Deep Learning Specialization
Formula Sheet

Fady Morris Ebeid
July 6, 2020
Chapter 1
Neural Networks and Deep

Learning

1 Standard Notation for Deep Learning

1.1 General Comments

Superscript (i) denotes the ith training example while superscript
[1] denotes the 1" layer.

Vectors are represented by bold small letters (example: x) and
matrices are represented by bold capital letters (example: X).

1.2 Sizes

m: Number of examples in the dataset.

ng: Input size.

ny: Output size (or number of classes).

n%]: number of hidden units of the I*" layer.
L: Number of layers in the network.

1.3 Objects

X € R™=*™: The input matrix.

x(D € R™=: Is the it" example represented as a column vector.
Y € R™¥*™: Is the label matrix.

y® € R™: Is the output label for the it"
column vector

example represented as a

—1]

wlil e ]R” xn, : is the weight matrix, superscript [{] indicates
the layer.
[l]
bll € R™ : Is the bias vector in the I** layer.

y e R": Is the predicted output vector. It can also be denoted
a[L] where L is the number of layers in the network.

2 Logistic Regression
For one example x(® e R™:
2 =wTx® 4+
7@ = al) = g(z(i))
Cross-entropy loss function (for one training example):
£(@®,y™) = —y@Dlog(a®) — (1 - y)log(1 —a?)

The cost function (for all training examples) is then computed by
summing over the loss for all training examples:

1 ) .
- — Z E(a(1)7y<z))
mis1

Collecting all training examples in a matrix X:

X = [X(1>‘x(2)| o |x<m)}

A=o(w X +b) = [a(1>|a(2>| . \a<m>]

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

3 Neural Networks
3.1 Feed-Forward Propagation
All = g z)
Z — Wil All-11 4 i

Al = x
Al =y

Input :
Output :

Activation Functions
The activation function g[l] can be one of the following :
e Sigmoid:

1

0(Z)=0(WA+Db)= T o WAy

e Rectified Linear Unit (ReLU):
relu(Z) = max(0, Z)

Cost Function

Cross-entropy cost function :

:_%i[ >log( ](i)) +(1_
- —% [Y log (A[L]T) 1 (1-Y)- log (1 - A[L]T)]

3.2 Backpropagation

0T Y 1-Y
w 97 __ Y 1-Y
A ALl Al T T Al
azll :zgza ::dAU]QgM’(ZM)
dAali-1 — % —wliTqzl
awll = 99 _ 1w au-ur
8W[l] m
N 1 & .
mo 97 _1 (1)
db pNU —~ Z:dz

ym) log (1 _ amm)]

(1.1)

3.3 Gradient Descent

Update the parameters:

wll .= wll — o qwll
bl :=bll —qabll

where « is the learning rate.

Chapter 2

Improving Deep Neural
Networks: Hyperparameter
Tuning

1 Setting up Machine Learning
Application
1.1 Train/Dev/Test Sets

Splitting the data into Train/dev(validation)/test sets according to
its size

e For small dataset (m = 100 — 1,000 — 10, 000):
A ratio of 60%, 20%, 20% works well.

e For large datasets (m = 1,000, 000):
A ratio of 98%, 1%, 1%

2 Regularization

2.1 Logistic Regression

(w,b) = ) + Regularization term

Zﬁ(y( i)

The regularization term can be :

A
e L5 Regularization : 2—||w

e [; Regularization : 2

ik
E
|
[\
o
\d
=



2.2 Neural Network

J(W[l],b[l], o

Where W2 is called Frobenius norm and

< 2
IwlE =" > (wl)

Therefore

Jregularized

N
WL = =372 @y @) ST Wl
1= =1 .

_ _% i [y(i) log (a[L](i)) n (1 _ y(i)) log (1 _ a[L]“)ﬂ

cross-entropy cost

L2 regularization cost

Backpropagation:

Gradient Descent :
wll .= o dawll

—wll o [idzmA[z—uT n iwm}
m

_wl A% (idZmAu—uT>
m m

o Lazm gn-uT
m

2.3 Dropout

Implementing dropout (“Inverted dropout”) in Python.
Illustrate with [ = 3.

keep-prob =

d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob
a3 = np.multiply(a3, d3) # a3 *= d3

a3 /= keep-prob

3 Setting Up Optimization Problem
3.1 Normalizing Training Sets

Mean
1 m
-1y
mi
Variance
2 - LS () o @ 2
o° = E;G{ Ox >7u

Dataset Normalization:

, (@) _
.= X H

o
Note: We use the same p and o to normalize the test set.

3.2 Weight Initialization for Deep Networks

To solve the problem of vanishing and exploding gradients.

For sigmoid or tanh activation function we use Xavier
initialization:

wll - np.ra_ndom.randn(W[l].shape) * H;
nli—1]
or
1
M - Ul - -
w np.random.randn (W' . shape) * -0

For RelU activation function:
M - [ 2
WU = np.random.randn(W'" . shape) * =
li—

3.3 Numerical Approximation of Gradients
Two Sided difference
(0) — tin 1O+ =0 —2)

e—0 2e
Order of the error O(e2)

One sided difference

, £0+2) = £(0)
1(0) = lim SIS

Order of the error O(g)

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

Gradient Checking for a Neural Network
Take W[l],b[l], e W[L],b[L] and reshape into a big vector 8

Jwl bl Wl plLly = 7(0)
:\-7(011027.“,97;,...)

Take dW ! , dbm, cee dW[L]7 dblX] and reshape into a big vector

do
For each i:
J(017927"'7 ] )_ (917627"’79i_87"')
dez approx — %
oJ

do; approx ~ do; =

00;

ABapprox ~ dO

||d9approx - d9||2

Check
||d9apprOX||2 + ||d9H2

in practice we set e = 1077
Gradient checking implementation notes:
e Don’t use in training - only to debug

o If algﬁorlthm fails grad check, look at components
db[ dW[l to try to identify bug.

e Remember to include regularization.
e Doesn’t work with dropout.

e Run at random initialization; perhaps again after some
training.

4 Optimization Algorithms

Suppose that we have m total number of examples.
Batch gradient descent: Using all training examples m at once.

Mini-batch gradient descent: Using a subset (< m) of training
examples at a time.

Stochastic gradient descent: Using a mini-batch that has just 1
example at a time.



Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

4.1 Mini-Batch Gradient Descent - 4.3 Gradient Descent with Momentum - 4.5 Adam Optimization Algorithm
X Adam stands for Adaptive Moment Estimation
Reference : | ] © Momentum /3 takes past gradients into account to smooth out the Paper : | ]
. steps of gradient descent. It can be applied with batch gradient : - S— - -
Cost function may not decrease on every iteration. - descent, mini-batch gradient descent or stochastic gradient descent. - Algorithm 4: Adam OptlleaUOIl Algorlthm
T T : : : It: Trained network parameters for each layer
Algorithm 1: Mini-Batch Gradient Descent : : . - : Resu p 4
g . G . | Algorithm 2: Gradient Descent with Momen- : wll pl
Result: "I/“r/aﬁ]nei;i[l]network parameters for each layer : tum : 1 VdVi(/)[” =0,8,,u =0, V,n=0,S,m=0
) . . . 2 t=
1 for each epoch:. . : Result: rIv“l;a[‘ll]nebd[l]network parameters for each layer s for each epoch:
2 for each mini-batch t: : v —0 ’ v -0 4 for each mini-batch:
/* Forward-Propagation on X {} x/ £ dw !t ; ’ he abll = 5 Forward-propagation on current mini-batch.
0] — x{t} 2 or Sach epoch: 6 Compute cost J of current mini-batch.
3 AT =X 3 for each mini-batch: p J 0 0
for layler = 1[7 o [1: l " Forward-propagation on current mini-batch. 7 Backpropag.a‘Fe to compute dW'  db'" on the
5 zll = wllall=1 4 pll 5 Compute cost J of current mini-batch. : current mini-batch.
6 Al = g[l](z[l]) : 6 Backpropagate to compute dW[l], dbl” on the : 8 :'::lt + 1[ -1 I
/* */ : current mini-batch. : ° ortayert ==L, L [0
7 Compute Cost Jit} = : 7 for layer 1 =1,...,L: i Vaw = PV + (1 Bl)d[l‘]/v
1 A : 8 Vowin == B1V gt + (1 — B1)dWwll S ‘%ib[’] }: B1V gy + (1 — B1)db"™ /+ "moment"
Fot (050) w5 SIw iR e Vi = 1V + (1= B1)dbl" : ' o2
2 ; v 2k Xl: ;N Wi .— il = aV i, bl — 12 S i = B28 jpm + (1 — ﬁQ)leV; Jo
For x {t} y{t} : b —aVv o S it = B28 g + (1 — B2)dblH°
. db . n "
8 Backpropagate to compute gradients w.r.t J{t} : L = : /* "RMSprop VBQ */
(using (){'{t}7 Y{t})) 14 Vzorl["le]cted — %’
9 for layerl=1,...,L: . Lo .
) ? . A common practice is to set the hyperparameter 5 = 0.9 X \
10 L u[/lv][l] = ?;]Vm _ [zli]W[l] : : Veopected — Tt —rébﬂ”l])t
11 | bt :=b" —a db 4.4 RMSoro s corrected _ S i
L : . prop : aw !l 1 _S(,BQ)t ’
RMSprop stands for root mean square prop Szg[rzfeded = 1 d(%” )t
— (P2
. sos . - . Vcorrected
Choosing Mini-Batch Size Algorithm 3: RMSprop “ e wll .— wll _ g aw !l 7
. rrected
: Result: Trained network parameters for each layer : V S ;3V[’elc e
o If small training set (m < 2000) : Use batch gradient descent . wll pli . 0 0 Vco[rl]rected
. ' : bl i=pll —q———
1 de[z] = 0, Sdb[L] =0 ) d
e Typical mini-batch sizes : 64,128,256,512 (Powers of 2) 2 for each epoch: : | V S;E[rﬁeme te
3 for each mini-batch: : L -
e Make sure that the mini-batch )({t}7 vt} fits in a Forward-propagation on current mini-batch.
CPU/GPU memory. 5 Compute cost J of current mini-batch. 4.6 Hyperparameter Choice
6 Backpropagate to compute dW[l], dbl" on the .
t mini-batch « : needs to be tuned.
, fc()zrl‘lrlfg:arllnfli ate L: - f1:0.9 (momentum of dW 1)
. . . =1,...,L: . A [t]o2
4.2 Exponentially Weighted Averages . S i = B2S s + (1 — B)AWH? /% small : 62. .1(()];9899 (momentum of dW!°?)
; */ DS
Vi =BVie1 + (1 - B)6: c] e Spin = B2S sy + (1= B)dbl1°? /x 1arge */ - 4.7 Learning Rate Decay
1 "o wll .— wll _ dwll . Learning rate decay is to slowly reduce learning rate over time, to
averages over & —— previous values of 6 : T / ’ . help speeding up the learning algorithm.
11— . SdW[L] +e . p sp g up g alg
: dbll] :
. . . pll —plll 22— : 1
Bias Correction v : | m_i_ - : a = T aQ
a . L .
Vi = 1-3 : - * Where r is the decay rate, t is the epoch number.




Other Learning Rate Decay Methods

e Exponential Decay a = rt - ag

e Discrete staircase

e Manually setting o

5 Hyperparameter Tuning
5.1 Appropriate Scale for Hyperparameters

Suppose you want to search for a parameter « =4,...,j on a
logarithmic scale instead of a linear scale.
Calculate

a = logq 1, b=1loggJ

then

a=10"
where

r ~ U(a,b)
~a+ (b—a)U(0,1)

5.2 Hyperparameters for exponentially
weighted averages

For sampling the hyperparameter § =1,...,j used to compute
exponentially weighted averages.

1-B=1—i,...,1—j

Calculate
a=logo(l —14), b=logyo(1l—j)
then
B=1-10"
where
r ~ U(b,a)

~ b+ (a—b)U(0,1)

6

Batch Normalization

6.1 Implementing Batch Norm

Algorithm 5: Batch Norm

Data: training data X, batch size = k
for each Batch X1t} in X:

for each Intermediate value Z1 = [z(1)| . |z(k)]

in Layer | in the neural network:

k
plBl = 3750
=1
2 _ LN~ (0 02
3?2 L i) {t}l
oAM= L3 (50 )

Zﬁlorm - T —_—
Vo + ¢

21 = 4z +

Batch Norm Gradient Descent

Algorithm 6: Batch Norm Gradient Descent

1
2

[

10

11

12

13

Result: Trained network parameters for each layer
wll, gl ~Ml
for each epoch:
for t = 1, ..., num(mini-batches):
/* Forward-Propagation on Xt} x/
Al — x{t}
for layerl=1,...,L:
zU = wllAll=1] 4 pll
Use Batch Norm (algorithm 5) to Compute
Zm from ZWY
Al — gzl
/* */
Compute Cost J{t} =

l
1 i i A
L (3950) S S Iw
i=1 —— 1
For Xt} y{#}
Backpropagate to compute gradients w.r.t gt
(@wll, apll, vy (using (X1, v i*h))
for layerl=1,...,L:
wll .— wlil _ o awld
Bl .= sl — qqpl
~ = 4 — gyl

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

6.2 Batch Norm as Regularization

e Each mini-batch X {*} is scaled by the mean/variance
computed on just that mini-batch.

e This adds some noise to the values z!! to scale them to #!!
within that mini-batch. so similar to dropout, it adds some
noise to each hidden layer’s activations.

e This has a slight regularization effect.

