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Abstract

Recently, discontinuous reception mechanisms (DRX) and wake-up schemes (WuS) have been

proposed to enhance the energy efficiency of 5G mobile devices and prolong the battery lifetime. The

existing DRX and WuS use commonly pre-configured parameters that cannot be adjusted dynamically.

In this paper, a novel wake-up scheduling (WuSched) concept is introduced to further improve the

energy efficiency of WuS-enabled mobile devices while controlling the buffering delay in a dynamic

manner. The main idea of WuSched is to use a fixed configuration of the wake-up scheme and adjust

the scheduling of the wake-up signals dynamically based on actual traffic arrivals. For this purpose,

two different optimization approaches of the wake-up scheduling concept are proposed, analyzed, and

compared, namely offline and online wake-up schedulers (WuSched-Offline and WuSched-Online). First,

the WuSched-Offline is analyzed analytically for Poisson traffic arrivals and optimized (offline) to

balance the average delay and power consumption. Second, the WuSched-Online is proposed to take

online decisions based on traffic prediction, which is able to deal with general and more complex

traffic models. Towards this end, we develop a framework for the prediction of packet arrivals based

on recurrent neural networks. Numerical results show that both wake-up schedulers outperform the

ordinary WuS-based system where wake-up scheduler is not deployed. In particular, for predefined

delay requirements of video streaming, audio streaming, and mixed traffic flow, the WuSched-Online

reduces the power consumption of the baseline WuS by up to 36%, 28% and 9%, respectively. Results

also show that the WuSched-Offline has slightly better energy efficiency than the WuSched-Online in

the case of Poisson packet arrivals, as it is optimized for that, while its power consumption is slightly

higher than that of the WuSched-Online scheduler for realistic traffic scenarios.
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I. INTRODUCTION

The emerging fifth generation mobile networks (5G) have a promising capability to offer

super-fast and ultra-low latency connectivity to the end users, and are expected to enable a

wide range of futuristic mobile applications and services such as augmented/virtual reality,

cloud gaming, and ultra-high-definition video streaming [2]. Such magnificent improvements

are vital to accommodate the ever-growing needs for increased data rates and enhanced quality-

of-service (QoS). In particular, they are realized in New Radio (NR) based 5G systems by

adopting larger transmission bandwidths, higher modulation orders, advanced coding techniques,

and sophisticated multi-antenna schemes [3]. However, the utilization of such computationally

intensive techniques comes commonly at the cost of higher energy consumption that can deplete

the mobile devices’ battery power rather quickly, which in itself is one of the major causes of

dissatisfaction for the users [4].

In general, the cellular modem is one of the primary energy-consuming elements of mobile

devices, while the other units only contribute when they are used intensively [5], [6]. Further-

more, in current and future traffic trends, the data traffic of mobile users is mainly downlink-

dominated [7]. Therefore, the development of power-saving mechanisms for cellular modems in

receive mode has paramount importance in order to extend the mobile devices’ functionalities in

5G networks and beyond. To this end, the 3rd generation partnership project (3GPP) has specified

discontinuous reception (DRX) as the de facto power-saving mechanism for long-term evolution

(LTE) based fourth-generation (4G) systems [8], [9] and NR based 5G systems [3], [10]. DRX

enables the mobile device to reduce energy consumption by switching off the radio-frequency

(RF) circuitry and other modules for long periods, activating them only for short intervals [11].

However, it has been shown in [12] that the time period for which a mobile device monitors the

physical downlink control channel (PDCCH) without any data allocation has still a major impact

on the battery consumption. Thus, further power-saving mechanisms are of large importance.

A. Wake-up based Access and State-of-the-Art

In the context of non-cellular networks, different power-saving mechanisms have been ex-

tensively studied and implemented, with specific focus on the low-power wide-area networks
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(LPWAN) and wireless sensor networks (WSN) [13]. In this context, duty cycling has been

the major mechanism for energy conservation in LPWANs/WSNs [14], [15]. In duty cycling,

which resembles cellular DRX, nodes wake up and sleep periodically, thus leading to idle

listening and potential overhearing. Therefore, to reduce idle listening, the concept of wake-

up radio based access has been recently studied, e.g., [16], [17]. Demirkol et al [18] provided a

comprehensive overview and insight into wake-up receiver (WRx), and investigated the benefits

achieved with WRx along with the challenges observed in WSNs. In addition, they presented an

overview of state-of-the-art hardware and networking protocol proposals as well as classification

of WRx schemes. Moreover, authors in [19] introduced the concept of wireless-powered wake-

up receiver, reducing the energy consumption of the wireless node considerably. The proposed

receiver scavenges the RF energy from the received signal to power its sensor, communication

and processing blocks. The proposed scheme can be utilized for a wide range of energy-

constrained wireless applications such as wireless sensor actuator networks and machine-to-

machine communications. Due to the large energy saving potential of such wake-up radio based

methods, similar concepts are raising increasing interest also in cellular networks, primarily 5G

NR [20], in which this paper is also focused on.

In order to reduce the energy consumption of unscheduled cycles in DRX, cellular wake-up

schemes (WuS) have been recently proposed, e.g., in [5], [21]. In cellular WuS, or WuS for

short, the mobile device monitors a narrow-band wake-up signaling periodically (every wake-up

cycle) at specific time instants and subcarriers, which indicates to the device whether to process

the upcoming PDCCH or remain in sleep mode. As soon as a packet arrives at the transmission

buffer of the base station, the wake-up indicator is assumed to be sent at the next upcoming

wake-up instant. Furthermore, a low-complexity WRx is required to decode the corresponding

wake-up signaling and to acquire the necessary time and frequency synchronization [5], [22].

Additionally, in [22], synchronization is one of our main design factors in the design of wake-

up signaling and WRx. To this end, we utilized built-in self-synchronizing signal structure and

assumed high-power high-precision oscillator to remove the need for a separate synchronization

stage for WRx. Our extensive simulation results [5], [22] verify that the proposed scheme can

achieve very low misdetection (less than 1%) and false alarm rates for signal-to-noise ratios

(SNRs) even below 0 dB. Furthermore, very high-quality synchronization can be obtained down

to SNRs of −4 dB [22]. We also showed that the impact of such negligible errors is very low

on power consumption and buffering delay. Furthermore, in our previous work [23], [24], we
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introduced an offline method to optimize the WuS configuration (i.e., the wake-up cycle period)

based on a delay bound under the assumption of Poisson traffic. In cases where traffic dynamics

vary over time, the WuS optimization method in [23], [24] requires reconfiguration of the WuS

parameters, which need to be communicated to the mobile device, and thus increases the control

signaling overhead as well as the associated energy consumption.

B. Contributions and Novelty

In this paper, we introduce a novel concept called wake-up scheduling (WuSched) to further

improve the energy efficiency of mobile devices in cellular networks. The main idea is in

starting with a fixed WuS configuration and then adjusting the scheduling of the wake-up signals

dynamically by determining whether to wake-up the mobile device or not. More precisely, in

wake-up scheduling, the network does not send the wake-up indicator to the mobile device as

soon as there is one (or more) packet arrival(s), but rather it may wait to send it while at the same

time taking different QoS and other requirements into account, specifically the latency constraint

and the mobile device power consumption. The proposed concept not only concerns to the

physical layer (PHY), but mainly, it uses WuS as a mechanism to reduce energy consumption at

PHY and then uses adequately scheduled wake-up signals from the medium access control (MAC)

layer. In particular, offline and online optimizations of the wake-up scheduler parameters are

proposed in this paper, namely WuSched-Offline and WuSched-Online. The offline optimization

(WuSched-Offline) is based on the assumption that traffic arrivals follow a Poisson distribution

and it is analyzed analytically. The objective is to reduce the power consumption of the mobile

device while satisfying delay requirements. The optimal solution for the tunable operational

parameter of the WuSched-Offline, which is referred to as the buffer size threshold and which

only concerns the network side (so that it can be easily reconfigured based on traffic dynamics),

is obtained in closed form. Then, for a general and thus very likely more complex traffic models,

an online optimization is proposed through the WuSched-Online. It uses a proactive scheduler

that takes decisions every wake-up cycle based on traffic predictions over a forecast horizon. A

multi-step Long Short-Term Memory (LSTM) neural network is trained with data from real user

applications and tailored for traffic prediction purposes. To the best of our knowledge, this is the

first attempt to introduce online wake-up scheduling decisions with traffic prediction capabilities

into the wake-up scheme. Unlike previous works [5], [23], [24], the WuSched-Online is not tied

to any specific traffic models and operates dynamically.
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Table I: Most important variables and mathematical operations used throughout the article.
Variable / Operation Definition

