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Chapter 1
Neural Networks and Deep

Learning

1 Standard Notation for Deep Learning

1.1 General Comments

Superscript (i) denotes the ith training example while superscript
[1] denotes the 1" layer.

Vectors are represented by bold small letters (example: x) and
matrices are represented by bold capital letters (example: X).

1.2 Sizes

m: Number of examples in the dataset.

ng: Input size.

ny: Output size (or number of classes).

n%]: number of hidden units of the I*" layer.
L: Number of layers in the network.

1.3 Objects

X € R™=*™: The input matrix.

x(D € R™=: Is the it" example represented as a column vector.
Y € R™¥*™: Is the label matrix.

y® € R™: Is the output label for the it"
column vector

example represented as a

—1]

wlil e ]R” xn, : is the weight matrix, superscript [{] indicates
the layer.
[l]
bll € R™ : Is the bias vector in the I** layer.

y e R": Is the predicted output vector. It can also be denoted
a[L] where L is the number of layers in the network.

2 Logistic Regression
For one example x(® e R™:
2 =wTx® 4+
7@ = al) = g(z(i))
Cross-entropy loss function (for one training example):
£(@®,y™) = —y@Dlog(a®) — (1 - y)log(1 —a?)

The cost function (for all training examples) is then computed by
summing over the loss for all training examples:

1 ) .
- — Z E(a(1)7y<z))
mis1

Collecting all training examples in a matrix X:

X = [X(1>‘x(2)| o |x<m)}

A=o(w X +b) = [a(1>|a(2>| . \a<m>]
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3 Neural Networks
3.1 Feed-Forward Propagation
All = g z)
Z — Wil All-11 4 i

Al = x
Al =y

Input :
Output :

Activation Functions
The activation function g[l] can be one of the following :
e Sigmoid:

1

0(Z)=0(WA+Db)= T o WAy

e Rectified Linear Unit (ReLU):
relu(Z) = max(0, Z)

Cost Function

Cross-entropy cost function :

:_%i[ >log( ](i)) +(1_
- —% [Y log (A[L]T) 1 (1-Y)- log (1 - A[L]T)]

3.2 Backpropagation

0T Y 1-Y
w 97 __ Y 1-Y
A ALl Al T T Al
azll :zgza ::dAU]QgM’(ZM)
dAali-1 — % —wliTqzl
awll = 99 _ 1w au-ur
8W[l] m
N 1 & .
mo 97 _1 (1)
db pNU —~ Z:dz

ym) log (1 _ amm)]

(1.1)

3.3 Gradient Descent

Update the parameters:

wll .= wll — o qwll
bl :=bll —qabll

where « is the learning rate.

Chapter 2

Improving Deep Neural
Networks: Hyperparameter
Tuning

1 Setting up Machine Learning
Application
1.1 Train/Dev/Test Sets

Splitting the data into Train/dev(validation)/test sets according to
its size

e For small dataset (m = 100 — 1,000 — 10, 000):
A ratio of 60%, 20%, 20% works well.

e For large datasets (m = 1,000, 000):
A ratio of 98%, 1%, 1%

2 Regularization

2.1 Logistic Regression

(w,b) = ) + Regularization term

Zﬁ(y( i)

The regularization term can be :

A
e L5 Regularization : 2—||w

e [; Regularization : 2

ik
E
|
[\
o
\d
=



2.2 Neural Network

J(W[l],b[l], o

Where W2 is called Frobenius norm and

< 2
IwlE =" > (wl)

Therefore

Jregularized

N
WL = =372 @y @) ST Wl
1= =1 .

_ _% i [y(i) log (a[L](i)) n (1 _ y(i)) log (1 _ a[L]“)ﬂ

cross-entropy cost

L2 regularization cost

Backpropagation:

Gradient Descent :
wll .= o dawll

—wll o [idzmA[z—uT n iwm}
m

_wl A% (idZmAu—uT>
m m

o Lazm gn-uT
m

2.3 Dropout

Implementing dropout (“Inverted dropout”) in Python.
Illustrate with [ = 3.

keep-prob =

d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob
a3 = np.multiply(a3, d3) # a3 *= d3

a3 /= keep-prob

3 Setting Up Optimization Problem
3.1 Normalizing Training Sets

Mean
1 m
-1y
mi
Variance
2 - LS () o @ 2
o° = E;G{ Ox >7u

Dataset Normalization:

, (@) _
.= X H

o
Note: We use the same p and o to normalize the test set.

3.2 Weight Initialization for Deep Networks

To solve the problem of vanishing and exploding gradients.

For sigmoid or tanh activation function we use Xavier
initialization:

wll - np.ra_ndom.randn(W[l].shape) * H;
nli—1]
or
1
M - Ul - -
w np.random.randn (W' . shape) * -0

For RelU activation function:
M - [ 2
WU = np.random.randn(W'" . shape) * =
li—

3.3 Numerical Approximation of Gradients
Two Sided difference
(0) — tin 1O+ =0 —2)

e—0 2e
Order of the error O(e2)

One sided difference

, £0+2) = £(0)
1(0) = lim SIS

Order of the error O(g)
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Gradient Checking for a Neural Network
Take W[l],b[l], e W[L],b[L] and reshape into a big vector 8

Jwl bl Wl plLly = 7(0)
:\-7(011027.“,97;,...)