6.3 Batch Norm at Test Time

Calculate the Wei%hted average of u{t}[l] , ot across all
mini-batches X {*

Vi = g, u{t=10 (1 — gt
Vi = g, (t-10% 4 (1 - g,)o (I

Bias correction:

t}H
pl = vit
1- 511/
{t}]
o? = Vo2
1—Buw
Then Use them in forward-propagation:
zﬁfl,(ﬁ& _ 2@ — 0l
olll? + ¢

B0 = 1120, 4 g

7 Multi-Class Classification
7.1 Softmax Layer

ozl ool
L L i
altl = Q[L](Z[L]) T o Lo «[ V= Q[L](ZZ[ )= o
>l € >is1 €
If number of classes C' = 2, then softmax reduces to logistic
regression.

z
N a

7.2 Loss Function
c
L,y) == yjlogg; = —y' log(9)
j=1
Cost :

1 m ) )
1] il L] plL]) = = E (1) (@)
j(W b WL b ) i,1£(y Y\



Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

Output size Figure 3.2: Convolutional block

1] 2]

_

Chapter 3 - S xnfl o
ny 4 2pld — £l niy 4 2pll — fl [l . D
. =|— 41| X | —————— 41| Xn¢ :
Convolutional Neural { Al T e v? i
. . Conv Conv
- Number of multiplication operations . 41 o ‘ .
Networks : 5] . IE - m) _— ?_{?7 £ sy el ,\?\__? 2 b el
: - {1 [ - : -
- =ng Xny X (fYx Y xne X ne w1 i+ w2 pli+2)
1 Filters
1Tola R 1lola 3lols Number of summation operations is the same as multiplication.
101 o|ofo 2|o0f|-2| |[10]0 |10 5 Pooling Layer
1]0]1 e s 1101 3|03 No parameters to learn.

Vertical edge Horizontal edge Sobel filter Scharr filter

detection filter detection filter Input size: (n%_l] X n{/lv_ll X 'flc)
Filter size: (f¥  x 1 xne)
2 Notation Output size: (n%] X nw X Ne)
n: Original image dimension.
f: Filter size.
Output size = ( n[,lf] X nw X Ne)

p: Padding size.
s: Stride.

3 Padding

Types of Padding:
1. Valid: no padding

2. Same padding: pad so that the output size is the same as
the input size.

n+2p—f+1=n
f-1

2
f is usually odd in same padding.

4 One Layer of CNN
20 — Wil 4 all=1 4 plt
alll = gt (zm)

Input  (al'~1) size: (nhlfl] X n[vifl] X n[clfl])

Filter (W)  size: (fI1  x s x nll % n[cl])
Bias  (bl) size: (1 x 1 x 1 X n[cl])
Output (al) size: (n%] X nw X n[cl])

Number of parameters = size (W[l]> + size (b[”>

= (M x A0 xnl 74 1) sconl!

=11 _
_ Ny f

6 Residual Networks
Source paper: [He-+15]
Implementing “shortcut” / “skip connection” in a ResNet block:

=1 _ .
mw o =
sl

21— ] gl pl)

all+1] — gli+1] (z[l+1])
2142 = 2], gl i)

For identity block (al!! has the same dimensions as al‘t2]) :

all+2) = gli+2) (Z[z+21 n am)

Figure 3.1: Identity block

Conv Conv
0 @ el | o o [ Y e Al
a K \r ReLU K \*/ D= ReLU
W\fﬂl b+ W\fﬂ] bli+2l
If al!l has different dimensions than a[l+2], then multiply all by an
ply y

extra matrix Wy

1+2]

all+2] = gli+2) (zu+21 LW, s am)



7 YOLO Object Detection

References: | ]
YOLO paper: | ]
YOLO stands for “You Only Look Once”

7.1 Notation

p[ci]: the probability that there is an object for box number i (box ¢
confidence probability)

(2]
J
t: maximum number of boxes.

c-': the probability that the object in box i is a certain class j .

s: number of filtered(selected output boxes).

Ngria: Output grid size (number of grid cells in each row and
column).

bg],b?[j]: Midpoint coordinates of box 1.

bﬁ],b%]: Height and width of box 7.

7.2 The Algorithm

Algorithm 7: YOLO

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

Data: Input image of shape (ng,nw,3)

Result:

A list of selected bounding boxes along with the recognized
classes. Each bounding box is represented by 6 numbers
[pe, be, by, b, bw,c]T. If you expand c into an
Neclasses-dimensional vector, each bounding box is then
represented by (5 + Nclasses) Numbers. The output tensor
shape is (Ngrid:Ngrid, S, 6), where s <t and the last two
dimensions can be represented by the matrix:

Il pl L pk
A N R A
R O
D O
bl B2 Bl
2] ols]

Steps

e The input image goes through a YOLO CNN
Model, resulting in a (ngrid,Ngrid, ¢, 5 + Nclasses)
dimensional output. The last two dimensions can
be represented as the following matrix:

N T
plll pl2l U
bl 0 O
bl O
bll] b2 Y
iR 2 M

L Ec]lasses '['?ilasses Cg]classes_

e From the output of the YOLO CNN model,
extract the following: - box_confidence : tensor
of shape (ngrid, Ngrid, t, 1). The last dimension
containing p. (confidence probability that there’s
some object) for each of the ¢ boxes predicted in
each of the ngrig X ngriq cells. The last two
dimensions of the tensor can be represented as

follows:
1 2
IR

- boxes : tensor of shape (ngrid, Ngrid, t,4)
containing the midpoint and dimensions

[bz, by, by, bw}T for each of the t boxes in each
cell. The last two dimensions matrix is:

ol b bl
A
iyl bl
T A O 1

- box_class_probs : tensor of shape

(Ngrid; Ngrid, t, Nclasses) containing the ”class
probabilities” (c1,c2, ...Cngj,ases) fOr each of the
Nelasses Classes for each of the ¢t boxes per cell.
The last two dimensions can be represented as:

