

Elementary Examination of NeutroAlgebras and AntiAlgebras viz-a-viz the Classical Number Systems

¹A.A.A. Agboola, ² M.A. Ibrahim and ³ E.O. Adeleke ^{1,2,3}Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria. agboolaaaa@funaab.edu.ng¹, muritalaibrahim40@gmail.com², yemi376@yahoo.com³.

Abstract

The objective of this paper is to examine NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems.

Keywords: NeutroAlgebra, AntiAlgebra, NeutroAlgebraic Structure, AntiAlgebraic Structure.

1 Introduction

The notions of NeutroAlgebra and AntiAlgebra were recently introduced by Florentin Smarandache.¹ Smarandache in² revisited the notions of NeutroAlgebra and AntiAlgebra and in³ he studied Partial Algebra, Universal Algebra, Effect Algebra and Boole's Partial Algebra and showed that NeutroAlgebra is a generalization of Partial Algebra. In the present Short Communication, we are going to examine NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems. For more details about NeutroAlgebras, AntiAlgebras, NeutroAlgebra Structures and AntiAlgebraic Structures, the readers should see.^{1–3}

Let U be a universe of discourse and let X be a nonempty subset of U. Suppose that A is an item (concept, attribute, idea, proposition, theory, algebra, structure etc.) defined on the set X. By neutrosophication approach, X can be split into three regions namely: $\langle A \rangle$ the region formed by the sets of all elements where $\langle A \rangle$ is true with the degree of truth (T), $\langle antiA \rangle$ the region formed by the sets of all elements where $\langle A \rangle$ is false with the degree of falsity (F) and $\langle neutA \rangle$ the region formed by the sets of all elements where $\langle A \rangle$ is indeterminate (neither true nor false) with the degree of indeterminacy (I). It should be noted that depending on the application, $\langle A \rangle$, $\langle antiA \rangle$ and $\langle neutA \rangle$ may or may not be disjoint but they are exhaustive that is; their union is X. If A represents Function, Operation, Axiom, Algebra etc, then we can have the corresponding triplets $\langle Function, NeutroFunction, AntiFunction \rangle$, $\langle Operation, NeutroOperation, AntiOperation \rangle$, $\langle Axiom, NeutroAxiom,$

AntiAxiom > and < Algebra, NeutroAlgebra, AntiAlgebra > etc.

Definition 1.1.¹

- (i) A NeutroAlgebra X is an algebra which has at least one NeutroOperation or one NeutroAxiom that is; axiom that is true for some elements, indeterminate for other elements, and, false for other elements.
- (ii) An AntiAlgebra X is an algebra endowed with a law of composition such that the law is false for all the elements of X.

Definition 1.2. ¹ Let X and Y be nonempty subsets of a universe of discourse U and let $f : X \to Y$ be a function. Let $x \in X$ be an element. We define the following with respect to f(x) the image of x:

- (i) Inner-defined or Well-defined: This corresponds to $f(x) \in Y$ (True)(T). In this case, f is called a Total Inner-Function which corresponds to the Classical Function.
- (ii) Outer-defined: This corresponds to $f(x) \in U Y$ (Falsehood) (F). In this case, f is called a Total Outer-Function or AntiFunction.
- (iii) Indeterminacy: This corresponds to f(x) = indeterminacy (Indeterminate) (I); that is, the value f(x) does exist, but we do not know it exactly. In this case, f is called a Total Indeterminate Function.

Corresponding Author: A.A.A. Agboola aaaola2003@yahoo.com

2 Subject Matter

In what follows, we will consider the classical number systems $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ of natural, integer, rational, real and complex numbers respectively and noting that $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$. Let $+, -, \times, \div$ be the usual binary operations of addition, subtraction, multiplication and division of numbers respectively. Using elementary approach, we will examine whether or not the abstract systems $(\mathbb{N}, *), (\mathbb{Z}, *), (\mathbb{Q}, *), (\mathbb{R}, *), (\mathbb{C}, *)$ are NeutroAlgebras or and AntiAlgebras where $* = +, -, \times, \div$.

(1) Let $X = \mathbb{N}$.

- (i) It is clear that (X, +) and (X, \times) are neither NeutroAlgebras nor AntiAlgebras.
- (ii) For some $x, y \in X$, $x y \in X$ (True) (Inner) or $x y \notin X$ (False) (Outer). However, for all $x, y \in X$ with $x \leq y, x - y \notin X$ (False) (Outer) and for all $x, y \in X$ with x > y, we have $x - y \in X$ (True) (Inner). This shows that - is a NeutroOperation over X and $\therefore (X, -)$ is a NeutroGroupoid. The operation - is not commutative for all $x \in X$. This shows that - is AntiCommutative over X. We claim that - is NeuroAssociative over X.