Take dW ! , dbm, cee dW[L]7 dblX] and reshape into a big vector

do
For each i:
J(017927"'7 ] )_ (917627"’79i_87"')
dez approx — %
oJ

do; approx ~ do; =

00;

ABapprox ~ dO

||d9approx - d9||2

Check
||d9apprOX||2 + ||d9H2

in practice we set e = 1077
Gradient checking implementation notes:
e Don’t use in training - only to debug

o If algﬁorlthm fails grad check, look at components
db[ dW[l to try to identify bug.

e Remember to include regularization.
e Doesn’t work with dropout.

e Run at random initialization; perhaps again after some
training.

4 Optimization Algorithms

Suppose that we have m total number of examples.
Batch gradient descent: Using all training examples m at once.

Mini-batch gradient descent: Using a subset (< m) of training
examples at a time.

Stochastic gradient descent: Using a mini-batch that has just 1
example at a time.



Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

4.1 Mini-Batch Gradient Descent - 4.3 Gradient Descent with Momentum - 4.5 Adam Optimization Algorithm
X Adam stands for Adaptive Moment Estimation
Reference : | ] © Momentum /3 takes past gradients into account to smooth out the Paper : | ]
. steps of gradient descent. It can be applied with batch gradient : - S— - -
Cost function may not decrease on every iteration. - descent, mini-batch gradient descent or stochastic gradient descent. - Algorithm 4: Adam OptlleaUOIl Algorlthm
T T : : : It: Trained network parameters for each layer
Algorithm 1: Mini-Batch Gradient Descent : : . - : Resu p 4
g . G . | Algorithm 2: Gradient Descent with Momen- : wll pl
Result: "I/“r/aﬁ]nei;i[l]network parameters for each layer : tum : 1 VdVi(/)[” =0,8,,u =0, V,n=0,S,m=0
) . . . 2 t=
1 for each epoch:. . : Result: rIv“l;a[‘ll]nebd[l]network parameters for each layer s for each epoch:
2 for each mini-batch t: : v —0 ’ v -0 4 for each mini-batch:
/* Forward-Propagation on X {} x/ £ dw !t ; ’ he abll = 5 Forward-propagation on current mini-batch.
0] — x{t} 2 or Sach epoch: 6 Compute cost J of current mini-batch.
3 AT =X 3 for each mini-batch: p J 0 0
for layler = 1[7 o [1: l " Forward-propagation on current mini-batch. 7 Backpropag.a‘Fe to compute dW'  db'" on the
5 zll = wllall=1 4 pll 5 Compute cost J of current mini-batch. : current mini-batch.
6 Al = g[l](z[l]) : 6 Backpropagate to compute dW[l], dbl” on the : 8 :'::lt + 1[ -1 I
/* */ : current mini-batch. : ° ortayert ==L, L [0
7 Compute Cost Jit} = : 7 for layer 1 =1,...,L: i Vaw = PV + (1 Bl)d[l‘]/v
1 A : 8 Vowin == B1V gt + (1 — B1)dWwll S ‘%ib[’] }: B1V gy + (1 — B1)db"™ /+ "moment"
Fot (050) w5 SIw iR e Vi = 1V + (1= B1)dbl" : ' o2
2 ; v 2k Xl: ;N Wi .— il = aV i, bl — 12 S i = B28 jpm + (1 — ﬁQ)leV; Jo
For x {t} y{t} : b —aVv o S it = B28 g + (1 — B2)dblH°
. db . n "
8 Backpropagate to compute gradients w.r.t J{t} : L = : /* "RMSprop VBQ */
(using (){'{t}7 Y{t})) 14 Vzorl["le]cted — %’
9 for layerl=1,...,L: . Lo .
) ? . A common practice is to set the hyperparameter 5 = 0.9 X \
10 L u[/lv][l] = ?;]Vm _ [zli]W[l] : : Veopected — Tt —rébﬂ”l])t
11 | bt :=b" —a db 4.4 RMSoro s corrected _ S i
L : . prop : aw !l 1 _S(,BQ)t ’
RMSprop stands for root mean square prop Szg[rzfeded = 1 d(%” )t
— (P2
. sos . - . Vcorrected
Choosing Mini-Batch Size Algorithm 3: RMSprop “ e wll .— wll _ g aw !l 7
. rrected
: Result: Trained network parameters for each layer : V S ;3V[’elc e
o If small training set (m < 2000) : Use batch gradient descent . wll pli . 0 0 Vco[rl]rected
. ' : bl i=pll —q———
1 de[z] = 0, Sdb[L] =0 ) d
e Typical mini-batch sizes : 64,128,256,512 (Powers of 2) 2 for each epoch: : | V S;E[rﬁeme te
3 for each mini-batch: : L -
e Make sure that the mini-batch )({t}7 vt} fits in a Forward-propagation on current mini-batch.
CPU/GPU memory. 5 Compute cost J of current mini-batch. 4.6 Hyperparameter Choice
6 Backpropagate to compute dW[l], dbl" on the .
t mini-batch « : needs to be tuned.
, fc()zrl‘lrlfg:arllnfli ate L: - f1:0.9 (momentum of dW 1)
. . . =1,...,L: . A [t]o2
4.2 Exponentially Weighted Averages . S i = B2S s + (1 — B)AWH? /% small : 62. .1(()];9899 (momentum of dW!°?)
; */ DS
Vi =BVie1 + (1 - B)6: c] e Spin = B2S sy + (1= B)dbl1°? /x 1arge */ - 4.7 Learning Rate Decay
1 "o wll .— wll _ dwll . Learning rate decay is to slowly reduce learning rate over time, to
averages over & —— previous values of 6 : T / ’ . help speeding up the learning algorithm.
11— . SdW[L] +e . p sp g up g alg
: dbll] :
. . . pll —plll 22— : 1
Bias Correction v : | m_i_ - : a = T aQ
a . L .
Vi = 1-3 : - * Where r is the decay rate, t is the epoch number.




