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Abstract—In this paper, we address the issue of resource provi-
sioning as an enabler for end-to-end dynamic slicing in software
defined networking/network function virtualization (SDN/NFV)-
based fifth generation (5G) networks. The different slices’ tenants
(i.e. logical operators) are dynamically allocated isolated portions
of physical resource blocks (PRBs), baseband processing resources,
backhaul capacity as well as data forwarding elements (DFE) and
SDN controller connections. By invoking massive key performance
indicators (KPIs) datasets stemming from a live cellular network
endowed with traffic probes, we first introduce a low-complexity
slices’ traffics predictor based on a soft gated recurrent unit
(GRU). We then build—at each virtual network function—joint
multi-slice deep neural networks (DNNs) and train them to
estimate the required resources based on the traffic per slice,
while not violating two service level agreement (SLA), namely,
violation rate-based SLA and resource bounds-based SLA. This is
achieved by integrating dataset-dependent generalized non-convex
constraints into the DNN offline optimization tasks that are solved
via a non-zero sum two-player game strategy. In this respect,
we highlight the role of the underlying hyperparameters in the
trade-off between overprovisioning and slices’ isolation. Finally,
using reliability theory, we provide a closed-form analysis for the
lower bound of the so-called reliable convergence probability and
showcase the effect of the violation rate on it.

Index Terms—5G, deep neural networks, dynamic slicing, non-
convex optimization, reliability theory, SDN/NFV, SLA, violation
rate.

I. INTRODUCTION

NETWORK slicing is a key concept in 5G cellular systems.
It yields the ability to run fully or partly isolated logical

networks on the same physical network, offering thereby an
increased statistical multiplexing [1]. Each logical network–or
slice–is owned by e.g., an over-the-top (OTT) tenant (i.e., logi-
cal operator), and managed by the physical operator according
to an established SLA. Nonetheless, the full isolation of slices
at either the radio access or core network may have a high
cost in terms of efficiency. Therefore, network slicing should
be combined with solutions for dynamic orchestration of re-
sources, at least at the network edge [2], [3]. In this context, the
advent of the SDN/NFV paradigm is enabling the end-to-end
virtualization and programmability of network functions, and
paving the way to a flexible and dynamic resource allocation
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for the slices, which allows to exploit the available physical
resources in a more efficient way [4], [5]. In this regard,
machine learning (ML) techniques and in particular deep neural
networks (DNNs) are expected to be the cornerstone in the
automation of end-to-end resource provisioning. This includes
schemes for traffic prediction such as long short-term memories
(LSTMs) and gated recurrent units (GRUs) [6], to name a few.
It also encompasses standard DNNs to model and estimate
the required resources at each virtual network function (VNF)
such as physical resource blocks at a transmission/reception
point (TRP), radio resource connected (RRC) users’ licenses
at a virtual baseband processing unit (vBBU), enhanced radio
bearers (ERAB) and signaling connections at a virtual DFE
(vDFE) and virtual SDN controller (vSDNC), respectively.
Nonetheless, such features are still in their early stage, as the
resource management of current networks is mainly based on
tweaked thresholds and hysteresis. In addition, devising low-
complexity traffic prediction machine learning algorithms is an
open issue in the literature. On the other hand, a notion of SLA
is also required to properly convey network slices on top of
a physical network, since this guarantees both slices’ isolation
and quality of service. In this intent, while we notice that some
efforts have been deployed recently to assess the performance
of provisioning algorithms in terms of SLA violation [7], there
is no approach directly integrating the SLA constraints into the
optimization of the DNN-based provisioning algorithms, given
that this approach would enable to control the trade-off between
slices isolation and resource dynamic allocation.

A. Related Work

In [7] for instance, the authors point out that to realize the 5G
network slicing, two complementary technologies are needed:
(i) technical solutions that enable end-to-end network function
virtualization (NFV), and provide the flexibility necessary for
resource reallocation; and, (ii) data analytics that operate on
mobile traffic measurement data, automatically identify demand
patterns, and anticipate their future evolution. They then pro-
vide a convolutional neural network (CNN) to predict the traffic
demand per slice. In this regard, we notice that this CNN
strategy is of high complexity [8].
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Figure 1: The main building blocks of the proposed data-driven network slicing resource allocation under SLA.

In [9], the authors use Holt-Winters forecasting procedure
to analyze and predict future traffic requests associated to a
particular network slice. Such a system, however, is hard to
tune, scale and add exogenous variables [10].

