (i.e., K > N −M ), PD will be equal to 0 due
to the effect of the malicious nodes, which makes PCD equal to
PH1

= 0.7. However, for moderate values of K, the degradation
on the reliability of the global decision can be alleviated since
the global decision follows the normal nodes (that represent the
majority in this group). Nevertheless, for the second group of
curves (i.e., when M ≥ N

2 ), moderate values of K lead to a
worse performance compared to more extreme values of K. This
is due to the fact that moderate values of K imply that the fusion
center will obey the majority of the nodes, which are malicious
in this case.

Another important observation on the results shown in Figs. 2-
4 is that optimizing the detection threshold K can improve the
performance of the WSN. Specifically, optimizing K in the pres-
ence of always-one or always-zero malicious nodes (regardless
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of their number) yields in a PCD that is even better than what
is achieved when no malicious nodes are present in the WSN
(M = 0). Such an observation can be interpreted by referring to
(8)-(9). Clearly, an always-one malicious node provides a local
detection probability of 1, and an always-zero malicious node
provides a local false alarm probability of 0. Thus, despite of their
bad local performance in one aspect, they may provide a good
performance in the other local performance aspect. On the other
hand, in the presence of always-false malicious nodes, optimizing
the detection threshold cannot achieve a global performance better
than what is achieved when no malicious nodes are present.

It is worth emphasizing that results in Fig. 2, Fig. 3 and Fig. 4
do not depend on whether the malicious nodes are dependent or
independent, which confirms that the dependency on other nodes
does not increase the influence on the global decision reliability.
This is because dependency on other nodes aims to minimize the
probability of detection by the fusion center, without degrading
the overall performance.

B. Local performance of malicious nodes

Although independent and dependent malicious nodes have the
same effect on the reliability of the global decision, they show
different local performance. Referring to (8)-(9), the independent
malicious nodes have constant values of Pd and Pf since they
follow fixed malicious strategies. On the other hand, the local
performance of dependent malicious nodes depend mainly on two
factors, namely, the reporting turn t and the detection threshold
K. Therefore, our attention is focused on the local performance
of dependent malicious nodes.

Fig. 5 shows a 3D graph of the local false alarm probability
of an always-one dependent malicious node versus the reporting
turn and the detection threshold. Notice that, at any value of K,
the local false alarm probability of a dependent malicious node
is a decreasing function of t. In other words, as t increases (its
reporting turn is delayed), the dependent malicious node will be
able to hear from more other nodes (t−1 nodes), in order to decise
whether to act maliciously or honestly. Consequently, decreasing
the number of times in which the malicious node reports a false
decision will definitely decrease its local false alarm probability.
On the other hand, by fixing t, the local false alarm probability
becomes a concave function of K. Generally, at low or high
values of K, the malicious node can avoid sending incorrect false
alarms, since the probability that Γt exceeds K becomes higher.
Thus, according to (7), the probability of an honest behavior of
the dependent malicious node increases, and hence, its local false
alarm probability decreases.

Regarding always-zero malicious nodes, the local detection
probability is the only performance metric that is dependent on
the detection threshold and the reporting turn. In Fig. 6, the local
detection probability of an always-one malicious node is plotted
versus the detection threshold and the reporting turn. Clearly, the
local detection probability will be improved as t increases for all
values of K.
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Fig. 5. The local false alarm probability (Pfn ) of an always-one dependent
malicious node versus the detection threshold (K) and the reporting turn (t).
(N = 10)
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Fig. 6. The local detection probability (Pdn ) of an always-zero dependent
malicious node versus the detection threshold (K) and the reporting turn (t).
(N = 10)

Notice that the local detection probability for always-one de-
pendent malicious nodes and the local false alarm probability for
always-zero dependent malicious nodes have not been shown in
the results since they are constant values, 1 and 0, respectively, as
indicated in (8) and (9). However, for an always-false dependent
malicious node, both probabilities are dependent on the reporting
turn and the detection threshold. The local detection probability
of an always-false dependent malicious node is exactly the same
as the local detection probability of an always-zero dependent
malicious node, as indicated in (8). Also, the local false alarm
probability of an always-false dependent malicious node is exactly
the same as the local false alarm probability of an always-one
dependent malicious node, as indicated in (9).

C. Performance of the proposed algorithm

Results shown in Fig. 5 and Fig. 6 prove the intelligence of
the dependent malicious nodes, leading to the need for a novel
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detection algorithm. In the following, we show the ability of the
proposed algorithm to easily identify those malicious nodes.

As the proposed algorithm is based on observing the vari-
ation in the local performance of each node while changing
the reporting turns, a WSN of N = 10 nodes is considered.
The number of normal nodes is 4 with identical performance
(Pdn = 0.8 and Pfn = 0.15), while the rest of nodes (M = 6) are
assumed malicious, a single node from each type. The parameters
T and ∆ should be carefully selected in order to maximize the
performance. Thus, initially, we pick one of the normal nodes
randomly, and we show the effect of T and ∆ parameters in
its estimated ρ̂n. Notice that, based on (22) and the assumed
values of PH0

, Pdn and Pfn , the long term value of ρn for a
normal node is 0.345. Fig. 7 shows the relation between ∆ and
T for a different confidence levels. The maximum error margin
for different values of the confidence level is obtained using (23).
Notice that as the confidence level decreases, the probability that
the actual estimation error exceeds the maximum error margin
increases. Thus, we choose to set the confidence level to the
maximum value, i.e., 0.99. In order to select an appropriate value
of T , the corresponding value of ∆ (the maximum expected error
margin) should be as small as possible. From Fig. 7, for T ≥ 150,
the maximum error is ≤ 0.1. For our simulation setup, we choose
the T = 103, yielding an error margin ∆ < 0.04.

