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Abstract: Hearing impairment is an immensely diagnosed genetic cause, 5% of the total world population effects with different kind of 
congenital hearing loss (HL). In third-world countries or countries where consanguineous marriages are more common the frequency rate of 
genetic disorders are at its zenith. Approximately, the incidence of hearing afflictions is ostensibly 7-8:1000 individuals whereas it is 
estimated that about 466 million peoples suffer with significant HL, and of theses deaf cases 34 million are children’s up to March, 2020. 
Several genes and colossal numbers of pathogenic variants cause hearing impairment, which aided in next-generation with recessive, 

dominant or X-linked inheritance traits. This review highlights on syndromic and non-syndromic HL (SHL and NSHL), and categorized as 
conductive, sensorineural and mixed HL, which having autosomal dominant and recessive, and X-linked or mitochondrial mode of 
inheritance. Many hundred genes involved in HL are reported, and their mutation spectrum becomes very wide. Mapping of pathogenic genes 
in consanguinity family is facilitated to understand the disease history. Review presents the bases of HL and also focused on various genetic 
factors that cause deafness like the basics of genetic inheritance, and classic and well-characterized inherited factors of it. It also overviews 
the application of linkage analysis, SNPs genotyping and whole exome sequencing methods, in mapping and identification of new locus, 
causative genes and their variants in families inherited with HL. Conclusively, this review supports researchers in understanding the location 
of chromosome, the causative genes and specific locus which causing deafness in humans. 
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I. INTRODUCTION 

eafness or hearing failures are seen as an extenuate 

form [1], in human it is one of the high prevailing 

neurosensory deficits that harshly negotiate the life value 
of individuals and can cause their social separation [2]. 

Both genetics and environmental factors cause hearing 

failure [3], and the genetic factors contribute about 50% 

of all hearing loss (HL) patients [4]. The worldwide 
estimated results report as of March, 2020 defines 

rounded 466 million peoples suffer with significant HL, 

and of theses deaf cases 34 million are children’s (under 6 
years old) (WHO MARCH 2020). Furthermore before 

maturity 3/1000 children become deaf [5]. According to 

WHO prediction, hearing disability will affect ~900 

million (or 1:10 peoples) by 2050 [6]. Basically, HL was 
categorized in two main groups non-syndromic 

sensorineural HL (NSHL) and syndromic sensorineural  

 

 
 

HL (SSHL). Genetic subsidizing factors to NSHL are 

remarkably diverse coverings, over autosomal (recessive 

and dominant), to X-linked (recessive and dominant), to 
mitochondrial patterns of inheritance [7]. The SSHL, 

hearing disability appeared with multiple physiological 

anomalies (diseases), and it is limited only to the inner ear 
[8].  

Many hundreds or even thousands of genes are 

involved in hearing process and helps in proper 
functioning of inner ear, which is the most sensitive part of 

the ear in human body (figure 2B). Several genes and their 

expressed protein families like (Myosin family, Gap-

junction family and solute carrier proteins etc.) in inner ear 
function as, in control of adhesion of hair cell, in 

neurotransmitter release, intercellular transport, 

maintenance of ionic homeostasis and protection of 
cytoskeletons of hair cells, which supports to hear a sound 

[9-10]. 

D 
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Figure 1: Schematic illustration of literature review. 
 

During the period of last 10-12 years, the 

identification rate of causative genes associated with 
hearing loss becomes very high. Several hundred genes 

associated with hearing loss are reported, and their 

mutation spectrum becomes very wide, so that 
identification of disease-causing mutation is still more 

difficult. Linkage studies and auto zygosity methods used 

for mapping and identification of pathogenic genes in 

consanguineous families and with the advancement in 
technologies, Next-generation Sequencing, target-

enrichment method and sanger sequencing makes it easy 

to identifying the novel gene and their variant in inherited 
heterogeneous disorders [11-14]. Whole Exome 

Sequencing (WES), used as stream-line approach now a 

days, for identifying the disease causing (causative) gene 
variants (mutation), which results specific phenotypic 

disorder [10, 15]. This review presents an overview and 

description of the currently known genes related to 

hereditary HL. It reviews the basics of genetic 
inheritance, and also focusing on the classic and well-

characterized, inherited factors that cause deafness. Brief 

overview of this review study was shown in figure 1. 
 

Ear anatomy and physiology 
 

Auditory system of mammals is highly sensitive, 
integrated and the most complicated structure, which is 

planned  to  achieve  both  functions  of  interpreting the  

 
 

sound waves in an organized manner to nerve impulse 

and also to sustain the balance of the body. The vestibular 
systems of the human ear specific to sustain the balance 

of the body are composed of two parts: the membranous 

labyrinth and the bony labyrinth [16]. The function of the 
human ear is to collect sound waves from the sounding 

and interpret of these sound waves of different sound 

frequencies of range 20 to 20,000 Hz [17-18]. Ear can be 

defined as a microcomputer or an analytic microphone, 
that conducts sound waves towards the brain in type of 

nerve impulse, and it is divided into three structural 

partitions, which works like a unit; the outer ear; pinna, 
the auditory canal, and the tympanic membrane, middle 

ear; tympanic cavity, Ossicles bones (incus, malleus, and 

stapes), middle ear muscles and Eustachian tube, and the 
inner ear that perform two functions, transduction of 

sound waves into neurochemical signals which completed 

in cochlea, a main functioning organ of the ear and to 

maintains the optic fixation and support to sustain 
sanding body posture that takes place in the vestibular 

system during the process of movement (figure 2A) [19-

21].  
 

Organ of corti and hair cells 
 

The power of identifying and separating the 
variable frequencies sounds of human cochlea mainly 

based on the portion of sensory epithelia named as organ  
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of Corte; at the sensorineural end, the organ necessary for 
listening a sound (figure 2C) [22]. It contains placodal 

origin (membranous labyrinth) polarized epithelial cells 

(supporting and hair cells), the basil membrane 

(specialized basement membrane having layer of matrix), 
tectorial membrane and nerve endings [19, 23-24]. In 

mammals, two types of hair cells are present, the inner 

hair cells (IHCs) and outer hair cells (OHCs). The “IHCs” 
actually the type of true sensory cell, transmits impulses 

through the auditory nerve, and OHCs are obliging in to 

increase the working capacity of the cochlea, 
quantitatively (increased sensitivity) and qualitatively 

(increased selectivity) [25-26]. The name "hair" cell was 

derived from the tuft of stereocilia that protrude from the 

apical domain of every cell [21, 27-28]. 
 