Harnessing the exceptional feature extraction abilities of
deep learning, [11] proposes a spatio-temporal neural Network
(STN) architecture purposely designed for precise network-
wide mobile traffic forecasting. It also presents a mechanism
that fine-tunes the STN and enables its operation with only lim-
ited ground truth observations. The obtained traffic predictions,
however, are not exactly matching the measured data.

In [12], based on a live network dataset by Telecom Italia
[13], and adopting a service oriented network architecture with
virtual functions rather than nodes, the authors present two
machine learning approaches for control-plane traffic prediction
in 5G networks, namely deep neural networks and recurrent
neural networks (RNN), more specifically the so-called long
short-term memories (LSTMs). The authors directly apply the
standard LSTM without customizing it.

In an online setup, the authors in [14] have introduced a
slice scheduler that allows existence of slices with bandwidth-
based and resource-based reservations simultaneously, and
implemented its prototype on a WiMAX testbed. The presented
framework is intended only to rate optimization for slices’
scheduling and cannot learn from global key performance
indicators (KPIs) datasets to allocate various types of network
resources.

B. Contributions
In this paper, we assume a SDN/NFV mobile architecture

[15], wherein the traditional network components are smoothly
evolved to comply with the virtualization and softwarization
concepts. In this context, we investigate the following aspects
as summarized in Fig. 1:
• Relying on live network OTT datasets, we first aggregate

the OTTs traffics per slice. We then devise a custom low-

complexity gated recurrent unit (GRU), called soft GRU,
to predict the traffic for each slice.

• At each virtual function/interface of the SDN/NFV-based
network, we build and train a joint multi-slice DNN model
to estimate the resource1 provision based on the traffic
per slice. In this regard, we invoke live network key
performance indicators (KPIs) datasets involving end-to-
end metrics such as traffic volume per slice, downlink
(DL) physical resource blocks (PRBs), CPU load and RRC
connected users’ licenses at the virtual baseband units
(vBBUs), backhaul capacity, ERAB connections at the
virtual data forwarding elements (vDFEs), and signaling
connections at the virtual SDN controllers (vSDNs).

• Unlike existing online DNN optimization strategies, we
introduce a new dataset-based training approach where
the constrained DNN models are optimized for each
slice to respect two types of SLA, namely, violation
rate-based SLA and resource bound-based SLA. This
is achieved by imposing dataset-dependent custom non-
convex constraints to the DNN output and using a two-
player non-zero sum game strategy to solve the resulting
offline optimization task. In this intent, the SLA thresholds
act as hyperparameters that can be fine-tuned by the
infrastructure operator according to the SLAs with the
slices’ tenants. Note that we have adopted deep learning
since it enables automatic discovery of important features
from raw datasets, as well as yields generalized models,
which is suitable for heterogeneous resources allocation.

• Based on reliability theory, we provide a closed-form
analysis of what we call reliable convergence probability,
where both the respect of SLA and convergence rate of the
DNN models are jointly characterized, while highlighting
the underlying trade-offs.

1The term resource encompasses physical, computational and licensing
resources, depending on the corresponding network function.



C. Notations

We summarize the notations used throughout the paper in
Table I.

Table I: Notations

Notation Meaning
σ(·) Sigmoid function
π(·) Softplus function
xt,n GRU input data at time t for slice n
x̃t,n GRU candidate input at time t for slice n
ht,n GRU history signal at time t for slice n
zt GRU forget gate at time t
L Number of neural network layers
Nl Number of neurons at layer l
NB Batch size
`(·) Loss function
Wn Neural network weight for slice n
bn Neural network bias for slice n
sn Input features
rm,n,k Resource k at VNF m for slice n
αm,n,k Lower-bound of resource k at VNF m for slice n
βm,n,k Lower-bound of resource k at VNF m for slice n

ρm,n,k
Target SLA violation rate for resource k at VNF m

for slice n
λ(·) Lagrange multipliers
R Lagrange multiplier radius
L(·) Lagrangian with respect to (·)

II. NETWORK ARCHITECTURE AND DATASETS

As depicted in Fig. 2, we consider a fully SDN/NFV ar-
chitecture [15] wherein the baseband processing units run as
softwarized virtual entities called vBBUs on datacenters close
to the transmission/reception points (TRPs). On the other hand,
all conventional enhanced packet core (EPC) entities no longer
exist or are collapsed. Instead, the user plane packet gateways
(PGWs) are replaced by virtualized data forwarding entities
(vDFEs), while control plane serving gateway (SGW) and
mobility management entity (MME) are replaced by a set of
software applications implemented on top of a virtualized SDN
controller (vSDNC) as suggested by many scientific research
papers, e.g., [16], [17]. These applications could be newly
defined or simply decomposed from functionalities of conven-
tional EPC entities. For example, the MME and the SGW are
traditionally sharing similar functionalities such as connectivity
management, mobility management, while the MME and the
home subscriber server (HSS) are sharing similar functionalities
like authentication, attachment management. These function-
alities can be formed or merged together as unified control
elements or modules such as connectivity management (CM),
mobility management (MM), and authentication management
(AM). Note that the establishment of a slice consists on the
end-to-end creation of dedicated VNFs (e.g., vBBU, vSDNC...).