C[ll] 0[12] C[lt]
C[21] C[22] C[Qt]
Cgllllasses Cgllasses chlasses

e Convert boxes to be ready for filtering functions
(convert boxes from midpoint coordinates to corner
coordinates):

AN ) I PR RN
S ] B U |
A I gl RN IR
B0 21 gl gl 2

e Calculate score and predicted class for each box:
- Box classes: tensor of shape (ngrid, ngrid,t, 1)

classes[j,k]

:[cm A2 CM]
C[11] 6[12] c[lt]
c[21] 0[22] C[Zt]
= argmax
1 2 t
C'["'llasses '[nc]lasses C'["'llasses

- Calculate box scores (the probability that the box
contains a certain class):

The class score is scores!d = p[g] x clll

scores[j,k]

= [ A P ]

e Select only few boxes using score-filtering and
non-max suppression:
- Perform Score-filtering with a threshold: throw
away boxes that have detected a class with a

scores!’l < threshold .
- Non-max suppression:
for each class c;:
Select the box that has the highest score.
Compute the overlap of this box with all other
boxes, and remove boxes that overlap
significantly (iou >= iou_threshold) .
Iterate until there are no more boxes with a lower
score than the currently selected box.

/* The selected boxes count is less than the
total number of boxes s <t */




8 Face Recognition
8.1 Omne-Shot Learning

Learning a similarity function d(imgl, img2) = degree of difference

between images.

If d(imgl, img2) {< T The two images are the same.

>T The two images are the different.
8.2 Siamese Network

Paper : | ]

Goal of Learning

e Parameters of the neural network define an encoding
F(X®) of 128 units.

e Learn parameters so that:
If X®, X are the same person, d(X(i)7 X(j)) is small.
If X x) are different persons, d(X(i)7 X(j)) is large.

d(X®, xW)y = Hf(X(i))

8.3 Triplet Loss

Paper : | ]

Given three input images: an anchor image A, a positive image P
and a negative image IN,

We want

_f(X(j))H2

2

I£(A) = F(P)|3 +a < [[£(A) — F(N)3
(A = F(P)I5 +a— [[f(A) — F(N)]3 <0
We define triplet loss function as:
— F(P)I3 - I1£(A) = F(N)I3 + ,0)

~ FP)I3 - [F(4) — FAV)I3 +a] |
1) (2)

L(A, P,N) = max (Hf(A)

=[Ira)

where,

e The term (1) is the squared distance between the anchor A
and the positive P for a given triplet; you want this to be
small.

e The term (2) is the squared distance between the anchor A
and the negative IN for a given triplet, you want this to be
relatively large. It has a minus sign preceding it because
minimizing the negative of the term is the same as
maximizing that term.

e « is called the margin. It is a hyperparameter that you pick
manually.

Triplet cost function can be defined as

J= Zc A,

@) N@)

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

8.4 Face Verification and Binary Classification

Paper : [ ]
Verification: Input is an image and name/ID. Output whether
the input image is that of the claimed person.

Recognition: Has a database of K persons. Get an input image
and output ID if the image is any of the K persons (or “not
recognized”).

Learning a Similarity Function for Face Verification

x @

x G

128
y= a(Z Wi [F(X D), = XD | +b>

k=1
1)

Term (1) can also be the chi square (x2) formula:

[F(xX O — p(x )]
FXD) + f(XD),,

xX° =

9 Neural Image Style Transfer

References: [ I, [ ]

The goal is to generate an image G from a content image C and a
style image S.

9.1 Total Cost Function
J(G) = aJcontent (C, G) + Bjstyle(s7 G)

Where Jcontent is the content cost and Jsiy1e is the style cost.

To find the generated image G:
e Initiate G randomly

e Use gradient descent to minimize J(G):

B
G=G-,-7(G)

9.2 Content Cost
e Say you use a hidden layer [ to compute content cost.
e Use pre-trained ConvNet. (E.g., VGG network).
o Let all(©) and al¥(G) be the activation of layer [ on the

images. If they are similar then both images have similar
content. The content cost function is:

joontent (07 G)

%Ha[u(m _a[u(G>Hi

OO

1 < 2
=523 > (@9 - alk?)

i=1j=1k=1

9.3 Style Cost
Gram matrix

be an element of an activation al’} of an input image at

layer I at (i, j,k). Then the Gram matriz GE”

Ul (1l

ne' X ne' and the matrix elements can be calculated as :

Let aE]] E

m) has a shape of

[l] [l]

Elg]ram)kk/ Z Zawka”k/

i=1j=1

Gram matrix captures the degree of correlation between a layer [
channels as a measure of the style.

Style Cost Function

[es)

(gram)
for every layer [. Then the style cost

First calculate the gram matrix for the style image G and

BICe))

(gram)

the generated image G
function for a layer [ is

Jsty]e(57 G)= (2[”1[”[”)2 HGElg]Eizl) - Elgliacri)u

o,

= (2 u, [z])2 ZZ <G[lg£ii])”

And the style cost function for all layers:

@ )2

(gram)ij

Jstyle(sv G) = Z A[l] Js[élfle(s’ G)
l



Chapter 4
Sequence Models

1 Recurrent Neural Networks
1.1 Notation

x{: A one-dimensional input vector of a single example at time
step t.
<t) Output label at time step t¢.
Y <t>. Prediction at time step ¢.
a<t>: Hidden state, The activation that is passed to the RNN from
one time step to another.
Tz: Length of input sequence.
Ty: Length of output sequence.
ngz: Number of units in input.
ny: Number of units in output.
m: batch size.
W: Weight matrix.
b: Bias vector.

1.2 Recurrent Neural Networks

RNN Cell (forward)

alt=1)

a® = tanh (Waaa<t_1> + Waxx<t) + ba)

o)

= tanh (Wa [a“*l),x(t)] + ba>

—1)

alt
el <[Waa | Wax] |:

¢ = softlna)(<Wyaa<t> + by)

= softmax(Wy alt 4 by)

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

ym y<2> y<l )
y
a® [ RNN [a®? [RNN [a® _~  a=D | RNN |a)
Cell Cell Cell
T J
*x( x(2 x(Te)
RNN Types
y
x(D

One to many

One to one

a0
x( x(2) x{T)
Many to one
y y2 y{Te)
(0
x( x(2) x(T=)

Many to many

g S, DU B

!

x( x(Te)
Many to many

Loss Function

£ <y<1)7y<t>> =—y®log (y(t)) _ <1 _ y<t>> log (1 _ y(t))

1.3 Language Model and Sequence Generation
P<y<1>7y<2>,...,y<Ty>)

P(Sentence) =

Training

P(y0.y®, L y) =p (1) P (y®
P (v |y, y@ Ly )

XD = (0

P (y<1>) p( @) ‘ y<1>) P (y vy @ y<ry—1>>
e 5 91
al® =0 a0 ,—T_‘ a2 a(Tv—1)
< =0 x(2 = y(l) x(Tv) — y(’l'y—l)

Loss Function
£ (y(t>

t)) — _Zyi 10g“<t>
J= Zg(t) (S’<t>,y<t>>
t

Sampling a Sequence from Trained RNN
5’(1) y<2> \ y(’l‘u)

T T [sample] |samp|e| T
X<1> e 6 <2> x<Tu> = y(Ty_l>

1.4 Gated Recurrent Unit(GRU)

References: [ I, [ ]

Notation

c®: Memory cell state(variable) at time step .

