
Joint Consideration of Content Popularity and Size
in Device-to-Device Caching Scenarios

Georgios Kollias∗, Angelos Antonopoulos†
∗Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

†Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Barcelona, Spain
Email: georgios.kollias@upc.edu, aantonopoulos@cttc.es

Abstract—Content caching has been considered by both
academia and industry as an efficient solution to tackle the
problem of the back-haul becoming the bottleneck in the service
of users in future heterogeneous cellular networks. Most of
the related caching-oriented studies are based on the content
popularity, overlooking the impact of content size on their
analysis. In this context, this work studies content caching in
an environment where cellular users are equipped with cache
memories. In particular, we formulate the content caching as
an optimization problem, where the objective is to minimize the
average download latency of popular videos through self-caching
and device-to-device (D2D) caching and, consequently, increase
the network throughput. In addition, in order to solve this
problem in real-time scenarios, we introduce a low-complexity
utility-based algorithm, which accounts for parameters such as
the size and the popularity of the requested contents, as well
as the density of the end users. Finally, we provide extensive
simulation results that validate our analysis and prove that our
innovative scheme outperforms other existing solutions.

Index Terms—Caching, Device-to-Device communication, 5G.

I. INTRODUCTION

Cellular networks will have to come up against a tremen-
dous traffic growth over the next few years, which is expected
to reach 77 exabytes per month by 2022. Interestingly, 79% of
this traffic will come from video which is likely to increase 9-
fold over the same period [1]. Densifying traditional networks
with small cells (SCs) has been considered a solution to
the envisioned capacity crunch over the next years [2]. In
order to support the requested high data rates and given the
increased cost for installing high capacity mid-haul or/and
back-haul between the numerous SCs and the overlaid macro
base stations (MBSs) or/and the core network, the concept of
content caching has emerged [3]. The necessity for high rates
and low latency with regard to video downloading is outlined
in the white paper from Akamai [4], where it can been seen
that even few seconds of startup delay could result in almost
50% of users abandoning the view of a requested video.

In this framework, it has been considered that caching
popular contents in the cache memory of the mobile devices
could result in a two-fold gain: i) offload traffic from the core
network, since requests for the same content can be satisfied
locally through device-to-device (D2D) communication and ii)
achieve high downloading times given the high rates that D2D
links can provide [5]. In particular, installing cache memories
to the end users allows a content request to be satisfied locally,
thus avoiding using x-haul (back/mid/front-haul) connections
and, consequently, decreasing service time. Specifically, a user

equipment (UE) could find part of the requested content either
in its own cache or in the cache memory of neighbouring UEs.
Hence, the density of UEs impacts content caching, given
that it affects the number of contents to which a potential
requesting UE has access to, as well as the time needed for
a request to be satisfied. In the case where the request cannot
be satisfied through caching, the missing part of the request
should be fetched from the content server and delivered to the
user through the x-haul.

What is common in the majority of the cache-related
works in the literature is that they underestimate or overlook
the impact of content size on defining an efficient content
placement technique. The latter could be due to the fact that
the relationship between unequal content size and popularity
of videos has not been quantified and analysed yet [6], and
could explain why most works either consider in their analysis
equal sized contents [7] or even that the size of all the available
contents is equal to the unit [8].

More specifically, in a scenario with equal sized contents, it
can be easily proved that the preferred caching strategy would
be to cache higher portions of the most popular ones, given
that these will be requested more times, and therefore less
traffic will have to be offloaded from the cellular network.
However, when the requested contents are characterized by
unequal size, the decision about which contents to cache and
at which portion, is not straightforward. Specifically, it has to
be investigated whether a content of low popularity and large
size should be cached more over a more popular and smaller
file in order to reduce network’s traffic load, given that multiple
requests for the same content might be generated in a relatively
short time period.

