Mixed-precision sensitivity in Earth-System modelling

Sam Hatfield*, Kristian Mogensen, Peter Düben, Nils Wedi

ECMWF

Oriol Tinto, Mario Acosta, Miguel Castrillo

BSC

*samuel.hatfield@ecmwf.int

Impact of ocean on medium-range weather forecasts

uncoupled

coupled to NEMO¹/4°

Cost of ocean modelling

Single-precision in the atmosphere

Z500

1.7x speed-up (40% reduction in wall-clock time)
 Default for 1.5 km IFS experiments
 Data assimilation not considered yet

How low can you go? Half-precision in the atmosphere

9 km resolution (operational)

Single-precision ocean modelling at ECMWF and BSC

Two types of error when reducing precision

"Catastrophic" errors

- Divide-by-zero from small sea-ice concentrations
- Overflows from comparisons with large numbers
- Cause model crashes

Assumption: these errors are edge cases that have no physical significance and can be eliminated with careful recoding

"Graceful" errors

- Slow unavoidable build-up of rounding errors
- Loss of conservation
- Don't cause model crashes

Assumption: these errors are small compared with model/observation uncertainty

Examples of catastrophic error (NEMO 4.0.1)

Example #1 (Lagrangian floats trajectories)

! Original code
ztxfl(jfl) = 1.E99 ! <- overflow!</pre>

! New (single-precision compatible) code
ztxfl(jfl) = HUGE(0.0_wp)

```
Example #2 (sea-ice thickness distribution)
                 ~mitochondrion
! Original code
WHERE (sea_ice_conc >= 10**-20)
    t_surf = zaTsfn / sea_ice_conc
ELSEWHERE
    t surf = 273.15
END WHERE
                    ~tennis court
! New code
WHERE (sea ice conc >= 10^{**}-6)
    t surf = zaTsfn / sea ice conc
ELSEWHERE
    t surf = 273.15
END WHERE
```


GYRER27 comparison with double-precision

Mixed-precision

Double-precision

GYRER27 comparison with double-precision

Which is double-precision?

Relative vorticity after 2 years spin-up from rest

Mixed-precision

Double-precision

double-precision, day 0

ORCA¹/₄° sea-surface salinity

mixed-precision, day 0

Strong-scaling

ORCA 1/4° profile

Subroutine	Purpose	% of DP cost	Speed-up MP:DP
icedyn_rhg	Sea-ice rheology	11%	1.17
tra_adv	Tracer advection	9%	1.48
zdf_phy	Vertical ocean physics	9%	2.24

576 cores, 6 month integration

Overall speed-up from mixed-precision: **1.5x** i.e. ~35% reduction in cost

10 free extra ensemble members in seasonal forecast

But "minor question": what about the quality of the simulation?

Testing strategy for the atmosphere

- 1. Run "perfect model" tests
 - Does it even run?
 - Is it worth it? (Speed-up...)

Dueben and Palmer (2014) Mon. Wea. Rev.

Testing strategy for the atmosphere

- 1. Run "perfect model" tests
 - Does it even run?
 - Is it worth it? (Speed-up...)
- 2. Run hindcast tests
 - How does diff. between single/double compare with model/observation uncertainty?

Testing strategy for the atmosphere

- 1. Run "perfect model" tests
 - Does it even run?
 - Is it worth it? (Speed-up...)
- 2. Run hindcast tests
 - How does diff. between single/double compare with model/observation uncertainty?
- 3. Iron out wrinkles for operational use
 - Check biases
 - Check mass etc. conservation

What about the ocean?

3 day MSLP forecasts single-precision - double-precision

Without m=0 Legendre transform fix

With m=0 Legendre transform fix

Testing strategy for the ocean

- 1. Run "perfect model" tests
 - Does it even run? ✓ (but...)
 - Is it worth it? (Speed-up...) ✓ (1.5×)
- 2. Run hindcast tests, forced by reanalysis
 - Long (40 year) runs
 - Medium-range forecasts

Initialised!

- Transport (RAPID)
- SSTs (e.g. OSTIA, CCI)
- Sea-ice (e.g. OSTIA)
- Double-precision (reducing precision is **not** a "model upgrade"!)

A DCMIP for the ocean

Nakano et al. (2018) Mon. Wea. Rev.

forced global with tropical cyclone?

double-gyre

increasing complexity

Lévy et al. (2012) Ocean Modelling

lock exchange

llıcak et al. (2012) Ocean Modelling

Conclusion

- Mixed-precision has been used successfully in the atmosphere at ECMWF, with ~1.7× speed-up
- Mixed-precision in the ocean provides ~1.5× speed-up, which could significantly accelerate seasonal runs
- But quantifying impact on model is not easy
 - Another motivation for testcase model intercomparisons

