
XrootD Monitoring Validation
Derek Weitzel & Diego Davila

Summary
XRootD detailed monitoring (also called the f-stream) data stream was audited for correctness
and completeness. This stream includes all file accesses that a XRootD server performs. A
single OSG monitoring collector collects and processes monitoring data from all XRootD
instances in the U.S. Several bug fixes were corrected in the monitoring collector, but none of
that significantly affected the collected data. Features were added to the XRootD server that
reduce the losses due to using the unreliable UDP protocol between the servers and the
collector. ​After these features and bug fixes were applied, the monitoring stream showed
no loss of transfer monitoring data and was consistent with the server and client’s
behavior.

Goals of the validation
Verify that the transfer accounting collected by the OSG XRootD Collector matches the usage
from the XRootD server by the client. Additionally, verify that the data path from the collector to
the visualization captures all usage.

Recommendations
The tests have shown that the weak point of the data pipeline is the unreliable communication
between the XRootD servers and the central monitoring collector. The ​frame size feature​ added
to XRootD resolved the lost packet issues for a single server. Even with this change, it is
expected that losses will occur as the number of servers reporting to a collector increases. ​We
recommend that a scale test be performed to quantify message losses from the server to
the collector.

Tests Performed
All tests were performed using a single XRootD server running in a docker container within a
fermicloud VM at FNAL. The monitoring collector was running in a docker container and hosted
at the University of Nebraska-Lincoln.

We carried out 4 different types of tests: ​full file, byte range, vector range ​and ​long lived ​using a
unreleased version of XRootD v5 (presumably v5.0.1) (​da7d2c8fcbc677ab650142cce7475d4c147ff47f​)
built directly from the master branch for the XRootD server. For the ​full file ​and the ​byte range
tests we used 2 different configurations: one that uses the “​frame size feature​” (see section
“XRootD - UDP Fragmentation - fbuff addition”) that we will call “patched” and another one that
does not use it and we will call it “unpatched”. For the rest of the tests we only used the
“patched” version.

The difference in the configuration between “patched and “unpatched” is just the addition of the
following attribute and value: ​fbsz 1400​ to the ​xrootd.monitor​ directive. This will limit the
maximum size of a UDP package sent to the monitor collector to be 1400 bytes.

In the following we describe the 4 types of tests performed and their results.

Full file​. This set represents the most basic tests, in which a set of files is requested at a
specific rate. From the results of these tests (see Appendix-A/ table 1) one can notice that the
higher the rate of files requested the more data was getting lost for the “unpatched” version. For
the “patched” version no data was lost.

Using the ​tcpdump ​tool on the XRootD server side we were able to spot a pattern that indicated
that the packets getting lost were significantly bigger than those successfully delivered to the
collector. This observation lead to a change requested for the XRootD server that is described
later on this document (see section “XRootD - UDP Fragmentation - fbuff addition”)

Byte range. ​In this set of tests, instead of requesting a full file, a range-of-bytes is requested.
Both the file and the ​seek​ or the initial byte to be read are defined randomly, the number of
bytes to be read is fixed for any given test but varies among different tests.
As one might expect the results for the “unpatched” version on these tests (see Appendix-A/
table 3) are similar to the the ​full file ​ones given that the situation is also very similar; many read
operations executed within the same time window will produce big packets that are likely to get
lost. In the case of the “patched” version no data was lost (see Appendix-A/ table 4).

Vector Range. ​In this type of test more than one byte range requests are packed together in a
single request. The attribute “vector size” in the tests (see Appendix-A/ table5) defines the
number of byte range requests packed into the vector for a given test. In every test the size of
the byte ranges inside the vector are fixed and both the file and the seek of each byte range are
defined randomly. In these tests no data was lost.

Long lived. ​This type emulates a job that requests multiple byte ranges of a single file over a
period of time leaving idle time in between requests. In every test we emulate one or more jobs
running in parallel. Every job will perform a fixed number of byte range requests of a specific
size, the requests are separated by a defined time window of N-minutes and are done on a
random file and initial byte position.