Other Learning Rate Decay Methods

e Exponential Decay a = rt - ag

e Discrete staircase

e Manually setting o

5 Hyperparameter Tuning
5.1 Appropriate Scale for Hyperparameters

Suppose you want to search for a parameter « =4,...,j on a
logarithmic scale instead of a linear scale.
Calculate

a = logq 1, b=1loggJ

then

a=10"
where

r ~ U(a,b)
~a+ (b—a)U(0,1)

5.2 Hyperparameters for exponentially
weighted averages

For sampling the hyperparameter § =1,...,j used to compute
exponentially weighted averages.

1-B=1—i,...,1—j

Calculate
a=logo(l —14), b=logyo(1l—j)
then
B=1-10"
where
r ~ U(b,a)

~ b+ (a—b)U(0,1)

6

Batch Normalization

6.1 Implementing Batch Norm

Algorithm 5: Batch Norm

Data: training data X, batch size = k
for each Batch X1t} in X:

for each Intermediate value Z1 = [z(1)| . |z(k)]

in Layer | in the neural network:

k
plBl = 3750
=1
2 _ LN~ (0 02
3?2 L i) {t}l
oAM= L3 (50 )

Zﬁlorm - T —_—
Vo + ¢

21 = 4z +

Batch Norm Gradient Descent

Algorithm 6: Batch Norm Gradient Descent

1
2

[

10

11

12

13

Result: Trained network parameters for each layer
wll, gl ~Ml
for each epoch:
for t = 1, ..., num(mini-batches):
/* Forward-Propagation on Xt} x/
Al — x{t}
for layerl=1,...,L:
zU = wllAll=1] 4 pll
Use Batch Norm (algorithm 5) to Compute
Zm from ZWY
Al — gzl
/* */
Compute Cost J{t} =

l
1 i i A
L (3950) S S Iw
i=1 —— 1
For Xt} y{#}
Backpropagate to compute gradients w.r.t gt
(@wll, apll, vy (using (X1, v i*h))
for layerl=1,...,L:
wll .— wlil _ o awld
Bl .= sl — qqpl
~ = 4 — gyl

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

6.2 Batch Norm as Regularization

e Each mini-batch X {*} is scaled by the mean/variance
computed on just that mini-batch.

e This adds some noise to the values z!! to scale them to #!!
within that mini-batch. so similar to dropout, it adds some
noise to each hidden layer’s activations.

e This has a slight regularization effect.

6.3 Batch Norm at Test Time

Calculate the Wei%hted average of u{t}[l] , ot across all
mini-batches X {*

Vi = g, u{t=10 (1 — gt
Vi = g, (t-10% 4 (1 - g,)o (I

Bias correction:

t}H
pl = vit
1- 511/
{t}]
o? = Vo2
1—Buw
Then Use them in forward-propagation:
zﬁfl,(ﬁ& _ 2@ — 0l
olll? + ¢

B0 = 1120, 4 g

7 Multi-Class Classification
7.1 Softmax Layer

ozl ool
L L i
altl = Q[L](Z[L]) T o Lo «[ V= Q[L](ZZ[ )= o
>l € >is1 €
If number of classes C' = 2, then softmax reduces to logistic
regression.

z
N a

7.2 Loss Function
c
L,y) == yjlogg; = —y' log(9)
j=1
Cost :

1 m ) )
1] il L] plL]) = = E (1) (@)
j(W b WL b ) i,1£(y Y\
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Output size Figure 3.2: Convolutional block

1] 2]

_

Chapter 3 - S xnfl o
ny 4 2pld — £l niy 4 2pll — fl [l . D
. =|— 41| X | —————— 41| Xn¢ :
Convolutional Neural { Al T e v? i
. . Conv Conv
- Number of multiplication operations . 41 o ‘ .
Networks : 5] . IE - m) _— ?_{?7 £ sy el ,\?\__? 2 b el
: - {1 [ - : -
- =ng Xny X (fYx Y xne X ne w1 i+ w2 pli+2)
1 Filters
1Tola R 1lola 3lols Number of summation operations is the same as multiplication.
101 o|ofo 2|o0f|-2| |[10]0 |10 5 Pooling Layer
1]0]1 e s 1101 3|03 No parameters to learn.

