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Abstract

Task-based parallelism has been established as one of the main forms of code
parallelization, where asynchronous tasks are launched and distributed across
the processing units of a local machine, a cluster or a supercomputer. The
tasks can be either completely decoupled, corresponding to a set of indepen-
dent jobs, or be part of an iterative algorithm where the task results are
processed and drive the next step. Typical use cases include the application
of the same function to different data, parametric searches and algorithms
used in numerical optimization and Bayesian uncertainty quantification. In
this work, we introduce torcpy, a platform-agnostic adaptive load balancing
library that orchestrates the asynchronous execution of tasks, expressed as
callables with arguments, on both shared and distributed memory platforms.
The library is implemented on top of MPI and multithreading and provides
lightweight support for nested loops and map functions. Experimental results
using representative applications demonstrate the flexibility and efficiency of
the proposed Python package.
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Required Metadata

Current code version

Nr. | Code metadata descrip- | Please fill in this column
tion

C1l | Current code version v0.1.1

C2 | Permanent link to code/repos- | https://github.com/IBM /torc_py
itory used for this code version

C3 | Code Ocean compute capsule | https://codeocean.com/capsule/9000816/

C4 | Legal Code License EPL 1.0

C5 | Code versioning system used | git

C6 | Software code languages, tools, | Python3, MPI
and services used

C7 | Compilation requirements, op- | mpidpy with compatible MPI implemen-

erating environments & depen- | tation, termcolor, coloredlogs, pytest,

dencies numpy, termcolor, cma, pillow
C8 | Link to developer documenta- | https://github.com/IBM /torc_py
tion /manual

C9 | Support email for questions phadjido@Qgmail.com

Table 1: Code metadata

1. Motivation and significance

The increasing heterogeneity of hardware and software in contemporary
parallel computing platforms constitute task parallelism a natural way for
exploiting their hierarchical architecture. Asynchronous tasks, either com-
pletely decoupled or part of an algorithm, can be spawned at different levels
of parallelism and eventually executed by the available processing units. Due
to the need for explicit communication, the Message Passing Interface (MPI)
remains a dominant programming model for distributed memory systems.
Meanwhile, the usage of Python constantly increases, mainly as a conve-
nient platform for developing applications and algorithms that are connected
through high-level interfaces to other languages and High-Performance Com-
puting (HPC) libraries [1, 2, 3, 4]. A typical application case that combines
MPI and Python is distributed training of neural networks, as implemented
in frameworks such as Keras [5] and PyTorch [6]. This combination, how-
ever, is not present in the available Python libraries that support task-based
parallelism. Furthermore, most of these libraries lack efficient or even basic
support of multilevel parallelism and do not export a unified runtime envi-
ronment for sequential, shared memory and distributed memory execution.



Instead, they rely on techniques such as processor partitioning, distinction
between master and worker processes and utilization of proxy servers for
handling task scheduling.

Background. A typical example of task-based parallelism, in Python, can
be found in the sequential execution of the same function (work) on a list of
input data:

data = range(10)
results = []
for x in data:
y = work(x)
results .append(y)

Moreover, the for-loop can be replaced with the built-in map function:

data = range(10)
results = list (map(work, data))

Python provides two built-in solutions for expressing and executing par-
allelism: the multiprocessing|7] and concurrent|8] packages.

The multiprocessing package supports single-node parallelism by means
of multiple processes, avoiding thus the effects of the Global Interpreter Lock.
Task-based parallelism is supported either with the apply_async function or
the more convenient map function of the Pool object, which distributes a set
of multiple input values across the available processes and then applies the
same function to these values in parallel.

An example of using the apply_async function for task submission to a
pool of 4 processes is depicted below.

from multiprocessing import Pool
data = range(10)
p = Pool(4)
tasks = []
for i in data:
t = p.apply async(work, (i,))
tasks.append(t)
for t in tasks:
print (t.get())

The use of the map function, provided by the Pool object, simplifies signif-
icantly the code, which becomes very similar to its sequential version shown
previously.

from multiprocessing import Pool
data = range(10)

p = Pool(4)

results = list (p.map(work, data))