Mechanism and types of hearing failure 
 

Hearing failure may be partial or complete and it 

developed either in response of a damage, injury, 

physiological causes or congenital diseases which specify 

as conductive HL [29]. Whereas when any injury or 
damage occurs in the inner ear, brain or vestibular nerve  

 

 
 

 

 
 

 
 
 

caused sensorineural hearing loss (SNHL), and mixed 

hearing damage caused both conductive and SNHL. The 
SNHL mostly occurred due to genetic variations in genes 

that regulate the intracellular transport, the adhesion of 

hair cells, ionic homeostasis, neurotransmitter release and 
structure of hair cells results to damage of the cochlea and 

the inner ear [30]. In the current century, with new 

inventions of genetic variants in congenital hearing loss, 

new treatment opportunity and genetic counseling have 
appeared and improved in accessibility [31]. 
 

Detection of hearing 
 

Hearing level of suspects was evaluated through 

behavioral testing and pure tone audiometry. Behavioral 

testing includes visual reinforcement audiometry (VRA) 
and behavioral observation audiometry (BOA) [32]. VRA 

is used for testing hearing level of child between age from 

six months to 2 ½ years and can provide reasonable 
complete information for audiogram while the BOA is 

used for evaluating the hearing level of infants from birth 

to six month age and this kind of testing is highly 
dependents on the skills of the testing persons, and is 

Figure 2: A. Outer ear the pinna and auditory canal separated from the middle ear by tympanic membrane. Ossicles (Malleus, 
Incus and Stapes) are positioned in middle ear and they connected to the Eustachian tube at the back of nose. The inner ear holds 

Cochlea and vestibular structures specific to generate nerve impulse and sustain balance of the body. B. Cochlea; the boney tube, 

filled with perilymph, in which membranous labyrinth floats filled with endolymphatic fluid. Perilymph separates the Scala media 

to Scala tympani. C. A cross-section of single piece Cochlea display comprehensive picture of the membranous labyrinth, and the 

Basilar membrane keeps the epithelial cells of hearing –the organ of Corti. The organ of Corti holds; inner hair cells (IHC’s), three 

outer hair cells (OHC’s), Hensen celles (HC’s), Deitters cells (DC’s), Pillar cells (PC’s) and the Inner Supporting cells (ISC’s) 

respectively. The auditory nerve linked to inner hair cell at their tip-link. 
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subject to error [33-34]. Pure tone audiometry means to 

identify the minimum frequency on which a person "hear" 

a pure tone, whereas the "bone conduction audiometry, 
depends on the sound waves reach the ear through a 

vibrator consists on the forehead mastoid bone, now the 

thresholds depend on the condition of the inner ear, by 
bypassing the outer and middle ear and the 

calculated/obtained values are plotted on a graph paper 

[35-38], for sample of audiogram (figure 3). 
 

 
 

Figure 3: The audiogram sample, defining various types of 

hearing loss constructed on the basis of types of ear defect. 

Horizontal axis represents frequencies in "Hz" while the 

vertical axis on the graph represents sound intensity in "dB", 

and this graph is defined as an audiogram. In audiogram, the 

right ear is denoted with the symbol "O" and the left ear is 

denoted with symbol "X". 
 

Molecular genetics of HL 
 

Hearing failure is the most common sensory 

impairment. It shows highly heterogeneous behavior. The 

early 1990s, the identification and localization of genes 
causing deafness/HL is started, but till 1994 only a few 

gene loci have been mapped/identified on human 

genome; causing hearing loss/deafness either NSHL/SHL 

[27, 39]. Inherited HL consists 50–60% of all HL cases. 
The inherited form of HL is further classified to different 

categories [40-42]. Recent advances in genetics and 

genomics have led us to identification of over 300 SHLs 
and more than 100 chromosomal loci and more than 40 

genes responsible for NSHL [30, 43-44]. Better 

understanding of impaired genes and their structure and 

function will open a new window for screening as well as 
the genetic approach to treatment of HL. In contrast, the 

identification of the single causative gene of linking in 

NSHL becomes very difficult in a single family, because 
it needs positional cloning; the linkage analysis and WES 

make it feasible. 
 

Non-syndromic sensorineural Hearing Loss (NSHL) 
 

Hereditary HL (HHL) is an immensely studied 
neurosensory disorder in worldwide. It is highly 

heterogeneous genetic disorder, and most often autosomal 

recessive and non-syndromic is approximately 80% of 
congenital HL [11, 45-48]. Most of the studies on NSHL 

predominantly focused on three main aspects; the kind of 

hearing defect, its degree of severity, and the 

configuration or inheritance pattern. Almost 60% cases of 
the congenital HL are on the account of genetic factors 

[49]. In humans hearing failure is a sensory disability that 

ambits from mild, moderate, severe and profound. 
Approximately, the profound HL is comprised of 20-

25%, while a higher ratio of individuals is damaged with 

moderate to severe HL [50]. 
 

Moreover, the NSHL are sorted in consonance 

with their inheritance patterns; as autosomal (dominant or 

recessive) or X-linked. Autosomal inheritance patterns of 
NSHL found ubiquitous, while the X-linked inheritance 

pattern found tremendously rare [51]. In pre-lingual HL; 

inherited X-linked trait (1%-3%), autosomal recessive 
trait (70%-80%), while autosomal dominant trait (12%-

24%), and mitochondrial (2%-3%) are observed [52]. In 

the NSHL, either an autosomal dominant or recessive 

inheritance pattern characterizes thrilling genetic 
heterogeneity, as more than hundreds specific deafness-

causing genes and loci have been mapped and reported to 

date (table 1), among these causative-genes, most of them 
were reported from Pakistan according to hereditary 

hearing loss homepage [53]. 
 

Syndromic Hearing Loss (SHL) 
 

Childhood congenital SHL is a major cause of 

birth defects in developed countries. There are many 
reasons are existed to study and identify the etiology of 

the HL [222]. Approximately 30% of all reported HL 

cases have several clinical anomalies with HL and termed 

as SHL [49]. These are differentiated from other types of 
HL on the basis of associated symptoms in several vital 

organs [223]. It is estimated that above 400 different 

syndromes of HL were reported and the majority of the 
cases had been identified with the pathogenic genes [49]. 