PWwrx / PWon / PWoff power consumption of WRx / modem at ON /OFF modes
tp inter-packet arrival time
tr residual time between γth packet arrival time and end of w-cycle
c current TTI
λ packet arrival rate

tsu / tpd start-up / power-down time of cellular module
tw wake-up cycle
ti maximum allowable length of inactivity timer
ω length of inactivity timer
ton on-duration time
ta delay windows size
γ buffer size threshold

et/tt overall energy consumption/length of transitional states
L length of scheduling cycle

Le/Ld/La length of empty/dormant/active period
N number of packet arrivals during scheduling cycle

Nd/Na number of packet arrivals during dormant/active period
Tn inter-arrival times of nth and n+1th packets at gNB
An packet arrival times of nth packets at gNB
Dn nth packet’s buffering delay
D̄n estimated delays of nth packet (buffered or forecast)
Wn time duration between decoding nth and n+1th packets by UE
Hn (Wn − 1)

(
Wn + 1− 2(Tn −Dn)

)
C0/C1/C2 constant values

Xd set of packet arrivals during dormant period
X1 / X2 / X3 {n|Tn ≤ Dn + 1} / {n|Dn + 1 < Tn ≤ Dn + 1 + ti} / {n|Dn + 1 + ti < Tn}

Pc average power consumption
D average buffering delay

Dmax maximum tolerable average delay or delay bound
D̂ estimated delay for k packets including served, buffered and forecast packets
k number of packets that delay estimator uses to calculate average delay
p number of past TTIs that traffic predictor observes in every w-cycle
z size of dataset

E[.] expectation value of random variable
Var[.] variance of random variable

Cov[., .] covariance of two random variables
Pr[.] probability
{.}C absolute complement of {.}
xt packet arrival time on tth TTI
xt|t2t1 set of elements of xt from t = t1 to t = t2

The rest of this paper is organized as follows. Section II summarizes the WuS principle of

operation1, and introduces the proposed wake-up scheduling concept. Section III mathematically

models and optimizes offline the parameters of the wake-up scheduler (WuSched-Offline) for

Poisson traffic. Then, the online optimization of the wake-up scheduler (WuSched-Online), which

is valid for any traffic distribution, is presented and described in Section IV. These are followed

by simulation results and conclusions in Sections V and VI, respectively. Finally, some proofs

related to the WuSched-Offline are reported in the Appendices. For readers’ convenience, the

most relevant variables and mathematical operations used throughout this paper are listed in

Table I. Terminology-wise, we use gNB to refer to the base-station unit and UE to denote the

mobile device, according to NR specifications [3].

1Throughout this work, the term WuS refers to ’WuS without scheduler’, which is used as a baseline reference method.
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II. WAKE-UP SCHEDULING CONCEPT

A. WuS Overview

In WuS, the cellular modem is configured with a WRx, as a companion low-complex single-

purpose receiver in order to decode the wake-up signaling [5]. WuS allows the terminal to reduce

the energy consumption by switching off the modem for long periods of time, activating the

modem (ON mode) only for short intervals to decode data and control plane signals.

At every wake-up cycle (w-cycle), represented as tw, the WRx monitors the wake-up signaling

for a specific on-duration time (ton) to determine if any data is scheduled or not (see Fig. 1).

Occasionally, based on the interrupt signal from WRx, the modem switches ON, decodes both

PDCCH and physical downlink shared channel (PDSCH), and performs connected-mode proce-

dures. The wake-up signaling on each w-cycle is represented by 1-bit, referred to as wake-up

indicator (WI), where 0 indicates WRx not to wake up the modem (remaining in OFF mode)

and 1 triggers WRx to wake up the modem (moving to ON mode) because there is a packet to

receive [5]. When WI=1 is sent to WRx, the gNB expects the target mobile device to decode

the PDCCH with a time offset equal to the start-up time (tsu). After successful decoding of

PDCCH/PDSCH, the UE initiates its inactivity timer with a duration of ti. After the inactivity

timer is initiated, if a new PDCCH message is received before the expiration of inactivity timer,

the UE re-initiates its inactivity timer. However, if there is no PDCCH message received before

the expiration of the inactivity timer, a sleep period starts (modem goes through transitional

periods of power down, with a duration of tpd).

In WuS, if there are one or more packet arrivals during the sleep state, the gNB sends WI=1

to the target UE at the next upcoming wake-up instant (as shown in Fig. 1). However, if the

WuS configuration (namely, tw and ti) is not correctly optimized for the upcoming traffic, the

immediate waking up of the UE can either adversely increase its energy consumption, eventually

decreasing the benefits of using WuS (meaning that the UE can tolerate longer w-cycles), or

even create a worst-case scenario, in which the UE may not even satisfy its delay requirements

(implying the need for shorter w-cycles) [24].

B. Wake-up Scheduling

In our proposal, both w-cycle (tw) and inactivity timer (ti) are configured semi-statically,

and the desired power and delay trade-off is achieved by adjusting the wake-up instant. More
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Figure 1: Operation and corresponding parameters of WuS, without scheduler.
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Figure 2: An example of wake-up scheduling and corresponding definitions when γ = 3. The number of packet arrivals during
the corresponding scheduling cycle is equal to N = 5 (Nd = 3 and Na = 2).

precisely, the wake-up scheduler does not send WI=1 as soon as there is a packet in the w-cycle,

but waits until some condition is met; for instance, until the number of buffered packets at the

gNB for a given UE is larger than a predefined buffer size threshold (γ), or until the estimated

average buffering delay exceeds a predefined threshold (Dmax). The former condition is the core

part of the WuSched-Offline and is illustrated in Fig. 2, where the gNB does not send WI=1

until the number of buffered packets reaches to γ = 3, and it takes four w-cycles to reach the

threshold. This way, instead of switching ON the UE for three times, it is switched ON only

once after the fourth w-cycle. Note that the buffer size threshold γ influences the packet delays

and so it establishes a trade-off in between the energy consumption and the experienced delays.

On the other hand, the latter condition mentioned above is used in the WuSched-Online, in order

to allow the network to meet maximum tolerable delays of the target applications.
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The main motivation behind not sending WI=1 as soon as a packet arrives at the gNB but

instead waiting and sending the packets consecutively, is that the state-of-the-art modems suffer

from large start-up and power-down stages [5]. Therefore, it is desired in terms of energy-

efficiency that once the modem is at ON mode, it receives multiple packets and not a single

packet. Although, waiting for longer times to buffer packets can eventually increase the buffering

delay. This extra buffering delay should not be problematic as long as the average delay is

maintained within a maximum bound. It is worth mentioning that WuS is a specific example of

the WuSched-Offline when γ = 1.

Under the wake-up scheduling, the ON and OFF periods of the UE vary based on its traffic

dynamics. For this purpose, we define the scheduling cycle as the length of a full cycle of empty,

dormant and active periods. The scheduling cycle starts from the expiry of the inactivity timer

of the previous scheduling cycle and ends by the expiry of the current cycle’s inactivity timer.

The scheduling cycle’s length (L) is a random variable that depends on the buffer size threshold

and the packet arrivals. During each scheduling cycle, only a single WI of 1 is sent to the target

UE. We assume N (random variable) packets in the scheduling cycle are served (equivalent to

the overall number of packet arrivals in the corresponding scheduling cycle).

In order to help the readers to follow up, the different periods of the scheduling cycle are

illustrated in Fig. 2, and defined in what follows:

• empty period: It starts right after the beginning of the scheduling cycle and lasts until the

arrival of the first packet of such scheduling cycle at the gNB. During the empty period, the

number of buffered packets is zero. The length of the empty period is a random variable

that we refer to as Le.

• dormant period: It starts as soon as the first packet arrives and lasts until the end of the

start-up stage. During the dormant period, packets are buffered at the gNB until the number

of buffered packets reaches γ. As a result, by the end of the corresponding w-cycle, the

modem is switched ON and, after the start-up stage, the UE is ready to receive the packets.

The length of the dormant period is a random variable, denoted by Ld, and the number of

packets buffered during the dormant period is referred to as Nd, which is greater than or

equal to γ.