The concurrent.futures module was first introduced in Python 3.2
to provide a simple interface for asynchronous execution of tasks, accord-
ing to the Python Enhancement Proposal (PEP) 3148 [9]. This interface
is supported by two types of executors, the ThreadPoolExecutor and the
ProcessPoolExecutor classes, which are based on threads and processes, re-
spectively. Task parallelism can be expressed either with the submit/wait
functions or with parallel map function, as shown in the following two exam-
ple codes. In both cases, ProcessPoolExecutor can be replaced with Thread-
PoolExecutor, allowing for execution of the tasks by multiple threads instead
of processes.

import concurrent. futures
data = range(10)
p = concurrent.futures.ProcessPoolExecutor (max workers=4)
tasks = []
for i in data:
tasks.append (p.submit(work, 1i))
concurrent . futures . wait (tasks)
for t in tasks:
print(t.result ())

Using the map() function:

data = range(10)
p = concurrent. futures.ProcessPoolExecutor (max workers=4)
results = list (p.map(work, data))

Contribution. Unfortunately, both modules target single-node multi-core
systems and cannot be used in high-performance computing environments
such as clusters and supercomputers. In this paper, we introduce torcpy,
a platform-agnostic adaptive load balancing library that orchestrates the
scheduling of tasks on both shared and distributed memory platforms. As an
open-source tasking library, torcpy aims at providing a parallel computing
framework that:

e offers a unified approach for expressing and executing task-based par-
allelism on both shared and distributed memory platforms

e takes advantage of MPI internally in a transparent to the user way but
also allows the use of legacy MPI code at the application level

e provides lightweight support for parallel nested loops and map functions
e supports task stealing at all levels of parallelism

e exports the above functionalities through a simple and single Python
package




torcpy exports an interface similar to that of PEP 3148. Therefore tasks
(futures) can be spawned and joined with the submit and wait calls. A
parallel map function is provided, while the exported spmd function allows for
switching to the typical Single Program Multiple Data (SPMD) execution
mode that is natively supported by MPI.

The library is implemented on top of MPI and multithreading and it
can be considered as the Python implementation of the TORC C/C++ run-
time library [10]. TORC has been already used extensively on small and
large scale HPC environments for a range of parallel applications such as:
numerical differentiation [11, 12|, quantification of uncertainty in simulation
models [13], numerical optimization for fitting interatomic potentials [14] and
multi-objective optimization of artificial swimmers [15]. The same library has
been also used at the core of the 114U uncertainty quantification and opti-
mization package [16] and the HOMPI hybrid programming framework [17].

As part of 114U, TORC has been used extensively on small and large
scale HPC environments such as the Euler multi-core cluster of ETH Ziirich
and the Piz Daint GPU supercomputer of the Swiss National Supercomputer
Center (CSCS). For example, the TORC-based implementation of the Tran-
sitional Markov Chain Monte Carlo (TMCMC) method [18, 16| has achieved
an overall parallel efficiency of more than 90% on 1024 compute nodes of Piz
Daint running hybrid MPI+GPU molecular simulation codes with highly
variable time-to-solution between simulations for different interaction pa-
rameters. In all these cases, the task calls an external script that receives
as input the function arguments, runs a simulation and returns the result
back to the task. Since the core computational work is performed outside
the task-parallel algorithm, it is obvious that the overall performance is not
affected by the C/C++ or the Python implementation of the algorithm and
the usage of the corresponding tasking library (TORC or torcpy).

Related work. There is a number of Python packages and framework that
enable the orchestration and execution of task-based parallelism on various
computing platforms. A brief summary of these packages is depicted in
Table 2.

As mentioned before, on single-node multi-core systems Python provides
two native solutions: the multiprocessing and the concurrent.futures mod-
ules. The futures package of mpidpy provides an extension of futures on top of
the MPI programming model. This package follows the typical master-worker
execution model and is suitable for single-level tasks that can be distributed
through MPI among multiple nodes. The master process does not partici-
pate in the computations and, therefore, lightweight nested parallelism and
MPI SPMD code (e.g. collective MPI operations) is not supported.



Framework PEP 3148 | Clusters Nested parallelism MPI SPMD
multiprocessing No No No No
futures Yes No No No
mpidpy.futures Yes Yes No No
DTM (deap 0.9.2) No Yes Inefficiently (threads) Yes
SCO0P (0.7.1.1) Yes Yes Yes (coroutines) No
Parsl (0.9.0) No Yes Limited (partitioning) No
Celery (4.2.0) No Yes No No
Dask (1.2.2) No Yes Inefficiently (more workers) No
PyCOMPSs (2.6) No Yes Yes No
torcpy (0.1) Yes Yes Yes Yes

Table 2: Summary of Python frameworks for task-based parallelism.