In this paper, motivated from the above, we investigate
content caching aiming at reducing the average downloading
latency for popular videos. In our study, we consider content
size as an important parameter that should be taken into
account when designing caching strategies. In order to i)
quantify the impact of the most relevant parameters (i.e., user
density, content popularity and size) on the average content
downloading delay, and ii) choose the most efficient content
placement scheme with respect to the network’s parameters,
we formulate a content download time minimization problem
to provide closed-form expressions. Finally, these expressions
are integrated in a proposed utility-based low-complexity
algorithm to solve this problem in real-time scenarios and
provide the appropriate content placement each time, which

can be easily adapted in existing network architectures.
The main contributions of this paper are summarized as

follows:

• We study and analyze how content size, jointly with
content popularity and density of cache-enabled UEs, can
affect the average content downloading delay. Further-
more, we derive closed form expressions to quantify the
impact of the aforementioned parameters.

• We formulate a caching optimization problem for the
minimization of the average content downloading delay
for a set of popular videos, and we introduce a low-
complexity D2D caching algorithm based on Popularity
and Size of popular contents, from now on denoted as
DPS, to solve the problem of average content download-
ing delay. The algorithm, is based in a utility function
that uses the derived closed form expressions, and takes
into account the content size and popularity, the density
of UEs and the limitations in the caching memories.

• We provide extensive simulation results to validate our
analysis and show that our proposed scheme outperforms
existing solutions in terms of average content download
delay, while it also adapts better to varying network
parameters.

The remainder of this paper is organized as follows: we
introduce our system model in Section II, while in Section
III, the caching analysis is presented. Section IV contains our
video download latency analysis and the optimization problem
for minimizing the average video downloading delay, through
caching, while a low complexity algorithm is also proposed.
Finally, numerical results are presented in Section V. Section
VI concludes the paper.

II. SYSTEM MODEL

In our approach, we consider a network topology that con-
sists of a number of SCs, which are connected to an overlaid
MBS through a mid-haul connection with finite capacity (Fig.
1). The MBS, which is used to offer full-area coverage, is
directly connected to a content server. Inside the coverage area
of each SC, defined with a radius RSC , UEs are distributed
according to a homogeneous Poisson Point Process (PPP)
with intensity λ. We define two sets of UEs, namely Unr
and Ur, with Unr ∩ Ur = ∅, that stand for the UEs that
request non-real and real-time traffic services, respectively.
A UE requests a real-time content with probability pr and
consequently the density of such UEs, denoted as λr, equals
λr = prλ. Similarly, the rest of the UEs that request non-real-
time contents are deployed according to a homogeneous PPP
with intensity λnr = (1 − pr)λ. It holds that λ = λr + λnr.
All UEs are equipped with a cache memory of size MUE .
Moreover, UEs may communicate among each other using
D2D communication protocols, as long as their distance is
lower than the maximum communication range of D2D com-
munications, defined as RD2D. Finally, throughout this paper,
we consider that MUE is divided to segments of equal size,
denoted as sseg .

In our scenario, we focus on the service of non-real-time

traffic UEs that request files1 asynchronously from a content
library, denoted as F = {1, ..., N}. Each file is characterized
by a unique profile fi = (si, qi), ∀i ∈ [1, N], where si and
qi stand for the size and the popularity of file i, respectively.
It should be noted that segmented content caching [9] and,
specifically, erasure coding is considered ([10]), while we
also consider that the number of encoded segments is high
enough to promote erasure coding over whole-file replication.
Therefore, a content’s, fi, reception is successful when the
number of segments received from a UE equals ni, which is
defined as

ni =
si
sseg

. (1)

With regard to qi, the popularity of the requested contents
could be modeled by a zipf-like distribution [11], i.e.,

qi =
1/iγ∑N

k=1 1/k
γ

(2)

and, consequently, qi ≥ qi+1, where γ is a fixed parameter
that defines the skewness of the file popularity distribution.

According to the considered network topology, a demand
for a content can be satisfied from the cache memory of the
requested UEs, from the cache memory of a neighbouring UE
or through the mid-haul connecting the overlaid MBS with the
nearby SC.

Fig. 1: System model of the cache assisted network

In more detail, when a request for a content fi is generated
by a non-real-time UE, service is offered according to the
following steps:

• UE searches in its own cache for the requested content or
for segments of it. This process is denoted as self-caching.

• When self-caching is not sufficient for a UE to be
served entirely, a second caching layer is offered from
the cache memories of the neighbouring UEs. The D2D
communication between two UEs for caching purposes
is characterized throughout this work as D2D-caching.