• active period: It starts after the end of the start-up period and lasts until the end of the

scheduling cycle. During the active period, the modem is at ON mode and consumes the high

power of PWon, and either it is processing the packets or its inactivity timer is running. The
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active period’s length is a random variable that is denoted by La. The number of packets that

arrive at the gNB during the active period is referred to as Na. During the active period, the

UE serves N = Nd+Na packets, before it enters the next scheduling cycle. The relationship

between the length of the different periods of each scheduling cycle is L = Le + Ld + La.

For the modem during OFF mode, packets are buffered, and it consumes low power of

PWoff . In general, the UE power consumption in different operating states is highly imple-

mentation dependent, while also depends on the operational configurations. Stemming from the

specifically-designed narrow-band WuS signal structure, the WRx power consumption (PWwrx)

is generally much lower than that of the modem during ON mode (PWon). Following [5], [22],

[25], PWwrx=57 mW, PWon=850 mW, and PWoff=16 mW can be considered as representative

numbers, while the start-up/power-down periods read tsu=15 ms, and tpd=10 ms. Additionally,

regarding the WuS parameters, we consider ton=3/14 ms and ti=1 ms [5]. Furthermore, since

the on-duration period of WuS signaling is very short, only three OFDM symbols [22], the WRx

contribution to the device energy consumption is very minor. Therefore, in our system model,

WRx power consumption is eventually ignored, i.e., we consider PWwrx≈0. However, it is noted

that in later numerical results, non-zero WRx power consumption is considered.

The wake-up scheduler can be located at the network side (e.g., MAC layer of the gNB),

and hence all the computationally intensive processing is performed by the network. Without

loss of generality, we assume that the UE can process a single packet (regardless of its size)

per transmission time interval (TTI) and that the packet arrival rate (λ) is at most one packet

per TTI. TTI of 1 ms is assumed. In general, because NR supports wide bandwidth operation,

packets can be served in a very short time duration. In addition, in case the user packet sizes

are small, packet concatenation in NR for duration of a TTI is used, so that all packet arrivals

in a relatively short time window can be served in a single TTI. Accordingly, we assume that

radio-link control entity (located at the gNB) concatenates all those packets arriving during the

slot, and as soon as the BBU is triggered on, the device can receive and decode the concatenated

packets for a duration of a single TTI. During the corresponding slot, if there was a new packet

arrival, the BBU starts serving the corresponding packet by the end of current slot time. Also,

we assume that packets are served individually based on first-input first-output (FIFO). One of

the key components of the 5G NR design is a flexible self-contained slot-based framework that

allows delivering significantly lower latency than LTE. This slot structure framework includes

the opportunity for uplink and downlink scheduling, data, and acknowledgement to occur in the
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same slot. In other words, in each time slot, UEs can send their acknowledgment to network,

and network can decide to re-transmit the packet or not in next inactivity period. In our work,

we assume that the self-contained slot-based framework is utilized.

In the case of multimedia packet-data traffic, there is not a strong need to provide a maximum

delay budget per packet. Rather, from a user perspective, the delay over the radio interface should

simply be lower than maximum average packet delay (Dmax), whose value is set based on the

service type. Even in case of typical constant-rate services such as voice and video, (short-term)

exceeding delays are often not an issue, as long as the average delay remains constant, assuming

averaging over some relatively short time interval. Moreover, maximum delay requirements are

mainly used for ultra reliable and low latency communications (URLLC). However, since our

main focus in this paper is on multimedia type traffic, we consider average packet delay as QoS

indicator of services.

III. OFFLINE OPTIMIZATION OF WAKE-UP SCHEDULING FOR POISSON TRAFFIC

In this section, the average power consumption and buffering delay of the wake-up scheduler

are derived as a function of the buffer size threshold (γ) and the packet arrival rate of a Poisson

process (λ). Then, γ is optimized for a given λ and a maximum delay bound (Dmax).

The WuSched-Offline can be modeled as a stationary GI/G/12 FIFO queuing system [26].

We use such system’s properties to analyze the wake-up scheduler’s average delay and power

consumption. In this section, packet arrivals are modeled as according to a Poisson process for

analytic simplicity and due to its attractive theoretical properties.

Let us refer to the packet inter-arrival times of the nth and n+1th packets at the gNB as Tn,

where T is exponentially distributed, and hence E[T ] = 1/λ and Var[T ] = 1/λ2. Furthermore,

we define the nth packet’s buffering delay caused by the wake-up scheduler as Dn. Based on

Fig. 2, the following expression is always valid,

Dn+1 = Wn +Dn − Tn, (1)

where Wn is the time duration between decoding nth and n+1th packets by UE.

Depending on the relation between Tn and Dn, three disjoint sets of packets can be defined,

• X1: If n ∈ X1, the n+1th packet arrives before the end of serving nth packet (Tn ≤ Dn+1).

Therefore, the UE serves n+1th packet immediately after serving nth packet, i.e., Wn = 1.

2In queuing theory, GI/G/1 represents the queue length in a system with a single server where inter-arrival times have a
general distribution and service times have a general distribution.
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All packet arrivals during the dormant period (referred to as Xd) are part of X1 (last packet

of the dormant period may or may not3 belong to X1). Therefore, Xd − {Nd} ⊆ X1.

• X2: If n ∈ X2, the n+1th packet arrives after inactivity timer is triggered and before its

expiry time (Dn + 1 < Tn ≤ Dn + 1 + ti). In such conditions, n+1th packet is served

immediately, Dn+1 = 0, and based on (1), then Wn = Tn −Dn.

• X3: If n ∈ X3, the n+1th packet arrives after inactivity timer is expired (Dn + 1 + ti < Tn).

X3 has a single packet which is the last served packet. Therefore, n+1th packet belongs to

the next scheduling cycle. As a result Wn = Ld +Tn−Dn, where Ld = Dn+1 is the length

of the next scheduling cycle’s dormant period or, equivalently, the delay of the first packet

in the next scheduling cycle.

For compactness purposes, in the rest of the paper, the subscript n from random variables Tn,

Dn and Wn are removed, unless there is a need to emphasize their dependence of n explicitly.

The summary of Wn calculation is drawn in the second column of Table II.

We note that the WuSched-Offline is analyzed for Poisson traffic arrivals and thus it cannot

strictly-speaking cover the case of retransmissions. This is because retransmissions would change

the statistics of the packet arrivals (including new packets and retransmission) based on the

channel quality, error model, and retransmission timings.

A. Stationary Probabilities

The stationary probabilities that the nth packet belongs to one of the three sets (X1, X2,

X3) need to be calculated to derive the delay and power expressions of the wake-up scheduler

analytically. For this purpose, based on the definition of X1 and X3, we can write,

Pr[n ∈ X1] = Pr[T − 1 ≤ D] =

∫ ∞
0

(1− e−λ(t+1))fD(t)dt = 1−
∫ ∞

0

e−λ(t+1)fD(t)dt, (2)

and

Pr[n ∈ X3] = Pr[T−ti−1 > D] = 1−
∫ ∞

0

(1−e−λ(t+ti+1))fD(t)dt = e−λti
∫ ∞

0

e−λ(t+1)fD(t)dt,

(3)

where fD(t) is the probability density function (PDF) of D. Therefore, based on (2) and (3),

we can model their relation as follows,

Pr[n ∈ X3] = e−λti(1− Pr[n ∈ X1]). (4)

3In such a scenario, N th
d packet belongs to either X2 or X3.
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Table II: Summary of analysis of Wn, Hn and stationary probabilities.
n ∈ Wn Hn Pr[n ∈ Xi]
X1 1 0

γ+(eλti+C0)λ

γ+eλti+C0λ

X2 Tn −Dn −(Tn −Dn − 1)2
(1−λ)(eλti−1)

γ+eλti+C0λ

X3 Ld + Tn −Dn Ld
2 − (Tn −Dn − 1)2 1−λ

γ+eλti+C0λ

Also by using (4) and the probability assignment rule (
∑3

j=1 Pr[n ∈ Xj] = 1), we attain,

Pr[n ∈ X2] = (1− e−λti)(1− Pr[n ∈ X1]). (5)

Furthermore, we can model the expected value of W based on all possible values of Wn

(second column of Table II) by using the law of total probability formula as follow,

E[W ] = Pr[n ∈ X1] + Pr[n ∈ X2]E[(T −D)|n ∈ X2] + Pr[n ∈ X3]E[(Ld + T −D)|n ∈ X3].