This literature review focuses on the most common 

syndromes that highly diagnosed in various populations 
and their linked pathogenic genes (table 2). Major 

syndromes with HI are Alport, Stickler, Jervell & Lange-

Nielsen, Waardenburg and Usher syndromes etc. Stickler 

and Waardenburg syndromes have dominant inheritance 
patterns, while the syndromes having autosomal recessive 

inheritance patterns are Usher and Jervell & Lange-

Nielsen syndrome and the Alport syndrome is usually 
inherited with X-linked inheritance pattern [69,224]. 
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Table 1: Pathogenic genes, locus and their positions on chromosomes, causing non-syndromic hearing loss in 

Humans 
 

Mutated genes of Hereditary Non-Syndromic Hearing Loss 

Autosomal Recessive Inheritance Autosomal Dominant Inheritance 

Gene Locus Location Ref. Gene Locus Location Ref. 

GJB2 DFNB1 13q12 [54] DIAPH1 DFNA1 5q31 [55] 

MYO7A DFNB2 11q13.5 [56-57] KCNQ4 DFNA2A 1p34 [58] 

MYO15A DFNB3 17p11.2 [59-60] GJB3 DFNA2B 1p35.1 [61] 

SLC26A4 DFNB4 7q31 [62-63] IFNLR1 DFNA2C 1p34.1 – 1p36.12 [64] 

unknown DFNB5 14q12 [65] GJB2 DFNA3A 13q11-q12 [54] 

TMIE DFNB6 3p14-p21 [65-66] GJB6 DFNA3B 13q12 [67] 

TMC1 DFNB7/11 9p13-q21 [68-69] MYH14 DFNA4 19q13 [70] 

TMPRSS3 DFNB8/10 21q22 [71-73] CEACAM16 DFNA4B 19q13.32 [74] 

OTOF DFNB9 2p22-p23 [72] GSDME DFNA5 7p15 [75] 

CDH23 DFNB12 10q21-q22 [76] WFS1 DFNA6 4p16.3 [77] 
unknown DFNB13 7q34-36 [78] LMX1A DFNA7 1q21-q23 [79-80] 

unknown DFNB14 7q31 [78] TECTA DFNA8 11q22-24 [81] 

GIPC3 DFNB15 3q21-q25 [82-83] COCH DFNA9 14q12-q13 [84] 

STRC DFNB16 15q21-q22 [85] EYA4 DFNA10 6q22-q23 [86] 

unknown DFNB17 7q31 [87-88] MYO7A DFNA11 11q12.3-q21 [89] 

USH1C DFNB18 11p14-15.1 [90] TECTA DFNA12 11q22-24 [81] 

unknown DFNB19 18p11 [91] COL11A2 DFNA13 6p21 [92] 

unknown DFNB20 11q25-qter [93] WFS1 DFNA14 4p16.3 [94] 

TECTA DFNB21 11q [95] POU4F3 DFNA15 5q31 [96] 
OTOA DFNB22 16p12.2 [97] unknown DFNA16 2q24 [98] 

PCDH15 DFNB23 10p11.2-q21 [99] MYH9 DFNA17 22q [100] 

RDX DFNB24 11q23 [101] unknown DFNA18 3q22 [102] 

GRXCR1 DFNB25 4p13 [103] ACTG1 DFNA20 17q25 [104-

105] 

unknown DFNB26 4p31 [106] unknown DFNA21 6p21 [107] 

unknown DFNB27 2q23-q31 [108-109] unknown DFNA22 6q13 [110] 

TRIOBP DFNB28 22q13 [111] unknown DFNA23 14q21-q22 [112] 

CLDN14 DFNB29 21q22 [113] unknown DFNA24 4q [114] 

MYO3A DFNB30 10p11.1 [115] unknown DFNA25 12q21-24 [116] 

WHRN DFNB31 9q32-q34 [117] ACTG1 DFNA26 17q25 [118] 
CDC14A DFNB32/105 1p13.3-22.1 [119] unknown DFNA27 4q12 [120] 

unknown DFNB33 9q34.3 [121] GRHL2 DFNA28 8q22 [122] 

ESRRB DFNB35 14q24.1-24.3 [123] unknown DFNA30 15q25-26 [124] 

ESPN DFNB36 1p36.3 [125] unknown DFNA31 6p21.3 [126] 

MYO6 DFNB37 6q13 [127] unknown DFNA33 13q34-qter [128] 

unknown DFNB38 6q26-q27 [129] NLRP3 DFNA34 1q44 [130] 

HGF DFNB39 7q21.1 [131] TMC1 DFNA36 9q13-q21 [69] 

unknown DFNB40 22q [132] WFS1 DFNA6 4p16.3 [77-94] 

ILDR1 DFNB42 3q13.31-q22.3 [133] DSPP DFNA39 4q21.3 [134] 

ADCY1 DFNB44 7p14.1-q11.22 [135] P2RX2 DFNA41 12q24-qter [136] 

unknown DFNB45 1q43-q44 [137] unknown DFNA42 5q31.1-q32 [138] 
unknown DFNB46 18p11.32-

p11.31 

[139] unknown DFNA43 2p12 [140] 

unknown DFNB47 2p25.1-p24.3 [141] CCDC50 DFNA44 3q28-29 [142] 

CIB2 DFNB48 15q23-q25.1 [143-144] unknown DFNA47 9p21-22 [145] 

MARVELD2 / 

BDP1 

DENB49 5q12.3-q14.1 [146] MYO1A DFNA48 12q13-q14 [145] 

unknown DENB51 11p13-p12 [147] MIRN96 DFNA50 7q32.2 [148] 
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COL11A2 DENB53 6p21.3 [149] TJP2 DFNA51 9q21 [150] 

unknown DENB55 4q12-q13.2 [151] unknown DFNA52 4q28 [138] 

PJVK DENB59 2q31.1-q31.3 [152] unknown DFNA53 14q11.2-q12 [153] 

SLC22A4 DENB60 5q23.2-q31.1 [154] unknown DFNA54 5q31 [155] 

SLC26A5 DENB61 7q22.1 [156] TNC DFNA56 9q31.3-q34.3 [157] 

unknown DENB62 12p13.2-

p11.23 

[158, 

159] 

unknown DFNA57 19p13.2 [160] 

LRTOMT / 

COMT2 

DENB63 11q13.2-q13.4 [161] unknown DFNA58 2p12-p21 [162] 

unknown DENB65 20q13.2-

q13.32 

[163] unknown DFNA59 11p14.2-q12.3 [164] 