A. Network Configuration

The collected KPIs correspond to an LTE-advanced (LTE-A)
dense urban area, covered by 440 LTE-A eNodeBs (eNBs) and

Figure 2: SDN/NFV-based network architecture.

3200 cells, including 800 MHz, 1800 MHz and 2.6 GHz bands.
As the measurement data used in this work stems from an LTE-
A live network that is not supporting the SDN/NFV framework
yet, we summarize in Table II the necessary assumptions
we have made throughout this paper to be aligned with the
SDN/NFV architecture; in particular to aggregate the traffic at
the different datacenters. In this regard, the eNB and vBBU
traffics are the sum of the corresponding TRPs individual
traffics, while the vBBU datacenter traffic is the aggregation
of the related vBBUs. The vDFE and vSDNC traffics represent
the whole network traffic.

Table II: Network Configuration

Entity Quantity
TRP 3200
eNB 440

BBU datacenters 10 uniformly distributed, with ×100 CPU
resources compared to a single 4G eNodeB

DFE and SDN controller
datacenters 1

B. Datasets

The measured datasets are based on two network com-
ponents. First, thanks to their deep inspection capabilities,
dedicated probes—usually installed at the core network—are
collecting and analyzing the traffic per OTT at a granularity
of 1 hour for each TRP. The traffic is then aggregated at
eNB, vBBU datacenter and network levels for each OTT. Once
the slices are defined, the traffic of the underlying OTTs is
summed to yield the traffic per slice as depicted in Fig. 3.
Second, the key performance indicators are collected by the
operational support system (OSS) platform at TRP, eNB and
network levels. The KPIs have a granularity of 1 hour and
are formatted as detailed in Table III. Note that we have used
Huawei’s PRS tool to export the OSS KPIs (e.g., PRB usage,
CPU load...) and Netscout of Tektronix to get the probes OTT
KPIs.



Figure 3: Slices creation and traffic aggregation at TRP level. Each row corresponds to a TRP at a given hour.

Table III: Datasets Features

TRP Feature Description

OTT
Traffics
per TRP

Includes the hourly traffic for the top OTTs: Apple,
Facebook, Facebook Messages, Facebook Video,
Instagram, NetFlix, HTTPS, QUIC, Whatsapp, and
Youtube

CQI
Channel quality indicator reflecting the average
quality of the radio link of the TRP

MIMO
Full-Rank

Usage of MIMO full-rank spatial multiplexing in %

DLPRB
Number of occupied downlink physical resource
blocks

vBBU Feature Description
OTT

Traffics
per eNB

Aggregated OTT traffics per eNB

CPU Load CPU resource consumption in %

RRC
Connected

Users

Number of RRC users licenses consumed per eNB

Backhaul Feature Description
OTT

Traffics
per BBU

datacenter

Aggregated OTT traffics per BBU datacenter

Backhaul
capacity

Effective aggregated throughput per BBU datacenter

vDFE/vSDNC
Feature Description

OTT Network
Traffics

Aggregated OTT traffics over the network

ERAN
Connections

Aggregated ERAB connections over the network

Signaling
Connections

Aggregated signaling connections over the network

III. SOFT GRU FOR TRAFFIC PREDICTION

Let xt,n denote the traffic of slice n, (n = 1, . . . , N) at time
t (in hours), and obtained by aggregating the corresponding
OTTs’ individual traffics. For instance, we assume that at a
given VNF, eMBB slice’s traffic is obtained by summing up
the related hourly traffics of NetFlix, Youtube and Facebook
Video. To ensure a proactive resource provisioning, we first
need to predict the traffic volume in the next hour t + 1, i.e.,
ŷt,n. In this intent, we introduce a new low-complexity gated
recurrent unit (GRU) called soft GRU as depicted in Fig. 4.
In contrast to the standard GRU, the proposed architecture
involves only two gates, namely, an update gate that controls the
contribution of the previous state and the current gate that yields
the new input via a customized activation function π. While
the light GRU initially introduced in [18], and lately simplified
in [19], [20], relies on the simplification of the forget gate
zt or the batch normalization of the input data, the proposed
soft GRU optimizes the generation of the candidate input x̃t,n
by suppressing the history signal ht−1,n while introducing
the softplus activation function to stabilize the obtained result,
without changing the forget gate or preprocessing the dataset.
The main building blocks of the soft GRU are formulated as
follows:

ht,n = (1− zt)� ht−1,n + zt � x̃t,n (1a)

x̃t,n = π (Wxxt,n + bx) (1b)

zt = σ (Wzxt,n + Uzht−1,n + bz) (1c)

where π (x) = log (1 + ex) is the softplus function and σ is
the sigmoid function. Wx, Wz and Uz stand for the GRU
weights, while bx and bz represent the corresponding biases.
The GRU module is then followed by a dense neural network
layer that yields the final predicted traffic at the tth hour for
slice n, ŷt,n. To optimize the parameters of this customized
GRU over a training dataset of length T , we adopt the mean
squared error standard loss function wherein we introduce an
additional hyperparameter ε:



Figure 4: Soft GRU cell.

`GRU =
1

2T

T∑
t=1

‖εŷt,n − yt,n‖2. (2)

Indeed, The hyperparameter ε control the level of overpro-
visioning yield by the traffic prediction, and can be adjusted
according to the operator resource provisioning strategy. The
GRU training phase allows the determination of the optimal
value of ε for an exact traffic prediction.

IV. END-TO-END RESOURCE PROVISIONING UNDER SLA
CONSTRAINTS

In this section, we build deep learning models that, once
fed with the predicted slices’ traffics, enable to estimate the
end-to-end required resources for each slice. Moreover, these
models should—from the beginning—be trained in such a
way to guarantee the respect of some target key performance
indicators (KPIs) included in the slice’s SLA. In practice,
these (KPIs) turn out to be non-convex and result in a non-
convex constrained deep learning exercise. In this regard,
we consider for each slice n and virtual network function
m ∈ {TRP, vBBU, Backhaul, vDFE, vSDNC}, a set of
resources rm,n,k (k = 1, . . . ,K). Examples of resources are
the DL PRBs at TRP and the CPU load at the vBBU datacenter.
For notation simplicity and without loss of generality, we adopt
neural networks of similar depth L wherefore the input features,
weights and biases are denoted by sn, Wn and bn, respectively,
while `(·) and NB stand for the squared error loss function and
the batch size, respectively. In the sequel, we formulate the deep
learning-based resource provisioning problem under two types
of non-convex SLA constraints, and show how one can proceed
to solve the underlying optimization problems.

Note that each resource provisioning DNN model is unified
multi-slice, i.e., jointly trained using the N slices’ traffics and
can be used to estimate the individual resources for each slice.

This is achieved for a given slice n by keeping only the features
related to that slice, and setting those corresponding to the
remaining slices to zero.

A. Violation Rate-Based SLA

The advantage of this approach is that it overlooks the
individual respect of SLA, and directly enforce an upper bound
on the SLA violation rate, which is the common strategy
followed by telecom operators. In this case, the deep learning
training amounts to solving the optimization task expressed as,

min
1

NB

NB∑
i=1

`
(
r

(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
, (3a)

s.t.Wl,n ∈ RNl−1×Nl , l = 1, . . . , L+ 1, (3b)

bl,n ∈ RNl×1, l = 1, . . . , L+ 1, (3c)

1

NB

NB∑
i=1

1
(
r̂

(i)
m,n,k < αm,n,k

)
≤ ρm,n,k, (3d)

1

NB

NB∑
i=1

1
(
r̂

(i)
m,n,k > βm,n,k

)
≤ ρm,n,k, (3e)

where 1(·) stands for the indicator function, and the constraint
(3d) is imposing an upper bound on the SLA violation rate, i.e.,
the probability that the allocated resource r̂m,n,k is outside the
interval [αm,n,k, βm,n,k].

