
Post-Quantum Key Encapsulation on 8-bit
Microcontrollers: A New Hope for the IoT

Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

DSC and SnT, University of Luxembourg
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{hao.cheng,johann.groszschaedl,peter.roenne,peter.ryan}@uni.lu

Abstract. Recent progress in quantum computing has increased inter-
est in the question of how well the existing proposals for post-quantum
cryptosystems are suited to replace RSA and ECC. While some aspects
of this question have already been researched in detail (e.g. the relative
computational cost of pre- and post-quantum algorithms), very little is
known about the RAM footprint of the proposals and what execution
time they can reach when low memory consumption rather than speed
is the main optimization goal. This question is particularly important in
the context of the Internet of Things (IoT) since many IoT devices are
extremely constrained and possess only a few kB of RAM. We aim to
contribute to answering this question by exploring the software design
space of the lattice-based key-encapsulation scheme ThreeBears on an
8-bit AVR microcontroller. More concretely, we provide new techniques
for the optimization of the ring arithmetic of ThreeBears (which is, in
essence, a 3120-bit modular multiplication) to achieve either high speed
or low RAM footprint, and we analyze in detail the trade-offs between
these two metrics. A low-memory implementation of BabyBear that is
secure against Chosen Plaintext Attacks (CPA) needs just about 1.7 kB
RAM, which is significantly below the RAM footprint of other lattice-
based cryptosystems reported in the literature. Yet, the encapsulation
time of this RAM-optimized BabyBear version is only around 13 million
cycles, which is less than the execution time of a scalar multiplication
on Curve25519. The decapsulation is over 3.6 times faster and requires
roughly 3.7 million cycles on an ATmega1284 microcontroller.

Keywords: Post-quantum cryptography · Key encapsulation mecha-
nism · ThreeBears · AVR microcontroller · Efficient implementation

1 Introduction

In 2016, the U.S. National Institute of Standards and Technology (NIST) an-
nounced an initiative to “solicit, evaluate, and standardize quantum-resistant
public-key cryptographic algorithms” and published a call for proposals [15].
This call, whose submission deadline passed at the end of November 2017, cov-
ered the complete spectrum of public-key functionalities considered by the NIST,
i.e. public-key encryption, key agreement, and digital signatures. A total of 72

2 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

candidates were submitted, of which 69 satisfied the minimum requirements for
acceptability and entered the first round of a multi-year evaluation process. In
early 2019, the NIST selected 26 of the submissions as candidates for the sec-
ond round; among these are 17 public-key encryption or key-establishment algo-
rithms and nine signature schemes. The 17 algorithms for encryption (resp. key
establishment) include nine that are based on certain hard problems in lattices,
seven whose security rests upon classical problems in coding theory, and one
that claims security from the presumed hardness of the (supersingular) isogeny
walk problem on elliptic curves. This second round (which is expected to end
around mid 2020) focuses on evaluating the candidates’ performance across a
wide variety of systems and platforms, which includes “not only big computers
and smart phones, but also devices that have limited processor power” [16].

Lattice-based cryptosystems seem the most promising candidates for deploy-
ment in embedded and mobile devices thanks to their relatively low computa-
tional cost combined with reasonably small keys and ciphertexts (resp. signa-
tures). Indeed, benchmarking results collected in the course of the pqm4 project1

for a 32-bit ARM Cortex-M4 microcontroller show that most of the lattice-based
Key-Encapsluation Mechanisms (KEMs) in the second round of NIST’s evalu-
ation process are faster than ECDH key exchange based on Curve25519, and
some proposals are even much faster than Curve25519 [12]. Unfortunately, the
results of pqm4 also indicate that lattice-based cryptosystems demand a massive
amount of run-time memory (i.e. RAM) since most of the benchmarked lattice
KEMs have a RAM footprint of between 5 and 20 kB. For comparison, a variable-
base scalar multiplication on Curve25519 can have a RAM footprint of below
500 bytes [6]. One might argue that the pqm4 implementations were optimized
for high speed rather than low memory consumption, but this argument can
be countered by the fact that a straightforward implementation of Curve25519
(i.e. an implementation without any specific measures for RAM reduction) still
requires just around 500 bytes of RAM. Consequently, the existing implemen-
tation results in the literature lead to the conclusion that lattice-based KEMs
require (at least) an order of magnitude more RAM that ECDH key exchange.