&{. Candidate value for cell state.Contains information from the
current time step that may be stored in the current cell state clt,
Contains values between —1 and 1.

Ffp: Update gate. Used to decide what aspects of the candidate
&® to add to the cell state c{?). It contains values that range
between 0 and 1.

’y<1>) P (y<3> ’y<1>7y<2>)



GRU (Full)
clt=1) — gt=1)
I"fﬁ =0 (Wu {c<t71>,x<t>] + bu>
ri =o (Wr [c<t71>7x<t>] n br)
& = tanh (WC {I"fﬁ ® c<t—1>,x<t>] + bc)
c(t> — a<t> — 1"&” ® E<t> + (1 _ I“fj)> ® c<t—1>
7 = softmax (Wya<t> + by>

1.5 Long Short Term Memory(LSTM)
Paper: | ]
Notation

cht): Forget gate. It contains values that range between 0 and 1.

I‘Sﬁ: Output gate. Decides what gets sent as the prediction
(output) of the time step. It contains values that range between 0
and 1.

a®: Hidden state. Values between —1 and 1.

Calculations
&t — tan h( [ 1>7x<t)] +bc>
70<W [ (t=1) <>] +bu)
P<t> [ (t—1)7x<t>i| +bf)

7 (W
<< [ (t=1) X<t>] +b0)

t) o8t 4 F<t> oclt=1)
alt) = (<,> ® tanh <c< >)

9% = softmax (Wyam + by>

ot =

y<t>
L ===
R S clt)
1 L0
20 I v IEC  v0
el
w.
alt—1-

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

1.6 Bidirectional RNN
9 =g <Wy [5(75)’5@)] + by>

2 /y,;% }?\>
20llgw 20 g® 5 (T (T

1.7 Deep RNNs
all®) — g4 (ng [a[l]<t—1>7a[l—1]<t>] + bgl)

(2

y y

al3l(0) — (g} a3V QQ—P+{g}+ aBI
Wg‘] ba ¥ whl b,

220 > @B {gh] a0 @ Pgh] a2 O > @—Pgh] a2
W b,k WLZ ba? Wil b,

A0 >R 2l RQ—D—{g} alll@ R—D all®
wil b, wlll b, wil p,l1
LW — oy L (2 _ 4012 x(3) = alol®3)

2 Natural Language Processing and
Word Embeddings
2.1 Notation

ny: Vocabulary size.

ne: Embedding size, ne << ny.

0;: One-hot vector for a word 4. Its’ length is n,.

e;: Feature vector (word embedding vector) for a word 4.Its’ length
is ne.

O: One-hot matrix, of size n, X ny.

E: Embedding matrix, of size ne X ny.

2.2 'Word Representation

Reference: Visualizing word embeddings | ]

2.3 Transfer learning and word embeddings
1. Learn word embeddings from a large text corpus. (1 - 100B
words) (Or download pre-trained embedding online.).

2. Transfer embedding to new task with smaller training set.
(eg. 100k words).

3. Optional : continue to fine-tune the word embeddings with
new data.

2.4 Properties of Word Embeddings

Reference : [ ].

Analogies using word vectors

€man — €woman ~ €king — €w

Find a word w that maximizes the similarity function:

arg mjx(Sim(ew » €king — ©man + ewoman))

The similarity function can be one of the following:
e Cosine similarity (more frequently used)

uTV u-v

sim(u,v) = = = cos(0)

lalllivi falllivi

Where 0 is the angle between the two vectors.

e Squared distance:

sim(u,v) = [[u - v|

2.5 Embedding Matrix
FE - Oj = ej
In practice we use a specialized function to look up an embedding
instead of matrix-vector multiplication.
2.6 A Simple Language Model

Reference: [ ]
Given an input sequence of words for an example 7 , with
embeddings. [egi) eg) . egf)]

First, calculate the average of the sequence embeddings:

WO B[ o L @] =L e

n=1

Forward propagation:
2D =wul’ +b

7 = al® = softmax(z(*)

Loss function:

Ny
5(5,(1)7),@)) =3 )log( (z)) — T log( <z>>
k=1
Backpropagation:
—a® _ @)
02(0) Y
z(!) _
ow ©
@
Oz -7
ob

oL oL 0z
oW~ 9z() oW
oL oL 9z
db 9z Hb




2.7 Word2Vec
Reference: | ]
Notation:

t: target word, the word we want to predict.
¢: context word, n words before and/or after the target word.

Word2Vec Model (Skipgram model)

Vocabulary size : n,, embedding size: ne (for Word2Vec

ne = 300).
oc Q ec @ z <SOft—m>aX) y

Where @ is parameter matrix, its size is ne X ng

e. = Fo.

z=0"e,

ez

2221 e®i

¥ = softmax(z) =

T
egtec

_—
E;'Zl efiee

Where 6; is a column vector of the parameter matrix @, 6 is the
parameter vector associated with the output target word t.

The downside of the skipgram model is that the softmax objective
function is expensive to compute.

G = P (te) =

Loss function

Ny

L(Fy)=—>_ yilog(@:) = —y" log(§:)
i=1

2.8 Negative Sampling

Reference: | ]
k: Number of negative examples.
y: Target label. 1 for positive example, 0 for negative example.

Model
P (y = 1|t,C) =0 <0;rec>

On every iteration, choose k different random negative words with
which to train the algorithm on. So the total number of training
examples is k 4+ 1 (including one positive example).

Selecting Negative Examples

Sample according to the empirical frequency of words in your
corpus.

w;)3/4
P () = 1)

D fw)??
j=1

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

2.9 GloVe Word Vectors

Reference: [ ]
Xij: Is the number of times word j occurs in the context of
N~
t

word _ 7 .