The loss function `(·) is a badly-behaving function of Wn

because of the deep neural network structure, resulting in
non-convex objective and constraint functions. In addition, the
violation rate constraint is a linear combination of indicators,
hence is not even subdifferentiable w.r.t. Wn. Fixing this
issue by replacing the constraints with differentiable surrogates
introduces a new difficulty: solutions to the resulting problem
will satisfy the surrogate constraints, rather than the actual ones.
To sidestep this blocking point, let us consider the functions Φ1

and Φ2 defined as,

Φ1(Wn) =
1

NB

NB∑
i=1

1
(
r̂

(i)
m,n,k < αm,n,k

)
− ρm,n,k, (4)

Φ2(Wn) =
1

NB

NB∑
i=1

1
(
r̂

(i)
m,n,k > βm,n,k

)
− ρm,n,k, (5)

and let Ψ1 and Ψ2 be sufficiently-smooth approximations of Φ
[21] verifying

Ψ1 (Wn) =
1

NB

NB∑
i=1

σ
(
α

(i)
m,n,k − r̂m,n,k

)
− ρm,n,k ≤ 0, (6)

Ψ2 (Wn) =
1

NB

NB∑
i=1

σ
(
r̂

(i)
m,n,k − βm,n,k

)
− ρm,n,k ≤ 0, (7)



where σ stands for the sigmoid function. The problem (3) can
then be solved by invoking the so-called proxy Lagrangian
framework [22]. This starts by forming two Lagrangians as
follows:

LWn =
1

NB

NB∑
i=1

`
(
r

(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
+ λ1Ψ1(Wn) + λ2Ψ2(Wn),

(8a)

Lλ = λ1Φ1 (Wn) + λ2Φ2 (Wn) , (8b)

where their optimization can be viewed as a non-zero-sum
two-player game in which the Wn-player wishes to minimize
LWn

, while the λ-player wishes to maximize Lλ. Intuitively,
the λ-player chooses how much to weigh the proxy constraint
function, but does so in such a way as to satisfy the original
constraint. By doing so, it reaches a nearly-optimal nearly-
feasible solution to the original constrained problem. Note
that λ ≤ R, where R represents the maximum radius of
Lagrange multipliers; introduced as a hyperparameter con-
trolling the dependency to the constraints. In practice, we
implement the deep learning objective function, the constraints
(3d)-(3e) and the proxy constraints (6) and (7) on top of
Google’s constrained optimization package [23]
that uses two different approaches to optimize the Lagrangians:
a Bayesian optimization oracle for LWn

and projected gradient
ascent for Lλ. A definition of the oracle is given as follows:

Definition 1 (Approximate Bayesian Optimization Oracle). A
δ-approximate Bayesian optimization oracle is a routine Oδ
that given a loss function/Lagrangian L, returns the quasi-
optimal weights Wn such that

L (Oδ (L)) ≤ inf
W?
n

L (W?
n) + δ. (9)

B. Resource Allocation Bounds-Based SLA

To ensure slices’ isolation, another type of SLA consists on
thresholds imposed to the maximum and minimum resources
granted by the deep learning model to each slice. Similarly to
problem (6), we write this deep learning optimization task as
follows:

min
1

NB

NB∑
i=1

`
(
r

(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
, (10a)

s.t.Wl,n ∈ RNl−1×Nl , l = 1, . . . , L+ 1, (10b)

bl,n ∈ RNl×1, l = 1, . . . , L+ 1, (10c)

Φ1 = αm,n,k −min
i
r̂

(i)
m,n,k ≤ 0, (10d)

Φ2 = max
i
r̂

(i)
m,n,k − βm,n,k ≤ 0. (10e)

To construct the proxy constraints as done in problem (6),
we seek smooth upper bounds on functions Φ1 and Φ2. In

this regard, we invoke the smooth maximum and minimum
functions expressed respectively as,

Smax

(
r̂

(1)
m,n,k, . . . , r̂

(NB)
m,n,k

)
= log

(
NB∑
i=1

exp
{
r̂

(i)
m,n,k

})
, (11)

Smin

(
r̂

(1)
m,n,k, . . . , r̂

(NB)
m,n,k

)
= − log

(
NB∑
i=1

exp
{
−r̂(i)

m,n,k

})
.

(12)
We then express the proxy constraints as,

Ψ1 = αm,n,k − Smin ≤ 0, (13a)

Ψ2 = Smax − βm,n,k ≤ 0. (13b)

Finally, we form two Lagrangians,

LWn
=

1

NB

NB∑
i=1

`
(
r

(i)
m,n,k, r̂

(i)
m,n,k (Wn,bn, sn)

)
+ λ1Ψ1(Wn) + λ2Ψ2(Wn),

(14a)

Lλ = λ1Φ1(Wn) + λ2Φ2(Wn), (14b)

and use the constrained optimization package
[23] to optimize them similarly to the previous section.

V. RELIABLE CONVERGENCE ANALYSIS

In this section, we analyze the convergence probability of the
SLA-constrained deep learning models. To that end, we make
use of reliability theory to account for the SLA violation effect.
The following theorem provides a closed-form expression for
the lower bound of the convergence probability, which unveils
the effect of the underlying DNN hyperparameters such as the
Lagrange multipliers radius, the error of the optimization oracle
and the violation rate.