The high RAM requirements of lattice-based cryptosystems (in relation to
Curve25519) pose a serious problem for the emerging Internet of Things (IoT)
since many IoT devices feature only a few kB or RAM. For example, a typ-
ical wireless sensor node like the MICAz mote [5] is equipped with an 8-bit
AVR microcontroller (e.g. ATmega128L) and comes with only 4 kB internal
SRAM. These 4 kB are easily sufficient for Curve25519 (which still leaves 7/8
of the RAM capacity for system and application software), but not for lattice-
based KEMs. Consequently, there is a pressing need to research how lattice-based
cryptosystems can be optimized to reduce their memory consumption and what
performance such low-memory implementations can reach. The present paper
addresses this research need and presents software optimization techniques for
the ThreeBears KEM [9], a lattice-based cryptosystem that made it into the sec-
ond round of the NIST post-quantum standardization project. The security of

1 https://github.com/mupq/pqm4

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 3

ThreeBears relies on a special variant of the well-known Ring Learning With Er-
rors (LWE) problem, namely the so-called Integer Module Learning with Errors
(I-MLWE) problem [4]. ThreeBears is unique among the lattice-based second-
round candidates since it uses an integer ring instead of a polynomial ring as
underlying algebraic structure. Thus, the main operation of ThreeBears is multi-
precision integer arithmetic (namely multiplication modulo a 3120-bit prime)
and not polynomial arithmetic.

The usual way to speed up the polynomial multiplication that forms part of
all lattice-based schemes except ThreeBears is to use a multiplication technique
with sub-quadratic complexity, e.g. Karatsuba’s method [13] or the Toom-Cook
algorithm [17]. Unfortunately, the performance gain of these techniques comes
at the expense of increased memory requirements. For integer arithmetic, on
the other hand, there exists a highly effective optimization technique that does
not increase RAM footprint, namely the so-called hybrid multiplication method
from CHES 2004 [7] or one of its improved variants like the Reverse Product
Scanning (RPS) method [14]. In essence, the hybrid technique can be seen as a
combination of operand scanning and product scanning that reduces the number
of load instructions at the expense of a slight increase in code size since, in each
iteration of the inner loop, four bytes of the operands are processed at once. Even
though the hybrid technique could also be applied to polynomial multiplication,
it is less effective because the coefficients of the polynomials in lattice-based
cryptography are usually less than 16 bits long, which means only two bytes of
each operand can be processed at a time.

Contributions. This paper examines the performance of ThreeBears on 8-bit
AVR microcontrollers and evaluates the flexibility of ThreeBears to achieve dif-
ferent trade-offs between execution time and RAM footprint. We present, to the
best of our knowledge, the first highly-optimized software implementations of
ThreeBears for the AVR platform, which we developed to reach low RAM con-
sumption, high speed and resistance against timing attacks. In particular, our
software is the most RAM-efficient among all publicly-known software imple-
mentations of NIST second-round candidates for microcontrollers.

In detail, we take advantage of a full-radix representation for each field ele-
ment, which allows us to decrease both the RAM footprint and running time. In
addition, we propose two novel optimizations for the highly performance-critical
Multiply-ACcumulate (MAC) operation: one is memory-optimized whereas the
other one is speed-optimized. The memory-optimized MAC focuses on minimis-
ing the allocated stack memory and uses the RPS method [14] to accelerate the
“tripleMAC” operations therein. Alternatively, the speed-optimized MAC splits
the field elements up into two halves and takes advantage of a 3-level Karat-
subarized RPS approach. Both types of optimized MAC are developed in AVR
Assembly language to reach high speed and constant execution time. As a result,
our software includes four implementations: two implementations of CCA-secure
BabyBear and two implementations of CPA-secure BabyBearEphem. For each
BabyBear and BabyBearEphem, our software contains both a Memory-Efficient

4 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

(ME) and a High-Speed (HS) variant2, which use the corresponding types of
MAC implementations.