Ideally we would like to see all read operations performed by a job within a long period of time to
be summarized in a single record within the collector but while conducting the tests (see
appendix-A/ table 6) we found out that the XRootD server will send an artificial file-close
operation to the collector after the client has been idle for 5 minutes, then send a new open-file
operation if the client gets active afterwards. On the collector side this will look as if the user was
opening, reading and closing a file several times which in turn will produce several records.

The above will produce monitoring data that shows the right amount of bytes being read by the
client but having the records being chopped every 5 minutes could lead one to think that the
client is opening and closing files again and again and not just being idle between reads. This
has implications for how the monitoring data is interpreted by people who analyze it. We
suggest that this is documented (where?) such that monitoring consumers understand this
feature.

Bugs fixed

Collector - Missing ​appinfo
The ​appinfo​ attribute is used by VOs to add an arbitrary tag to file transfers. The ​appinfo​ was
not included in the final data output from the collector and sent to the database. The collector
incorrectly assumed that an identifier provided with the appinfo information matched the
identifier with a connection. The identifier does not match the connection identifier. The collector
was modified to use several attributes also transmitted with the appinfo information in order to
match with a connection.
Resolution: Collector Bug Fix (several commits)

Collector - Message sent to wrong destination on reconnect
After a long period of idle time, the connection between the collector and the message bus
could be closed. When the collector prepares to send the next message to the message bus,
the collector will re-establish the connection but push the message into the StashCache queue
rather than the WLCG usage queue. The original destination of the message was not saved
after the reconnection to the queue, which caused the message to go to the default StashCache
destination instead of the WLCG queue.
Resolution: ​Collector Bug Fix

XRootD - Sequence Numbers
XRootD sends sequence numbers with each packet. The collector originally assumed,
incorrectly, that the sequence number should be incrementally increasing with each received
packet. An examination of the XRootD code revealed the sequence number was incremented
whenever a monitoring packet was created, even if it was not sent to one of the two possible
destinations. Therefore, the sequence numbers could not be relied upon to detect missing
packets. After a conversation with the developers, XRootD implemented destination specific
sequence numbers that can be used to detect missing packets.
Resolution:​ ​XRootD Improvements

XRootD - UDP Fragmentation - fbuff addition
XRootD sends monitoring events in UDP packets. These monitoring packets can get large if
many events occur within a flush window. These packets can become larger than the ​MTU​ that

https://github.com/opensciencegrid/xrootd-monitoring-collector/commit/218333970fb8b346e710bb63fd4554ae1c1216fd
https://github.com/xrootd/xrootd/commit/9baea65f7bd235f42cf56a571eab10f759ab3e6c
https://en.wikipedia.org/wiki/Maximum_transmission_unit

the network can support, which will lead to packet fragmentation. UDP Fragmentation has been
documented as a cause for significant packet loss ​[Cloudflare]​ ​[‘87 HP Paper]​. During our tests,
we were able to replicate near 100% packet loss when the packets became larger than the
standard MTU. To mitigate UDP packet fragmentation, we submitted a change to XRootD that
can limit the packet size sent to monitoring destinations.
Resolution: ​XRootD Improvements

Collector Improvements

Visibility of Operations
The monitoring collector was augmented with internal monitoring using ​Prometheus​. A
dashboard was created to display the internal status of the monitoring collector (shown below).

https://blog.cloudflare.com/ip-fragmentation-is-broken/
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf
https://github.com/xrootd/xrootd/pull/1234
https://prometheus.io/