Vertical edge Horizontal edge Sobel filter Scharr filter

detection filter detection filter Input size: (n%_l] X n{/lv_ll X 'flc)
Filter size: (f¥  x 1 xne)
2 Notation Output size: (n%] X nw X Ne)
n: Original image dimension.
f: Filter size.
Output size = ( n[,lf] X nw X Ne)

p: Padding size.
s: Stride.

3 Padding

Types of Padding:
1. Valid: no padding

2. Same padding: pad so that the output size is the same as
the input size.

n+2p—f+1=n
f-1

2
f is usually odd in same padding.

4 One Layer of CNN
20 — Wil 4 all=1 4 plt
alll = gt (zm)

Input  (al'~1) size: (nhlfl] X n[vifl] X n[clfl])

Filter (W)  size: (fI1  x s x nll % n[cl])
Bias  (bl) size: (1 x 1 x 1 X n[cl])
Output (al) size: (n%] X nw X n[cl])

Number of parameters = size (W[l]> + size (b[”>

= (M x A0 xnl 74 1) sconl!

=11 _
_ Ny f

6 Residual Networks
Source paper: [He-+15]
Implementing “shortcut” / “skip connection” in a ResNet block:

=1 _ .
mw o =
sl

21— ] gl pl)

all+1] — gli+1] (z[l+1])
2142 = 2], gl i)

For identity block (al!! has the same dimensions as al‘t2]) :

all+2) = gli+2) (Z[z+21 n am)

Figure 3.1: Identity block

Conv Conv
0 @ el | o o [ Y e Al
a K \r ReLU K \*/ D= ReLU
W\fﬂl b+ W\fﬂ] bli+2l
If al!l has different dimensions than a[l+2], then multiply all by an
ply y

extra matrix Wy

1+2]

all+2] = gli+2) (zu+21 LW, s am)



7 YOLO Object Detection

References: | ]
YOLO paper: | ]
YOLO stands for “You Only Look Once”

7.1 Notation

p[ci]: the probability that there is an object for box number i (box ¢
confidence probability)

(2]
J
t: maximum number of boxes.

c-': the probability that the object in box i is a certain class j .

s: number of filtered(selected output boxes).

Ngria: Output grid size (number of grid cells in each row and
column).

bg],b?[j]: Midpoint coordinates of box 1.

bﬁ],b%]: Height and width of box 7.

7.2 The Algorithm

Algorithm 7: YOLO
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Data: Input image of shape (ng,nw,3)

Result:

A list of selected bounding boxes along with the recognized
classes. Each bounding box is represented by 6 numbers
[pe, be, by, b, bw,c]T. If you expand c into an
Neclasses-dimensional vector, each bounding box is then
represented by (5 + Nclasses) Numbers. The output tensor
shape is (Ngrid:Ngrid, S, 6), where s <t and the last two
dimensions can be represented by the matrix:

Il pl L pk
A N R A
R O
D O
bl B2 Bl
2] ols]

Steps

e The input image goes through a YOLO CNN
Model, resulting in a (ngrid,Ngrid, ¢, 5 + Nclasses)
dimensional output. The last two dimensions can
be represented as the following matrix:

N T
plll pl2l U
bl 0 O
bl O
bll] b2 Y
iR 2 M

L Ec]lasses '['?ilasses Cg]classes_

e From the output of the YOLO CNN model,
extract the following: - box_confidence : tensor
of shape (ngrid, Ngrid, t, 1). The last dimension
containing p. (confidence probability that there’s
some object) for each of the ¢ boxes predicted in
each of the ngrig X ngriq cells. The last two
dimensions of the tensor can be represented as

follows:
1 2
IR

- boxes : tensor of shape (ngrid, Ngrid, t,4)
containing the midpoint and dimensions

[bz, by, by, bw}T for each of the t boxes in each
cell. The last two dimensions matrix is:

ol b bl
A
iyl bl
T A O 1

- box_class_probs : tensor of shape

(Ngrid; Ngrid, t, Nclasses) containing the ”class
probabilities” (c1,c2, ...Cngj,ases) fOr each of the
Nelasses Classes for each of the ¢t boxes per cell.
The last two dimensions can be represented as:

C[ll] 0[12] C[lt]
C[21] C[22] C[Qt]
Cgllllasses Cgllasses chlasses

e Convert boxes to be ready for filtering functions
(convert boxes from midpoint coordinates to corner
coordinates):

AN ) I PR RN
S ] B U |
A I gl RN IR
B0 21 gl gl 2

e Calculate score and predicted class for each box:
- Box classes: tensor of shape (ngrid, ngrid,t, 1)

classes[j,k]

:[cm A2 CM]
C[11] 6[12] c[lt]
c[21] 0[22] C[Zt]
= argmax
1 2 t
C'["'llasses '[nc]lasses C'["'llasses

- Calculate box scores (the probability that the box
contains a certain class):

The class score is scores!d = p[g] x clll

scores[j,k]

= [ A P ]

e Select only few boxes using score-filtering and
non-max suppression:
- Perform Score-filtering with a threshold: throw
away boxes that have detected a class with a

scores!’l < threshold .
- Non-max suppression:
for each class c;:
Select the box that has the highest score.
Compute the overlap of this box with all other
boxes, and remove boxes that overlap
significantly (iou >= iou_threshold) .
Iterate until there are no more boxes with a lower
score than the currently selected box.