DCDC2 DENB66 6p21.2—22.3 [165-166] SMAC/DIABLO DFNA64 12q24.31-q24.32 [167] 

LHFPL5 DENB66/67 6p21.31 [168] TBC1D24 DFNA65 16p13.3 [169] 

S1PR2 DENB68 19p13.2 [170] CD164 DFNA66 6q15-21 [171] 

BSND DENB73 1p32.3 [172] OSBPL2 DFNA67 20q13.33 [173] 

MSRB3 DENB74 12q14.2-q15 [174-175] HOMER2 DFNA68 15q25.2 [176] 

SYNE4 DENB76 19q13.12 [177] MCM2 DFNA70 3q21.3 [178] 

LOXHD1 DENB77 18q12-q21 [179] KITLG Unknown 12q21.32-q23.1 [180] 

TPRN DENB79 9q34.3 [181] PTPRQ DFNA73 12q21.31  

Unknown DENB80 2p16.1-p21 [182] DMXL2 Unknown 15q21.2 [183] 

Unknown DENB81 19p [83] MYO3A Unknown 10p12.1 [184] 

Unknown DFNB83 2p25.1-p24.3 [185] REST DFNA27 4q12 [120] 
PTPRQ/ 

OTOGL 

DENB84 12q21.2 [186] COL11A1 DFNA37 1p21 [187] 

Unknown DENB85 17p12-q11.2 [188] PDE1C Unknown 7p14.3 [189] 

TBC1D24 DENB86 16p13.3 [190] TRRAP Unknown 7q22.1 [191] 

ELMOD3 DENB88 2p12-p11.2 [192] PLS1 Unknown 3q23 [193] 

KARS DENB89 16q21-q23.2 [194] SCDS Unknown 4q21.22 [195] 

Unknown DENB90 7p22.1-p15.3 [196] SLC12A Unknown 5q23.3 [197] 

SERPINB6 DENB91 6p25 [198]  

SEX-LINKED INHERETANCE CABP2 DENB93 11q12.3-

11q13.2 

[199] 

FAM65B DENB104 6p22.3 [200] Gene Locus Location Refer

ence 

CDC14A DFNB32/105 1p13.3-22.1 [201] PRPS1 DFNX1 Xq22 [202] 

GIPC3 DENB95 19p13 [203] POU3F4 DFNX2 Xq21.1 [204] 

Unknown DENB96 1p36.31-

p36.13 

[205] Unknown DFNX3 Xp21.2 [206, 

207] 

MET DENB97 7q31.2-q31.31 [208] SMPX DFNX4 Xp22 [209] 

TSPEAR DENB98 21q22.3-qter [203, 

210] 
AIFM1 DFNX5 Xq26.1 [211] 

TMEM132E DENB99 17q12 [205, 

212] 
COL4A6 DFNX6 Xp22.3 [51] 

PPIP5K2 DENB100 5q13.2-q23.2 [213] Unknown DFNY1 Y [214] 

GRXCR2 DENB101 5q32 [210-215]  

EPS8 DENB102 12p12.3 [212] 

WBP2 Unknown 17q25.1 [216] 

ESRP1 Unknown 1p13.3 [217] 

MPZL2 Unknown 11q23.3 [218] 

CEACAM16 Unknown 19q13.31-

q13.32 

[187] 

GRAP Unknown 17p11.2 [219] 

SPNS2 Unknown 17p13.2 [220] 

CLDN9 Unknown 16p13.3 [221] 
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Recessive syndromes of HL 
 

Pendered syndrome 
 

Pandered first time was reported in 1986, and 

later after series by Faser in 1964 [225]. It is diagnosed as 

goiter and thyroid dysfunction owing to the iodide 
organification defects with deafness. SLC26A4 encoded 

“Pendrin” an anion transporter protein, and in 1997 a 

pathogenic variant of this gene was first time identified 
and later in various studies different variants were also 

identified that coded [226-229]. In the majority of the 

affected individuals, goiter was developed during the 
second decade of life; caused due to the improper supply 

of iodide in the thyroid, even though affected persons are 

euthyroid [32]. Defects in iodide transporter caused 

thyroid abnormalities and defects in chloride transporter 
caused HL and abnormal development of the cochlea. In 

the cochlea, abnormal fluid flux developed due to 

impaired chloride transporter, leading to HL and large 
vestibular aqueduct [32]. 

 

Usher Syndrome (USH) 
 

Usher syndrome develops by functional loss of 

dual sensory systems; the visual and audio-vestibular 

systems. Clinically it was classified into three subtypes 
(USHI, USH2 and USH3) and this classification is based 

on the existence or non-existence of vestibular 

dysfunction, the severity of HL and the time when night 
blindness developed [230]. It has been predicated, USH is 

3-6 % of the total congenital deaf population, 50 % of the 

deaf-blind population and 8-33 % of affected individuals 

with “Retinitis pigmentosa (RP)”. In various populations, 
the frequency of USH is between 3.5-6.2:100000, and the 

carrier frequency ranges 1:100 individuals [230]. USH 

become more prevalent in those states having small, 
isolated and beard population, including Pakistan, Israel, 

France, (Poitou-Charentes region), Finland and Accadian 

population of Louisiana, North Sweden and the United 

States [231]. 
 

Studies of clinical and molecular genetics USH 

have exposed extensive clinical and genetic 
heterogeneity. Genes of USH encode proteins of various 

classes/families, including motor proteins, scaffold 

proteins, proteins trans-membrane receptors and cell 

adhesion molecules [230, 232]. It is hypothesized that 
USH causing proteins are from those protein groups that 

are functional inside the inner ear to regulate the hair 

bundle's morphogenesis [34, 230]. Behavioral and Mental 
harms (psychotic symptoms and schizophrenia-like 

disorder) are also linked with USH. In Usher patients, 

neuro-imaging examination reports scatter involvement of 
central nervous system (CNS), signifying a probable 

function of CNS injury in the pathogenesis of psychiatric 

manifestations [233]. 
 