Flexibility is one of the primary evaluation criteria for the PQC cryptosys-
tems mentioned in the NIST Call for Proposals [15]. More precisely, the docu-
ment defines flexibility as the ability of algorithms to be “implemented securely
and efficiently on a wide variety of platforms, including constrained environ-
ments, such as smart cards.” The 8-bit AVR architecture serves as a good ex-
ample for a hardware platform for smart cards, which urgently need efficient
implementations of quantum-safe cryptosystems. Unfortunately, as mentioned
before, many PQC schemes demand relatively high amounts of run-time mem-
ory (often more than 10 kB), which exceeds the RAM capacity of most AVR
processors and raises doubts whether such PQC schemes can be employed on
AVR devices. However, our work shows that ThreeBears provides flexibility to
optimize for RAM footprint and still achieve reasonably good execution times.
Concretely, a CCA-secure ThreeBears KEM of NIST category 2 security can
be optimized to run efficiently with 2.4 kB RAM on AVR, while its CPA-secure
instance costs only about 1.7 kB run-time memory. This makes ThreeBears a
suitable cryptosystem to secure IoT devices in a quantum world.

2 Preliminaries

2.1 8-bit AVR Microcontrollers

8-bit AVR microcontrollers, one of the most resource-constrained and power-
efficient devices, are widely used in current IoT markets (e.g. smart cards, wire-
less sensor nodes). The AVR architecture is based on the RISC philosophy and
a modified Harvard memory model, equipped with 32 general-purpose working
registers (named R0 to R31) of 8-bit width that are directly connected to the
Arithmetic Logic Unit (ALU). The latest revision of AVR instruction set sup-
ports 129 instructions altogether, where each instruction has fixed latency. As
example, some instructions that are frequently used in our software are addi-
tion/subtraction (ADD/ADC/SUB/SBC) which take one clock cycle. In comparison,
both the multiplication (MUL) and load/store (LD/ST) instruction are more “ex-
pensive” and need two clock cycles. The specific AVR microcontroller on which
we simulated the performance of our software is the ATmega1284, which features
16 kB SRAM and 128 kB flash memory for storing program code.

2.2 ThreeBears KEM

ThreeBears has three parameter sets namely BabyBear, MamaBear and Pa-
paBear, matching NIST security categories 2, 4 and 5, respectively. Each pa-
rameter set comes with two instances providing respectively CPA- and CCA-
security. Taking BabyBear as an example, the CPA-secure instance is named

2 We call these four implementations ME-BabyBear, ME-BabyBearEphem, HS-
BabyBear and HS-BabyBearEphem.

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 5

BabyBearEphem (with the meaning of ephemeral BabyBear) while the CCA-
secure one is simply called BabyBear. We here only give a brief overview of the
CCA-secure instance of ThreeBears. In contrast with a scheme of CCA-security,
the CPA-secure one, roughly speaking, does not repeat and test the key gener-
ation and encapsulation during the decapsulation procedure (see details in [9]).

Notation and Parameters. ThreeBears is performed in a field Z/N , where
the prime modulus N = 23120 − 21560 − 1 is a Goldilocks prime [8] which is
usually written in a form of N = φ(x) = xD − xD/2 − 1. The field addition and
multiplication operations (+, ∗) will be explained in Sect. 3.1. Further, a param-
eter d decides the module dimension, which is 2 for BabyBear, 3 for MamaBear
and 4 for PapaBear, respectively.