Proof. For x > y, z = 0, we have x - (y - z) = (x - y) - z, or x - y + 0 = x - y - 0 > 0(degree of Truth) (T). However, for $x > y, z \neq 0$, we have $x - (y - z) \neq (x - y) - z$ (degree of Falsehood) (F). For x < y, c = 0, we have x - y + 0 = x - y - 0 < 0 (degree of Indeterminacy) (I). This shows that - is NeutroAssociative and $\therefore (X, -)$ is a NeutroSemigroup. \Box

(iii) For all $x \in X$, $x \div 1 \in X$ (True) (Inner). For some $x, y \in X$, $x \div y \notin X$ (False) (Outer). However, if x is a multiple of y including 1, then $x \div y \in X$ (True) (Inner). This shows that \div is a NeutroOperation and therefore, (X, \div) is a NeutroGroupoid. It can be shown that \div is NeutroAssociative over X and therefore, (X, \div) is a NeutroSemigroup.

The equation ax = b is not solvable for some $a, b \in X$. However, if b is a multiple of a including 1, then the equation is solvable and the solution is called a NeutroSolution. Also, the equation $acx^2 + bd = (ad + bc)x$ is not solvable for some $a, b, c, d \in X$. However, if b is a multiple of a including 1 and c is a multiple of d including 1, the equation is solvable and the solutions are called NeutroSolutions.

Let \circ be a binary operation defined for all $x, y \in X$ by

$$x \circ y = \begin{cases} 0 & \text{if } x = y \\ -\alpha & \text{if } x < y \\ -\beta & \text{if } x > y \end{cases}$$

where $\alpha, \beta \in \mathbb{N}$ such that $\alpha \leq \beta$. It is clear that \circ is an AntiOperation on X and $\therefore (X, \circ)$ is an AntiAlgebra.

- (2) Let $X = \mathbb{Z}$.
 - (i) (X, +) and (X, \times) are neither NeutroAlgebras nor AntiAlgebras.
 - (ii) For all $x, y, z \in X$ such that x, y = 0, 1, we have $x y = y x = 0 \in X$ (True), otherwise for other elements, the result is False (Outer) so that - is NeutroCommutative over X. However, if x, y, z = 0, then $x - (y - z) = (x - y) - z = 0 \in X$ (True), otherwise for other elements, the result is False and consequently, - is NeutroAssociative over X and hence (X, -) is a NeutroSemigroup.
 - (iii) For all $x \in X$, $x \div \pm 1 \in X$ (True) (Inner). For all $x \in X$, $x \div 0 = indeterminate$ (Indeterminacy). For some $x, y \in X$, $x \div y \notin X$ (False) (Outer) however, if x is a multiple of y including ± 1 , then $x \div y \in X$ (True) (Inner). This shows that \div is a NeutroOperation over X and $\therefore (X, \div)$ is a NeutroGroupoid. It can also be shown that (X, \div) is a NeutroSemigroup.

The equation ax = b is not solvable for some $a, b \in X$. If a = 0, the solution is indeterminate (Indeterminacy). However, if b is a multiple of a including ± 1 , then the equation is solvable and the solution is called a NeutroSolution. Also, the equation $acx^2 + (ad - bc)x - bd = 0$ is not solvable for some $a, b, c, d \in X$. However, if b is a multiple of a including ± 1 and c is a multiple of d including ± 1 , the equation is solvable and the solutions are called NeutroSolutions.

For all $x, y \in X$, let \circ be a binary operation defined by $x \circ y = \ln(xy)$. If x, y = 0, we have $x \circ y =$ indeterminate (Indeterminacy) (I). If x > 0, y < 0, we have $x \circ y =$ indeterminate (Indeterminacy) (I). If x > 0, y > 0, we have $x \circ y =$ False (F) except when x = y = 1. These show that \circ is a NeutroOperation over X and $\therefore (X \circ)$ is a NeutroAlgebra.

Let \circ be a binary operation defined for all $x, y \in X$ by

$$x \circ y = \left\{ \begin{array}{rl} -1/2 & \text{if} & x < y \\ 1/2 & \text{if} & x > y \end{array} \right.$$

It is clear that \circ is an AntiOperation on X and $\therefore (X, \circ)$ is an AntiAlgebra.

(3) Let
$$X = \mathbb{Q}$$
.

- (i) (X, +) and (X, \times) are neither NeutroAlgbras nor AntiAlgebras.
- (ii) For all $x, y, z \in X$ such that x, y, z = 1, we have $x y = y x = 0 \in X$ (True), otherwise for other elements, the result is False so that – is NeuroCommutative over X. Also, if x, y, z = 0, then $x - (y - z) = (x - y) - z = 0 \in X$ (True), otherwise for other elements, the result is False and consequently, – is NeutroAssociative over X and (X, -) is a NeutroSemigroup.
- (iii) For all $0 \neq x, y \in X$, $x \div y \in X$ (True) (Inner) but for all $x \in X$, $x \div 0$ = indeterminate (Indeterminacy). $\therefore (X, \div)$ is a NeutroAlgebra which we call a NeutroField.