Perrault syndrome 
 

The relationship of abnormal development of 

gonads and deafness was studied in 1951 for the first time 
and later termed as Perrault syndrome [234]. It is a rare 

disorder consisting of abnormal gonadal development 

such as ovarian abnormalities with SNHL in affected 
females [235-236], and only deafness in men [237]. So 

far, about 40 females globally were reported in different 

studies with this autosomal recessive disorder [235, 238]. 
Intellectual abnormalities, cerebellar ataxia, motor and 

sensory peripheral neuropathies were reported in some 

females with this syndrome. Beyond 10 pathogenic genes 

are to be identified that causes premature ovarian failure 
heterogeneously [239-240].  
 

Treacher Collins (TC) syndrome 
 

In 1846, first time Thomson and later on in 1847 
Toynbee reported this syndrome [241-242]. Berry 

discussed an abnormality in colobomata of the lower eye-

lid [243]. It is a rare syndrome. There are two types with 
respects to severity: minimal severity includes oblique 

pulperal fissures and major severity includes craniofacial 

development such as hypertelorism, micrognathia, 
maxillary-hypoplasia, high arched plate, conductive HL, 

external malformation and narrow nostrils [244-246]. The 

occurrence rate of this syndrome is between 1:25000 and 

1:50000 [244-245]. TCOF1, POLR1D and POLR1C have 
been identified to cause this syndrome. Transmission of 

these genes takes place through the autosomal dominant 

or autosomal recessive pattern of inheritance [245, 247]. 
Ontological, ophthalmological and dental abnormalities 

have also been seen in the diagnosed patients with TC 

syndrome [249]. 
 

Branchio-Oto-Renal (BOR) syndrome 
 

Branchio-Oto-Renal syndrome, a developmental 

disorder inherited with an autosomal recessive pattern, 
and is distinguished by the occurrence of renal and gill 

vault defects combined with HL. In the early two-phase 

of life, the malformations of the urinary tract are the 

major cause of chronic renal failure [250-251]. 
Commonly, the dispersion ratio of the BOR syndrome in 

the general population is 1:40,000 individuals, whereas in 

deaf children’s its ratio is about 2% of the total deaf 
population. The early onset of the HL varies from 

childhood to adulthood [250, 252]. The clinical 

expression of BOR has a wide range of inter- and intra-

family variability, and become assumed the occurrence 
rate of BOR syndrome is reduced [253].  
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Table 2: Syndromes, Mutated Genes, and their chromosomal location 

 

Syndrome Location Gene Locus Phenotype 

 

Alport 

Syndrome 

Xq22 COL4A5 …  

X-linked and autosomal recessive, progressive highly prevalent 

SNHL; specific form of glomerulonephritis. The recessive genes 

are COL4A6 and COL4A4 respectively. 

2q36-

q37 

COL4A3 … 

2q36.3 COL4A4  

 

Branchio-  

oto-renal 

syndrome 

14q21.3-

q24.3 

SIX1 BOS3  

 

Autosomal dominant, pre-auricular ear pits, brachial pits and 

Sinuses, pinna abnormalities and renal hypoplasia. 

19q13.3 SIX5 BOR2 

1q31 unknown … 

8q13.3 EYA1 BOR1 

Charge 

syndrome 

7q21.11 SEMA3A … Inherited as autosomal dominant, it represents Acronym 

Coloboma, Atresia, ear anomalies, Heart defects, and retarded 

development and growth. 8q12.2 CHD7 … 

Jervell & 

lange-nelsen 

syndrome 

11p15.5 KCNQ1 JLNS1 Inherited as autosomal recessive, congenital profound SNHL with 

missing vestibular function and is also commonly known as QT 

syndrome. 21q22.1-

q22.2 

KCNE1 JLNS2 

Norrie 

syndrome 

Xp11.3 NDP NDP Inherited as X-linked progressive SNHL mostly appeared in 

second life decade, intellectual disability and congenital retinal 

detachment. 

Penderd 

syndrome 

7q21-34 SLC26A4 PDS Progressive high-frequency SNHL and inherited as autosomal 

recessive, with thyroid failure, incomplete partitioning of the 

cochlea and enlarged vestibular aqueducts. 5q35.1 FOX11 PDS 

1q23.2 KCNJ10 PDS 

 

 

Stickler 

syndrome 

12q13.1

1-q13.2 

COL2A1 STL1  

Inherited as autosomal dominant inheritance pattern, Affects Cleft 

palate, flat center-face, highly frequent SNHL, retinal detachment 

and high myopia; arthropathy. 

1p21 COL11A1 STL2 

6p21.3 COL11A2 STL3 

6q13 COL9A1 … 
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1p34.2 COL9A2 … 

 

Treacher collin 

syndrome 

5q32-

q33.1 

TCOF1 TCOF1  

Inherited as autosomal dominant inheritance pattern, results in 

symmetrical and bilateral pinna abnormalities with mental issues, 

coloboma of lower eyelids, spars in eyelashes, cleft palate, 

hypoplasia of mandible and zygomatic complex. 

13q12.2 POLR1D POLR1D 

6p21.1 POLR1C POLR1C 

 

 

 

 

 

 

 

 

 

 

 

Usher 

syndrome 

14q32 nonexisten

t 

USH1A  

 

 

 

 

 

 

 

 

RP (Retinitis pigmentosa) with SNHL. Type 1 of usher syndrome, 

profound congenital SNHL, absent vestibular response and RP 

(Retinitis pigmentosa) develops in the first life decade. In type 2 

of the usher syndrome, sloping congenital SNHL, with normal 

vestibular response and Retinitis pigmentosa (Verpy et al.) 

develops in the early and late onset of life; while in case of Usher 

syndrome type 3, progressive SNHL with erratic vestibular 

response and erratic period of the RP (Retinitis pigmentosa) 

develops. 

11q13.5 MYO7A USH1B 

11p15.1 USH1C USH1C 

10q22.1 CDH23 USH1D 

21q21 Unknown USH1E 

10q21-

22 

PCDH15 USH1F 

17q24-

25 

SANS USH1G 

15q22-

23 

Unknown USH1H 

15q23-

q25.1 

CIB2 USH1J 

10p11.2

1-q21.1 

Unknown USH1K 

1q41 USH2A USH2A 

3p23-

24.2 

Unknown USH2B 

5q14.3-

q21.3 

VLGR1 USH2C 

9q32 WHRN USH2D 

3q21-

q25 

CLRN1 USH3 

5q31.3 HARS USH3B 
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10q24.3

1 

PDZD7 ModiferGene 

 

 

 

 

Waardenburg 

syndrome 

2q35 PAX3 WS1  

 

 

SNHL with pigmentary anomalies of skin, eye, and hair. In type 

1; autosomal dominant with hypoplasia of alaenasi, synophrys 

and dystopia canthorum appears. In type 2; autosomal dominant 

and facial features and dystopia canthorum are absent. In type 3; 

autosomal dominant and is also known as Klein-Waardenburg 

syndrome: upper limb abnormalities plus type 1 syndrome. while 

in type 4; autosomal recessive and also known as Waardenburg-

Shah Syndrome: Hirschsprung disease plus type 2 syndrome. 

