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Abstract—In the emerging 5G architecture, the Cloud-Radio
Access Network (Cloud-RAN) offers the possibility to dynam-
ically configure virtual resources and network functionalities
very close to end-users, while jointly considering bandwidth,
computing, latency, and memory capabilities requested by
heterogeneous applications, the channel quality experienced
by end-users, mobility, and any kind of system constraints.
By capitalizing on recent scientific results and standardization
activities on 5G, this short paper presents a preliminary design
of an ETSI-NFV compliant architecture willing to support
the implementation of advanced protocols, algorithms, and
methodologies for the optimal management of the 5G Cloud-
RAN. Its components and functionalities have been sketched by
harmoniously integrating Software-Defined Networking (SDN)
facilities, Multi-access Edge Computing (MEC), and deep learn-
ing. Herein, spatio-temporal users’ dynamics are collected by
SDN controllers and predicted by a high-level orchestrator
through a Convolutional Long Short-Term Memory scheme.
Then, the outcomes of the prediction process are adopted to
dynamically configure the Cloud-RAN (i.e., by using any kind
of customizable algorithm). Some of the capabilities of the
proposed approach are preliminarily evaluated by considering
the autonomous driving use case and real mobility traces.
Moreover, the paper concludes by reporting an overview of
future directions of this research activity.

Index Terms—5G Cloud-RAN, Users’ dynamics, ConvLSTM

I. INTRODUCTION

With the explosive growth of communication traffic and
the arrival of the fifth generation (5G) of mobile broadband
systems, traffic and mobility prediction are needed for an
effective planning and usage of network resources [1], [2]. In
this context, deep learning could be properly tailored to antic-
ipate traffic behaviors and optimize the deployment of virtual
resources and functionalities very close to end-users (i.e., at
the edge of the network), while offering concrete answers to
the deployment of flexible and advanced applications asking
for bandwidth, computing, latency, and memory capabilities
never seen before [3], [4].

The current scientific literature generally investigates traffic
forecasting and mobility prediction separately. The prediction
of the mobile traffic load has been achieved through Con-
volutional Neural Networks (CNNs) [5], Long Short-Term
Memorys (LSTMs) [6]–[8], or a combination of them [9],
[10]. Mobility prediction is achieved through Markov Chains
[11], Markov Decision Processes [12], Hidden Markov Mod-
els [13], Bayesian Networks [14], Neural Networks [3], [15],

[16], or a combination of Neural Networks and Bayesian
Networks [17].

Differently from the current state of the art, this short
paper jointly addresses the two aforementioned problems
and conceives a network architecture willing to optimally
manage the 5G Cloud-Radio Access Network (Cloud-RAN)
through deep learning [18]. The high variability and het-
erogeneity of components and functionalities that compose
the conceived framework inevitably make the design of a
suitable deep learning algorithm a very challenging task to
accomplish. Therefore, an original methodology leverages the
integration of Software-Defined Networking (SDN) facilities,
Multi-access Edge Computing (MEC), and deep learning
is sketched in support of a preliminary resource planning
through the prediction of spatio-temporal users’ dynamics.
It is important to note that at the time of writing, and to
the best of our knowledge, a first attempt in this direction is
presented in [19]. Here, a multivariate LSTM is developed
for predicting the workload in MEC entities, by considering
the impact of user mobility. This short paper significantly
advances the current state of the art, including [19], because:
i) it frames the overall proposal within the standardized ETSI-
NFV architecture, ii) it proposes a new methodology for the
spatio-temporal prediction of users’ dynamics (which differs
from the one adopted in [19]), and iii) it provides a very
preliminary discussion on the usage of prediction outcomes
in a realistic use case.

The remainder of the short paper is as follows. Sec-
tion II illustrates the proposed architecture and provides some
technical details on the adopted deep learning approach.
Section III presents the preliminary investigation, including
the processed data and the early results. Finally, Section IV
concludes the paper and draws future research activities.

