
Maximum Likelihood Estimation: Numerical Solution for Bernoulli
Distribution1

The Bernoulli distribution has the probability mass function:

f (y|θ) = θy(1− θ)1−y (1)

where: y = {0, 1} and θ ∈ [0, 1].

Maximum Likelihood Estimation
Let y1, . . . , yn, denote the data. Assume, ∀i : yi independente random variables, share the same

parameter from a Bernoulli distribution described in (1).

f (yi|θ) = θyi(1− θ)1−yi (2)

then, their join probability distribution is:

f (y1, . . . , yn|θ) =
n∏
i=1

f (yi|θ)

=
n∏
i=1

θyi(1− θ)1−yi (3)

The likelihood function is:

L (θ|y1, . . . , yn) = f (y1, . . . , yn|θ) (4)

The log-likelihood function is:

` (θ|y1, . . . , yn) = log (L (θ|y1, . . . , yn))

= log
n∏
i=1

θyi(1− θ)1−yi

=
n∑
i=1

log
(
θyi(1− θ)1−yi

)
=

n∑
i=1

(yi log θ + (1− yi) log (1− θ)) (5)

The maximum likelihood estimator (MLE), denoted by θ̂, is such that:

θ̂ = argmax {` (θ|y1, . . . , yn)} (6)
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To maximize the log-likelihood function (5), requires the derivative with respect to θ. The resulted
function is called the Score function, denoted by U (θ|y1, . . . , yn).

U (θ|y1, . . . , yn) =
∂` (θ|y1, . . . , yn)

∂θ

=
n∑
i=1

(
yi
1

θ
+ (1− yi)

1

1− θ
(−1)

)
=

1

θ (1− θ)

n∑
i=1

yi −
n

1− θ
(7)

Then, the MLE θ̂ is the solution of:

U
(
θ = θ̂|y1, . . . , yn, λ

)
= 0 (8)

Maximum Likelihood Estimation: Newton-Raphson Method

Just for notation, let write equation (8) as:

U (θ∗) = 0 (9)

The equation (9), generally, is a nonlinear equation, that can be aproximate by Taylor Series:

U (θ∗) ≈ U
(
θ(t)
)
+ U ′

(
θ(t)
) (
θ∗ − θ(t)

)
(10)

Then, using (10) into (9), and solving for θ∗:

U
(
θ(t)
)
+ U ′

(
θ(t)
) (
θ∗ − θ(t)

)
= 0

θ∗ = θ(t) −
U
(
θ(t)
)

U ′ (θ(t))
(11)

where U ′ is the derivative of the Score function (7) respect of θ.

U ′ (θ|y1, . . . , yn, λ) =
∂U (θ|y1, . . . , yn, λ)

∂θ

=
2θ − 1

θ2(1− θ)2
n∑
i=1

yi −
n

(1− θ)2
(12)

Then, with the Newton-Raphson method: starting with an initial guess θ(1) successive approxima-
tions are obtained using (13), until the iterative process converges.

θ(t+1) = θ(t) −
U
(
θ(t)
)

U ′ (θ(t))
(13)

In order to example the use of Newton-Rapshon method, we use the data of total July rainfall (in
millimeters) at Quilpie, Australia stored into the data set “quilpie”, where the variable y is a dicotomic
variable2.

2This data was taken from package: GLMsData.
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# load data

data("quilpie")

Y <- quilpie$y

We load the code developed into our R function MLE_NR_Bernoulli, stored in the R object with
the same name.

# load the function to solve by Newton-Raphson

load("MLE_NR_Bernoulli.RData")

The function MLE_NR_Bernoulli takes θ = 0.5 as a first guess for the iterative process and, besides
some other default parameters that can be modified, only needs the data vector Y.

# MLE by Newton-Raphson (NR) for Bernoulli distribution

MLE_NR_Bernoulli(Y)

## ML Estimator Likelihood Log-Likelihood

## [1,] "0.5000000" "3.3881317890172e-21" "-47.1340082780763"

## [2,] "0.5147059" "3.48927745358427e-21" "-47.1045922714519"

## [3,] "0.5147059" "3.48927745358427e-21" "-47.1045922714519"

Then, the MLE by Newton-Raphson method: θ̂ = 0.5147059.

Maximum Likelihood Estimation: Fisher-Scoring Method

A distribution belongs to the exponential family if it can be written in the form:

f (y|θ) = exp
{
a (y) b (θ)− c (θ)

φ
+ d (y, φ)

}
(14)

Since (1) can be written as a member of exponential family as in (14):

f (y|θ, λ) = exp
{

log
(
θy(1− θ)1−y

)}
= exp

{
y log

(
θ

1− θ

)
− (−log (1− θ))

}
(15)

where, a (y) = y, b (θ) = log
(

θ
1−θ

)
, c (θ) = −log (1− θ), φ = 1, and d (y, φ) = 0.