3p14.1-

p12.3 

MITF WS2A 

1p21-

p13.3 

unknown WS2B 

8p23 unknown WS2C 

8q11 SNAI2 WS2D 

2q35 PAX3 WS3 

13q22 EDNRB WS4 

20q13.2-

q13.3 

EDN3 WS4 

22q13 SOX10 WS4 

 

 

Perrault 

syndrome 

5q23.1 HSD17B4 …  

 

Inherited as autosomal recessive inheritance pattern results in 

congenital SNHL, intellectual disability, and other neurological 

disorders, gonadal dysgenesis in women. 

5q31.3 HARS2 … 

19p13.3 CLPP* DFNB81 

3p21.31 LARS2 … 

17q11.2 ERAL1 … 

Hunter 

syndrome 

Xq28.11 iduronate-

2-sulfatase 

(I2S) 

… Hunter syndrome faced deficiencies in iduronate-2-sulfatase 

activity and stored a variety of glycos-amino-glycans in a broad 

diversity of tissues 

 

Ritscher-

schinzel / 3c 

syndrome 

8q24.13 K1AA019

6 

…  

Characterized by congenital heart defects, craniofacial 

abnormalities, cerebellar brain malformation, and intellectual 

disability 

Xp11.23 CCDC22 … 

Nance 

syndrome 

Xp22.2-

p22.1 

NHS … congenital cataract, short fingers, dysmorphic traits, broad nose, 

and dental abnormalities 
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The syndrome BOR and their main features that 

diagnosed in 93% of the affected subjects, is HL either it 

is neurosensory, conductive or mixed.In addition to ear 
defects, branchial arch and kidney problems have been 

described in various kinds of BOR syndrome in other 

organic systems. Among these dysfunctions, the 
association of the lacrimal duct system is more common 

[251, 254-259]. 
 

Waardenburg syndrome (WS) 
 

Waardenburg is pigmentary disorders with 

sensorineural HL, a rare genetic disorder with the 
prevalence rate of 1:40,000 individuals, and is inherited 

with a recessive mode of inheritance. This congenital 

disorder is developed due to the abnormalities in the 

embryonic neural crest. The majority of the deaf 
population is congenital HL and is also develops in late-

onset due to encephalitis, meningitis and complications 

faced during prematurity [260]. Depending on the 
addition of medical anomalies with HL, It is further 

divided into four different types, as WS1, WS2, WS3 and 

WS4 [261]. The WS1 is associated with dystopia 
canthorum, while the WS2 developed without dystopia, 

and these are the main subtypes of WS. The WS1 is 

developed by the failures of neural crest, but the WS2 is 

developed due to the failure of specific melanocyte [261]. 
 

Dominant syndromes of HL 
 

Stickler syndrome 
 

Gunnar Stickler in 1965 first time reported Stickler 

syndrome with predicted frequency of 1:10,000 births. It 
develops in addition of connective tissue anomalies with 

HL, including retinal detachment, cataract, ocular 

anomalies of myopia, early arthritis, spondyloepiphyseal 
dysplasia, underdeveloped cleft-plate and HL of either 

conductive or sensorineural [262-263]. The cause of 

retinal detachment with HL was highly diagnosed sign of 

Stickler syndrome [262]. it occurs primarily in the 2
nd

 
period of life, with cataracts developing primarily in the 

fourth decade [264].This syndrome is further classified 

into type-1 and type-2 Stickler syndrome, and on the 
basis of vitreo-retinal phenotype, type-1 diagnosed with 

congenital vitreous irregularity and developed as 

mutations in COL2A1, whereas type-2 is diagnosed with 

congenital vitreo-retinal irregularity [265-266]. It is 
inherited either autosomal recessive or dominant 

inheritance pattern. Mutations in COL11A1, COL2A1 and 

COL11A2 are responsible for dominant inheritance 
pattern, while the mutations in COL9A1 and COL9A2 are 

responsible for recessive inheritance pattern [262, 267-

270]. 
 

Cardio-auditory (Jervell and Lange-Neilsen) syndrome 

(JLNS) 

 

In 1957, cardio-auditory syndrome designated as 

Jervell and Neilsen syndrome was studied in the 
Norwegian family [271]. It is genetically related to 

sensorineural HL, associated with syncopal episode and 

initiated with ventricular arrhythmias and unusual re-
polarization, illustrated by extended “QT” pause on 

electrocardiogram [272]. Long QT syndrome categorized 

into different classes on the basis of two clinical 

phenotype and inheritance patterns, like syndrome 
Romano-Ward, inherited as autosomal dominant, while 

syndrome JLNS inherited as autosomal recessive 

inheritance pattern [273]. The incidence of RWS is 
approximately 1:2000 in all societies [274], whereas the 

JLNS develops in patients when bi-allelic heterozygous 

mutation in KCNQ1 or KCNE1 are originates [273-275].  
 

JLNS is a very severe cardiac arrhythmia. It is 

genetic syndrome and its gene contains α and β subunits 

[276-278]. A high inflow of sodium ions causes cardiac 
action potential through the depolarization phase. 

Increased calcium ions in-flow and re-polarization lead to 

the development of the plateau-phase. This re-
polarization is due to the component that quickly 

activating and a slowly activating factor IK. Mutation in 

KCNQ1 leads to loss of IK function which belongs to 

ventricular re-polarization prolongation and result in 
ventricular arrhythmias (LQT syndrome) and also 

congenital bilateral deafness in its result (JLNS) [271, 

279-280]. There is another life hazardous ventricular 
arrhythmia termed as type-2 Short QT syndrome (SQTS) 

considered due to ventricular re-polarization shortening 

[280-281]. 
 

Charge syndrome (CS) 
 

CS diagnosed ear abnormalities including 
deafness and vestibular disorder with anomalies of heart 

defects, growth retardation, atresia of the choanae, 

coloboma of the eye, genital or urinary abnormalities, and 

is inherited with the autosomal dominant pattern with 
occurrence rate of 1:8500 - 15000 live births [282-285]. 