II. THE PROPOSED ARCHITECTURE

The network architecture presented herein wants to natively
support a wide range of services, including autonomous
driving, augmented reality, virtual reality, and drones (just
to name a few), that have massive bandwidth and latency
constraints. In line with 5G specifications, gNBs provide
wireless connectivity to mobile users through heterogeneous
technical components at the radio interface (this concept
is illustrated in Fig. 1 by means of beams with different
colors) [20]. A number of MEC servers are connected to
gNBs and expose computing resources to mobile users,
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Fig. 1. The proposed architecture.

depending on the service they use [21]. Also in this case, the
colored blocks close to MEC servers in Fig. 1 highlight the
heterogeneity of resources allocated for different applications.
All the resources available in the Cloud-RAN are monitored,
configured, and orchestrated according to the ETSI-NFV
architecture [18]. Specifically, gNBs and MEC servers are
connected to SDN controllers. They locally control users’ mo-
bility and monitor network resources requested by the mobile
users. The NFV Orchestrator (NFVO) optimally orchestrates
network services and resources on the Cloud-RAN, based
on the prediction of spatio-temporal users’ dynamics, while
satisfying heterogeneous traffic demands [21]. Note that radio
and MEC resources can be dynamically allocated to a group
of services, according to the network slice paradigm [22].

The main functionalities covered by the proposed archi-
tecture are introduced below. Only a high-level description
is presented and their complete design is delayed for future
research activities.

A. Monitoring of users’ mobility and resource usage

Each SDN controller implements monitoring functionali-
ties and retrieves spatio-temporal users’ dynamics, including
mobility patterns and bandwidth utilization. The interaction
between SDN controller and the other entities of the network
is implemented through conventional communication control
protocols (i.e., OpenFlow, RestConf, etc.) [23]. However, the
structure of provided data (the YANG model, for instance)
and the periodicity of that interaction remain an open issue
and must be properly defined.

B. Recognition of user mobility patterns

The key methodology envisaged in this contribution as-
sumes to predict the spatio-temporal users’ dynamics through
deep learning. In fact, spatio-temporal users’ dynamics cap-
tured by SDN controllers are collected by the NFVO, which
can consequently perform mobility prediction. Specifically,
the Convolutional LSTM (ConvLSTM) architecture, which has
been initially introduced for precipitation nowcasting [24]
and recently investigated also for traffic forecasting [25],
is adopted for this purpose. The ConvLSTM is a neural
network based on LSTM [26], with the convolution operator

as input, forget, and output gates instead of the element-
wise or Hadamard product [24]. Therefore, it can extract
temporal and spatial correlations of data through LSTM
memory cells and the convolutional operation, respectively
[10], [27]. Going more into detail, this work conceives a
learning architecture embracing two 2-dimensional ConvL-
STM layers, after each one a Batch Normalization layer is
used to accelerate deep network training [28]. At the end,
the prediction is performed through a fully-connected layer
with the Rectified Linear Unit (ReLU) activation function
[10]. The predictor is configured in order to minimize the
Mean Square Error (MSE) loss function. The distribution of
users among cells and the resources they use at both radio
interface and Cloud-RAN (also on the network slice bases)
are observed for a time interval T . Then, the ConvLSTM is
used to predict these details in the future time instants.

The dimension of cells, the observation slot, and the dura-
tion of T are relevant parameters for future research activities.
Moreover, the robustness of the prediction algorithm to deal
with uncertainty and measurement errors has to be considered
in the design and evaluated. Another important aspect is
the algorithm complexity together with the availability of
training data. It is recommended not to send a huge amount
of data through wireless links and avoid congestions. In this
context, distributed learning solutions must be studied to
share knowledge among the different MEC servers.

C. Towards an optimal resource management

The outcomes of the prediction process are adopted to
dynamically configure the 5G Cloud-RAN. In this case, user
mobility patterns may be used to aid optimization algorithms
to allocate radio resources among network slices, initiate or
configure MEC resources based on users’ demands [21]. For
example, NFVO may forecast next user locations and take full
advantage of good future conditions (such as getting closer to
a gNB or entering a less loaded MEC server) or mitigate the
impact of negative events (e.g., entering a tunnel). A careful
study on the impact of prediction error on the optimization
problem needs further investigations. It might be potentially
more harmful to use a wrong prediction than not using
prediction at all. A good accuracy can usually be obtained
for short prediction horizons, which, however, should be of
a correct length to make the optimization algorithms benefit
from it. Therefore, a good balance between prediction horizon
and accuracy must be found.

III. PRELIMINARY INVESTIGATION

The preliminary results discussed in this position paper
refer to the prediction functionality presented in Section II-B.
The autonomous driving use case is considered as an example
and the distribution of mobile users in the spatio-temporal
domain is given by realistic mobility traces.