~—~

c

It is a count that captures how often do words 7 and j appear close
to each other.
If you define context to be £n words after and before target word,
then X is symmetric (X;; = Xj;)

Model
Ny Ny 2
Minimize > f (X)) (ejej b+ b — log(Xij)>
i=1j=1

(€]
e Term (1), f(Xyj) is a weighted sum.

o f(X;;)=0if X;; =0, so the expression evaluates to zero
(0log(0) = 0).

e 0; and e; are symmetric. They end up with the same
optimization objective.

e Initialize 8., and e, at random for every word, run gradient
descent to optimize them, then take the average of 8., and
e, to calculate the final embedding:

ew + 0y
2

eginal)

2.10 Debiasing Word Embeddings

Word embeddings can reflect gender, ethnicity, age, sexual
orientation and other biases of the text used to train the model, so
they need to be debiased | 1.

Addressing bias in word embeddings:

e Identify the bias direction (gender subspace).

Collect n pairs of embedding vectors that differ by gender
(masculine m and feminine f), subtract them, then average
the result to get the bias vector b:

n

S LB )

=1

e Neutralize: For every word embedding that is not
definitional, project to get rid of bias.

First calculate the bias component ep

ep = projpe = ——

B = ProOJp b b
The debiased embedding vector e is the orthonormal
vector to e it is obtained by zeroing out the component in
the direction of b:

el =e—ep

e Equalize pairs.
For a pair of words wl, w2 that differ by gender:

_ eyl + ew?2
2
p-b
= B2
Hp b b
ph=p—pg
eyl b eyw2 b
ewlg = z-bb ew2p = ﬁ-bb
(corrected) __ 112 €ywlg — MHp
e = 1-— y22 (O]
wlpg | || ”2 | ||(ew1 _ MJ_) _ l"BH
(corrected) __ 12 €w2p — Up
e = 1-—- y2s ©
w2p | || ||2 | ”(ew2 _ l—"L) _ “BH
e = EifrBrected) + H/l
ey = eglt):;rBrected) + ILL

3 Various Sequence to Sequence
Architectures

3.1 Basic Models

Sequence to sequence model

References: | Iy [ ]

Image Captioning

References: [ I [ I, [ ]
(T
img —»%%—»
3.2 Machine Translation
Building a Conditional Language Model
""""" Encoder Network i DecoderNetwork |
y(’lin)i

§a<0>

The model output the conditional probability:
P (y<1>, L ,y<Ty> x ,X(T:C>)
In this model you don’t sample words at random. Instead you find

a sentence y that maximizes the conditional probability.
The most common algorithm to do this is called beam search

10



Beam Search

B: Beam width parameter, the number of possibilities for beam
search to consider at a time.

Normalized log probability objective function (normalized
log likelihood objective):

Tiy“ log P ()7 x) :T%logp <9<1>,...,y<Ty> x)

:Tig 10gﬁl P (y<t> ‘x7§,(1>7 . ,y<t—1>)

T
:% glogP (y<t> ’x, g y(t—1>)

Algorithm 8: Beam Search

Data: An input sequence x, its length is T
Result: A sequence of predictions ¥, its length is T
1 Run the input sentence x through the encoder network.
2 Pick the the top B words from the first output of the
sequence of the decoder network (§¢1?) with the highest
probabilities as the first predicted word in the sequence.
s for sentence lengths Ty starting from 2:
keep track of the top B sentences that maximize the
normalized log probability objective function
(normalized log likelihood objective).

T
1 Y
—E log P “<t>‘ 7A<1>,...»9<t 1
arg max @ 2 og <y X,y )

5 Repeat and increment T} until encountering an end of
sentence character (EOS) for all B sentences.

=]

Finally, pick up one sentence from B sentences with the
highest value of normalized log likelihood objective as the
final translation output.

Notes :

e To avoid numerical underflow(numerical rounding errors)
that results of multiplying many small probability numbers,
we maximize the log of probabilities instead.

1
. Ta is a length normalization term. To prevent objective

function from preferring short sentences over long sentences.
Reduces the penalty for outputting longer translations.

e « can range between 0 (no normalization) and 1 (full
normalization), in practice it is commonly set to 0.7

e Unlike exact search algorithms, beam search runs faster but
it is not guaranteed to find the exact maximum for

1
a a — lo, P(“’ )
rgmyx(T;é g yix

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

e The larger B , the more possibilities and better results, but
the algorithm becomes slower, more computationally
expensive and has more memory requirements.

e For production systems B = 10, for research B is chosen to
be up to 100.

Error Analysis in Beam Search

y*: Translation by a human (reference sentence).
Example:
Human: Jane visits Africa in September (y™).

Algorithm: Jane visited Africa last September. (¥)

e Case 1: P(y*|x) > P(y|x)
Beam search chose . But y™* attains higher P(y|x).
Conclusion: Beam search is at fault.

o Case 2: P(y*|x) < P(y|x)

y* is better translation than . But RNN predicted
P(y*|x) < P(31x).

Conclusion: RNN model is at fault.

3.3 BLEU Score
[ |

BLEU: bilingual evaluation understudy.

Modified n-gram precision (pn) for sentences:

E countjip (n-gram)
n-gramey

Z count(n-gram)

n-gramey

Pn =

Where countgji, = min(count,Max_ref_count). In other words, one
truncates each word’s count, if necessary, to not exceed the largest
count observed in any single reference for that word.

Combined BLEU score for n-grams up to length N:

N
1
BLEU = BP - exp <N Z logpn>
n=1
Where BP: Brevity penalty.

1 ife>r
BP =
{eur/c) ife<r

Where c is the length of the candidate translation(machine
translation) and r is the effective reference corpus length(reference
output length).

3.4 Attention Model

References: [ L[ ]

Properties of The Model

e Pre-attention and Post-attention RNNs on both sides of the
attention mechanism

— There are two separate RNNs in this model (see
figure): pre-attention and post-attention RNNs.

— Pre-attention Bi-RNN is the one at the bottom of the
picture is a Bi-directional RNN and comes before the
attention mechanism.

* The attention mechanism is shown in the middle
of the left-hand diagram.
* The pre-attention Bi-RNN goes through 7, time
steps
— Post-attention RNN: at the top of the diagram comes
after the attention mechanism.
The post-attention RNN goes through Ty time steps.

— The post-attention RNN passes the hidden state s(®
from one time step to the next.

e FEach time step uses predictions from the previous time step.

Notation
2 (") . hidden state of the forward-direction, pre-attention RNN.