(6)

Appendices B, C, D and E include the derivations of E[(T −D)|n ∈ X2], E[(T −D)|n ∈ X3],

E[Ld], and E[W ], respectively. Then, by substituting (4), (5), (31), (33), (34) and (36) into (6),

we can obtain,

Pr[n ∈ X1] =
γ + (eλti + C0)λ

γ + eλti + C0λ
. (7)

Then, Pr[n ∈ X3] and Pr[n ∈ X2] can be calculated based on (4) and (5), respectively. The

summary of the calculation of the stationary probabilities is drawn in the fourth column of

Table II.

B. Average Holding Times

In this section, the average holding times (i.e., the length) of the empty and active periods,

as well as the average number of packet arrivals during the dormant and active periods, are

calculated. Note that we already derived the average length of dormant period in Appendix D.

1) Empty Period: If the nth packet belongs to X3, then the n+1th packet is the first packet of

the next scheduling cycle and hence the length of the empty period equals to T −D − 1 − ti.

As a result, based on (32),

E[Le] = E[(T −D − 1− ti)|n ∈ X3] =
1

λ
. (8)

2) Dormant Period: Based on (34), E[Nd] can be calculated as,

E[Nd] = γ + λC0 + 1, (9)

where 1 is raised due to presence of the first packet in each scheduling cycle.
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Table III: Summary of analysis of average holding times and average number of packets per period/cycle.
period/cycle Holding Time Number of packet arrivals

empty E[Le] = 1
λ

0
dormant E[Ld] = γ

λ
+ C0 E[Nd] = γ + λC0 + 1

active E[La] = (γ + λC0 + 1)(1 + e−λti
1−λ ) + C2 E[Na] =

(γ+λC0+1)λ
1−λ e−λti

scheduling E[L] = (γ + λC0)C1 + C2 E[N ] = (γ + λC0 + 1)(1 + e−λti
1−λ )

3) Active Period: During the active period, first, Nd packets are served for a duration of Nd

TTIs, and then other packet arrivals, during the serving time of Nd TTIs, with average number

of Ndλ packets, are served. After some rounds, there will be a point in which the inactivity

timer expires, and no buffered packets remain in the queue. Therefore, the average number of

received packets during the active period can be modeled by a geometric progression as follows,

E[Na] =
( ∞∑
i=0

λiE[Nd]
)

Pr[T −D − 1 > ti|n ∈ X3] =
γ + λC0 + 1

1− λ
e−λti . (10)

4) Scheduling Cycle: The average number of packets that is served during each scheduling

cycle can be obtained as follows,

E[N ] = E[Nd] + E[Na] = (γ + λC0 + 1)(1 +
e−λti

1− λ
). (11)

Furthermore, the length of the inactivity timer (ω) is dependent on the packet inter-arrival

time (tp). If a packet arrives before ti, ω is equal to the inter-packet arrival time, otherwise ω

equals to ti. Therefore, ω can be calculated as a function of tp as,

ω(tp) =

 tp, for tp ≤ ti ,

ti, for tp > ti .
(12)

Hence, E[ω] can be expressed as,

E[ω] =

∫ ∞
0

ω(t)λe−λt(t)dt =
1− e−λti

λ
. (13)

By utilizing (11) and (13), we can obtain the average length of the active period as follows,

E[La] = E[N ] + E[ω] = (γ + λC0 + 1)(1 +
e−λti

1− λ
) +

1− e−λti
λ

. (14)

Finally, the average length of the scheduling cycle (L) can be calculated as follows,

E[L] = E[Le] + E[Ld] + E[La] = (γ + λC0 + 1)C1 + C2, (15)

where C1 and C2 are constants given by,

C1 =
1

λ
+ 1 +

e−λti

1− λ
, and C2 =

1− e−λti
λ

. (16)

The summary of the calculation of the average holding times and the average number of

packets is shown in Table III.
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C. Average Power Consumption

The average power consumption of the UE with wake-up scheduler, denoted by Pc, can

be calculated as the ratio of the average energy consumption and the corresponding overall

observation period, expressed as,

Pc =
et + (E[Le] + E[Ld]− tt)PWoff + E[La]PWon

E[L]
, (17)

where et and tt are the energy consumption of transitional states and the overall time period that

the UE spends on transitional periods, which respectively read as,

tt = tsu + tpd, and et = tt
PWon − PWoff

2
. (18)

Due to the negligible value of the power consumption of the UE at OFF mode, we can further

assume that PWoff ≈ 0. Therefore, (17) can be expanded as a function of γ as follows,

Pc(γ) = PWon

tt/2 + (γ + λC0 + 1)(C1 − 1
λ
) + C2

(γ + λC0 + 1)C1 + C2

. (19)

From the above equation, it is clear that the average power consumption Pc(γ) is a strictly

decreasing function with respect to γ at γ ≥ 1, i.e., dPc(γ)
dγ

< 0. As expected, increasing the

buffer size threshold reduces the power consumption.

D. Average Buffering Delay

By squaring both sides of (1) and using basic sum and multiplications, we can obtain the

following equation,

Dn+1
2 = Hn + (Tn −Dn)2 − 2(Tn −Dn) + 1, (20)

where

Hn = (Wn − 1)
(
Wn + 1− 2(Tn −Dn)

)
. (21)

Then, by averaging both sides of (20), we get,

E[D] =
E[T 2]− 2E[T ] + 1− 2Cov[D,T ] + E[H]

2(E[T ]− 1)
=

1

λ
+

1

2(1/λ− 1)
− Cov[D,T ]

1/λ− 1
+

E[H]

2(1/λ− 1)
.

(22)

In Appendices G and H, we present the calculations of Cov[D,T ] and E[H]. Finally, the

average delay can be obtained by replacing (43) and (51) into (22), as follows,

D(γ) = E[D] =
1

λ
+

λ

2(1− λ)
− 1

λ(1− λ+ e−λti)
+

eλti

λ((1− λ)eλti + 1)(γ + λC0 + 1)
+

−eλti + γ−1
2

λ(γ + eλti + C0λ)
+

1

γ + eλti + C0λ

[
γ2

2λ
+ γC0 +

λC2
0

2
+
λt2w
24

]
.

(23)
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For presentation purposes, we represent E[D] as D(γ). Similar to Pc(γ), the derivative of D(γ)

with respect to continuous variable γ can be calculated (refer to Appendix I), from which it can

be concluded that the average buffering delay D(γ) is a strictly increasing function with respect

to γ at γ ≥ 1, i.e., dD(γ)
dγ

> 0.

As expected, contrary to the behavior of Pc(γ), increasing the buffer size threshold increases

the buffering delay. Therefore, a clear energy-delay trade-off appears in the selection of γ for

the wake-up scheduler.

E. Offline Optimization of Wake-Up Scheduler

From the system-level point of view, the tunable parameter of the WuSched-Offline is the buffer

size threshold (γ ≥ 1), assuming a fixed configuration of the w-cycle and the inactivity timer.

For the sake of presentation compactness, we will not investigate how to set both parameters;

readers can refer to our recent work in [24]. The remaining parameters of the wake-up scheduler

(ton, tpd, tsu) depend on physical constraints and signal design, and accordingly, we assume

them to be fixed as well. Based on these assumptions, we focus on optimizing the buffer size

threshold (γ) in order to minimize the UE’s power consumption while satisfying a specific delay

requirement (i.e., average buffering delay should be less than or equal to a maximum tolerable

delay, Dmax), under Poisson traffic model assumption, for given values of tw, ti, ton, tpd and tsu.

By using the analytical models of the power consumption and the buffering delay, as well as

their behaviour as a function of γ (i.e., Pc(γ) in (19) is a decreasing function and D(γ) in (23)

is an increasing function), and by following a similar approach as the one in [24], the optimal

buffer size threshold (γ∗) can be easily obtained. The result is included in the next Theorem 1.

Theorem 1. The optimal buffer size threshold that minimizes the UE’s power consumption while

satisfying a specific delay requirement is γ∗ = bγmc, being γm the boundary point of the delay

constraint, i.e., D(γm) = Dmax.