Key Generation. To generate a key pair for ThreeBears, the following opera-
tions have to be performed:

1. Generate a uniform and random string sk with a fixed-length.
2. Generate two noise vectors (a0, . . . , ad−1) and (b0, . . . , bd−1), where ai/bi ∈

Z/N is sampled from a noise sampler using sk.
3. Compute r = Hash(sk).
4. Generate a d×d matrix M , where each element Mi,j ∈ Z/N is sampled from

uniform sampler using r.
5. Obtain the vector Z̃ = (Z0, . . . , Zd−1) by computing each Zi = bi+Σ

d−1
j=0Mi,j∗

aj mod N

6. Output sk as private key and (r, Z̃) as public key.

Encapsulation. The encapsulation operation gets a public key (r, Z̃) as input
and produces a ciphertext and session key as output:

1. Generate a uniform and random string seed with a fixed-length.
2. Generate two noise vectors (â0, . . . , âd−1), (b̂0, . . . , b̂d−1) and a noise c, where

âi/b̂i/c ∈ Z/N is sampled from noise sampler by given r and seed.
3. Generate a d×d matrix M , where each element Mi,j ∈ Z/N is sampled from

uniform sampler by given r.
4. Obtain vector Ỹ = (Y0, . . . , Yd−1) by computing each Yi = b̂i + Σd−1

j=0Mj,i ∗
âj mod N , and compute X = c+Σd−1

j=0Zj ∗ âj mod N .
5. Use Melas FEC coding to encode seed with X and use this encoded output

to extract a fixed-length string f .
6. Compute ss = Hash(r, seed).
7. Output ss as session key and (Ỹ , f) as ciphertext.

Decapsulation. The decapsulation gets a private key sk and a ciphertext (Ỹ , f)
as input and produces a session key as output:

6 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

1. Generate a noise vector (a0, . . . , ad−1) where ai ∈ Z/N is sampled from noise
sampler by given sk.

2. Compute X ′ = Σd−1
j=0Yj ∗ aj mod N .

3. Derive a string from f with X ′, and use Melas FEC coding to decode this
string to obtain the string seed′.

4. Generate the public key (r′, Z̃ ′) through Key Generation by given sk.
5. Repeat Encapsulation to get ss′ and (Ỹ ′, f ′) by using the obtained seed′ and

key pair (sk, (r′, Z̃ ′)).
6. Check whether (Ỹ ′, f ′) equals to (Ỹ , f); if equal then output ss′ as session

key ; if not then output Hash(sk, Ỹ , f) as session key.

In above-described algorithms, there exist some so-called “auxiliary” func-
tions such as samplers (noise sampler and uniform sampler), hash functions and
error-correcting code. Both the samplers and hash functions, take advantage
of the cSHAKE256 [11], which relies on the Keccak permutation [1] at the low-
est layer. Besides, the designer provides a Melas-type forward error correction
(FEC) as the error-correcting code in ThreeBears, which has small code/memory
requirements and runs in constant time.

We measured various implementations of the NIST package of ThreeBears on
the AVR processor. Like most of the other post-quantum cryptographic schemes,
the arithmetic computations dominate the performance (both RAM footprint
and execution time) of ThreeBears. Hence, our work principally focuses on the
optimization of the most costly MAC operation thereof (r = r + a ∗ b mod N).
Concerning the auxiliary functions, thanks to an open-source highly-optimized
AVR Assembler3 of Keccak permutation, they gained significant speed improve-
ments. Other details regarding auxiliary functions are out of the scope of this
work, and we advise readers to refer the specification of ThreeBears [9].

3 Optimizations for MAC Operation

The multiply-accumulate (MAC) operation in ThreeBears, r = r + a ∗ b mod
N , particularly the field multiplication thereof, is very costly on AVR devices
and deserves special care. This section deals with the optimization approaches
of MAC operations on the AVR platform. As stated in our contribution, we
designed two strategies of MAC optimizations, i.e. memory-optimized MAC and
speed-optimized MAC, which are illustrated in Sect. 3.3 and 3.4, respectively.