Theorem 1 (Convergence Analysis of the SLA-Constrained
Neural Network). Consider that the deep neural network fails
to fulfill the constraints with average violation rate 0 < ν < 1,
and follows a geometric failure model. It is also assumed that
LWn is optimized using an oracle Oδ with error δ, and let
R and B∆ stand for the Lagrange multipliers radius and the
upper bound on the norm of subgradient ∇Lλ, respectively.
Then, the reliable convergence probability satisfies,

Pr

[
1

Tλ

Tλ∑
t=1

(
Lλ
(
W(t)

n , λ?
)

− inf
W?
n

Lλ
(
W?

n, λ
(t)
))

< ε

]
≥ Q (ν, ε) ,

(15)

where

Q (ν, ε) = 1− ν

1 + (ν − 1) exp{−ε2/2(2RB∆ + δ)2}
. (16)



Proof: First, by the subgradient inequality we have at time
t,

Lλ
(
W(t)

n , λ∗
)
−Lλ

(
W(t)

n , λ(t)
)
≤ 〈∇L(t)

λ , λ∗−λ(t)〉. (17)

By invoking Holder’s inequality, we get

Lλ
(
W(t)

n , λ?
)
− Lλ

(
W(t)

n , λ(t)
)
≤
∥∥∥∇(t)

λ

∥∥∥∥∥∥λ? − λ(t)
∥∥∥

≤ 2RB∆.
(18)

Combining (18) with Definition 1, we obtain

U (t) = Lλ
(
W(t)

n , λ?
)
− inf

W?
n

Lλ
(
W?

n, λ
(t)
)
≤ 2RB∆ + δ.

(19)
By means of Hoeffding-Azuma’s inequality [24], we have

Pr

[
1

Tλ

Tλ∑
t=1

U (t) < ε | Tλ = k

]
≥ 1−exp

{
− kε2

2 (2RB∆ + δ)
2

}
,

(20)
where we consider that the deep neural network is reliable, i.e.,
respecting the SLA up to and including time Tλ = k. Therefore,
recalling the geometric failure probability mass function Pk
given by,

Pk = ν (1− ν)
k
, (21)

and combining it with (20), yields

Pr

[
1

Tλ

Tλ∑
t=1

U (t) < ε

]
≥

+∞∑
k=0

ν (1− ν)
k

×

(
1− exp

{
− kε2

2 (2RB∆ + δ)
2

})
.

(22)
Finally, after some algebraic manipulations and using the fact
that ν < 1, we get the desired result as in (15) and (16). �

VI. NUMERICAL RESULTS

A. Neural Network Settings

Throughout this paper, we consider deep neural networks
of L = 2 hidden layers with N1 = 256 and N2 = 8
neurons, respectively. We set the training epochs to 300 and the
optimizer to Adam with learning rate 0.01. These parameters
are set following extensive experiments and turn out to yield
the best results. The training dataset size varies from one
network function to another. Hence, at TRPs and vBBUs levels,
NTR = 21417 and NTR = 9681 samples, respectively, with
batch size NB = 100. At the vDFE and vSDN controller, where
the traffic variation is non-bursty, we settle for NTR = 129 with
batch size NB = 10. On the other hand, the test dataset at each
network function consists of the hourly traffics of OTTs for
a period of 5 days, i.e., 128 samples. The slices’ traffics are
obtained by aggregating the corresponding OTTs’ traffics. In
this work, we consider three slices, namely, enhanced mobile
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Figure 5: Normalized mean square error vs. epoch number for
α = [15, 0, 5], and β = [50, 35, 30] at TRP level, with R = 0.1
and R = 0.9, respectively.

broadband (eMBB), Social Media and Browsing as shown in
Fig. 3. In both training and test datasets, features normalization
is activated. For the sake of simplicity, we drop the indexes
m,n, k, and use vectors α and β instead. These vectors
encompass the resource bounds corresponding to the different
slices at a given network function, and can be easily understood
from the context.

B. Accuracy

To highlight the accuracy of the proposed DNN schemes,
Fig. 5-(a) shows for instance that, as the number of iterations
increases, the normalized training error of the joint multi-slice
DNN model at TRP quickly decreases on average within few
iterations, but keep fluctuating which increases slightly the
algorithm convergence time. This behavior becomes accen-
tuated in slices with tight resource bounds (e.g., eMBB and
Browsing), and can be justified by the trade-off implied by
the two-player game between the player minimizing the mean
squared error and the one achieving the SLA constraints. In
contrast, as depicted in Fig. 5-(b), when R = 0.9, i.e., in case
the constraints are quite omitted, the normalized mean squared
error does not present any palpable fluctuations, and rapidly
converges to lower levels compared to the first case, but at the
expense of not fulfilling the SLA requirements.