Appendix-A Test Results

Table 1. Full file unpatched

Id
Num. files
requested

Request
rate

Num. files
correctly
recorded 1

Num. files
correctly
recorded 2

Num. files
correctly
recorded 3

Num. files
correctly
recorded avg

avg success
percentage

ff_01 10 1/s 10 10 10 10,00 100,00%

ff_02 10 5/s 10 10 10 10,00 100,00%

ff_03 10 10/s 10 10 10 10,00 100,00%

ff_04 50 1/s 2 19 1 7,33 14,67%

ff_05 50 5/s 10 20 0 10,00 20,00%

ff_06 50 10/s 0 0 0 0,00 0,00%

ff_07 100 1/s 11 0 0 3,67 3,67%

ff_08 100 5/s 15 0 0 5,00 5,00%

ff_09 100 10/s 0 0 0 0,00 0,00%

ff_10 100 20/s 0 0 0 0,00 0,00%

Table 2. Full file patched

Id

Num. files
requested

Request
rate

Num. files
correctly
recorded 1

Num. files
correctly
recorded 2

Num. files
correctly
recorded 3

Num. files
correctly
recorded avg

success
percentage

ff_01 10 1/s 10 10 10 10 100,00%

ff_02 10 5/s 10 10 10 10 100,00%

ff_03 10 10/s 10 10 10 10 100,00%

ff_04 50 1/s 50 50 50 50 100,00%

ff_05 50 5/s 50 50 50 50 100,00%

ff_06 50 10/s 50 50 50 50 100,00%

ff_07 100 1/s 100 100 100 100 100,00%

ff_08 100 5/s 100 100 100 100 100,00%

ff_09 100 10/s 100 100 100 100 100,00%

ff_10 100 20/s 100 100 100 100 100,00%

Table 3. Byte range unpatched

Id
Num. of
requests

Request
rate

Range
size

Num.
operations
correctly
recorded

success
percentage

br_01 10 1/s 512KB 10 100,00%

br_02 10 5/s 1MB 10 100,00%

br_03 10 10/s 5MB 10 100,00%

br_04 50 1/s 512KB 25 50,00%

br_05 50 5/s 1MB 5 10,00%

br_06 50 10/s 5MB 0 0,00%

br_07 100 1/s 512KB 16 16,00%

br_08 100 5/s 1MB 0 0,00%

br_09 100 10/s 5MB 0 0,00%

br_10 100 20/s 10MB 20 20,00%

Table 4. Byte range patched

Id
Num. of
requests

Request
rate

Range
size

Num.
operations
correctly
recorded 1

Num.
operations
correctly
recorded 2

Num.
operations
correctly
recorded 3

Num.
operations
correctly
recorded avg

success
percentage

br_01 10 1/s 512KB 10 10 10 10 100,00%

br_02 10 5/s 1MB 10 10 10 10 100,00%

br_03 10 10/s 5MB 10 10 10 10 100,00%

br_04 50 1/s 512KB 50 50 50 50 100,00%

br_05 50 5/s 1MB 50 50 50 50 100,00%

br_06 50 10/s 5MB 50 50 50 50 100,00%

br_07 100 1/s 512KB 100 100 100 100 100,00%

br_08 100 5/s 1MB 100 100 100 100 100,00%

br_09 100 10/s 5MB 100 100 100 100 100,00%

br_10 100 20/s 10MB 100 100 100 100 100,00%

Table 5. Vector range

Id
Num. of
requests

Request
rate

Vector
size

Range
size

Num.
operations
correctly
recorded 1

Num.
operations
correctly
recorded 2

Num.
operations
correctly
recorded 3

Num.
operations
correctly
recorded avg

success
percentage

vr_01 10 1 3 512KB 10 10 10 10 100,00%

vr_02 10 5 5 1MB 10 10 10 10 100,00%

vr_03 10 10 10 1.5MB 10 10 10 10 100,00%

vr_04 50 1 3 512KB 50 50 50 50 100,00%

vr_05 50 5 5 1MB 50 50 50 50 100,00%

vr_06 50 10 10 1.5MB 50 50 50 50 100,00%

vr_07 100 1 3 512KB 100 100 100 100 100,00%

vr_08 100 5 5 1MB 100 100 100 100 100,00%

vr_09 100 10 10 1.5MB 100 100 100 100 100,00%

vr_10 100 20 20 1.5MB 100 100 100 100 100,00%

Table 6. Long lived patched

Id job_id
Conn.
duration (m)

Num. of
requests

minutes
between
requests

Byte
range
size

job
recorded

ll_01 0 3 3 1 512KB OK

ll_02 1 6 3 2 1MB OK

ll_02 2 15 5 3 5MB OK

ll_02 3 20 5 4 10MB OK

ll_03 4 25 5 5 512KB OK

ll_03 5 50 5 10 1MB OK*

ll_03 6 60 3 20 5MB OK*

ll_03 7 90 3 30 10MB OK*

(*) The amount of bytes read reported is ok, but the number of ​file-open​ and ​file-close​ operations is not accurate.