3.1 The MAC operation of ThreeBears

ThreeBears defines its field operations (+, ∗) as

a+ b := a+ b mod N and a ∗ b := a · b · x−D/2 mod N

where operations (+ and ·) are the conventional integer addition and multi-
plication. Notably, a clarifier x−D/2 is multiplied with factors during the field

3 https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 7

multiplication, which used for reducing distortion of the noise. As pointed out
in [8], the Goldilocks prime contributes to a fast Karatsuba multiplication [13].
Considering the multiplication in ThreeBears (we let λ = xD/2, and eL/eH
stands for the lower/higher half of element e hereafter), it is:

z := a ∗ b = a · b · λ−1 = (aL + aHλ)(bL + bHλ) · λ−1

= aLbLλ
−1 + (aLbH + aHbL) + aHbHλ

= aLbL(λ− 1) + (aLbH + aHbL) + aHbHλ

= (aLbH + aHbL − aLbL) + (aLbL + aHbH)λ

= (aHbH − (aL − aH)(bL − bH)) + (aLbL + aHbH)λ mod N (1)

Compared to a conventional Karatsuba multiplication (six additions and three
multiplications), the Karatsuba multiplication in Z/N saves one addition. Con-
sequently, the MAC operation can be performed as Eq. (2) and transformed as
Eq. (3):

r := r + a ∗ b mod N

= (rL + aHbH − (aL − aH)(bL − bH)) + (rH + aLbL + aHbH)λ mod N (2)

= (rL + aHbL − aL(bL − bH)) + (rH + (aL + aH)bH + aL(bL − bH))λ mod N
(3)

3.2 Full-Radix Representation for Field Elements

In the NIST PQC submission package of ThreeBears, the designer offered mul-
tiple implementations, such as reference implementations, optimized implemen-
tations and additional implementations (e.g. low-memory implementations). All
of them take advantage of a so-called reduced-radix representation for the 3120-
bit field elements (due to N = 23120 − 21560 − 1), where each word does not
entirely occupy a default data type. For the instance where uint32 t is the de-
fault data type, each word is 26 bits long, and a 3120-bit integer consists of 120
words. Becasue each uint32 t has six unoccupied bits, it can store the carry or
borrow bits during arithmetic computations. It is therefore not urgent to prop-
agate carry/borrow bits instantly, whereby many computations eliminated the
dependence with others. High-end processors could beneficially carry out a few
computations in parallel and so that saves running time.

However, the AVR microprocessor carries out instructions in sequential order,
so the advantage of reduced-radix approach does not exist in our situation. We
come up with a full-radix representation for field elements, making full use of 32
bits of a uint32 t data. Each 3120-bit integer consists of 98 32-bit words. In the
multi-precision multiplication on AVR platform, the fewer number of words, the
fewer multiplication instructions (MUL) are performed. Since MUL instruction is
costly, the full-radix approach saves considerable running time than the original
reduced-radix one. Besides, the full-radix method needs only 98× 4 = 392 bytes
to represent a field element while the original one takes 120 × 4 = 480 bytes.

8 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

Not only for the multiplication or MAC, but also the whole ThreeBears will get
benefits to decrease the stack memory consumption.

Furthermore, we define two storage forms for full-radix field elements: stan-
dard and aligned. We illustrate both forms in Fig. 1, where L/H stands for the
lower/higher 1560-bit of the 3120-bit integer. The standard form is, briefly, an
ordinary way of storing the multi-precision integer. Since we use 98 32-bit words
to store a field element, there are still 16 remaining bits (i.e. two bytes) in the
most significant word. In our optimized MAC operations, the output integer is
not always strictly in the range [0, N) but in [0, 2N), whereby the second most
significant byte is either 0x00 or 0x01. We call this byte as the carry-byte and
show it as C in Fig. 1. Furthermore, we use 0 to represent the most significant
byte because it is 0x00 all the time.