Proof. Thanks to dPc(γ)
dγ

< 0 and dD(γ)
dγ

> 0, we can easily show that γ = bγmc is the optimal

solution to minimize the UE’s power consumption subject to a specific delay requirement, as

detailed next. Fig. 3 (a) and Fig. 3 (b) show the decreasing trend of the power consumption and

the increasing behaviour of the delay constraint as a function of γ, respectively, which satisfies
dPc(γ)
dγ

< 0 and dD(γ)
dγ

> 0. Consider an arbitrary point C in the interior of the feasible region

for γ (γC < bγmc where D(γm) = Dmax). As it can be seen from Fig. 3, there is always a
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Figure 3: Schematic proof of Theorem 1.
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Figure 4: Optimal value of buffer size threshold as function of packet arrival rate for tw = 15 ms and ti = 1 ms.

point close to the boundary of the delay constraint, denoted by D (γD = bγmc), where its power

consumption PcD is lower than that of C (PcD < PcC ). Then, we can conclude that under a given

delay constraint, the point bγmc always exists and attains the lowest power consumption within

the feasible region, and hence it is the optimal solution. The γm can be calculated using any

standard root-finding algorithm that meets D(γm) = Dmax.

Fig. 4 shows how γ∗ changes when λ varies for delay bounds of 30 ms, 75 ms and 500 ms,

for ti = 1 ms and tw = 15 ms. It clearly shows that by increasing λ, γ∗ increases too. The

high buffered size threshold reduces energy consumption; however, if the packet arrival rate is

low, configuring a high buffer size threshold can increase buffering delay and cannot satisfy the

maximum delay bound. As a result, a smaller γ should be configured for a low λ to satisfy

the delay requirement. For high λ, it is necessary to increase γ to reduce energy consumption.

Similarly, for higher delay bounds, γ can be configured high, due to the much-relaxed delay

requirements. Interestingly, for high packet arrival rates close to 1 p/TTI, γ reduces to one,

implying that the UE is on ON mode most of the time (because of the inactivity timer, most of

the time the UE does not enter to OFF mode). This is the main reason for limiting λ for less

than 1 p/TTI. Therefore, the wake-up scheduler is not effective anymore for packet arrival rates
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close to or beyond 1 p/TTI. Instead, other power-saving mechanisms, such as microsleep, could

be used. Finally, as can be observed in Fig. 4, γ∗ (precisely γm) has a linear trend concerning λ

for lower packet arrival rates, and this can be exploited to reduce the computational complexity

of root-finding algorithms.

IV. ONLINE OPTIMIZATION OF WAKE-UP SCHEDULING BASED ON TRAFFIC PREDICTION

In this section, we present the online optimization of the wake-up scheduler, which aims at

trading-off in between power consumption and packet delay in a dynamic manner by adaptively

and autonomously determining when to send the WI, according to the traffic pattern and a

maximum tolerable delay (Dmax). Differently from the WuSched-Offline that was presented and

modeled analytically in Section III, the WuSched-Online does not assume any a priori knowledge

about the traffic statistics, and thus it is general and can be applied to all traffic distributions as

well as mixed traffic combinations.

Proactively knowing the packet arrival times for a forecast horizon, allows the UE to remain

at OFF mode for longer periods. In this regard, the proposed wake-up scheduler increases the

sleep period of the UE as much as possible in a greedy manner by not sending WI=1 until the

average buffering delay approaches Dmax. For this purpose, the average delay is estimated for

k packets, in every w-cycle.

In the proposed scheme, traffic predictor forecasts the packet arrival times of the target UE

for the forecast horizon of one w-cycle based on past packet arrival times. In other words, the

traffic predictor observes the session’s packet arrival time for p previous TTIs until beginning of

the current TTI (c) and then predicts the packet arrival times for the upcoming w-cycle with TTI

indexes of [c, c+ tw). Note that, differently from the WuSched-Offline, the WuSched-Online can

also cover retransmissions, by taking the packet arrival times of previous retransmitted packets

and then predicting packet arrivals of either new packets or retransmission packets.

Furthermore, every w-cycle, a delay estimator block estimates the average buffering delay

(D̂) of k packets, assuming that the UE is switched on at the end of the upcoming w-cycle.

If D̂ is higher than Dmax, the network realizes that the only way to have shorter delay is by

sending WI=1 promptly. Otherwise (if D̂≤Dmax), it leaves the UE to remain in OFF mode for

at least another w-cycle. Finally, a delay comparator block performs the task of comparison and

decision making (i.e., whether to send WI=1 or WI=0) accordingly.
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Figure 5: Overall block diagram of the WuSched-Online.

The overall block diagram of the proposed WuSched-Online is shown in Fig. 5. The different

modules and variables are described below.

A. Dataset from Real Traces

In this paper, the performance of the WuSched-Online is investigated using real video and

audio streaming traces. For this, we monitored one operative network in Spain during one month

using the online watcher presented in [27]. We have selected only those traces gathered during

the night hours (1am - 6am) to be sure that the selected cell is serving very few users. This allows

us to assume that our traces are not affected by the packet scheduler at the base station, since

an adequate number of radio resources per TTI is available to accommodate all the transmitting

UEs.

Our dataset includes two columns: the Identifier of the UE, and the timestamp of the packet

arrival (with TTI granularity). The classifier introduced in [28] is used to properly select the

traces of the apps of interest. The collected dataset consists of 1500 sessions of different traffic

type. For the sake of comparison, we also generated Poisson traffic with mean packet arrival

rate of 0.2 p/TTI, and added them to the dataset.

B. Traffic Predictor

The traffic prediction can be formulated as a time series forecasting problem, where the packet

arrivals at each TTI are defined as the values of the time series. The dataset with size z for a

particular traffic type is represented by xt|z1, where xt indicates the packet arrival time during the

tth TTI. In this work we tailor a stacked LSTM neural network architecture [29] to predict the

next packet arrivals over a finite horizon. We choose LSTM since it has been proven in [29]–
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Figure 6: Proposed architecture for the packet arrival time prediction.

Table IV: Training hyperparameters

Initial learning rate 0.001
Number of epochs 100
Number of LSTM hidden states 64
Number of LSTM hidden layers 5
Number of feed-forward hidden layers 1
Optimization algorithm Adam
Loss function MAPE

[31] to have lower prediction errors than other time series forecasting approaches, such as auto

regressive integrated moving average (ARIMA) [32].

In the proposed architecture, multiple LSTM units are concatenated to form one layer of the

LSTM network. Each unit computes the operations on single TTI and transfer the output to the

next LSTM unit. The number of concatenated units indicates the number of TTIs (p) that are

considered before making the prediction. The proposed architecture for the traffic predictor is

depicted in Fig. 6. The LSTM unit of each layer extracts a fixed number of features, which are

passed to the next layer. The depth of the network (e.g., the number of layers) is to increment

the accuracy of the prediction, which is done by the last fully connected layer.

As shown in Fig. 5 and 6, the proposed network observes xt|c−1
c−p and, then, predicts the traffic

in the upcoming w-cycle x̃t|c+tw−1
c by delaying the prediction for the duration of tw. Finally, the

output of the LSTM network (ht|c+tw−1
c ) is fed to a fully connected neural network that performs

the actual prediction. The last feed-forward layer applies the softmax activation function, which

is needed during the training phase to optimize the weights of the network neurons [30]. The

first layer size corresponds to p observed TTIs, while the last layer output has a length equal to

future horizon tw.

The traffic predictor is trained using the dataset in Section IV-A and specified for each of the
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considered traffic type. In particular, we have trained the LSTM for four traffic profiles: Youtube

videos, Spotify audios, Mixed Youtube/Spotify, and Poisson traffic. The implementation of the

traffic prediction algorithm was performed in Python, using Keras and Tensorflow, as backend.

The chosen hyperparameters are reported in Table IV. The number of hidden layers is fixed to 5,

which is the number giving a good trade-off between prediction accuracy and model complexity.

For the training part, we used the Adam’s algorithm [33] as optimizer and the Mean Absolute

Percentage Error (MAPE) as loss function. We define the MAPE as follows,

MAPE =
100%

tw

c+tw−1∑
t=c

|x̃t − xt|
xt

, (24)

where x̃t is the predicted packet arrival time on the tth TTI.

C. Delay Estimator

We categorize packet arrivals during past observation [c−p, c) and forecast horizon [c, c+tw)

into three disjoint sets: (1) already served packets with index of 1≤n≤i, (2) buffered packets

with index of i+1≤n≤j where j≤p, and (3) forecast packet arrivals for upcoming w-cycle with

index of j+1≤n≤k, where k−j≤tw. Delay estimator utilizes the served packets’ delay times

(Dn, for 1≤n≤i), and estimated delays of buffered and forecast packets (D̄n, for i+1≤n≤k),

to estimate the average buffering delay (D̂), as follows,

D̂ =

∑i
n=1 Dn +

∑k
n=i+1 D̄n

k
. (25)

Finally, the decision whether to send WI=1 or not is decided by comparing D̂ with Dmax. If

the estimated delay is larger than maximum delay bound, WI=1 is sent to the target UE.