DTM [19] is an obsolete MPI-based framework, part of the DEAP pack-
age [20], that supports task-based parallelism. Task spawning can be per-
formed with the apply_async/waitAll or map calls and, in contrast to
mpidpy futures, the master process of a DTM application participates in
the execution of the spawned tasks. DTM also provides support of nested
tasks, by means of kernel level threads. Due to thread-safety issues, MPI
support was removed in the latest versions (>0.9.2) of the DEAP package
and DTM was eventually discontinued. Moreover, DTM was replaced by
SCOOQOP |21, 22|, which follows a more distributed-based approach without
relying on MPI. Due to lightweight coroutines, SCOOP supports nested tasks
efficiently. The communication is based either on sockets or a message-queue
(broker), while global data are supported through containers.

Parsl 23, 4] allows for scalable execution of task parallelism on a wide
range of computing platforms by means of different executors tailored to low-
latency, high-throughput or extreme-scale use cases. Parallelism in Parsl is
expressed with Python decorators and its Extreme Scale Executor is com-
posed of executor clients, interchange and workers. The communication be-
tween manager and workers is based on MPI while that between manager
and interchange, where task queues are deployed, is performed with a mes-
sage queue. MPI processes can be partitioned to multiple groups, where
rank 0 becomes the manager and the rest processes serve as workers. Parsl
provides limited support of nested parallelism because inner tasks can be
executed only as long as workers are available, otherwise deadlock can occur.
Moreover, direct support of MPI SPMD code is not supported.

Both Celery [24] and Dask [25, 26| are frameworks that mainly target
cloud computing environments. Both are message-queue based and follow a
client-scheduler-worker approach. In Celery, client and task codes are decou-
pled and nested tasks are partially supported because they can be submitted
for execution but there is no wait operation available. In Dask, nesting of
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Figure 1: Parallel architecture of the torcpy library.

tasks is supported only by means of additional worker threads.

Finally, PyCOMPSs [3, 27| is the Python binding of COMPSs, a state-of-
the-art HPC framework that supports several programming languages. The
core runtime is implemented in Java and allows for tasks that include MPI
code but does not support direct injection of MPI SPMD code in the task-
parallel Python code.

2. Software description

A torcpy-based application consists of multiple MPI processes with one
or multiple worker threads and a set of queues where tasks are submitted
for execution according to the level of parallelism they are spawned from.
Idle workers extract tasks for the queues, first by accessing their local set of
queues and, if this is empty, the set of queues that reside remotely in the other
MPI processes. Remote operations related to task and data management are
performed with explicit, but completely transparent to the user, messages to
a dedicated server thread, utilized by each MPI process. If the application
runs as a pure multithreaded code, i.e. with one MPI process and multiple
worker threads, then all operations are performed exclusively through shared
memory. The software architecture of torcpy is depicted in Fig. 1, assuming
a single MPI process per node. In the general case, a compute node can
execute multiple MPI processes and, therefore, the terms node and process
can be used interchangeably.

2.1. Software Architecture
torcpy is built on top of the mpidpy package and makes use of the
threading and queue modules. Tasks are instantiated as Python dictionar-
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ies, which incur less overhead than objects. The result of a task function
is transparently stored in the task descriptor (future) on the MPI process
that spawned the task. According to PEP 3148, the result can be then ac-
cessed as task.result(). Similarly, the input parameters can be accessed
as task.input ().

All remote operations are performed asynchronously through the server
thread. This thread is responsible for:

e inserting incoming tasks to the local queue of the process
e receiving the completed tasks and their results
e serving task stealing requests

An idle worker always tries first to extract work from the highest-level
non-empty local queue. If no work is found, it tries to steal tasks from the
remote queues. Specifically, it sends a synchronous stealing request to the
server thread of the next, according to the rank, MPI process and continues
until an available task has been returned or all processes have been accessed.
The server thread search for work starting from the lowest-level local queue,
i.e. for tasks at the innermost level of parallelism. The default task spawning
policy distributes first-level tasks cyclically among the workers and submits
inner-level tasks locally. Combined with task stealing, this policy favors steal-
ing of coarse-grain tasks and local execution of deeper levels of parallelism

2.2. Software Functionalities

torcpy exports an application programming interface (APT) that includes
task-management routines similar to those defined by PEP 3184. In addition,
it provides routines that allow the user to setup the library, control the exe-
cution mode (master-worker or SPMD), control the task stealing mechanism
and query the runtime environment. Moreover, some environment variables
can be used to specify the number of worker threads per process, the initial
status of the task stealing mechanism and for how long idle threads release
the processor. An overview of the most important parts of the API follows.