• Finally, in the case where the aforementioned caching
options cannot satisfy the demands of a UE, the content

1Please note that the terms “file” and “content” are used interchangeably
throughout this paper.

Fig. 2: Toy example: Content caching at the UE side

needs to be downloaded from the overlaid MBS to the
nearby SC through the mid-haul connection.

In our model, we consider in-band overlay D2D commu-
nication [12] and, therefore, D2D communication does not
intervene to cellular downlink traffic. Finally, the conven-
tion followed in this work is that the caching procedure is
distinguished to the placement phase during off-peak hours,
where caches are updated with popular videos, and the delivery
phase, where the requested contents are forwarded to the end
users during high traffic hours.

III. CACHING ANALYSIS

This section presents the caching policies that we consider
in our scenario, specifically self-caching and D2D-caching.
Furthermore, our analysis on the average number of segments
for each requested content i that a UE gets through the
aforementioned policies is provided.
A. Caching Policies

As we have already explained, the UE content requests
from the library F could be potentially served from all
the network elements with caching capabilities within the
UE’s communication range. However, the received service
depends on parameters such as the number of potential D2D-
neighbours and the portion of the requested file cached at the
different elements. For instance, a UE with a large number of
D2D-neighbours is more likely to receive higher portions of
a requested file through D2D-caching rather from the content
server.

Motivated by the above, in this section, we study how a
non-real-time traffic UE receives a requested content through
caching, while we also derive expressions to measure the
expected portion of each content i a UE gets from self-caching
and D2D-caching. At this point, let us define two probabilities
which are related to caching at the UE side. First, we define
the caching probability at UEs as

PUE,i = [pUE,1, .., pUE,N], (3)

where pUE,i,∀i ∈ F stands for the percentage of UEs that
have cached part of the i-th file in their cache memory. It is

also considered that, for every content i cached at the UE side,
the caching percentage is the same. This caching probability,
which is denoted as Xi, can be expressed as

Xi = [x1, ..., xN], (4)

where xi,∀i ∈ F stands for the percentage of content i cached
at the caching memories of UEs.

The above concepts can be better seen in the following toy
example (Fig. 2)

Toy Example 1. In this toy example (Fig. 2), content caching
at the UE side is illustrated. Specifically, five UEs, three non-
real-time and two real-time traffic ones, equipped with a cache
memory of size four (i.e., MUE = 4), are deployed inside the
coverage area of a SC. We assume that the content library
consists of five files with unequal size, however each content
consists of a number of equal sized segments (sseg), and we
observe the percentage of UEs that cache each content, as
well as the percentage of each content cached at every cache
memory. Therefore, it can be observed that three out of the
five UEs (i.e., UE1, UE3, UE4) cache part of the content 1,
i.e pUE,1 = 0.6, while each one of the aforementioned
UEs caches the same percentage of content 1, specifically
one segment out of the nine available, which implies that
x1 = 1/9. Similarly, contents 2 and 4 are cached in two UEs
with x2 = 2/5 and x4 = 2/3 respectively, while three UEs
cache contents 3 and 5 with x3 = 2/7 and x5 = 1/6.
B. X-caching

A UE can receive a content through self-caching or D2D-
caching. If the aforementioned ways are not sufficient, then the
content should be downloaded from the core network through
the MBS. In the sequel, we derive the expressions for the
average amount of the requested files, denoted as E[Ri,W]
with W ∈ {self,D}, that a non-real-time traffic UE receives
through caching.

1) Self-caching: According to the definitions presented in
Section III-A, a non-real-time traffic user self-caches a portion
of a content i with probability pUE,i. Therefore, it can be
derived that the expected amount of a file i that can be fetched
through self-caching can be expressed as

E[Ri,self] = sseg · pUE,i · nUE,i, (5)

where nUE,i is the number of segments of content i cached
in the memory of a UE, calculated as

nUE,i =
xisi
sseg

. (6)

2) D2D-caching: A UE, who cannot fetch entirely a con-
tent i from its own cache memory, will search for the remain-
ing segments in the cache memories of the neighbouring UEs.
The portion that will be received through D2D-caching is a
function of the portion that has already been retrieved through
self-caching (see Eq. (5)) and the number of D2D-neighbours
that may have cached the specific content.