V. NUMERICAL RESULTS

In this section, a set of numerical results are provided in order to evaluate the accuracy of the

traffic predictor used for the online optimization of the wake-up scheduler (WuSched-Online, in

Section V-A) and validate the functionality of the proposed wake-up schedulers (WuSched-Offline

and WuSched-Online) for different traffic patterns including Poisson traffic (in Section V-B) and

realistic traffic (in Section V-C).

As previously mentioned, four traffic types are considered: video streaming, audio streaming,

mixed audio/video streaming, and Poisson traffic. One of the distinguishing features of the

video and audio streaming is their low playback latency. The average latency to have high

quality playback of a track is 265 ms [34]. Accordingly, for audio streaming, we assume that the
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maximum delay bound (Dmax) is 265 ms. Similarly, we assume that the maximum delay bounds

for video streaming, mixed flow and Poisson traffic are 40 ms, 40 ms, and 30 ms, respectively.

Furthermore, for the numerical results, the UE power consumption model similar to [5], [8],

[22], [25] is deployed, for which PWwrx=57 mW, PWon=850 mW, PWoff=16 mW, tsu=15 ms,

and tpd=10 ms. Regarding the WuS parameters, we assume ton=3/14 ms and ti=1 ms [5].

Three different sets of performance results, in terms of power consumption and delay, are

presented. Namely, (1) wake-up scheme without scheduler (‘WuS’) that is considered as a

benchmark scheme, (2) offline optimization of the wake-up scheduler (‘WuSched-Offline’), and

(3) online optimization of the wake-up scheduler (‘WuSched-Online’). Furthermore, to verify

the performance of the WuSched-Offline under Poisson traffic model, both the results obtained

from mathematical analysis (‘ana. WuSched-Offline’) given in Theorem 1 and simulation results

(‘sim. WuSched-Offline’) are provided in Section V-B.

According to Theorem 1 and (23), it is necessary for the WuSched-Offline to know the packet

arrival rate a priori in order to calculate the optimal buffer size threshold. Therefore, in this

work we assume that packet arrival rate is estimated based on an exponential moving average,

as proposed in [35]. Authors in [35] introduce an approach to estimate the packet arrival rate,

and they show that their method converges to the actual packet arrival rate under a wide range

of traffic types.

A. Prediction Accuracy

In this section, we seek to evaluate the accuracy of predictions of the proposed traffic predictor

as a function of the number of previous observations (p), the length of the horizon (tw), and the

type of applications generating the traffic. For that, we use the MAPE in (24) to quantify the

accuracy of traffic prediction.

The impact of tw and p on the prediction errors is illustrated in Fig. 7. For shorter w-cycles,

the predictions follow the actual values closely, whereas for larger w-cycles, the prediction error

is bigger: longer forecast horizons (tw) decrease the accuracy of the predictor, as expected.

Furthermore, as it can be observed, the MAPE reduces with a larger number of observations

(p) for all four traffic types. Also, the accuracy decreases (i.e., MAPE increases) based on the

different traffic type. The accuracy rate is smaller for Poisson packet arrivals than for video and

audio traffics, due to its simpler traffic pattern. For Poisson traffic, the MAPE increases around
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Figure 7: MAPE as function of number of past observations p and forecast horizon tw for different traffic types.
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Figure 8: Power consumption of the WuSched-Online as function of number of past observations p and forecast horizon tw
for different traffic types, while maintaining the corresponding delay requirements of each traffic (k = 45 packets).

15% when tw increases from 10 to 30 TTIs for given p = 20 TTIs; however, for other traffics

the accuracy reduction is high and MAPE increases around 50% for the same tw change.

As shown in Fig. 7, from prediction accuracy point of view, it is desirable to reduce tw and

enlarge p. However, in terms of power consumption, such a reduction of the w-cycle would

contribute to a higher energy consumption due to frequent checking of wake-up signaling.

Additionally, a higher number of past observations p involves a longer memory length of the

LSTM network and a large amount of information that must be stored for a precise traffic

prediction. As a result, the floating point operations per second (FLOPS) of the LSTM network

increases. This complexity overhead can become very high, especially if the number of users

per cell increases.

Note that different parameters of the traffic predictor can be configured in such a way that they

provide adequate precision for the WuSched-Online, which is measured in terms of the estimated

delay over a certain number of packets k (i.e., D̂ in (25)). In particular, the impact of traffic

prediction errors on the estimated delay depends on p, k and tw. To ensure efficient usage of the

forecast horizon and, at the same time, limit the long-term differences in the quality-of-service

to an acceptable level, k should be set longer than tw for the upcoming w-cycle. At the same

time, k should be sufficiently short so that prediction errors are not strongly noticed by a user.

In this work, we set k to 45 packets.
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From (25), it can be inferred that the estimated delay has lower sensitivity with respect to

prediction accuracy. To illustrate this, we evaluate the impact of the prediction errors on the

actual WuSched-Online performance. Fig. 8 depicts the power consumption of the WuSched-

Online as a function of p and tw, for each traffic type, considering the associated maximum

delay bounds. It can be observed that configuring p and tw to 20 and 15 TTIs, respectively,

can achieve reasonable power saving. Indeed, further reducing tw and/or further increasing p

beyond such values, reduces the power consumption slightly. Accordingly, for the rest of paper,

we assume k=45 packets, tw=15 TTIs, p=20 TTIs.

B. Performance Evaluation: Poisson Packet Arrivals

In this section, we investigate the performance of the three methods (WuSched-Online, WuSched-

Offline, and WuS) in terms of average buffering delay and average power consumption when

traffic follows a Poisson pattern, and packet arrival rate (λ) is increased from 0 to 1 p/TTI.

For this purpose, Fig. 9 and 10 show the average delay and power consumption of proposed

mechanisms under two different delay bounds of 23 ms and 30 ms, respectively.

Fig. 9 (a) depicts the average packet delay experienced by the WRx-enabled UE when packet

arrival rates vary. As it can be observed, the average delay for WuS is about Dmax = 23 ms for

lower arrival rates. Note that, in case of WuS, the average delay is dependent on start-up period

and w-cycle. For the WuSched-Offline, the experienced delay follows closely the maximum

delay bound for wider range of packet arrival rates, and is slightly shorter than the maximum

tolerable delay. This is because of selecting the greatest integer less than or equal to the optimal

buffer size threshold of the optimization problem. For the WuSched-Online, the actual average

delay is slightly higher than the maximum delay bound. The main reason for such negligible

excess delay is the unavoidable errors in the traffic predictions, whose impact depends on the

w-cycle. In practice, to compensate for such small excess delay, the delay bound can be set

slightly smaller than the actual average delay requirement. Finally, for larger arrival rates, all

three methods’ delays reduce sharply. This is because of the inactivity timer, which causes the

UE to remain on active state most of the time, due to high arrival rates, and therefore the overall

delay reduces to the packet processing delay.

Fig. 9 (b) compares the average power consumption of the three methods under Poisson

arrivals. As it can be seen, the simulated results of the WuSched-Offline closely follow the

analytical results. Interestingly, one may observe that that the optimal buffer size threshold
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Figure 9: (a) Average buffering delay and (b) power consumption of WuS, WuSched-Offline and WuSched-Online, as function
of packet arrival rate for Dmax = 23 ms.

increases when increasing λ, as shown in Fig. 4. Based on dPc
dγ

< 0, it is expected that the average

power consumption would decrease when increasing λ, however Fig. 9 (b) contradicts it. This

can be justified by the fact that at same time that γ∗ increases, λ also increases, which increases

the power consumption due to frequent packet processing, and it is a dominant contributor to

the mean power consumption than the power reduction due to increasing γ. Additionally, there

are some sharp reductions on the power consumption for lower packet arrival rates, caused

by increasing γ with one unit. Furthermore, WuS and WuSched-Offline yield similar power

consumption for lower packet arrivals, however, it is clear that WuSched-Offline consumes less

power than WuSched-Online and WuS for larger packet arrival rates. This shows that there is

need to reconfigure and optimize WuS for different packet arrival rates. Also, the WuSched-

Online outperforms WuS for higher packet arrival rates. Finally, for high packet arrival rates, all

three methods approach to a fully modem ON scenario with power consumption of 850 mW.