standard L H C 0

aligned L 0 H C

0 1568 3136

Fig. 1. Standard and aligned form of a field element (AVR uses little-endian)

The reason why we convert a standard integer to an aligned form is to per-
form the Karatsuba multiplication more efficiently. From an implementation
viewpoint, the standard form does not split the lower and upper 1560-bit (i.e. L
and H) into the lower and the upper half in space (see Fig. 1). Concretely, the
lowest byte of the upper 1560-bit (H) locates at the most significant byte of the
lower half in space. This standard form is tricky for Karatsuba multiplication
in practice, which needs to pay the extra expense for alignment and addressing.
The aligned form splits the lower and upper 1560-bit (i.e. L and H) in space
and decreases the above expense.

3.3 Memory-Optimized MAC Operation

The NIST package of ThreeBears includes a series of so-called low-memory imple-
mentations, which are designed to minimise the stack memory of each instance.
This low-memory variant is equipped with a specialised RAM-saving MAC oper-
ation applied with one-level Karatsuba method, which follows a variant equation
of Eq. (3), i.e. Eq. (4) shown below:

r := (rL+aHbL−2aL(bL− bH))+(rH +(aL+aH)bH)λ+aL(bL− bH)λ2 mod N
(4)

This low-memory MAC makes use of a product-scanning multiplication and op-
erates on the reduced-radix words. Our own memory-optimized MAC is devel-
oped on the basis of this original low-memory MAC but performs computations

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 9

towards the aligned full-radix words. Besides, we add some necessary alignment
operations therein.

Algorithm 1 Memory-optimized MAC operation

Input: aligned s-word integers A = (As−1, . . . , A1, A0), B = (Bs−1, . . . , B1, B0) and
R = (Rs−1, . . . , R1, R0), each word contains ω bits; β is a parameter of alignment.
Output: aligned s-word product R = R+A ·B · x−D/2 mod N = (Rs−1, . . . , R1, R0)

1: Z0 ← 0, Z1 ← 0
2: l← s/2
3: for i from 0 to l − 1 by 1 do
4: Z2 ← 0, k ← i+ 1
5: for j from 0 to i by 1 do
6: k ← k − 1
7: Z0 ← Z0 +Aj+l ·Bk
8: Z1 ← Z1 + (Aj +Aj+l) ·Bk+l
9: Z2 ← Z2 +Aj · (Bk −Bk+l)

10: end for
11: Z0 ← Z0 − 2 · Z2

12: k ← l
13: for j from i+ 1 to l − 1 by 1 do
14: k ← k − 1
15: Z1 ← Z1 + 2β ·Aj+l ·Bk
16: Z2 ← Z2+2β ·(Aj+Aj+l)·Bk+l
17: Z0 ← Z0 + 2β ·Aj · (Bk−Bk+l)
18: end for
19: Z0 ← Z0 + Z2 +Ri
20: Z1 ← Z1 + Z2 +Ri+l
21: Ri ← Z0 mod 2ω

22: Z0 ← Z0/2
ω

23: Ri+l ← Z1 mod 2ω

24: Z1 ← Z1/2
ω

25: end for
26: Z0 ← 2β · Z0 +Rl−1/2

ω−β

27: Z1 ← 2β · Z1 +Rs−1/2
ω−β

28: Rl−1 ← Rl−1 mod 2ω−β

29: Rs−1 ← Rs−1 mod 2ω−β

30: Z0 ← Z0 + Z1

31: for i from 0 to l − 1 by 1 do
32: Z1 ← Z1 +Ri
33: Ri ← Z1 mod 2ω

34: Z1 ← Z1/2
ω

35: end for
36: Z0 ← 2β · Z0 +Rl−1/2

ω−β

37: Rl−1 ← Rl−1 mod 2ω−β

38: for i from l to s− 1 by 1 do
39: Z0 ← Z0 +Ri
40: Ri ← Z0 mod 2ω

41: Z0 ← Z0/2
ω

42: end for
43: return (Rs−1, . . . , R1, R0)