Considering that UEs follow a homogeneous PPP with
intensity λ, let us calculate the probability of a non-real-time
traffic UE having k-1 D2D-neighbours, similar to [13], as

Ppssn(k − 1, RD) =
(λπR2

D)k

k!
e−(λπR2

D), ∀k ≥ 1. (7)

Furthermore, let us also define the number of UEs required
for a UE to get the requested content, denoted as kUE,i, as

kUE,i =

⌈
1

xi

⌉
. (8)

For instance, going back to our toy example, regarding
content 2, it holds that nUE,2 = 2 and kUE,2 = 3.

Two cases are distinguished from the above: i) The case
where the reference non-real-time traffic UE caches part of
the requested content with probability pUE,i and, therefore,
kUE,i − 1 D2D-neighbours are needed to fetch the entire
requested amount, and ii) the case where a UE does not cache
the requested content i, meaning that kUE,i D2D-neighbours
with the desired content should be within its communication
range.

Consequently, it is derived that the expected amount of the
file i that can be received through D2D-neighbours can be
expressed by

E[Ri,D] = sseg(pUE,iE[θD,ue,i] + (1− pUE,i)E[θD,ue′,i]), (9)

where E[θD,ue,i] and E[θD,ue′,i] stand for the expected number
of segments of content i that can be received through D2D-
caching from a UE that has either cached part of content i
(ue) or not (ue′). Considering also that a UE needs either
kUE,i − 1 or kUE,i D2D-neighbours to receive a content i,
with the help of Eqs. (6)-(8), we calculate in Eqs. (10) and
(11) the two parts of Eq. (9). The last two expressions (i.e.,
Eqs. (10) and (11)) identify the probability of having less or
equal than the required number D2D-neighbours (i.e. kUE,i−1
or kUE,i) to get a content through D2D-caching and calculate
the expected number of segments that can be fetched through
D2D-caching in such case. Furthermore, the above expressions
account for the case where a UE might have more that the
required number of D2D-neighbours (i.e., k ∈ (kUE,i,UUE),
or k ∈ (kUE,i + 1,UUE) .

IV. VIDEO DOWNLOAD LATENCY

In this section, we formulate the latency minimization
problem and we provide a low-complexity solution for real-
time scenarios.
A. Problem Definition

When the mid-haul is saturated and the MBS is congested,
the problem that arises is that the video download time cannot
meet users’ requirements. Therefore, caching popular contents
directly to the users’ cache memory could prevent users from
experiencing such problems. In this section, we study the video
download latency and we calculate the average time needed
in order to serve the user’s demands.

At this point, let us define as T x
sseg,i

, x ∈ {S,D,M} the
time needed to transfer a segment of a video (content i) to
a requesting user from its own caching memory (S), from a
D2D-neighbour (D) or from the remote content server through
the available mid-haul (i.e., M). Using Eqs. (5) and (9), it can

be derived that the average content download time for a content
i can be expressed as

E[Ti] = TS
sseg,ipUE,inUE,i + TD

sseg,i(pUE,iE[θD,ue,i] +

(1− pUE,i)E[θD,ue′,i]) + TM
sseg,i(1− pUE,inUE,i −

(pUE,iE[θD,ue,i] + (1− pUE,i)E[θD,ue′,i])). (12)

Finally, using also the contents’ popularity distribution, we can
define the average download latency (i.e., E[T]) for F as

E[T] =
N∑
i=1

qiE[Ti],∀i ∈ F . (13)

B. Caching Optimization Problem

In this section, considering the analysis in Section III
and Section IV-A, we formulate an optimization problem
to minimize traffic that travels through the mid-haul and,
consequently, minimize the expected video download latency
achieved through caching for non-real-time traffic users:

min E[T] (14)

s.t. 0 ≤ pue,i ≤ 1, ∀i ∈ F , (14a)
0 ≤ xi ≤ 1, ∀i ∈ F , (14b)
N∑
i=1

xisi ≤Mue, ∀i ∈ F ,∀j ∈ U (14c)

In the optimization problem defined in (14), (14a) ensures
that the portion of UEs caching content i is bounded by
the number of deployed UEs. Constraint (14b) denotes that
the amount of a cached content in each cache memory of
UEs cannot exceed its actual size. Finally, (14c) guarantees
that caching is limited by the maximum allowed capacity of
installed caches.