/* The selected boxes count is less than the
total number of boxes s <t */




8 Face Recognition
8.1 Omne-Shot Learning

Learning a similarity function d(imgl, img2) = degree of difference

between images.

If d(imgl, img2) {< T The two images are the same.

>T The two images are the different.
8.2 Siamese Network

Paper : | ]

Goal of Learning

e Parameters of the neural network define an encoding
F(X®) of 128 units.

e Learn parameters so that:
If X®, X are the same person, d(X(i)7 X(j)) is small.
If X x) are different persons, d(X(i)7 X(j)) is large.

d(X®, xW)y = Hf(X(i))

8.3 Triplet Loss

Paper : | ]

Given three input images: an anchor image A, a positive image P
and a negative image IN,

We want

_f(X(j))H2

2

I£(A) = F(P)|3 +a < [[£(A) — F(N)3
(A = F(P)I5 +a— [[f(A) — F(N)]3 <0
We define triplet loss function as:
— F(P)I3 - I1£(A) = F(N)I3 + ,0)

~ FP)I3 - [F(4) — FAV)I3 +a] |
1) (2)

L(A, P,N) = max (Hf(A)

=[Ira)

where,

e The term (1) is the squared distance between the anchor A
and the positive P for a given triplet; you want this to be
small.

e The term (2) is the squared distance between the anchor A
and the negative IN for a given triplet, you want this to be
relatively large. It has a minus sign preceding it because
minimizing the negative of the term is the same as
maximizing that term.

e « is called the margin. It is a hyperparameter that you pick
manually.

Triplet cost function can be defined as

J= Zc A,

@) N@)
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8.4 Face Verification and Binary Classification

Paper : [ ]
Verification: Input is an image and name/ID. Output whether
the input image is that of the claimed person.

Recognition: Has a database of K persons. Get an input image
and output ID if the image is any of the K persons (or “not
recognized”).

Learning a Similarity Function for Face Verification

x @

x G

128
y= a(Z Wi [F(X D), = XD | +b>

k=1
1)

Term (1) can also be the chi square (x2) formula:

[F(xX O — p(x )]
FXD) + f(XD),,

xX° =

9 Neural Image Style Transfer

References: [ I, [ ]

The goal is to generate an image G from a content image C and a
style image S.

9.1 Total Cost Function
J(G) = aJcontent (C, G) + Bjstyle(s7 G)

Where Jcontent is the content cost and Jsiy1e is the style cost.

To find the generated image G:
e Initiate G randomly

e Use gradient descent to minimize J(G):

B
G=G-,-7(G)

9.2 Content Cost
e Say you use a hidden layer [ to compute content cost.
e Use pre-trained ConvNet. (E.g., VGG network).
o Let all(©) and al¥(G) be the activation of layer [ on the

images. If they are similar then both images have similar
content. The content cost function is:

joontent (07 G)

%Ha[u(m _a[u(G>Hi

OO

1 < 2
=523 > (@9 - alk?)

i=1j=1k=1

9.3 Style Cost
Gram matrix

be an element of an activation al’} of an input image at

layer I at (i, j,k). Then the Gram matriz GE”

Ul (1l

ne' X ne' and the matrix elements can be calculated as :

Let aE]] E

m) has a shape of

[l] [l]

Elg]ram)kk/ Z Zawka”k/

i=1j=1

Gram matrix captures the degree of correlation between a layer [
channels as a measure of the style.

Style Cost Function

[es)

(gram)
for every layer [. Then the style cost

First calculate the gram matrix for the style image G and

BICe))

(gram)

the generated image G
function for a layer [ is

Jsty]e(57 G)= (2[”1[”[”)2 HGElg]Eizl) - Elgliacri)u

o,

= (2 u, [z])2 ZZ <G[lg£ii])”

And the style cost function for all layers:

@ )2

(gram)ij

Jstyle(sv G) = Z A[l] Js[élfle(s’ G)
l



Chapter 4
Sequence Models

1 Recurrent Neural Networks
1.1 Notation

x{: A one-dimensional input vector of a single example at time
step t.
<t) Output label at time step t¢.
Y <t>. Prediction at time step ¢.
a<t>: Hidden state, The activation that is passed to the RNN from
one time step to another.
Tz: Length of input sequence.
Ty: Length of output sequence.
ngz: Number of units in input.
ny: Number of units in output.
m: batch size.
W: Weight matrix.
b: Bias vector.