G (") . hidden state of the backward-direction, pre-attention RNN.
a) . the concatenation of the activations of both the
forward-direction and backward-directions of the pre-attention
Bi-RNN.

e: is called the “energies” variable.

s{*=1: is the hidden state of the post-attention RNN.

a®”: is the hidden state of the pre-attention RNN.

). The attention variable, amount of “attention” y<t> should
’
pay to alt),

11



The Model

Figure 4.1: Attention Model

~<1) y<2

%

o _ & Post-attention s |Post- anenllon
s =0 RNN

(D (2 A
Y

§{Tv) = (EOS)

¥

Attention Attention Attention

e 2@ ) 2 (Tx)
m_ |2 (2 _ |2 3 _ (& alTs)
0= [fu] =[5 0= 5] - [&e]

! f ! !

=) _ & (Tutl) _ §
A% =0 [pre-attention Pre-attention Pre-attention Pre-attention " =0
Bi-RNN Bi-RNN Bi-RNN Bi-RNN

o i i 3

Figure 4.2: one “attention” step

T
¢ =3 altt)al)

t'=1

M
Qb at2) QB T2)
[ Softmax 111 |
e<u>T €<t.2>1 €<1.T..->T
[ FCNN ] [ _FCNN_| -[_FCNN_]
st-01t §(t=1) S(t-1)
al a® AT
[Concatenate| [Concatenate] - [Concatenate]

=1

PR SO NS
a

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

Algorithm 9: Attention Model

Data: An input sequence x, its length is T

Result: A sequence of predictions ¥, its length is T,

/* Run the input x through the pre-attention Bi-RNN
to get [l af? . alTe)] &/

for input time steps t’ =1, ..., Ty:

o

2
= (t")
" — [—><t’> <t’>] -2
a a Y S
/* Pass the sequence of a<t/> to the post-attention
RNN to get the predictions y %/

3 for output time stepst = 1, ..., Ty:
’ ’

a Compute “energies” et s=1) and alt’? are fed

into a simple neural network, which learns the
’
function to output et
e(t:t’)
s = relu (w[ 1T - tanh (We[ll [s(t_l),a“l)] + be[ll) + b[f]
6 Calculate the attention variable altt?
<t,t’>)
St exp (e
Ty
> e (<)
t/=1
7 Calculate the context vector ¢
TI 7 !’
et — Z altt) 5"
t/'=1
8 Pass the computed context vector c{® to the
post-attention RNN and calculate the hidden state
t
s
S = tanh (Wi [s01) e,y 1] + b,)

9 Run the output of the post-attention RNN through a
dense layer with softmax activation to generate a
prediction y<t>

7 = softmax (Wysm + by)

3.5 Speech Recognition

Reference: [Gra-+00]

© 2020 Fady Morris Ebeid
https://github.com/FadyMorris/formula-sheets
DOI: 10.5281/zenodo.3987344

12


https://github.com/FadyMorris/formula-sheets
https://dx.doi.org/10.5281/zenodo.3987344

References

[BCB15]

[Ben+03]

[Bol+16]

[Cho+14a)

[Cho+14b]

[Chu+14]

[GEB15)

[Gra+06]

[He+15]

[Hin12]

Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: 3rd
International Conference on Learning
Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2015. arXiv: 1409.0473.

Yoshua Bengio et al. “A Neural Probabilistic
Language Model”. In: Journal Of Machine
Learning Research 3 (Mar. 2003), pp. 1137-1155.
URL: http://www. jmlr.org/papers/volume3/
bengio03a/bengio03a.pdf.

Tolga Bolukbasi et al. “Man is to Computer
Programmer as Woman is to Homemaker?
Debiasing Word Embeddings”. In: CoRR
abs/1607.06520 (July 2016). arXiv: 1607.06520.

Kyunghyun Cho et al. “Learning Phrase
Representations using RNN Encoder-Decoder for
Statistical Machine Translation”. In: CoRR
abs/1406.1078 (2014). arXiv: 1406.1078.

Kyunghyun Cho et al. On the Properties of Neural
Machine Translation: Encoder-Decoder
Approaches. 2014. arXiv: 1409.1259 [cs.CL].

Junyoung Chung et al. Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence
Modeling. 2014. arXiv: 1412.3555 [cs.NE].

Leon A. Gatys, Alexander S. Ecker, and
Matthias Bethge. A Neural Algorithm of Artistic
Style. 2015. arXiv: 1508.06576 [cs.CV].

Alex Graves et al. “Connectionist Temporal
Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks”. In:
Proceedings of the 23rd International Conference
on Machine Learning. ICML ’06. Pittsburgh,
Pennsylvania, USA: ACM, 2006, pp. 369-376. ISBN:

1-59593-383-2. pOI: 10.1145/1143844.1143891. URL:

https:
//www.cs.toronto.edu/~graves/icml_2006.pdf.

Kaiming He et al. Deep Residual Learning for
Image Recognition. 2015. arXiv: 1512.03385
[cs.CV].

Geoffrey Hinton. Neural Networks for Machine
Learning - Lecture 6a - Overview of mini-batch
gradient descent. Lecture 6 of the online course
“Neural Networks for Machine Learning” on
Coursera. 2012. URL:
https://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf.

[HS97]

[KB14]

[KL15]

[Mao+14]

[MHOS]

[Mik+13a]

[Mik+13b)]

[MYZ13]

[Pap+02]

Deep Learning Specialization - Formula Sheet - by Fady Morris Ebeid (2020)

Sepp Hochreiter and Jiirgen Schmidhuber. “Long
Short-Term Memory”. In: Neural Computation 9.8
(1997), pp. 1735-1780. DOL:
10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. 2014. arXiv:
1412.6980 [cs.LG].

Andrej Karpathy and Fei-Fei Li. “Deep
Visual-Semantic Alignments for Generating Image
Descriptions”. In: (2015). URL: https://cs.
stanford.edu/people/karpathy/deepimagesent/.

Junhua Mao et al. “Deep Captioning with
Multimodal Recurrent Neural Networks (m-RNN)”.
In: (Dec. 2014). URL: http://wuw.cs. jhu.edu/
~ayuille/Pubs15/JunhuaMaoDeepICLR2015.pdf.

Laurens van der Maaten and Geoffrey Hinton.
“Viualizing data using t-SNE”. In: Journal of
Machine Learning Research 9 (Nov. 2008),

pp. 2579-2605. URL: http://www. jmlr.org/papers/
v9/vandermaaten08a.html.