A. Dataset

This short paper considers the dataset presented in [29],
which reports the movements of 316 taxi cabs in the center
of Rome, from 1 February 2014 to 2 March 2014, with a
granularity of about 15s. Fig. 2 shows an example of the taxi
distribution at 1:00 pm and 1:59 pm. The considered geo-
graphical area of around 110km2 is bounded by the coordi-
nates pairs (41.793363, 12.372258) (41.991896, 12.616472).
It has been divided using 11 × 10 square cells, so that each



grid cell covers a square area of 1km × 1km. Therefore,
the training dataset has been conveniently pre-processed to
be managed by the adopted deep learning architecture. The
traces are used to generate a temporal sequence, with a time
granularity of 1s, of matrices, whose elements represent the
number of taxi in one of the 110 square cells.

(a) (b)

Fig. 2. Example of taxi distribution at (a) 1:00 pm and (b) 1:59 pm in Rome.

B. Evaluation Setup

The conceived architecture has been implemented in Keras,
a high-level neural networks API written in Python, running
on top of TensorFlow [30]. The observation window T
of the spatio-temporal dynamics is set to 20s. The Adam
optimization, with a learning rate equal to 0.001, is used
to iteratively update the network weights. The other train-
ing hyperparameters, that have been chosen for the scheme
implementation, are set as follows: number of filters = 200,
kernel size = 3× 3, number of epochs = 30, and batch size =
64. To preliminary evaluate the mobility prediction, we select
the daily time slot from 1:00 pm to 1:59 pm as an example
of hour with peak taxi activity.

C. Mobility prediction

To evaluate the prediction performance of the conceived
approach, we select two significant cells (i.e. cell ID 45
and 55) as examples to plot the observed and the predicted
trends over time of spatio-temporal users’ dynamics. Fig. 3
shows the observed and the predicted trends over time of
spatio-temporal users’ dynamics for two significant cells. In

0 600 1200 1800 2400 3000 3600
0

10

20

30

40

N
. 

o
f 

u
se

rs
 [

#
]

Ground Truth

Prediction

0 600 1200 1800 2400 3000 3600

t [s]

0

10

20

30

40

N
. 

o
f 

u
se

rs
 [

#
]

Cell ID 45

Cell ID 55

Fig. 3. Prediction of the number of users for example two cells.

particular, the blue solid line represents the ground truth of
the number of users, while the red dashed line describes
the predicted number of users, that are rounded up to the
nearest integer. It can be noted that the two trends are almost
overlapped. Fig. 4 reports the Mean Absolute Error (MAE)

values for the different cell IDs. Generally, MAE is lower
than 0.6; only a few cells present peaks equal to 0.8.
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D. Resource Planning

Services for the autonomous vehicles require 16 GB Syn-
chronous Dynamic Random Access Memory (SDRAM) and
100 Mbps as bandwidth [18], [31]. Knowing the spatio-
temporal users’ dynamics and the minimum requirements of
autonomous vehicles, we can preliminary estimate the overall
radio and computing resources to be allocated in each cell,
according to the following relation: R̂ = N̂j · r, where N̂j

is the predicted number of users in the j-th cell and r is
the resource requirement in the Cloud-RAN. Fig. 5 shows
the actual and the predicted resources in the example two
cells, i.e. cell ID 45 and 55. The predicted resources’ trend
follows the number of users in the cell due to the basic
multiplicative estimation proposed in this short paper. As
previously anticipated, the actual and the predicted trends
are almost overlapped. Therefore, the conceived architecture
has good prediction performance of spatio-temporal users’
dynamics and resource requests.

IV. CONCLUSIONS

This work has preliminarily presented the design of an
ETSI-NFV compliant architecture that can optimally manage
the 5G Cloud-RAN. Its components and functionalities have
been sketched, with a focus on mobility prediction. In fact,
spatio-temporal users’ dynamics have been predicted through
a Convolutional Long Short-Term Memory scheme by con-
sidering one-hour mobility traces. Then, the outcomes of the
prediction process have been used to quantify the resources
to allocate in the Cloud-RAN for the autonomous driving use
case. Further research activities will investigate the interaction
between Software-Defined Networking controllers and the
other entities of the network. Moreover, we will analyze the
prediction approach with different configuration parameters
and distributed learning solutions. Then, mobility prediction,
with a trade-off between prediction horizon and accuracy,
could aid optimization algorithms to dynamically configure
the 5G Cloud-RAN.
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