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Abstract 

This work presents the development and application of an efficient solution strategy for 

the optimal production scheduling of a real-life food industry. In particular, the case of a 

canned fish production facility for a large-scale Spanish industry is considered. Main goal 

is to develop an optimized weekly schedule, in order to minimize the total production 

makespan. The proposed solution strategy constitutes the basis to develop an efficient and 

robust approach for this complex scheduling problem. A general precedence Mixed-

Integer Linear Programming (MILP) model is utilized for all scheduling-related decisions 

(unit allocation, timing and sequencing). To solve the scheduling problem in a 

computational time accepted by the industry, a two-step decomposition algorithm is 

employed. Salient characteristics of the canned fish industry are aptly modelled, while 

valid industry-specific heuristics are incorporated. The suggested solution strategy is 

successfully applied to a real study case, corresponding to the most demanding week of 

the plant under study. 
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1. Introduction  

Market trends and competitiveness has steered food industry towards large production 

volumes, complex alternative recipes and an increasing product portfolio, making 

production scheduling a challenge. The current industrial practice imposes scheduling-

related decisions to be mainly derived by managers and operators, hence the overall plant 

performance is subject to their experience. Computer-aided scheduling tools can 

significantly improve these decisions by proper consideration of all involved parameters 

and therefore significantly enhance production scheduling (Harjunkoski, 2016). As a 

result, productivity is improved, while customers remain satisfied and profits increase. 

Acknowledging the importance of optimized production scheduling, the scientific 

community has widely studied the topic over the last 30 years, introducing numerous 

scheduling models (Méndez et al., 2006). However, most of these works consider small-
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scale study cases. This is mainly attributed to the fact that production scheduling is an 

NP-hard problem, therefore large complex instances can become intractable. The 

scientific community has widely recognised the lack of applications to real industrial 

cases (Harjunkoski et al., 2014). Recently some attempts have been made to close the 

existing gap between theory and industrial practice. In (Kopanos et al., 2010), the authors 

studied a real-life yoghurt production facility using a novel mixed discrete and continuous 

MILP model. Furthermore, Baumann and Trautmann, (2014) proposed a hybrid MILP 

method for make-and-pack processes using a decomposition strategy and a critical-path 

improvement algorithm. Moreover, Aguirre et al., (2017) combined a novel MILP model 

that incorporates TSP (Travelling Salesman Problem) constraints, with a rolling horizon 

algorithm. In this work a solution strategy is proposed that deals with scheduling 

problems of large-scale industrial food production facilities. In particular, an MILP model 

is proposed to optimize the production schedule, while a two-step decomposition 

algorithm is utilized to solve the problem in an acceptable computational time. 

2. Problem statement 

In this work, the canned fish production in a real-life industrial facility is examined. 

Specifically, the production process of Frinsa del Noroeste S.A., located in Ribeira, Spain, 

is investigated using real process data. The plant is capable of producing more than 400 

codes, and it is one of the largest canned fish industries in Europe. The facility comprises 

of multiple stages, including both batch and continuous processes (Fig. 1). The raw 

materials arrive in the facility in the form of frozen fish blocks, and as such they need to 

be unfrozen in the thawing chambers. Then, the blocks are chopped in the appropriate 

size and filled in the cans alongside with all other ingredients (brine, olive oil etc.) 

required by the recipe. In the next stage, the sealed cans are sterilized in order to ensure 

the microbiological quality of the final products. Finally, the cans are packaged in their 

final form (6-pack, 12-pack, boxes etc.) and are stored in the warehouse, to be later 

distributed in the market. 