Genetically variation in 7(CHD7) genes considered the 

major cause of CS, which encodes a chromo-domain 
helicase DNA binding protein. According to clinical 

diagnostic research following the above criteria, among 

the people registered in different studies 70%-90% 
individuals are reported as the victim of CS [286-

292].With respect to molecular biology, the abnormalities 

yet not completely understood. Recent research has 

proved that CHD7 plays a vital role in the development of 
multi-potent migratory cells inside the neural crest. From 

neural tubes, these migratory cells migrate towards the 

several parts of the embryo and differentiated into much 
different type of tissues like craniofacial and heart 

structure. A few CHD7 genes have been studied that was 
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responsible for the development of neural crest [291, 

293]. Lalani et al reported that a gene SEMA3E having 

the same molecular process is responsible for charge 
syndrome [287]. 

 

X-Linked syndromes of HL 
 

Norrie syndrome (NS) 
 

Norrie Disease (ND), is a rare X-linked disorder 
inherited with recessive inheritance pattern, and it 

developed mainly in the form of early onset of child 

vision loss with HL [294]. Persons with ND may grow 
blindness at birth, cataract, nystagmus and increased 

intraocular pressure [295]. Affected males could transfer 

the mutated gene to their daughters. Carrier females 

inherit the pathogenic variant to her offspring in any 
pregnancy. Females who transmit the pathogenic variant 

will be a carrier or will be unaffected. On the other hand, 

carrier male will be affected [296]. In 1992, a mutation in 
the NDP gene (Pseudoglioma) was identified that is 

responsible for ND and later in 2020 a missense variant 

of this gene was identified [297-299]. Norrie gene 

expression encoded a protein; and this secretory protein 
containing a knot-motif of cysteine with 133 amino acids. 

In the growth vascular system of the retina, Norrie 

protein plays a vital role [300]. Norrie is related to 
mucin-like proteins. Mucin has characteristic features 

owing to the existence of a knot-motif of cysteine, and 

it’s a structural and functional motif found in many 
growth factors. Other than the biochemical factors, 

molecular aspects also involved in the NS, like in eye 

signal transduction pathway “Wnt-receptor-β-catenin” is 

involved in the failure of hyaloid vessels, and in addition 
it also functional in the growth of retina, and in this 

pathway it works as a ligand [296, 301-302]. 

 

Hunter syndrome (HS) 
 

HS is a metabolic storage disorder that affects the 

breakdown of sugar in the body with a frequency rate of 
1:34000 and 1:162000 individuals [303-305]. It develops 

by genetic variations in iduronate-2-sulfatasegene, 

inherited as X-linked pattern and also known as Muco-
poly-sacchari-dosis II [306-308]. It is predominantly 

present in males, and reported a prevalence rate of 

typically 1:100,000 individuals [309]. The patient show 
symptoms like, thick skin, develop macrocephaly, coarse 

facies, abnormalities in cardiac valves, 

hepatosplenomegaly, joint construction, deafness, airway 

compromise, cranial nerve and degeneration of central 
nervous system [310]. 

 

Ritscher-Schinzel/3c syndrome (RSS/3C) 
 

RSS/3C (crania-cerebro-cardiac) is commonly 

recognized a heterogeneous developmental abnormality, 

clinically it is much rarely diagnosed and is characterized 

by congenital heart defects, craniofacial abnormalities, 

cerebellar brain malformation and intellectual disability 
[311]. 80% of the RSS/3C patients have cardiac 

problems, which can comprise septal defects, tetralogy of 

Fallot, hypo-plastic left heart, double outlet right 
ventricle, pulmonic stenosis, aortic stenosis, and 

additional valvar anomalies. A lot of affected individuals 

confirm symptoms of Dandy-Walker malformation, 

posterior fossa cysts, ventricular dilatation and cerebellar 
vermis hypoplasia [312]. In RSS/3C syndrome, facial 

dimorphism is defined as a prominent forehead, occiput, 

micrognathia, lowest ears, depressed nasal bridge and 
down-slanting palpebral fissures. In this syndrome, the 

phenotypic manifestation is varied as well as the 

cerebellar and cardiac manifestations do also not 
constantly exist. Therefore, through diagnosis, 

dysmorphic features of craniofacial pattern become 

crucial [312-313]. A study on the Canadian population 

reports homozygous sequence variants, in K1AA0196, 
that encodes strumpellin which is the subunit of WASH 

complex, as the type of RSS/3C syndrome [311-312]. 

Another study on Austrian family, founded a missense 
variant in CCDC22, that maps on sex chromosome 

Xp11.23, show X-linked inheritance pattern and features 

related to syndrome RSS/3C [311]. 
 

Nance syndrome 
 

Walter Nance and Horan was reported as a rare 
X-linked hereditary disorder and famous as Nance-Horan 

syndrome (NHS) [314-315]. In 1990 a pathogenic variant 

was the first time mapped at cytogenetic location Xp21.1-

Xp22.3 that was responsible for NHS [316-318]. 
Therefore, with a minute disparity of phenotype, several 

varied mutations were identified causing NHS [319-321]. 

This syndrome is distinguished from other syndromes 
due to the presence of congenital cataracts, dental 

abnormalities, anteverted pinnae, broad nose and short 

fingers with HL [44, 322-323]. Furthermore, in literature 
mental retardation and illustrations of autism in NHS are 

also reported, but these results are more conflicting [324]. 

A bulk of available literature was concentrating on 

genetic factors of NHS and congenital cataracts with 
partial illustrations of oral findings [222, 325-327]. In 

patients of NHS, the description in the morphology of 

molar, use of the term "bud molar" is recommended. The 
relative mixture of congenital cataracts, bud-shaped 

molars, and screwdriver-shaped incisors are the key 

medical symptoms of NHS [44, 328]. 
 

Alport syndrome (AS) 
 

AS is a rare X-linked renal failure (glomerulo-
nephritis) syndrome initially reported in 1927 [329], and 

is characterized by HL with renal failure, lamellated 
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glomerular basement membrane, and hematuria. In the 

case of nephritis, AS with ultra-structural faults in BGM 

(glomerular basement membranes) of affected 
individuals, altered and affected the protein structure 

[330]. Renal transplantation, in affected individuals with 

AS, shows graft and tolerant survival rates as compared 
to affect individuals of other renal diseases. Patients 

suffered in "ESKD" (end-stage kidney disease), owing to 

AS have analogous patients and grafts survival to those 

affected individuals with other reported causes of 
"ESKD". Early management and diagnosis indicate 

positive results in individuals of the affected group [330]. 