Then, since the Bernoulli distribution belongs to the exponential family, it can be show that the
variance of U , denoted by J , is:

J = Var {U} = −E {U ′} (16)

where:

E {U ′} = −1

φ

(
b′′ (θ)

c′ (θ)

b′ (θ)
− c′′ (θ)

)
(17)
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For MLE, it is common to approximate U ′ by its expected value E {U ′}. In this case:

J = −E {U ′}
= E {−U ′}

= E
{
−

n∑
i=1

U ′i

}

=
n∑
i=1

−E {U ′i}

=
n∑
i=1

−1

φ

(
b′′ (θ)

c′ (θ)

b′ (θ)
− c′′ (θ)

)
(18)

where, using (1), the previous derivaties:

b′ (θ) =
1

θ (1− θ)

b′′ (θ) =
2θ − 1

θ2(1− θ)2

c′ (θ) =
1

1− θ

c′′ (θ) =
1

(1− θ)2

1

φ
= 1

Then, replacing them into (18):

J =
n∑
i=1

−

{
2θ − 1

θ2(1− θ)2
1

1−θ
1

θ(1−θ)
− 1

(1− θ)2

}

=
n∑
i=1

1

θ (1− θ)

=
n

θ (1− θ)
(19)

Finally:

J = −E {U ′} = n

θ (1− θ)
−J = E {U ′} = n

θ (1− θ)
(20)

Then, approximating U ′ by its expected value E {U ′}, the equation (13) results into:

θ(t+1) = θ(t) +
U
(
θ(t)
)

J (θ(t))
(21)

In order to example the use of Fisher-Scoring method, we use the same data used in the Newton-
Rapshon method. We load the code developed into our R function MLE_FS_Bernoulli, stored in the
R object with the same name.
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# load the function to solve by Fisher-Scoring

load("MLE_FS_Bernoulli.RData")

The function MLE_FS_Bernoulli takes θ = 0.5 as a first guess for the iterative process and, besides
some other default parameters that can be modified, only needs the data vector Y.

# MLE by Fisher-Scoring (FS) for Bernoulli distribution

MLE_FS_Bernoulli(Y)

## ML Estimator Likelihood Log-Likelihood

## [1,] "0.5000000" "3.3881317890172e-21" "-47.1340082780763"

## [2,] "0.5147059" "3.48927745358427e-21" "-47.1045922714519"

## [3,] "0.5147059" "3.48927745358427e-21" "-47.1045922714519"

Then, the MLE by Fisher-Scoring method: θ̂ = 0.5147059.

In summary, the same estimate for the MLE is achieved by both approaches: the Newton-Raphson
and the Fisher-Scoring method.

Naive Approach

The main idea behind the Maximum Likelihood (ML) method is to choose those estimates for the
unknown parameters that maximize the join probability of our observed data (our sample). Keeping in
mind this idea, if we want to get the MLE and avoiding to implement a numerical solution, a naive
approach is to set a large range of possible values for unknown parameters, evaluate the log-likelihood
function (also, the likelihood function) at each point and the point for which the log-likelihood function
(also, the likelihood function) reaches its maximum value, will be our MLE looking for.

We set a set of values por the parameter, from θ̂ = 0.01 to θ̂ = 0.99, spaced by 0.005; and evaluate
(4) and (5) at each point from the set of values.

# set a large range of values for the parameter

theta <- seq(0.01, 0.99, 0.005)

tabla <- matrix(c(NA,NA,NA), nrow = length(theta), ncol = 3)

tabla[,1] <- theta

# evaluate the likelihood and the log-likelihood at each point

for (i in 1:length(theta)){
tabla[i,2] <- prod(dbinom(Y, size = 1, prob = theta[i], log = FALSE))

tabla[i,3] <- sum(dbinom(Y, size = 1, prob = theta[i], log = TRUE))

}
colnames(tabla) <- c("theta", "Likelihood", "Log-Likelihood")

df_tabla <- as.data.frame(tabla)

Then, the plot of likelihood function evaluated at each point:

5



0.0 0.2 0.4 0.6 0.8 1.0

0.0e+00

5.0e−22

1.0e−21

1.5e−21

2.0e−21

2.5e−21

3.0e−21

3.5e−21

Figure 1: Likelihooh Function

parameter

Li
ke

lih
oo

d

The point for which the likelihood function is maximum, is our MLE from a naive approach:

mxl <- max(tabla[,2])

df_tabla %>% filter(`Likelihood` == mxl)

## theta Likelihood Log-Likelihood

## 1 0.515 3.489236e-21 -47.1046

Also, the plot of log-likelihood function evaluated at each point:
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The point for which the log-likelihood function is maximum, which is the same point at the likelihood
function reaches its maximum value, is our MLE from a naive approach:

mxllog <- max(tabla[,3])

df_tabla %>% filter(`Log-Likelihood` == mxllog)

## theta Likelihood Log-Likelihood

## 1 0.515 3.489236e-21 -47.1046

As we can see, using this naive approach, we reach a value that is close enough to that which is
reached using the numerical solution: the Newton-Raphson and the Fisher-Scoring method.
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