The optimization problem in Eq. (14) is a mixed-integer
linear problem (MILP) that can be solved with the help of
exhaustive search algorithms [14]. In order to address the
computational complexity that MILP problems have, and to be
able to get results in real-time scenarios, we have developed a
low complexity caching algorithm (DPS) which is presented
in the sequel.

C. Utility-based Solution

As it can be seen from Eq. (13), content profile, expressed in
the form of both content popularity and size, which is encap-
sulated in Eq. (12), affects the average content download time.
Furthermore, the density of the D2D UEs, in combination with
their integrated cache memories, are parameters that also affect
the average video download latency.

In this section, we propose a utility-based solution where
the objective is to minimize the average download time for
the non-real-time traffic UEs by properly caching segments of
the requested popular contents.

Considering the optimization problem in Eq. (14), and in
order to reduce the complexity of the proposed solution, let us
handle the cache memory of the UEs as one. The latter implies
that a segment of a popular video is either cached at every UE

E[θD,ue,i] =

kUE,i∑
k=1

Ppssn(k − 1, RD)

k−1∑
m=0

mnUE,i

(
k − 1

m

)
pmUE,i(1− pUE,i)

k−1−m +

UUE∑
k=kUE,i+1

Ppssn(k − 1, RD)

[kUE,i−1∑
m=0

mnUE,i

(
k − 1

m

)
pmUE,i(1− pUE,i)

k−1−m +

k∑
m=kUE,i

(kUE,i − 1)nUE,i

(
k − 1

m

)
pmUE,i(1− pUE,i)

k−1−m

]
. (10)

E[θD,ue′,i] =

kUE,i+1∑
k=1

Ppssn(k − 1, RD)

k−1∑
m=0

mnUE,i

(
k − 1

m

)
pmUE,i(1− pUE,i)

k−1−m +

UUE∑
k=kUE,i+2

Ppssn(k − 1, RD)

[kUE,i∑
m=0

mnUE,i

(
k − 1

m

)
pmUE,i(1− pUE,i)

k−1−m +

k∑
m=kUE,i+1

kUE,inUE,i

(
k − 1

m

)
pmue,i(1− pUE,i)

k−1−m

]
. (11)

or not cached at all (i.e., pUE.i = {0, 1}). Furthermore, as it
was aforementioned, the cache memory of UEs is divided into
segments of equal size. The maximum number of segments in
a UE’s cache memory, denoted as Nmax

UE , equals Nmax
UE =

MUE

sseg
. Therefore, in our solution, we define a utility function,

Ui, that calculates the impact of the aforedescribed parameters
when each available segment is allocated to a different content.

At each step h, of an iterative procedure that will be
explained in detail in the sequel, the contents compete with
each other for every available segment. The criterion for
assigning a cache segment to a content, is the highest reduction
in the amount of traffic that will have to be fetched through
the mid-haul, denoted as caching gain Gi. The caching gain
for each content i is defined as

Gi = Ui(nUE,i + 1)− Ui(nUE,i), (15)

where Ui(nUE,i) stands for the current value of the utility
function and Ui(nUE,i + 1) stands for the value of the utility
if the next segment will be allocated to content i. Please note
that for Ui(nUE,i) it holds that

Ui(nUE,i) = qi
(
pUE,inUE,i + (pUE,iE[θD,ue,i] + (16)

(1− pUE,i)E[θD,ue′,i]
))
.