2.2.1. Library Routines
e start(f): initializes the library and launches function £ () on process
with rank 0 as the primary application task. When £ () completes, it
shutdowns the library. It is a collective function that must be called

within __main__.



e submit(f, *args, qid=-1, callback=None, **kwargs): submits a
new task that corresponds to the asynchronous execution of function
f () with input arguments args. The task is submitted to the worker
with global identifier gid. If qid is equal to -1, then cyclic distribution
of tasks to workers is performed. The callback function is called on the
rank that spawned the task, when the task completes and its results
have been returned to that node.

e map(f, *seq, chunksize=1): executes function £() on a sequence
(list) of arguments. It returns a list with the results of all tasks.

e wait(tasks=None): the current task waits for all its child tasks to
finish. The underlying worker thread is released and can execute other
tasks.

e spmd(f, *args): executes function f () on all MPI processes. It allows
for dynamic switching from the master-worker to the SPMD execution
mode, allowing thus legacy MPI code to be used within the function.

2.2.2. Environment variables
e TORCPY_WORKERS (integer): number of worker threads used by each
MPI processor. (default value: 1)

e TORCPY_STEALING (boolean): determines if internode task-stealing is
enabled or not. (default value: "False")

e TORCPY_SERVER_YIELDTIME (float): for how many seconds an idle
server thread will sleep releasing the processor. (default value: 0.01)

e TORCPY_WORKER_YIELDTIME (float): for how many seconds an idle
worker thread will sleep releasing the processor. (default value: 0.01)

The performance of torcpy was initially tuned using existing bench-
mark codes available in the mpidpy.futures package (such as run_julia.py
and perf primes.py). We observed that blocking MPI Recv calls must be
avoided by the server thread. Instead non-blocking calls combined with pro-
cessor yielding is essential because the server thread allows the worker threads
to progress faster. However, if there are multiple worker threads that exe-
cute Python bytecode, the performance will be still affected by the Global
Interpreter Lock (GIL).



3. Illustrative Examples

Listing 3 shows a commonly used parallelization example of recursive
Fibonacci, where several levels of parallelism are exploited by spawning re-
cursively two tasks and waiting for their results. The code is executed se-
quentially after some depth without creating thus an excessive number of
tasks. The example demonstrates the support and exploitation of recursive
parallelism. As such, it does not reuse the results of function calls with the
same input argument and creates a second task (task2) instead of calling the
function directly.

import torcpy

def fib(n):
if n — 0:
result = 0
elif n — 1:
result =1
else:
n l=mn-1
n 2-=mn-— 2
if n < 30:
resultl = fib(n 1)
result2 = fib(n_2)
result = resultl + result2
else:
taskl = torcpy.submit(fib, n 1)
task2 = torcpy.submit(fib, n_ 2)

torcpy . wait ()
result = taskl.result () + task2.result ()

return result

def main ():
n = 35
result = fib (n)

print ("fib ({})={}".format(n, result))

if  name =— " main

torcpy.start (main)

Listing 1: Recursive Fibonacci

The second example (Listing 2) demonstrates the usage of MPI SPMD
code within a task-parallel application. The global array A is initialized
by the primary application task (main) on MPI process 0. Next, the spmd
function triggers the execution of bcast_task on all MPI processes, thus
switching to the SPMD execution model and allowing for direct data broad-
cast using Bcast of mpidpy.
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import numpy
from mpidpy import MPI
import torcpy

N =3
A = numpy. zeros (N, dtype=numpy. float64)

def bcast task(root):
global A
comm = MPI.COMM_ WORID
# Broadcast A from rank 0
comm. Bcast ([A, MPI.DOUBLE|, root=root)

def work ():
global A
print ("node:{}:A={}".format (torcpy.node id(), A))

def main ():
global A

# primary task initializes array A on rank 0
for i in range(0, N):
Ali] = 100%i

# switch to SPMD
torcpy .spmd(bcast task, torcpy.node id())

# single primary task continues here

if name = " main

torcpy.start (main)