Algorithm 1 explains our one-level Karatsuba memory-efficient MAC opera-
tion, which has two main steps: a product-scanning-based MAC (from line 1 to
line 25) and a modular-N reduction (from line 26 to line 42). Both the input and
the output of this algorithm are aligned integers, where s is 98 and ω is 32 due to
a full-radix representation. β is a parameter of alignment which equals to 8 and
it means how many bits we moved when converting an integer from standard to
aligned. In addition, the designer gives a name of “tripleMAC” for those three
“word-level” MACs in the inner loops (at line 7 to 9 and line 15 to 17). At the
beginning of Algorithm 1, Z0, Z1 and Z2 are three 80-bit accumulators, which
are sufficient to avoid overflows. Fig. 2 illustrates the relations between accumu-
lators and the coefficients of λ0, λ and λ2 in an aligned output R. Referring to
Eq. (4), we suppose each coefficient can be 3120-bit long. But Z0, Z1 and Z2

only accumulate the lower 1560-bit of coefficients of λ0, λ and λ2, respectively. In
the first inner loop of Algorithm 1, the tripleMAC (lines 7 to 9) directly reflects

10 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

Z0 Z1 Z2 Z0

λ0 λ λ2 λ3 λ4

Fig. 2. Three accumulators for coefficients of λ0, λ and λ2 of a product R

this setting. After the first inner loop, Z0 must subtract the double values of Z2

(line 11), corresponding to “aHbL − 2aL(bL − bH)” in Eq. (4). The second inner
loop computes the higher half of each coefficient, where this time the tripleMAC
(lines 15 to 17) is corresponding to different accumulators. And this second loop
tripleMAC needs to multiply with 2β because of the alignment. However, the
third operation in the tripleMAC (at line 17) needs more care, which can be
regarded as computing (the lower half of) the coefficient of λ3. In principle, we
should use another accumulator Z3 to store this output. And after the second
inner loop, we are supposed to perform Z1 ← Z1 − 2 ·Z3, a similar operation as
what we did at line 11. Furthermore, due to

λ3 = λ2 · λ = (λ+ 1) · λ = λ2 + λ = (λ+ 1) + λ = 2λ+ 1 mod N,

we could thereafter perform computations of Z0 ← Z0+Z3 and Z1 ← Z1+2 ·Z3.
Combined above two computations, Z1 still keeps its original value while only
Z0 accumulated the value of Z3. Algorithm 1 could thus save the computations
of Z1 ← Z1 − 2 · Z3 and directly accumulate the value of Z3 to Z0. We also
mentioned it in Fig. 2 with a dashed arrow from Z0 to the coefficient of λ3.
Lines 19 to 24 store one word for each coefficient of λ0 and λ, and meanwhile
update accumulators Z0 and Z1. The part from line 26 to 29 makes the output
of MAC a strict aligned form. The rest of Algorithm 1, i.e. lines from 30 to 42,
executes a modular-N reduction according to λ2 = 1 +λ mod N and with carry
propagation. Finally, the output of Algorithm 1 is an aligned integer in the range
of [0, 2N).

We implement the complete Algorithm 1 in AVR Assembler and make use of
the RPS multiplication technique to accelerate the most frequently-used tripleMAC
computation. Moreover, although each accumulator Zi is made up of 80 bits (ten
bytes), we only load and store nine bytes of each Zi during the tripleMAC. We
calculate and confirm that the maximal intermediate value of the first inner loop
is not greater than 272, which makes it possible to only load and store nine least
significant bytes of the accumulator. As for the second tripleMAC, each opera-
tion needs to multiply with 2β (i.e. 28), which makes sense that no need to load
the least significant byte of each accumulator. Consequently, it allows us to save
both three LDs and STs instructions, totally 12 clock cycles, in each iteration of
the inner loop.