1.2 Recurrent Neural Networks

RNN Cell (forward)

alt=1)

a® = tanh (Waaa<t_1> + Waxx<t) + ba)

o)

= tanh (Wa [a“*l),x(t)] + ba>

—1)

alt
el <[Waa | Wax] |:

¢ = softlna)(<Wyaa<t> + by)

= softmax(Wy alt 4 by)
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ym y<2> y<l )
y
a® [ RNN [a®? [RNN [a® _~  a=D | RNN |a)
Cell Cell Cell
T J
*x( x(2 x(Te)
RNN Types
y
x(D

One to many

One to one

a0
x( x(2) x{T)
Many to one
y y2 y{Te)
(0
x( x(2) x(T=)

Many to many

g S, DU B

!

x( x(Te)
Many to many

Loss Function

£ <y<1)7y<t>> =—y®log (y(t)) _ <1 _ y<t>> log (1 _ y(t))

1.3 Language Model and Sequence Generation
P<y<1>7y<2>,...,y<Ty>)

P(Sentence) =

Training

P(y0.y®, L y) =p (1) P (y®
P (v |y, y@ Ly )

XD = (0

P (y<1>) p( @) ‘ y<1>) P (y vy @ y<ry—1>>
e 5 91
al® =0 a0 ,—T_‘ a2 a(Tv—1)
< =0 x(2 = y(l) x(Tv) — y(’l'y—l)

Loss Function
£ (y(t>

t)) — _Zyi 10g“<t>
J= Zg(t) (S’<t>,y<t>>
t

Sampling a Sequence from Trained RNN
5’(1) y<2> \ y(’l‘u)

T T [sample] |samp|e| T
X<1> e 6 <2> x<Tu> = y(Ty_l>

1.4 Gated Recurrent Unit(GRU)

References: [ I, [ ]

Notation

c®: Memory cell state(variable) at time step .

&{. Candidate value for cell state.Contains information from the
current time step that may be stored in the current cell state clt,
Contains values between —1 and 1.

Ffp: Update gate. Used to decide what aspects of the candidate
&® to add to the cell state c{?). It contains values that range
between 0 and 1.

’y<1>) P (y<3> ’y<1>7y<2>)



GRU (Full)
clt=1) — gt=1)
I"fﬁ =0 (Wu {c<t71>,x<t>] + bu>
ri =o (Wr [c<t71>7x<t>] n br)
& = tanh (WC {I"fﬁ ® c<t—1>,x<t>] + bc)
c(t> — a<t> — 1"&” ® E<t> + (1 _ I“fj)> ® c<t—1>
7 = softmax (Wya<t> + by>

1.5 Long Short Term Memory(LSTM)
Paper: | ]
Notation

cht): Forget gate. It contains values that range between 0 and 1.

I‘Sﬁ: Output gate. Decides what gets sent as the prediction
(output) of the time step. It contains values that range between 0
and 1.

a®: Hidden state. Values between —1 and 1.

Calculations
&t — tan h( [ 1>7x<t)] +bc>
70<W [ (t=1) <>] +bu)
P<t> [ (t—1)7x<t>i| +bf)

7 (W
<< [ (t=1) X<t>] +b0)

t) o8t 4 F<t> oclt=1)
alt) = (<,> ® tanh <c< >)

9% = softmax (Wyam + by>

ot =

y<t>
L ===
R S clt)
1 L0
20 I v IEC  v0
el
w.
alt—1-
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1.6 Bidirectional RNN
9 =g <Wy [5(75)’5@)] + by>

2 /y,;% }?\>
20llgw 20 g® 5 (T (T

1.7 Deep RNNs
all®) — g4 (ng [a[l]<t—1>7a[l—1]<t>] + bgl)

(2

y y

al3l(0) — (g} a3V QQ—P+{g}+ aBI
Wg‘] ba ¥ whl b,

220 > @B {gh] a0 @ Pgh] a2 O > @—Pgh] a2
W b,k WLZ ba? Wil b,

A0 >R 2l RQ—D—{g} alll@ R—D all®
wil b, wlll b, wil p,l1
LW — oy L (2 _ 4012 x(3) = alol®3)

2 Natural Language Processing and
Word Embeddings
2.1 Notation

ny: Vocabulary size.

ne: Embedding size, ne << ny.

0;: One-hot vector for a word 4. Its’ length is n,.

e;: Feature vector (word embedding vector) for a word 4.Its’ length
is ne.

O: One-hot matrix, of size n, X ny.

E: Embedding matrix, of size ne X ny.

2.2 'Word Representation

Reference: Visualizing word embeddings | ]

2.3 Transfer learning and word embeddings
1. Learn word embeddings from a large text corpus. (1 - 100B
words) (Or download pre-trained embedding online.).

2. Transfer embedding to new task with smaller training set.
(eg. 100k words).

3. Optional : continue to fine-tune the word embeddings with
new data.

2.4 Properties of Word Embeddings

Reference : [ ].

Analogies using word vectors

€man — €woman ~ €king — €w

Find a word w that maximizes the similarity function:

arg mjx(Sim(ew » €king — ©man + ewoman))

The similarity function can be one of the following:
e Cosine similarity (more frequently used)

uTV u-v

sim(u,v) = = = cos(0)

lalllivi falllivi

Where 0 is the angle between the two vectors.

e Squared distance:

sim(u,v) = [[u - v|

2.5 Embedding Matrix
FE - Oj = ej
In practice we use a specialized function to look up an embedding
instead of matrix-vector multiplication.
2.6 A Simple Language Model

Reference: [ ]
Given an input sequence of words for an example 7 , with
embeddings. [egi) eg) . egf)]

First, calculate the average of the sequence embeddings:

WO B[ o L @] =L e

n=1

Forward propagation:
2D =wul’ +b

7 = al® = softmax(z(*)

Loss function:

Ny
5(5,(1)7),@)) =3 )log( (z)) — T log( <z>>
k=1
Backpropagation:
—a® _ @)
02(0) Y
z(!) _
ow ©
@
Oz -7
ob

oL oL 0z
oW~ 9z() oW
oL oL 9z
db 9z Hb




2.7 Word2Vec
Reference: | ]
Notation:

t: target word, the word we want to predict.
¢: context word, n words before and/or after the target word.