Algorithm 1: DPS
Data: qi, si, λ
Result: Caching allocation

1 Calculate Ui(nUE,i),∀i ∈ F
2 Calculate
3 for h ∈ Nmax

tot do
4 if h = 1 then
5 Calculate Ui(nUE,i + 1),Gi, ∀i ∈ F
6 i∗ = argmax(Gi),∀i ∈ F
7 nUE,i∗ ← nUE,i∗ + 1
8 Calculate Ui∗(nUE,i∗ + 1),Gi∗ ,
9 else

10 i∗ = argmax(Gi),∀i ∈ F
11 nUE,i∗ ← nUE,i∗ + 1
12 Calculate Ui∗(nUE,i∗ + 1),Gi∗ ,
13 end
14 end

In order to assign cache segments to contents in a beneficial
for the average download time way, we propose an iterative
caching algorithm, denoted as DPS (Algorithm 1). DPS is of
low complexity, i.e., O(Nmax

tot), since the number of iterations
cannot exceed Nmax

tot , meaning that it depends on the total
number of available segments in the cache memory of UEs.
Furthermore, at each step, only the utility functions for one
content are calculated, specifically for the one that was allo-
cated a segment in the previous step and, therefore, its new
caching gain should be calculated.

More specifically, DPS (Algorithm 1), works as follows
• In its first iteration (lines 5-8) the utility function and

the caching gain for each content i is calculated (line
5) and then the content i∗ with the highest caching gain
that will occupy the first segment is selected (lines 6-
7). Subsequently, the new value of the utility function
and caching gain is calculated for the content that was
allocated in the first cache segment (lines 8).

• In every other iteration, and if the number Nmax
tot is

not exceeded, the content with the highest caching gain
occupies the respective cache segment (line 10) and the
new value for both its utility function and caching gain
is calculated (lines 11-12).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DPS with
both numerical and simulation results obtained from our
custom-made simulator (implemented in C) with regard to
the zipf parameter, γ ∈ {0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5}, and
the size of content library, F ∈ {20, 40}. Furthermore, we
compare its performance in terms of average service delay
with a static scheme based on popular caching, denoted as
Pop, and a scheme based on random caching of available
contents, denoted as Random [14].

By definition, Pop outperforms Random for high values of
γ, where a small subset of F accounts for the majority of
the requests and consequently the requested traffic. On the
contrary, Random performs better for low values of γ, where
the difference in popularity between the most and the least
popular file is lower and, therefore, the effect of content size
is more prominent.

Figure 3 depicts the service latency of the different caching
schemes, considering N = 40 and various values of the zipf

parameter. As it can be seen, DPS outperforms all the other
schemes, regardless of the zipf value.

In more detail, it can be observed that, for low values of
γ (i.e., γ ∈ {0.1, 0.3, 0.5}), our proposed scheme surpasses
the Pop approach by approximately 10%. This is due to the
fact that DPS manages to capture better the impact of content
size on the service delay when the contents’ requests are
almost equally distributed. On the contrary, for high values
of γ (i.e., γ ∈ {2, 2.5}) and given that the impact of
the popularity becomes more intense, Pop converges to our
proposed algorithm. However, it should be noted that even
in these cases, DPS reduces service latency compared to Pop
(i.e., 19% and 9%, respectively). Regarding the performance
for medium values of γ (i.e., γ ∈ {0.8, 1, 1.5}), the different
size of the most popular contents is the factor taken in account
from DPS that results in high latency reductions compared
to Pop. Specifically DPS outperforms Pop by 15%, 18% and
22%, respectively, for the aforementioned values of γ. Finally,
although DPS and Random show similar performance for
γ = 0.1, as γ increases, our proposed algorithm outperforms
Random by even 65% (i.e., when γ = 2.5).

Similar behavior is observed for lower size of the content
library (N=20) (Fig. 4). Specifically, it can be seen that DPS
outperforms Pop and Random by even 23% and 34% for low
and medium values of γ. However, it can be seen that, in
the extreme case where γ ∈ {2, 2.5}, which according to
Eq. (2) is translated to popularity of 63% and 75% for the
most popular file, probabilities that are not common in real
scenarios, Pop outperforms our proposed solution while DPS
surpasses Random by 48%.