Tomas Mikolov et al. “Distributed Representations
of Words and Phrases and their Compositionality”.
In: Advances in Neural Information Processing
Systems 26. Ed. by C. J. C. Burges et al. Vol. 26.
Curran Associates, Inc., Oct. 2013, pp. 3111-3119.
arXiv: 1310.4546 [cs.CL].

Tomas Mikolov et al. “Efficient Estimation of Word
Representations in Vector Space”. In: Proceedings
of Workshop at ICLR (Jan. 2013). Ed. by

Yoshua Bengio and Yann LeCun. arXiv: 1301.3781.
URL: http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
“Linguistic Regularities in Continuous Space Word
Representations”. In: Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia:
Association for Computational Linguistics, June
2013, pp. 746-751. URL:
https://www.aclweb.org/anthology/N13-1090.

Kishore Papineni et al. “Bleu: a Method for
Automatic Evaluation of Machine Translation”. In:
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics.
Philadelphia, Pennsylvania, USA: Association for
Computational Linguistics, July 2002, pp. 311-318.
DOI: 10.3115/1073083.1073135. URL:
https://www.aclweb.org/anthology/P02-1040.

[PSM14]

[Red+15]

[Ser+13]

[SKP15]

[SVL14]

[Tai+14]

[Vin4-14]

[Xu+15]

[ZF13)

Jeffrey Pennington, Richard Socher, and
Christopher D. Manning. “GloVe: Global Vectors
for Word Representation”. In: Empirical Methods
in Natural Language Processing (EMNLP). Vol. 14.
Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1532—1543. DOTI:
10.3115/v1/D14-1162. URL:
http://www.aclweb.org/anthology/D14-1162.

Joseph Redmon et al. You Only Look Once:
Unified, Real-Time Object Detection. 2015. arXiv:
1506.02640 [cs.CV].

Pierre Sermanet et al. QverFeat: Integrated
Recognition, Localization and Detection using
Convolutional Networks. 2013. arXiv: 1312.6229
[cs.cCV].

Florian Schroff, Dmitry Kalenichenko, and

James Philbin. “FaceNet: A unified embedding for
face recognition and clustering”. In: 2015 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2015). DOI:
10.1109/cvpr.2015.7298682. arXiv: 1503.03832.
URL:
http://dx.doi.org/10.1109/CVPR.2015.7298682.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
“Sequence to Sequence Learning with Neural
Networks”. In: Advances in Neural Information
Processing Systems 27. Ed. by Z. Ghahramani

et al. Curran Associates, Inc., 2014, pp. 3104-3112.
URL: http://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-neural-
networks.pdf.

Y. Taigman et al. “DeepFace: Closing the Gap to
Human-Level Performance in Face Verification”. In:
2014 IEEE Conference on Computer Vision and
Pattern Recognition. 2014, pp. 1701-1708. URL:
https://www.cs.toronto.edu/~ranzato/
publications/taigman_cvpril4.pdf.

Oriol Vinyals et al. “Show and Tell: A Neural
Image Caption Generator”. In: CoRR
abs/1411.4555 (2014). arXiv: 1411.4555.

Kelvin Xu et al. “Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention”.
In: CoRR abs/1502.03044 (2015). arXiv:
1502.03044.

Matthew D Zeiler and Rob Fergus. Visualizing and
Understanding Convolutional Networks. 2013.
arXiv: 1311.2901 [cs.CV].

13


https://arxiv.org/abs/1409.0473
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/abs/1607.06520
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1508.06576
https://doi.org/10.1145/1143844.1143891
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.6980
https://cs.stanford.edu/people/karpathy/deepimagesent/
https://cs.stanford.edu/people/karpathy/deepimagesent/
http://www.cs.jhu.edu/~ayuille/Pubs15/JunhuaMaoDeepICLR2015.pdf
http://www.cs.jhu.edu/~ayuille/Pubs15/JunhuaMaoDeepICLR2015.pdf
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://www.aclweb.org/anthology/N13-1090
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040
https://doi.org/10.3115/v1/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1312.6229
https://arxiv.org/abs/1312.6229
https://doi.org/10.1109/cvpr.2015.7298682
https://arxiv.org/abs/1503.03832
http://dx.doi.org/10.1109/CVPR.2015.7298682
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
https://arxiv.org/abs/1411.4555
https://arxiv.org/abs/1502.03044
https://arxiv.org/abs/1311.2901

	Neural Networks and Deep Learning
	Standard Notation for Deep Learning
	General Comments
	Sizes
	Objects

	Logistic Regression
	Neural Networks
	Feed-Forward Propagation
	Backpropagation
	Gradient Descent


	Improving Deep Neural Networks: Hyperparameter Tuning
	Setting up Machine Learning Application
	Train/Dev/Test Sets

	Regularization
	Logistic Regression
	Neural Network
	Dropout

	Setting Up Optimization Problem
	Normalizing Training Sets
	Weight Initialization for Deep Networks
	Numerical Approximation of Gradients

	Optimization Algorithms
	Mini-Batch Gradient Descent
	Exponentially Weighted Averages
	Gradient Descent with Momentum
	RMSprop
	Adam Optimization Algorithm
	Hyperparameter Choice
	Learning Rate Decay

	Hyperparameter Tuning
	Appropriate Scale for Hyperparameters
	Hyperparameters for exponentially weighted averages

	Batch Normalization
	Implementing Batch Norm
	Batch Norm as Regularization
	Batch Norm at Test Time

	Multi-Class Classification
	Softmax Layer
	Loss Function


	Convolutional Neural Networks
	Filters
	Notation
	Padding
	One Layer of CNN
	Pooling Layer
	Residual Networks
	YOLO Object Detection
	Notation
	The Algorithm

	Face Recognition
	One-Shot Learning
	Siamese Network
	Triplet Loss
	Face Verification and Binary Classification

	Neural Image Style Transfer
	Total Cost Function
	Content Cost
	Style Cost


	Sequence Models
	Recurrent Neural Networks
	Notation
	Recurrent Neural Networks
	Language Model and Sequence Generation
	Gated Recurrent Unit(GRU)
	Long Short Term Memory(LSTM)
	Bidirectional RNN
	Deep RNNs

	Natural Language Processing and Word Embeddings
	Notation
	Word Representation
	Transfer learning and word embeddings
	Properties of Word Embeddings
	Embedding Matrix
	A Simple Language Model
	Word2Vec
	Negative Sampling
	GloVe Word Vectors
	Debiasing Word Embeddings

	Various Sequence to Sequence Architectures
	Basic Models
	Machine Translation
	BLEU Score
	Attention Model
	Speech Recognition


	References