Word2Vec Model (Skipgram model)

Vocabulary size : n,, embedding size: ne (for Word2Vec

ne = 300).
oc Q ec @ z <SOft—m>aX) y

Where @ is parameter matrix, its size is ne X ng

e. = Fo.

z=0"e,

ez

2221 e®i

¥ = softmax(z) =

T
egtec

_—
E;'Zl efiee

Where 6; is a column vector of the parameter matrix @, 6 is the
parameter vector associated with the output target word t.

The downside of the skipgram model is that the softmax objective
function is expensive to compute.

G = P (te) =

Loss function

Ny

L(Fy)=—>_ yilog(@:) = —y" log(§:)
i=1

2.8 Negative Sampling

Reference: | ]
k: Number of negative examples.
y: Target label. 1 for positive example, 0 for negative example.

Model
P (y = 1|t,C) =0 <0;rec>

On every iteration, choose k different random negative words with
which to train the algorithm on. So the total number of training
examples is k 4+ 1 (including one positive example).

Selecting Negative Examples

Sample according to the empirical frequency of words in your
corpus.

w;)3/4
P () = 1)

D fw)??
j=1
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2.9 GloVe Word Vectors

Reference: [ ]
Xij: Is the number of times word j occurs in the context of
N~
t

word _ 7 .

~—~

c

It is a count that captures how often do words 7 and j appear close
to each other.
If you define context to be £n words after and before target word,
then X is symmetric (X;; = Xj;)

Model
Ny Ny 2
Minimize > f (X)) (ejej b+ b — log(Xij)>
i=1j=1

(€]
e Term (1), f(Xyj) is a weighted sum.

o f(X;;)=0if X;; =0, so the expression evaluates to zero
(0log(0) = 0).

e 0; and e; are symmetric. They end up with the same
optimization objective.

e Initialize 8., and e, at random for every word, run gradient
descent to optimize them, then take the average of 8., and
e, to calculate the final embedding:

ew + 0y
2

eginal)

2.10 Debiasing Word Embeddings

Word embeddings can reflect gender, ethnicity, age, sexual
orientation and other biases of the text used to train the model, so
they need to be debiased | 1.

Addressing bias in word embeddings:

e Identify the bias direction (gender subspace).

Collect n pairs of embedding vectors that differ by gender
(masculine m and feminine f), subtract them, then average
the result to get the bias vector b:

n

S LB )

=1

e Neutralize: For every word embedding that is not
definitional, project to get rid of bias.

First calculate the bias component ep

ep = projpe = ——

B = ProOJp b b
The debiased embedding vector e is the orthonormal
vector to e it is obtained by zeroing out the component in
the direction of b:

el =e—ep

e Equalize pairs.
For a pair of words wl, w2 that differ by gender:

_ eyl + ew?2
2
p-b
= B2
Hp b b
ph=p—pg
eyl b eyw2 b
ewlg = z-bb ew2p = ﬁ-bb
(corrected) __ 112 €ywlg — MHp
e = 1-— y22 (O]
wlpg | || ”2 | ||(ew1 _ MJ_) _ l"BH
(corrected) __ 12 €w2p — Up
e = 1-—- y2s ©
w2p | || ||2 | ”(ew2 _ l—"L) _ “BH
e = EifrBrected) + H/l
ey = eglt):;rBrected) + ILL

3 Various Sequence to Sequence
Architectures

3.1 Basic Models

Sequence to sequence model

References: | Iy [ ]

Image Captioning

References: [ I [ I, [ ]
(T
img —»%%—»
3.2 Machine Translation
Building a Conditional Language Model
""""" Encoder Network i DecoderNetwork |
y(’lin)i

§a<0>

The model output the conditional probability:
P (y<1>, L ,y<Ty> x ,X(T:C>)
In this model you don’t sample words at random. Instead you find

a sentence y that maximizes the conditional probability.
The most common algorithm to do this is called beam search
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Beam Search

B: Beam width parameter, the number of possibilities for beam
search to consider at a time.

Normalized log probability objective function (normalized
log likelihood objective):

Tiy“ log P ()7 x) :T%logp <9<1>,...,y<Ty> x)

:Tig 10gﬁl P (y<t> ‘x7§,(1>7 . ,y<t—1>)

T
:% glogP (y<t> ’x, g y(t—1>)

Algorithm 8: Beam Search

Data: An input sequence x, its length is T
Result: A sequence of predictions ¥, its length is T
1 Run the input sentence x through the encoder network.
2 Pick the the top B words from the first output of the
sequence of the decoder network (§¢1?) with the highest
probabilities as the first predicted word in the sequence.
s for sentence lengths Ty starting from 2:
keep track of the top B sentences that maximize the
normalized log probability objective function
(normalized log likelihood objective).