 

Figure 1: Facility layout 

The plant under consideration can be identified as a multiproduct, multistage facility with 

both batch (thawing, sterilizing) and continuous (sealing and filling, packaging) processes 

each utilizing multiple parallel units. Additionally, the large production demand and high 

production flexibility increases significantly the plant’s complexity. The thawing stage is 

overdesigned compared to the processing capacity of all other stages, therefore it is a 

valid assumption to omit it from this study. Unfortunately, no clear bottlenecks exist, and 

as such all other processing stages need to be modelled. The short-term scheduling 

horizon of interest is 5 days, whereas all units are available 24 hours per day. Sequence-

dependent changeovers are considered. All design and operating constraints of the 

facility, such as a limited waiting time between stages to ensure microbiological integrity, 

are taken into account. The objective is to minimize the total production makespan, while 

ensuring demand satisfaction.  
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3.  Mathematical framework  

The key scheduling decisions to be made are related to: a) the number of product batches 

required to satisfy the incoming orders, b) the allocation of product batches to units in 

every processing stage, c) when will the process of each batch in every stage start and 

finish and d) in what relative sequence. A typical industrial practice in most food 

industries, imposes the operation of the intermediate batch processes in their maximum 

capacity. Utilizing the batch stage to its fullest, leads to reduction of changeovers between 

products and a general increase in the plant’s productivity. Thus, the number of batches 

of each product required to satisfy the demand is calculated a priori, based on the given 

demand, the inventory levels and the capacity of the sterilization chambers. 

3.1. MILP model 

The suggested MILP model is based on the general precedence framework. Due to lack 

of space, only a brief description of the model is presented: 
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Constraints (1) guarantee that all product batches p,b to be scheduled on day n will be 

processed by exactly one unit j in every stage s, using the binary allocation variable , , ,p b j nY

. Constraints (2) impose the timing constraints in the sealing and filling stage. More 

specifically, they state that the completion of the sealing and filling task for every product 

batch to be scheduled in every day Cp,b,s,n is equal to the starting time of the task Lp,b,s,n 

plus the required processing time , , ,

time

p b j nfs . Similar constraints are used for the sterilization 

and packing stages. To synchronize the stages, constraints (3) are employed. The 

continuous variable Wp,b,s,n defines the waiting time between each stage. The sequencing 
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constraints between product batches in every stage are portrayed in constraints (4) and 

(5). Two general precedence variables are introduced, , ',p p nX  and , , ', ',p b p b nX  , alongside a 

big-M parameter. The first precedence variable defines the sequencing of product batches 

in the continuous stages (sealing and filling and packing), while the latter in the batch 

stage (sterilization). Notice, that the batch sets b,b’ are not used in the first precedence 

variable, since a single campaign policy is followed in the continuous stages. This way 

the binary variables are significantly decreased, thus the computational complexity of the 

problem is reduced. In particular, constraints (4) state that if a product p is processed prior 

to p’ on day n ( , ', 1p p nX = ) and both product batches are processed in the same unit j (

, , , ', ', , 1p b j n p b j nY Y= = ), then the starting time of p’,b’ must be greater than the completion 

time of p,b plus any required changeover , ',

time

p p jch . Similarly, constraints (5) impose the 

sequencing constraints in the sterilization stage. Constraints (6) enforce the waiting time 

between the sealing and filling stage and the sterilization stage to be less than a specific 

limit Qp. This limit ensures the microbiological integrity of the final product. To ensure 

that the daily scheduling horizon is not violated, constraints (7) are used. The objective 

of the model is the minimization of the total production makespan Cmax and is expressed 

by constraints (8). 

3.2. Decomposition algorithm 

The complexity of the examined plant is such that an exact method cannot solve the 

scheduling problem in reasonable time. Therefore, a two-step decomposition algorithm 

is employed to split the initial problem into several tractable subproblems. First, the 

weekly scheduling problem is decomposed in a temporal manner into 5 daily scheduling 

subproblems. Then, an order-based decomposition is utilized to solve the daily scheduling 

problem for a specific number of products in each iteration. Fig. 2. illustrates the 

flowchart of the proposed solution strategy. At first the batching subproblem is solved to 

translate the product orders into batches. Afterwards, the number of orders to be 

scheduled in each iteration are set. Then, the MILP is solved for the specified subproblem 

area (day and number of products) and only the binary variables (unit allocation, 

sequencing) are fixed. When all orders are scheduled for a given day, all variables are 

fixed, and the algorithm continues to the next day. Finally, when all days are considered, 

the complete schedule is generated. 