For all $x, y \in X$, let \circ be a binary operation defined by $x \circ y = e^{x \div y}$. If x, y = 0, we have $x \circ y =$ indeterminate (Indeterminacy) (I). If x > 0, y = 0, we have $x \circ y =$ indeterminate (Indeterminacy) (I). If x > 0, y = 0, we have $x \circ y =$ indeterminate (Indeterminacy) (I). If x > 0, y > 0, we have $x \circ y =$ False (F). These show that \circ is a NeutroOperation over X and $\therefore (X \circ)$ is a NeutroAlgebra.

Let \circ be a binary operation defined for all $x, y \in X$ by

$$x \circ y = \left\{ \begin{array}{rl} -e & \text{if} & x \leq y \\ e & \text{if} & x \geq y \end{array} \right.$$

where e is the base of Naperian Logarithm. It is clear that \circ is an AntiOperation on X and $\therefore (X, \circ)$ is an AntiAlgebra.

- (4) Let $X = \mathbb{R}$.
 - (i) (X, +) and (X, \times) are neither NeutroAlgebras nor PartialAlgebras.
 - (ii) For all $x, y \in X$ such that $x, y = 0, \pm 1$, we have $x y = y x = 0 \in X$ (True), otherwise for other elements, the result is False so that is NeuroCommutative over X.
 - (iii) For all $0 \neq x, y \in X$, $x \div y \in X$ (True) (Inner) but for all $x \in X$, $x \div 0$ = indeterminate (Indeterminacy). It can be shown that \div is NeutroAssociative over X. Hence, (X, \div) is a NeutroSemigroup and therefore, it is a NeutroAlgebra which we call a NeutroField.

Let \circ be a binary operation defined for all $x, y \in X$ by

$$x \circ y = \begin{cases} -\sqrt{-1} & \text{if } x \le y \\ \sqrt{-1} & \text{if } x \ge y \end{cases}$$

It is clear that \circ is an AntiOperation on X and $\therefore (X, \circ)$ is an AntiAlgebra.

- (5) Let $X = \mathbb{C}$.
 - (i) (X, +) and (X, \times) are neither NeutroAlgebras nor AntilAlgebras.
 - (ii) For all $z, w \in X$ such that $z, w = 0, \pm i$, we have $z w = w z = 0 \in X$ (True), otherwise for other elements, the result is False so that is NeutroCommutative over X.
 - (iii) For all $0 \neq z, w \in X$, $z \div w \in X$ (True) (Inner) but for all $z \in X$, $z \div 0$ = indeterminate (Indeterminacy). Therefore, (X, \div) is a NeutroAlgebra which we call a NeutroField.

Let \circ be a binary operation defined for all $z, w \in X$ by

$$z \circ w = \begin{cases} i & \text{if} & |z| = |w| \\ j & \text{if} & |z| \le |w| \\ k & \text{if} & |z| \ge |w| \end{cases}$$

where ijk = -1. It is clear that \circ is an AntiOperation on X and $\therefore (X, \circ)$ is an AntiAlgebra.

Theorem 2.1. For all prime number $n \ge 2$, $(\mathbb{Z}_n, +, \times)$ is a NeutroAlgebra called a NeutroField.

Proof. Suppose that $n \ge 2$ is a prime number. Clearly, 1 is the multiplicative identity element in \mathbb{Z}_n . For all $0 \ne x \in \mathbb{Z}_n$, there exist a unique $y \in \mathbb{Z}_n$ such that $x \times y = 1$ (True) (T). However, for $0 = x \in \mathbb{Z}_n$, there does not exist any unique $y \in \mathbb{Z}_n$ such that $x \times y = 1$ (False) (F). This shows that (\mathbb{Z}_n, \times) is a NeutroGroup. Since $(\mathbb{Z}_n, +)$ is an abelian group, it follows that $(\mathbb{Z}_n, +, \times)$ is a NeutroDivisionRing called a NeutroField. \Box

3 Conclusion

We have in this paper examined NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ of natural, integer, rational, real and complex numbers respectively. In our future papers, we hope to study more algebraic properties of NeutroAlgebras and NeutroSubalgebras and NeutroMorphisms between them.

4 Appreciation

The authors are very grateful to all the anonymous reviewers for the useful comments and suggestions which we have found very useful in this work.

References

- Smarandache, F., Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures, in Advances of Standard and Nonstandard Neutrosophic Theories, Pons Publishing House Brussels, Belgium, Ch. 6, pp. 240-265, 2019.
- [2] Smarandache, F., Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited), Neutrosophic Sets and Systems, vol. 31, pp. 1-16, 2020. DOI: 10.5281/zenodo.3638232.
- [3] Smarandache, F., NeutroAlgebra is a Generalization of Partial Algebra, International Journal of Neutrosophic Science, vol. 2 (1), pp. 08-17, 2020.