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T [roundes]

E
rr

o
r 

M
a
rg

in

CL=0.99

CL=0.95

CL=0.90

Actual estimation errors

Fig. 7. The error margin versus T for different values of confidence levels.

Following the proposed algorithm, the reporting order is ran-
domly changed every T sensing rounds. Every T rounds, the
probability of reporting ‘1’ to the fusion center by each node
(ρ̂n) is computed as depicted in (19)-(20). Fig. 8 plots the
corresponding ρ̂n for each node over 10T rounds. Notice that
only dependent malicious nodes show a variable ρ̂n as the the
reporting order varies each T rounds. As ρn implicitly refers
to the local performance, nodes with variable ρ̂’s should be
identified as dependent malicious nodes. On the other hand,
independent malicious nodes and normal nodes show almost
fixed local performance (constant value of ρ̂n) regardless of the
reporting turn. Furthermore, independent malicious nodes can be
easily detected as they show very bad performance (ρn = 1, 0
and PH0

for IO, IZ and IF , respectively).
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Fig. 8. The probability of reporting ‘1’ (ρ̂n) versus different reporting orders
for all nodes.

The global performance of the proposed algorithm is shown
in Fig. 9, by plotting the global detection probability versus
the global false alarm probability. Three different scenarios are
considered for the purpose of comparison. The first scenario refers
to the case when no malicious detection algorithm is applied,
while the proposed algorithm is applied in the second and third
scenarios. Specifically, in the second scenario, once a malicious
node is detected, its local decision will always be ignored by
the fusion center. On the other hand, in the third scenario,
aiming at improving the global performance, the fusion center
will consider local decisions reported by dependent malicious
nodes when they act as normal nodes. Results shown in Fig. 9
clearly demonstrate the performance improvements achieved by
the proposed algorithm, which obtains high detection probability
at a low false alarm probability by considering some honest local
decisions reported by dependent malicious nodes. Notice that, in
the third scenario, the achievable global performance approaches
the ideal performance (i.e, PD = 1 and PF = 0).

D. Comparison with others algorithms

Finally, we compare the performance of our algorithm with
the following two well-known state-of-the art schemes for the
detection of malicious nodes, detailed below:

i) the algorithm proposed in [14], based on the number of the
mismatches between each node and the global decision. This
scheme estimates the local misdetection and false alarm prob-
abilities of each node. If any of the estimated probabilities
exceeds a predefined threshold, the corresponding node is
identified as malicious.

ii) the algorithm proposed in [25], which is the only work that
considers dependent malicious nodes. It counts the number
of the mismatches between the local decisions of each two
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Fig. 9. The global detection probability versus the global false alarm probability
for three different scenarios. (N = 10)

nodes. Normal nodes will have almost identical number of
mismatches, while a malicious node should have abnormal
number of mismatches with respect to normal node.
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Fig. 10. The global detection probability versus the global false alarm probability
for different algorithms.

A WSN of 10 nodes is considered. The number of malicious
nodes is 6, a single node from each type. The normal nodes
(4 nodes) are assumed to have different local performance.
Particularly, the local detection probabilities of the considered
normal nodes are 0.8, 0.6, 0.8 and 0.9, while the local false
alarm probabilities are 0.15, 0.45, 0.25 and 0.05, respectively.
Fig. 10 shows the global detection probability versus the global
false alarm probability for five different scenarios. The first
three scenarios are identical to those assumed in Fig. 8, while
the others refer to the algorithms proposed in [25] and [14].
Since the algorithm proposed in [14] is mainly proposed for
independent malicious nodes, it shows marginal improvement
in the global performance, compared to the scenario when no
algorithms are applied. Another reason for such performance is
that the algorithm in [14] results in a high performance only
if the malicious nodes represent the minority, which is not the
case in the considered setup. Similarly, the improvement in the
global performance obtained by applying the algorithm proposed
in [25] is also marginal although the algorithm considers the
presence of dependent malicious nodes. This is due the fact that

the algorithm in [25] assumes only a single malicious node and
many normal nodes with identical local performance. On the other
hand, our proposed algorithm achieves promising results, as it
is able to provide high detection probability at low false alarm
probability. The performance algorithm is further enhanced if the
fusion center exploits the intelligent behavior of some malicious
nodes and considers their honest reports.

TABLE II
SUMMARY OF THE COMPARISON BETWEEN SOA ALGORITHMS AND THE

PROPOSED ALGORITHM

Proposed in [14] Proposed in [25] Our proposal
Number of malicious A small number Only a single Any number of

nodes assumed ( should be the minority) malicious node malicious nodes
Types of malicious Independent Independent Independent

nodes assumed and dependent and dependent
Local performance Should be identical Should be identical Can be non-identical
of normal nodes

Global performance Poor Poor High

VII. CONCLUSIONS

In this paper, the performance of WSNs in the presence of
dependent and independent malicious nodes has been thoroughly
investigated. Our analysis has proven that dependency on other
nodes does not increase the effect on the overall performance.
Instead, it only helps dependent malicious nodes to occasionally
act as normal nodes, hindering their detection by conventional
detection algorithms. To that end, we introduced a novel algorithm
to effectively detect all types of malicious nodes in the network.
Moreover, the overall performance has been further enhanced by
exploiting some honest reports from dependent malicious nodes.
The results have shown that the proposed algorithm outperforms
existing state-of-the-art algorithms. For example, the proposed
algorithm is able to achieve a detection probability of 0.85-0.99
at a false alarm probability of 0.1 for a WSN that includes 6
different malicious nodes out of 10 nodes, while the achievable
detection probability by other algorithms does not exceed 0.25 at
the same false alarm probability.
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