Listing 2: Switching to SPMD execution mode

4. Performance evaluation

A typical preprocessing stage of Deep Learning workloads includes the
transformation of datasets of raw images to a single file in HDF5 format.
The images are organized in subfolders, where the name of each subfolder
denotes the label of the enclosed images. For each image, the file is opened
and the binary data are loaded to a buffer (numpy array). These operations
include data decompression if the image is stored in JPEG format. Then,
the image is resized and rescaled and additional preprocessing filters might
be also applied. Finally, the result is written to an HDF5 file, that we will
be used at the training phase of deep learning.
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def process train image (i, target dim):
global reader, pipe

# load the image and its label
im, label = reader.get train image(i)

# apply preprocessing filters
im = pipe.filter (im)

# resize accordingly
dx = image to 4d tensor(im, target dim)
dy = label

# return results
return dx, dy

The parallelization of the sequential for loop is performed with the map
function, using a chunk size of 32 so as to reduce the number of spawned tasks.

seq i = range(n_train)
seq_t = [target dim]| * n_train

# parallel map with chunksize
task results = torcpy.map(process train image, chunksize, seq i, seq t)

# write the results to the HDF5 dataset

i=0
for t in task results:
dx, dy =t
dataset x[i, :, :, :] = dx
dataset _y[i] = dy
i =i+l

Imagenet 28] is very large dataset of 1000 classes, each with 1300 images
stored in JPEG format. We preprocess the images of the (alphabetically)
first 20 training classes of the Imagenet dataset. We perform our experi-
ments on two IBM? Power S822LC (8335-GTA) [29] compute nodes. Each
node has two POWERS processor sockets, which are equipped with 256GB
RAM and 10 cores, each with 8 hardware threads and 8MB L3 cache. The
software configuration includes Python 3.6.9, mpidpy/3.0.1 and IBM Spec-
trum MPI 10.3.0. The command line for executing the benchmark with NR
MPI processes with TORCPY_WORKERS worker threads each, is as follows:

mpirun -n $NR -x TORCPY_WORKERS=$NW --bind-to core --map-by socket \
--mca btl self,tcp python benchmark.py

2IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of In-
ternational Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies. A current
list of IBM trademarks is available on the Web at "Copyright and trademark information"
http://www.ibm.com/legal/copytrade.shtml.
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Figure 2: Performance of parallel preprocessing on two IBM Power S822L.C compute nodes

The measurements include the time for spawning the parallelism, exe-
cuting the preprocessing in parallel and waiting for the completion of all
tasks, i.e. collecting the results back. In Fig. 2, we observe that the ap-
plication exhibits good scaling and achieves approximately 62% efficiency
when 40 processes of one worker thread each are used. The performance
does not scale linearly with the number of cores as image decompression and
processing stress the memory subsystem of the node. We also observe that
multithreading further improves the performance, allowing for a maximum
achieved speedup of 31.6x (40 processes, 4 threads).

5. Impact

The increased popularity of Python, in combination with its extensive
usage in machine learning, strongly motivated the introduction of torcpy,
the pure Python implementation of a high-performance tasking library. This
motivation was further supported by the absence of a task-parallel library
that: supports the futures API of PEP 3148, allows for arbitrary nesting of
tasks by decoupling them from the actual workers, takes advantage of MPI
but also enables the direct integration of MPI code, provides transparent load
balancing through task stealing and adapts automatically to the underlying
execution environment.
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6. Conclusions

torcpy is a Python library that uses multithreading and MPI to support
multi-level task-based parallelism on shared and distributed memory plat-
forms. It provides transparent data movement and load balancing hiding the
details of explicit communication to the users. The same Python script can
be executed with multiple threads, processes or in hybrid mode, similarly to
the MPI+X programming model. The library exploits internally MPI and
also extends it with lightweight task-based capabilities. Furthermore, it is or-
thogonal to MPI, allowing dynamic switching to the SPMD execution mode
and, thus integration of legacy MPI code.

Our current work focuses on improved compatibility of PEP 3148 and
support of exception handling in the task functions. Moreover, we aim at the
efficient parallel execution of small and medium-size deep learning training
tasks on clusters of GPUs.
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