Similar to Fig. 9, Fig. 10 is drawn to show the buffering delay and average power consumption

of the proposed methods under 30 ms delays. As it can be observed in Fig. 10 (a), the average

delay for WuS is much lower than for the Dmax = 30 ms case. However, the proposed wake-up

schedulers behave consistently, and adapt themselves to new delay requirement, similar to Fig 9

(a). Furthermore, Fig. 10 (b) compares the average power consumption of the three methods. It

is clear that WuSched-Offline consumes less power than WuSched-Online and WuS. Also, the

WuSched-Online outperforms WuS.
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Figure 10: (a) Average buffering delay and (b) power consumption of WuS, WuSched-Offline and WuSched-Online, as

function of packet arrival rate for Dmax = 30 ms.

C. Performance Evaluation: Realistic Traffic

In this section, the average power consumption and the buffering delay of the three meth-

ods (WuSched-Online, WuSched-Offline, and WuS) are evaluated for different realistic traffic

patterns.

Fig. 11 shows the empirical cumulative distribution function (CDF) of packet delay for the

four different traffic types. Generally, the video streaming’s session is much longer than that of

the audio traffic, and packets arrive burstly (implying high self-similarity). As it can be observed

in video results of the WuSched-Online, a large number of packets are served with near to zero

delay, and the reason is due to the consecutive packet arrivals that are served while the inactivity

timer is triggered. At the same time, a large number of packets are served with delays larger than

the maximum delay budget of video (40 ms), and this comes from the fact that the WuSched-

Online is a greedy method and waits until the average buffering delay approaches to Dmax. As

compared to the WuSched-Online, WuSched-Offline achieves similar average buffering delay

(sketched with dashed vertical lines), however it has packets with longer delays (e.g., for video,

there are packets with delays over 65 ms). Furthermore, WuS has a lower and consistent delay

regardless of the traffic types. However, this comes at cost of an extra energy consumption (as

it will be shown in Table V).

For mixed traffic flow (aggregation of video and audio traffics), the average delays are similar

to video traffic rather than to audio traffic. The reason is that the delay bound plays a pivotal role

in the operation of wake-up scheme, which is the same for both traffics. The small difference

between mixed and video traffic comes from the inaccuracy of the traffic predictor. Additionally,

the WuSched-Offline satisfies the delay requirements by optimizing the buffer size threshold

based on estimated packet arrival rate and delay bound. As shown in Fig. 11, the average delays
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Figure 11: The CDF graphs of buffering delay of packets for all three methods under different traffic types. The dashed lines
and corresponding numbers represent average delays caused by the particular method.

of the WuSched-Online for different traffic types are slightly higher than Dmax, which is stemmed

from prediction inaccuracy. Therefore, in order to satisfy the delay requirements, Dmax for the

WuSched-Online could be set slightly lower than the actual delay requirements.

To complete the study, Table V shows the average delay and the average power consumption

in third and fourth columns, respectively. It is clear that the average power consumption of WuS

for all traffic types is higher than that of the WuSched-Online; however, it achieves a much

lower buffering delay. Furthermore, the WuSched-Offline only outperforms the WuSched-Online

for the case of Poisson traffic, and for rest of realistic types the WuSched-Online outperforms

the WuSched-Offline. To illustrate the benefits of the wake-up schedulers better, we define the

wasted energy (Ew) as the ratio (in percentage) of the energy that the UE consumes for transitory

states plus inactivity timer over the overall energy consumption of the UE. Note that the rest

of energy is consumed for processing the packets. The wasted energy Ew is shown in the fifth

column of Table V. As it can be observed, the gain of the WuSched-Online is coming from

having less amount of wasted energy, owing to the use of an intelligently and greedily strategy

so that packets are served mainly in a consecutive manner without the need for frequent start

ups and power downs. For the case of Poisson arrivals, both wake-up schedulers have similar

CDF shape, with a small difference that is stemmed from prediction errors. Moreover, it can be

observed that audio streaming requires lower power consumption than the rest of traffic types,

due to the small packet arrivals per given time period. Furthermore, due to the fact that packets

in video streaming and mixed traffic flow have much higher self-similarity characteristics, the

wasted energy is slightly lower than that of other traffics.

The computational complexity of the WuSched-Offline can be less than that of the WuSched-

Online due to not using the predictive framework, which requires additional processing. However,

the computational complexity for a cell can be most likely kept feasible even for larger UE pop-
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Table V: Average delay, power consumption and the wasted energy for different methods and traffic types.
Method Traffic D [ms] Pc [mW] Ew [%]

WuS

Poisson 23 600 36
Video 21 625 44
Audio 22 405 48
Mixed 23 655 16

WuSched-Offline

Poisson 29 399 7
Video 41 450 22
Audio 265 335 37
Mixed 42 606 10

WuSched-Online

Poisson 31 450 15
Video 43 395 12
Audio 269 290 26
Mixed 42 590 7

ulations, especially in applications such as machine-type-communication, where group-specific

wake-up signaling could be utilized – instead of UE-specific, which further reduces the signaling

overhead. Those users that may have similar traffic type can be grouped and network can utilize

the same wake-up sequences and same predictive entities. Overall, the computing capabilities

in the base-stations and other network entities are continuously growing, hence we believe that

executing the predictive entity is feasible when the networks evolve.

VI. CONCLUSIONS

In this work, the concept of wake-up scheduling and two optimizations (offline and online) of

its parameters are proposed. The offline optimization of the wake-up scheduler is analyzed mathe-

matically for Poisson packet arrivals. On the other hand, the feasibility of the online optimization

of the wake-up scheduler based on user traffic prediction has been investigated. For this purpose,

a traffic predictor which leverages on LSTM networks is also proposed. A detailed and extensive

analysis comparing the power consumption and buffering delay of both wake-up schedulers was

carried out, under different traffic types and various design parameters. Both wake-up schedulers

were shown to facilitate a lower energy consumption compared to the wake-up scheme without

scheduler. Moreover, the online optimization of the wake-up scheduler outperforms the offline

one for realistic traffic types. These promising results motivate jointly considering user traffic

prediction and wake-up scheduler in order to reduce the energy consumption of users under

different traffic conditions.

Based on the numerical results provided in this paper, our view regarding the wake-up

scheduling is that there is no ’One-Size-Fits-All Solution’, unless the UE is well-defined and

narrowed to a specific traffic type. Further interesting research areas include extending the

proposed framework to autonomously combine and utilize different wake-up schedulers and
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power saving mechanisms together, and selecting the method that better fits for particular

circumstances. While FIFO was considered in this work which does not discriminate between

different traffic QoS requirements, our future work will consider the weighted fair queuing for

wake-up scheduling in order to satisfy the diverse QoS requirements of different services.

APPENDIX A

In this section, we prove that if T has an exponential distribution with mean 1/λ, then T ′ = T − t has the

same distribution as T for t > 0. Due to fact that T has an exponential distribution, it has memory-less property

as follows (s ≥ 0),

Pr[T > s+ t|T > t] = Pr[T > s] = e−λs. (26)

Furthermore, by assuming T ′ = T − t, and based on the above equation, we can write,

Pr[T ′ > s|T ′ > 0] =
1− FT ′(s)
Pr[T ′ > 0]

= e−λs, (27)

where FT ′(s) is the CDF of T ′. Additionally, by expanding (27), we can obtain,

FT ′(s) = 1− Pr[T ′ > 0]e−λs. (28)

Since s is assumed to be non-negative, therefore, FT ′(0) = 0, and based on (28), we can conclude that Pr[T ′ > 0] =

1. As a result, we can can express that T ′ has an identical exponential distribution with T .

APPENDIX B

By replacing t with D + 1 and using the proof explained in Appendix A, we can state that T −D − 1 has an

exponential distribution that is the same as that of T , and hence,

E[(T −D − 1)|(D + 1 < T ≤ D + 1 + ti)] = E[T |(T ≤ ti)]. (29)

Furthermore, based on the law of total expectation, for any exponentially distributed random variable we can write,

E[T |(T ≤ ti)] =
E[T ]− Pr[T > ti]E[T |(T > ti)]

Pr[T ≤ ti]
=

1/λ− e−λti(1/λ+ ti)

1− e−λti
=

1

λ
− tie

−λti

1− e−λti
. (30)

Then, based on (29) and (30),

E[(T −D)|n ∈ X2] = E[T |(T ≤ ti)] + 1 =
1

λ
− tie

−λti

1− e−λti
+ 1. (31)

APPENDIX C

Similarly to the derivation of E[(T−D)|n ∈ X2] in Appendix B, by utilizing Appendix A, replacing t = D+1+ti,

and assuming n ∈ X3 or equivalently T > D + 1 + ti, we can write,

E[(T −D − 1− ti)|(T > D + 1 + ti)] = E[T ], (32)

so that,

E[(T −D)|n ∈ X3] = E[T ] + 1 + ti =
1

λ
+ 1 + ti. (33)
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APPENDIX D

The first packet that arrives in each scheduling cycle has to wait for the arrival of other γ − 1 packets plus the

time period until the end of the w-cycle (referred to as tr, as shown in Fig. 2) as well as WRx’s on time (ton)

and the start-up period (tsu). Since Poisson arrivals are independently and uniformly distributed on any interval

of time, we can assume that the arrival instant of the γ-th packet is uniformly distributed along the last w-cycle,

which can be justified due to the relatively short length of tw. Hence, an average extra delay of tw/2 is introduced.