It also diagnosed with anomalies of several ocular 
phenotypes, including Corneal and retinal manifestations 

[331-332]. 
 

Methods used in mapping / identification of causative-

genes 
 

Mapping/identification of the pathogenic gene, in 
large size consanguineous families, is facilitated by 

linkage analysis and auto-zygosity. Variable inheritance 

patterns, inherited with deafness/HL genes, have been 
identified in countries like Pakistan, Iran, Tusinia, India, 

Palestine and Turkey. Several hundred genes have been 

reported which have a strong association with HL, and 

the mutation spectrum of these reported genes becomes 
very wide so that the identification of pathogenic 

mutations is still difficult. The development of advanced 

techniques like; Next-generation Sequencing and target-
enrichment method, makes it easy to identify the novel 

gene and mutations, especially in disorders having a 

heterogeneous mode of inheritance. During the period of 

the last 10-12 years, the identification rate of causative 
genes associated with HL becomes very high. WES used 

as a first-line approach nowadays, for identifying the 

pathogenic gene variants that discharge a specific 
phenotypic disorder [333]. Without any conflict, this 

method is so expansive, but it provides high yield results. 
 

Linkage analysis 
 

Linkage analysis method is successfully used for 

verifying the genetic location of the pathogenic gene in 
the lack of any other abnormality (e.g., co-inherited 

disorders, no cytogenetic abnormality, known protein 

product or good candidate gene). Precise duplicates of the 
genomic region encouraging the pathogenic genes are co-

inherited with the disease within a family; these 

consequences confirmed the lack of recombination 

among the pathogenic variants and the adjacent genetic 
markers, owing to their close proximity. In a family, 

subjects who share a disease will typically share alleles at 

the marker close to the pathogenic gene. Fastidious alleles 
segregated with the disease often variate among the 

families, reflecting allelic heterogeneity or ancestral 

genetic recombination or event. Linkage analysis results 

are described as LOD score, results are reported, that 

representing the comparative likelihood that a disease 
locus and a genetic marker are linked genetically; instead 

of them are genetically unlinked. LOD minimum +3 score 

characteristically predicted verification of linkage and 
LOD score of -2 or less it indicates that region is not 

linked to the disease [334-335]. 
 

Linkage analysis is a method supportive in 
developing connections between the loci; i.e. two loci 

present on the identical chromosomes are expected to be 

linked if the observable fact of crossing-over does not 
separate them. During the process of recombination 

(crossing over) in meiosis the homologous chromosomes 

share their segments. Parental combinations are the 

original arrangement of alleles on the two chromosomes 
whereas the new combinations are originated after 

crossing over and denoted as recombinant. If two loci are 

actually slammed to each other on the same chromosome, 
then very few chances will happen they are separated 

through a recombination event. Haplotypes are the set of 

alleles for different markers or genes on the same 
chromosomes. The phrase linkage refers to the loci, not to 

definite alleles at these loci. Linkage analysis is a 

technique, which is most likely to be used to find the 

location, in genetic material, for the pathogenic gene 
[334-335]. 

 

SNP Genotyping 
 

In genetic studies, the single nucleotide 
polymorphism (SNP; a type of genetic variant) markers 

found sportive. Approximately, in humans about 10 

Million SNPs exist, and it made the study of genome-

wide scan association become easier; with the completion 
of HapMap Project and microarray techniques. The 

addition of microarray and HapMap technique limits the 

number of SNPs required for genotyping, approximately 
0.25-1 million as compared to 10 million, that considers 

sufficient for gene mapping. For automated SNPs 

genotyping, Affymetrix and Illumine are two 

commercially available platforms are available. The basic 
principles of these two apparatus are the same, but it 

differs from each other in a few aspects [336]. 
 

Next-generation sequencing 
 

The exome holds exons of all the genome, and is 

represented as the coding regions of the genes. In a 
complete human genome, the exons are the only 1%. 

However, more than 70-80% of the pathogenic mutations 

are identified in this coding region of the genome. For 
this reason, whole-exome sequencing is an extra-ordinary 

accurate method to study the different inheritance patterns 

such as autosomal dominant, recessive and sex-linked 
traits in HHL. Designed for whole exome sequencing, 
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three basic platforms are available, namely Applied 

Biosystems SOLiD [337], Roche 454 [338], and Illumina 

Genome Analyzer [337-338]. The design and chemistry 
of every platform are specific but the working principle of 

each platform is the same. 
 

II. CONCLUSION 
 

Gene depiction and variant screening will unite the 
functional characteristics and permit to develop 

phenotype-genotype association. Mutations in genes or 

the interaction of several disordered genes caused HL and 

other genetic disabilities. Hearing impairment in adults is 
a major high prevailing disability, connected with severe 

psychosocial and communication issues, and face severe 

health care cost with financial problems at individual and 
societal level.  Hearing impairment is divided into two 

broad categories; one is without clinical abnormality 

defines NSHL, while other with clinical abnormalities 
defines SHLs. This complete review exposes the latest 

developments in this field, and also focusing on different 

genetic players involved in it and various methods used in 

different studies to find these pathogenic genes and their 
variants. Various equipment’s and molecular approaches 

now available and under study to improve hearing in 

patients but these technologies have limited access due to 
serious implications like health policies, rules-regulations 

and high cost. Whereas, there is no proper treatment are 

still available for syndromic hearing impairment. In 
simple hearing loss doctors solved some level of hearing 

issues with cochlear implant and hearing aids, but in case 

of syndromic hearing impairment the patient still faces 

problems e.g. in Usher syndrome retinal complication still 
remains unresolved. Furthermore, delineation of 

pathogenic variants linked to hearing damage enables 

recommendations to hearing specialist for handling the 
patients that make sure the batter quality of life. Initial 

detection of HL ensures to early mediation and healthier 

patient results. Linkage analysis, SNP genotyping and 

Next generation sequencing method are most likely be 
used, and WES method is one of them highly used in 

most of the genetic studies to-date for quick and accurate 

findings of mutated genes. This study suggested that 
functional characterization of these variants will help to 

better understand the pathophysiology of disease and will 

improve the procedures of genetic testing and genetic 
counseling. 
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