 

 

Figure 2: Solution strategy 
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4. Results 

An industrial study case using real data from the Frinsa production plant is presented. In 

total 136 final products are to be scheduled, corresponding to a real weekly demand from 

a period with the most intensive production. To solve this complex case, the proposed 

solution strategy is utilized. In each iteration the daily schedule for half of the product-

orders was chosen to be optimized. The MILP model was implemented in GAMS 25.1 

and solved using CPLEX 12.0. Optimality is reached for all iterations of the suggested 

solution strategy. Figure 3 illustrates the complete schedule generated for all units of 

every processing stage. Each color corresponds to a batch or lot of a product-code. 

 

Figure 3: Gantt chart of units of all processing stages 
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Compared to the real weekly schedule proposed by Frinsa, the optimized schedule of the 

proposed strategy illustrates interesting results. To satisfy the given demand, the manually 

derived schedule by Frinsa, requires the addition of a shift on Sunday evening, while the 

optimized schedule satisfy all orders within 5 days. Moreover, the total CPU time for the 

solution of the problem is approximately 1 hour and it is acceptable by the company.  

5. Conclusions 

This work presents the optimization-based production scheduling of a large-scale real-

life food industry. More specifically, all major processing stages of a canned fish 

production facility have been optimally scheduled. The industrial problem under 

consideration illustrates significant complexity, due to the mixed batch and continuous 

stages, each having numerous shared resources, the large number of final products and 

the various operational, design and quality constraints. This make-and-pack structure (one 

or multiple batch or continuous processes followed by a packing stage) is typically met 

in most food and consumer packaged goods industries, hence, the presented solution 

strategy can be easily implemented in other industrial problems. It has been shown that 

the suggested solution strategy can optimally schedule even the most demanding weeks 

of the examined industry in acceptable time, leading to reduction of overtime production. 

The proposed strategy can be the core for a computer-aided scheduling tool that can 

facilitate the decision-making process for the production scheduling of food industries. 

Current work focuses on the introduction of cost related objectives, as well as, the 

incorporation of uncertainty in product demands.   

Acknowledgements 

The work leading to this publication has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agreement No 723575 

(Project CoPro) in the framework of the SPIRE PPP. 

References 

Aguirre, A.M., Liu, S., Papageorgiou, L.G., 2017. Mixed Integer Linear Programming Based 

Approaches for Medium-Term Planning and Scheduling in Multiproduct Multistage 

Continuous Plants. Ind. Eng. Chem. Res. 56, 5636–5651. 

Baumann, P., Trautmann, N., 2014. A hybrid method for large-scale short-term scheduling of 

make-and-pack production processes. Eur. J. Oper. Res. 236, 718–735. 

Harjunkoski, I., 2016. Deploying scheduling solutions in an industrial environment. Comput. 

Chem. Eng. 91, 127–135. 

Harjunkoski, I., Maravelias, C.T., Bongers, P., Castro, P.M., Engell, S., Grossmann, I.E., Hooker, 

J., Méndez, C., Sand, G., Wassick, J., 2014. Scope for industrial applications of production 

scheduling models and solution methods. Comput. Chem. Eng. 62, 161–193. 

Kopanos, G.M., Puigjaner, L., Georgiadis, M.C., 2010. Optimal Production Scheduling and Lot-

Sizing in Dairy Plants : The Yogurt Production Line. Ind. Eng. Chem. Res. 49, 701–718. 

Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M., 2006. State-of-the-art review 

of optimization methods for short-term scheduling of batch processes. Comput. Chem. 

Eng. 30, 913–946.  