Consequently, the mean transmission time of the first packet is delayed as follows (which is equivalent to the

average holding time of the dormant period),

E[Ld] =
γ

λ
+ C0, (34)

where C0 is a constant that can be obtained as follows,

C0 = − 1

λ
+
tw
2

+ ton + tsu. (35)

APPENDIX E

By averaging both sides of (1), and assuming a stationary system, we can obtain,

E[W ] = E[T ] =
1

λ
. (36)

APPENDIX F

In this section, we prove that E[T 2|(T > ti)] = t2i +2ti/λ+2/λ2. By using the result in Appendix A, the PDF

of conditional exponential distribution T |(T > ti) is the same as T with time-shift ti, i.e., λe−λ(t−ti). Therefore,

the expected value of T 2 can be obtained as follows,

E[T 2|(T > ti)] =

∫ +∞

ti

t2λe−λ(t−ti)dt = t2i + 2ti/λ+ 2/λ2. (37)

APPENDIX G

Due to the independence of Dn and Tn for n ∈ XC
d ∪{Nd}, the covariance of D and T is zero for those packets

arriving during the active period (see second row of (41)). Similarly, if γ = 1, the covariance of D and T is zero

for all values of n, as written in the second row of (41). However, it is obvious that Dn for the dormant period

(except the last packet in the dormant period) depends on the following packet arrivals until the end of the dormant

period (provided that γ is greater than one),

Dn = Tn + Tn+1...+ TNd−1 + tr + ton + tsu + n− 1, (38)

for all n ∈ Xd − {Nd}.

In order to find Cov[D,T ], we follow a similar approach as the one described in [26] for GI/G/1 queuing system.

According to the law of total covariance, the covarinace relation between any three random variables (i.e., n, D,

T ) can be written as follows,

Cov[D,T ] = E
[
Cov[D,T |n]

]
− Cov

[
E[D|n],E[T |n]

]
. (39)
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The above equation for the exponentially distributed T can be simplified to the following,

Cov[D,T ] = E
[
Cov[D,T |n]

]
− Cov

[
E[D|n], 1

λ

]
= E

[
Cov[D,T |n]

]
. (40)

Furthermore,

Cov[D,T |n] =


Var[T ] =

1

λ2
, for n ∈ Xd − {Nd} and γ ≥ 2,

0, . for n ∈ XC
d ∪ {Nd} or γ = 1.

(41)

Proof. By utilizing (38), the additive law of covariance, and also due to the independence of different inter-arrival

times for n ∈ Xd − {Nd}, then,

Cov[D,T |n] = Cov[Tn, Tn] + · · ·+Cov[TNd , Tn] + Cov[n− 1, Tn] = Cov[Tn, Tn] = Var[T ]. (42)

Based on (40) and (41), by averaging Cov[D,T |n] over the N packets of the scheduling cycle, we can obtain

the covariance of D and T ,

Cov[D,T ] = E
[
Cov[D,T |n ∈ (Xd − {Nd})]

]
Pr[n ∈ (Xd − {Nd})]+

E
[
Cov[D,A|n ∈ (XC

d ∪ {Nd})]
]
Pr[n ∈ (XC

d ∪ {Nd})] =

E[Nd]− 1

E[N ]λ2
=

1− λ
λ2(1− λ+ e−λti)

(
1− 1

γ + λC0 + 1

)
.

(43)

APPENDIX H

The expected value of Hn (already expressed in (21)) can be calculated by using the law of total probability

formula, as follows (summarized in third column of Table II),

Hn =


0, for n ∈ X1.

−(Tn −Dn − 1)2, for n ∈ X2.

Ld
2 − (Tn −Dn − 1)2, for n ∈ X3.

(44)

Therefore,

E[H] = −Pr[n ∈ X2]E
[
(T −D − 1)2|n ∈ X2

]
+ Pr[n ∈ X3]E

[
Ld

2 − (T −D − 1)2|n ∈ X3

]
. (45)

We need to calculate E[(T −D − 1)2|n ∈ X2], E[(T −D − 1)2|n ∈ X3] and E[L2
d] before calculating E[H].

a) E[(T −D − 1)2|n ∈ X2] : Similar to (29), by utilizing Appendix A, we can obtain,

E[(T −D − 1)2|n ∈ X2] = E[T 2|T < ti]. (46)

Furthermore, similar to (30) by utilizing the law of total expectation, we can obtain,

E[T 2|(T ≤ ti)] =
E[T 2]− Pr[T > ti]E[T

2|(T > ti)]

Pr[T ≤ ti]
=

2/λ2 − e−λti(t2i + 2ti/λ+ 2/λ2)

1− e−λti
. (47)

where E[T 2|(T > ti)] = t2i + 2ti/λ+ 2/λ2, and its proof is included in Appendix F.

b) E[(T −D − 1)2|n ∈ X3] : Similar to (33), thanks to the memory-less property of Poisson distribution, we

can obtain,

E[(T −D − 1− ti)2|n ∈ X3] = E[T 2] =
2

λ2
. (48)
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Furthermore, by utilizing (33) and (48), we get,

E[(T −D − 1)2|n ∈ X3] = E[(T −D − 1− ti)2|n ∈ X3]+

2tiE[(T −D)|n ∈ X3]− t2i − 2ti = t2i + 2ti/λ+ 2/λ2.

(49)

c) E[L2
d]: We can calculate E[L2

d], based on (34) and (35) as follows,

E[L2
d] = Var[Ld] + E[Ld]

2 =
γ − 1

λ2
+
t2w
12

+ (
γ

λ
+ C0)

2, (50)

where Var[tr] =
t2w
12 is the variance of uniformly distributed tr.

Then, by substituting (4), (5), (46), (49) and (50) into (45) while using basic sums and multiplications, we finally

obtain,

E[H] = − (1− λ)(eλti − 1)

γ + eλti + C0λ

[
2/λ2

1− e−λti

]
+

1− λ
γ + eλti + C0λ

[
γ − 1

λ2
+
t2w
12

+ (
γ

λ
+ C0)

2

]
. (51)

APPENDIX I

In this section, we prove that dD(γ)
dγ > 0 for γ ≥ 1. For this purpose, the derivative of (23) with respect to γ is

calculated as follows,
dD(γ)

dγ
=
eλti

λ
z1(γ) + z2(γ) + z3(γ), (52)

where,

z1(γ) =
−1

((1− λ)eλti + 1)(γ + λC0 + 1)2
+

3/2

(γ + eλti + C0λ)2
, (53)

z2(γ) =
C0λ+ 1

λ(γ + eλti + C0λ)2
, (54)

z3(γ) =
γ2

2λ + (γλ )(e
λti + C0λ) + C0(e

λti + C0λ)− λC2
0

2 −
λt2w
24

(γ + eλti + C0λ)2
. (55)

z1(γ) is positive because it can be shown that 3
2 ((1− λ)e

λti + 1)(γ + λC0 + 1)2 ≥ (γ + eλti + C0λ)
2. z2(γ) is

always positive, because according to (35), C0λ + 1 > 0 is met. z3(γ) is always positive, because its numerator

(refer to it as Nz3(γ)) is an increasing function with respect to γ, and Nz3(1) ≥ 0 is met for all values of the

parameters, so that we can conclude that z3(γ) is always positive for γ ≥ 1. Since z1(γ), z3(γ) and z3(γ) are

positive, then dD(γ)
dγ > 0 is demonstrated.
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