0.1 0.3 0.5 0.8 1 1.5 2 2.5
zipf parameter

100

150

200

250

300

350

400

450

S
er

vi
ce

 la
te

nc
y

(s
)

Service latency (N=40)

DPS (anal.)
DPS (sim.)
Pop
Random

6%
7%

11%

15%

18%

22%

69%

19%

Fig. 3: Service latency, N=40

VI. CONCLUSIONS

In this work, we have studied segmented caching in back-
haul limited cellular networks where D2D-caching is consid-
ered. Specifically, we analyzed the impact of content popu-
larity and size on the latency of non-real-time users, taking
also into account parameters such as the user density and the
limitations in the capacity of the available cache memories.
It has been shown that our dynamic caching algorithm adapts
better to different network parameters and outperforms exist-
ing schemes based on popular and random caching by 7%
to 34% for low to medium values for the zipf parameter γ,
while it also shows better performance for high values of γ
and increased size of content library.

0.1 0.3 0.5 0.8 1 1.5 2 2.5
zipf parameter

100

150

200

250

300

350

400

450

S
er

vi
ce

 la
te

nc
y

(s
)

Service latency (N=20)

DPS (anal.)
DPS (sim.)
Pop
Random

14%

6% 12%

21%

23%
34%

48%

Fig. 4: Service latency, N=20

ACKNOWLEDGMENTS

This work has been supported in part by the research
projects AGAUR (2017-SGR-891), SPOT5G (TEC2017-
87456-P) and 5G-SOLUTIONS (856691).

REFERENCES

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2017-2022, Cisco Systems, Inc, Feb 2019.

[2] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta
and R. W. Heath, “Modeling and Analyzing Millimeter Wave Cellular
Systems,” in IEEE Transactions on Communications, vol. 65, no. 1, pp.
403-430, Jan 2017.

[3] V. Chandrasekhar, J. G. Andrews and A. Gatherer, “Femtocell networks:
a survey,” in IEEE Communications Magazine, vol. 46, no. 9, pp. 59-67,
Sep 2008.

[4] White Paper “Maximizing Audience Engagement: How online video
performance impacts viewer behavior”, Akamai, Jan 2015.

[5] A. Afzal, S. A. R. Zaidi, D. McLernon and M. Ghogho, “On the analysis
of cellular networks with caching and coordinated device-to-device com-
munication,” 2016 IEEE International Conference on Communications
(ICC), Kuala Lumpur, pp. 1-7. Jul 2016.

[6] H. Feng, Z. Chen and H. Liu, “Design and Optimization of VoD
Schemes With Client Caching in Wireless Multicast Networks,” in IEEE
Transactions on Vehicular Technology, vol. 67, no. 1, pp. 765-780, Jan
2018.

[7] Y. Zhu, G. Zheng, K. Wong, S. Jin and S. Lambotharan, “Performance
Analysis of Cache-Enabled Millimeter Wave Small Cell Networks,” in
IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6695-
6699, Jul 2018.

[8] D. Liu and C. Yang, “Cache-enabled heterogeneous cellular networks:
Comparison and tradeoffs,” 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, pp. 1-6. Jul 2016.

[9] Z. Chen, Y. Liu, B. Zhou and M. Tao, “Caching incentive design in
wireless D2D networks: A Stackelberg game approach,” 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, pp.
1-6. Jul 2016.

[10] N. Golrezaei, A. F. Molisch, A. G. Dimakis and G. Caire, “Femtocaching
and device-to-device collaboration: A new architecture for wireless video
distribution,” in IEEE Communications Magazine, vol. 51, no. 4, pp.
142-149, Apr 2013.

[11] L. Breslau, Pei Cao, Li Fan, G. Phillips and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” INFOCOM
’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, New York, NY, 1999,
pp. 126-134 vol.1. Aug 2002.

[12] H. Hsu and K. C. Chen, “A Resource Allocation Perspective on Caching
to Achieve Low Latency,” in IEEE Communications Letters, vol. 20, no.
1, pp. 145-148, Jan 2016.

[13] D. Stoyan, W. S. Kendall, J. Mecke, and L. Ruschendorf. Stochastic
geometry and its applications, Wiley Chichester, Jan 2013.

[14] Z. Chang, Y. Gu, Z. Han, X. Chen and T. Ristaniemi, “Context-aware
data caching for 5G heterogeneous small cells networks,” 2016 IEEE
International Conference on Communications (ICC), Kuala Lumpur, pp.
1-6. Jul 2016.