T
1 Y
—E log P “<t>‘ 7A<1>,...»9<t 1
arg max @ 2 og <y X,y )

5 Repeat and increment T} until encountering an end of
sentence character (EOS) for all B sentences.

=]

Finally, pick up one sentence from B sentences with the
highest value of normalized log likelihood objective as the
final translation output.

Notes :

e To avoid numerical underflow(numerical rounding errors)
that results of multiplying many small probability numbers,
we maximize the log of probabilities instead.

1
. Ta is a length normalization term. To prevent objective

function from preferring short sentences over long sentences.
Reduces the penalty for outputting longer translations.

e « can range between 0 (no normalization) and 1 (full
normalization), in practice it is commonly set to 0.7

e Unlike exact search algorithms, beam search runs faster but
it is not guaranteed to find the exact maximum for

1
a a — lo, P(“’ )
rgmyx(T;é g yix
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e The larger B , the more possibilities and better results, but
the algorithm becomes slower, more computationally
expensive and has more memory requirements.

e For production systems B = 10, for research B is chosen to
be up to 100.

Error Analysis in Beam Search

y*: Translation by a human (reference sentence).
Example:
Human: Jane visits Africa in September (y™).

Algorithm: Jane visited Africa last September. (¥)

e Case 1: P(y*|x) > P(y|x)
Beam search chose . But y™* attains higher P(y|x).
Conclusion: Beam search is at fault.

o Case 2: P(y*|x) < P(y|x)

y* is better translation than . But RNN predicted
P(y*|x) < P(31x).

Conclusion: RNN model is at fault.

3.3 BLEU Score
[ |

BLEU: bilingual evaluation understudy.

Modified n-gram precision (pn) for sentences:

E countjip (n-gram)
n-gramey

Z count(n-gram)

n-gramey

Pn =

Where countgji, = min(count,Max_ref_count). In other words, one
truncates each word’s count, if necessary, to not exceed the largest
count observed in any single reference for that word.

Combined BLEU score for n-grams up to length N:

N
1
BLEU = BP - exp <N Z logpn>
n=1
Where BP: Brevity penalty.

1 ife>r
BP =
{eur/c) ife<r

Where c is the length of the candidate translation(machine
translation) and r is the effective reference corpus length(reference
output length).

3.4 Attention Model

References: [ L[ ]

Properties of The Model

e Pre-attention and Post-attention RNNs on both sides of the
attention mechanism

— There are two separate RNNs in this model (see
figure): pre-attention and post-attention RNNs.

— Pre-attention Bi-RNN is the one at the bottom of the
picture is a Bi-directional RNN and comes before the
attention mechanism.

* The attention mechanism is shown in the middle
of the left-hand diagram.
* The pre-attention Bi-RNN goes through 7, time
steps
— Post-attention RNN: at the top of the diagram comes
after the attention mechanism.
The post-attention RNN goes through Ty time steps.

— The post-attention RNN passes the hidden state s(®
from one time step to the next.

e FEach time step uses predictions from the previous time step.

Notation
2 (") . hidden state of the forward-direction, pre-attention RNN.

G (") . hidden state of the backward-direction, pre-attention RNN.
a) . the concatenation of the activations of both the
forward-direction and backward-directions of the pre-attention
Bi-RNN.

e: is called the “energies” variable.

s{*=1: is the hidden state of the post-attention RNN.

a®”: is the hidden state of the pre-attention RNN.

). The attention variable, amount of “attention” y<t> should
’
pay to alt),

11



The Model

Figure 4.1: Attention Model
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Figure 4.2: one “attention” step
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Algorithm 9: Attention Model

Data: An input sequence x, its length is T

Result: A sequence of predictions ¥, its length is T,

/* Run the input x through the pre-attention Bi-RNN
to get [l af? . alTe)] &/

for input time steps t’ =1, ..., Ty:

o

2
= (t")
" — [—><t’> <t’>] -2
a a Y S
/* Pass the sequence of a<t/> to the post-attention
RNN to get the predictions y %/

3 for output time stepst = 1, ..., Ty:
’ ’

a Compute “energies” et s=1) and alt’? are fed

into a simple neural network, which learns the
’
function to output et
e(t:t’)
s = relu (w[ 1T - tanh (We[ll [s(t_l),a“l)] + be[ll) + b[f]
6 Calculate the attention variable altt?
<t,t’>)
St exp (e
Ty
> e (<)
t/=1
7 Calculate the context vector ¢
TI 7 !’
et — Z altt) 5"
t/'=1
8 Pass the computed context vector c{® to the
post-attention RNN and calculate the hidden state
t
s
S = tanh (Wi [s01) e,y 1] + b,)

9 Run the output of the post-attention RNN through a
dense layer with softmax activation to generate a
prediction y<t>

7 = softmax (Wysm + by)

3.5 Speech Recognition

Reference: [Gra-+00]

© 2020 Fady Morris Ebeid
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