C. Traffic Prediction Performance

Despite the presented GRU architecture is quite simple, it en-
ables to track the traffic variation and yield concise predictions.
The operator may fine-tune parameter ε to either overprovision
or exactly match the required traffic per slice. A high value
of ε results in underprovisioning while a small value leads to
overprovisioning. The suitable value of ε can be determined at
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Figure 6: Predicted vs. measured traffics for eMBB slice at a
TRP, with ε = 0.7, 128× 1 GRU.
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once via grid search by gradually changing it and comparing
the training prediction with the ground truth. In this intent,
a perfect match between the predicted and measured traffic
volume is obtained for ε = 0.7 and a GRU of size 128× 1 as
depicted in Fig. 5. Note that we run several training trials to
find the optimal value of ε. We then use it to predict the traffic
in a live evaluation dataset.

On the other hand, while we note a similar accuracy for
both light GRU and soft GRU as shown in Fig. 6, we compare
their time complexity along with other state-of-the-art (SoA)
architectures like LSTM and standard GRU. In this case, we
notice that our soft GRU presents the lowest runtime, especially
when the number of needed GRU cells is high (e.g. 512) as
depicted in Fig. 7.

D. Performance of Violation Rate-Based SLA

In this case, the deep learning models are optimized to
respect the upper bound imposed to the SLA violation rate.
As revealed by Fig. 8 and Fig. 9, we study the variation of
the actual violation rate with respect to two hyperparameters,
namely, the Lagrange multipliers radius R, and the upper bound
ρ. In this regard, we recall that a small value of R lead to
small multipliers λ1 and λ2 in (14), and the effect of the
constraints becomes accentuated. On the other hand, ρ is the
target violation rate threshold that the DNN output should
respect with an acceptable probability.

In Fig. 8, we first remark that the actual violation rate is
highly sensitive to the variation in R and ρ, which is not
the case in Fig. 9 where the obtained violation rate is less
sensitive to the hyperparameters. This behavior is due to the
bounds α and β, wherefore their large difference (100 Mbps
in the backhaul case) reduce the probability of violating the
bounds and thereby results in a low sensitivity. This property
is interesting from a network optimization viewpoint, given
that wherever the number of resources is limited—like the DL
PRBs—we should adopt the minimum setting of R and ρ to
ensure the lowest violation rate, while in the case of relatively
abundant resources—such as in the backhaul—the inter-slice
isolation is easier and we may relax the constraints by tolerating
fair values for R and ρ.

On the other hand, with low Lagrange multiplier radius
R = 0.1, the DNNs model the provision of the required
resources while respecting the target violation threshold ρ as
depicted in Fig. 8 and Fig. 9. By increasing R, the problem (3)
becomes unconstrained, and therefore breaches the maximum
violation threshold ρ in some cases. Moreover, by increasing
ρ, the DNN models are relaxed and the incurred violation
rate is higher. Therefore, we conclude that, in practice, the
infrastructure operator may adopt a dynamic parameter fine-
tuning, where during busy hours—when a conflict between the
slices is expected—one set R = 0.1 and at quiet times one set
R = 0.9.

E. Performance of Resource Bounds-Based SLA

In this scenario, we impose bounds on the allocated resources
at each network function. We start by showcasing the resource
allocation results for SoA unconstrained DNN, and according
to Fig. 10, it turns out that the target resource bounds are
not respected as shown in the histogram distribution, since the
DNN model has been trained without constraints in this case.
In contrast, at TRP level, for example, when the constraints
of problem (10) are active, i.e., when R = 0.1, the number of
assigned DL PRBs to eMBB and Social Media slices are higher
than 15 and 5 DL PRBs, respectively, as shown in Fig 11-
(a). When R = 0.9, the lower bound α, for instance, is not
taken into account as depicted in Fig. 11-(b). A more insightful
representation is given by the histograms in Fig. 11, where we
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easily identify the effect of the imposed SLA on the number
of allocated DL PRBs. Indeed, with R = 0.1, most of eMBB
PRBs grants are higher than 15 DL PRBs, while with R = 0.9
there is approximately 2300 samples below 10 PRBs.

On the other hand, we remark that the resource provisioning
follows the same trend as the traffic since the latter serves as
input to the DNN models. Hence, in Fig. 12 and Fig. 13, we
show the CPU consumption and RRC connected users per slice
for a single vBBU instance, and verify that the SLA is respected
for the three slices, since R = 0.1. It can be seen that the
number of RRC connected users for eMBB slice is lower than
Social Media slice that is viewed as a massive access service.
We also note that the presented CPU consumption and RRC
connected users are with respect to a single vBBU instance that
is processing the data of one eNB.
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Figure 10: DL PRBs evolution and distribution per slice for
SoA unconstrained resource allocation.
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Figure 11: DL PRBs evolution and distribution per slice for
resource bounds SLA, with α = [15, 0, 5] and β = [50, 35, 30]
PRBs.
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Figure 12: CPU consumption per slice for a single vBBU
instance in resource bound SLA setting with α = [0%, 0%, 0%],
β = [10%, 15%, 20%], and R = 0.1.
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Figure 13: RRC connected users licenses per slice for a
single vBBU instance in resource bound SLA setting with
α = [0, 50, 0], β = [75, 100, 100], and R = 0.1.

In addition, Fig. 14 depicts the backhaul capacity license
granted to each slice for a single vBBU instance and under
active SLA constraints. In this case, we can see that since the
lower bound α for eMBB is 20 Mbps, the capacity thereof
does not present a quiet time compared to Social Media and
Browsing slices whose lower bounds are both at 0 Mbps.
Imposing a lower bound might be seen as ensuring an isolation
between the different slices, where even during low traffic pe-
riods a slice is allocated with a minimum number of resources.
By tweaking the hyperparameter R, the physical operator
may find the trade-off between overprovisioning and isolation,
i.e., between following the traffic dynamics and fulfilling the
resource bounds SLAs.
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Figure 14: Backhaul capacity licenses per slice for a single
vBBU instance with α = [50, 100, 50], β = [150, 200, 150],
and R = 0.1.
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Figure 15: ERAB bearers per slice at the vDFE for α = [5 ×
105, 5× 105, 0], β = [106, 106, 1010], and R = 0.1.

Similarly, Fig. 15 and Fig. 16 present the assigned ERAB
bearers and signaling connections at the vDFE and SDN
controller, respectively. They are obtained by feeding the cor-
responding DNN models with the aggregated traffic over the
whole network, i.e., the 440 eNBs. Given the imposed lower
bounds as well as the fact that the eNBs have not the same busy
and quiet hours, the network level ERAB bearers and signaling
connections either present a slight quiet time like in Browsing
and Social Media slices, or almost no quiet time like in eMBB
slice. In all cases, thanks to these estimated dynamic resources
per slice, the operator may efficiently manage the ERAB
bearers and signaling connections licenses pools by avoiding
dedicated static license distribution, which paves the way to
operational expenditure (OPEX) savings while guaranteeing
slices isolation.

F. Reliable Convergence

Fig. 17 depicts the lower bounds of the reliable convergence
probability as a function of the regret ε. In this regard, B∆ =
15.4 is the practical maximum value of the gradient yield by
the optimizer over the training dataset. As expected, a high
violation rate ν leads to the decrease of Q(ν, ε). With a low
violation rate ν = 0.01 and R = 0.1, one can easily achieve a
regret ε = 0.1 with probability Q(ν, ε) = 0.83. From a design
perspective, to achieve a low ν, the physical operator needs
to agree reasonable resource bounds α and β with the slices’
tenants.

VII. CONCLUSION

In this paper, we first present a low-complexity network
slices’ traffics predictor based on a soft gated recurrent unit
(GRU), where some components have been dropped without
impacting the performance. We then use the predicted traffics
to feed several deep learning models trained offline to perform
end-to-end dynamic and reliable resource slicing under dataset-
dependent generalized non-convex SLA constraints. The con-
cerned network resources are the DL PRBs at TRP, the CPU
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Figure 16: Signaling connections per slice at the vSDN con-
troller for α = [5× 105, 5× 105, 0], β = [106, 106, 1010], and
R = 0.1.
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Figure 17: Reliable convergence probability vs. ε for R = 0.1,
B∆ = 15.4 and various violation rates ν.

load and RRC connected users at vBBU datacenter, backhaul
capacity, ERAB bearers at vDFE and signaling connections at
vSDN. In this respect, we show that by properly tweaking the
constraints’ Lagrange multiplier radius, the physical operator
may control the trade-off between resource overprovisioning
and slices isolation. Finally, inspired by reliability theory, we
introduce the concept of reliable convergence and derive a
closed-form expression for the lower bound of the convergence
probability. We also study the effect of the underlying hyperpa-
rameters, and provide some recommendations to ensure a fair
SLA.
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