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 11

Algorithm 2 Speed-optimized MAC operation

Input: aligned field elements A = (AH , AL), B = (BH , BL) and R = (RH , RL)
Output: aligned product R = R+A ·B · x−D/2 mod N = (RH , RL)

1: (ZH , ZL)← (0, 0), (TH , TL)← (0, 0)
2: TL ← |AL −AH |
3: if AL − AH < 0, sa ← 1; otherwise
sa ← 0

4: TH ← |BL −BH |
5: if BL − BH < 0, sb ← 1; otherwise
sb ← 0

6: (ZH , ZL)← TL · TH · (−1)1−(sa⊕sb)

7: (RH , RL)← (RH , RL) + (ZH , ZL)
8: TL ← AH , TH ← BH
9: (ZH , ZL)← TL · TH

10: RH ← RH + ZH
11: TL ← ZH + ZL
12: RL ← RL + TL
13: RH ← RH + TL
14: TL ← AL, TH ← BL
15: (ZH , ZL)← TL · TH
16: RH ← RH + ZL
17: RL ← RL + ZH
18: RH ← RH + ZH
19: (RH , RL)← (RH , RL) mod N
20: return (RH , RL)

3.4 Speed-Optimized MAC Operation

The MAC operations of all the implementations in ThreeBears NIST package
are not friendly for AVR to reach high speed. We thus developed our speed-
optimized MAC operation from scratch and designed it according to a variation
of Eq. (2) i.e. Eq. (5) shown below. We further divide three full-size products
(e.g. aLbL) of the Eq. (2) into two halves, and use l for indicating aLbL, m for
−(aL − aH)(bL − bH) and h for aHbH :

r := (rL + h+m) + (rH + l + h)λ mod N

= (rL + (hL + hHλ) + (mL +mHλ)) + (rH + (lL + lHλ) + (hL + hHλ))λ

= (rL + hL +mL) + (rH + lL + hL +mH + hH)λ+ (lH + hH)λ2

= (rL +mL + hL + hH + lH) + (rH +mH + hH + lL + hL + hH + lH)λ (5)

The underlined parts in Eq. (5) are the common parts for both coefficients of λ0

and λ.
Algorithm 2 describes our speed-optimized MAC, which operates on each

half-size (1560-bit) of the elements. We omitted the details of the final step
(line 19) in Algorithm 2, i.e. a modular-N reduction, which is very similar to
the lines from 26 to 42 in Algorithm 1. Unlike the memory-efficient MAC that
takes a product-scanning approach to save memory, the speed-efficient MAC is
designed in a more straightforward way, which separately computes each entire
half-size multiplication and obtains a full-size intermediate product (line 6, 9
and 15). It is not necessary to load and store three accumulators in each inner
loop iteration and therefore saves significant execution time. But consequently,
it needs more dynamic memory to store the intermediate products (e.g. ZH , ZL
and TH , TL).

In [14], it is concluded that 2-level Karatsuba multiplication combined with
RPS technique (i.e. 2-level KRPS) would yield a peak performance for a 1560-bit

12 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

multi-precision multiplication on AVR. As a result, we take advantage of a 2-level
KRPS multiplication for each half-size multiplication, and therefore a 3-level
KRPS for the entire MAC operation. For each level Karatsuba multiplication,
we employ the subtractive Karatsuba algorithm [10] to avoid the carry bits.
In each 2-level KRPS half-size multiplication, we take a trick that utilizes two
input variables to store the intermediate values. Consequently, we do not need
to allocate extra memory inside the half-size multiplications. This is also the
reason of both operations at line 8 and 14, where we move the operands to TH
and TL before the multiplication so that we do not change the inputs A and B.

4 Performance Evaluation and Comparison

Atmel Studio v7.0, our development environment, offers a 8-bit AVR GNU
toolchain including avr-gcc version 5.4.0. The cycle-accurate instruction set sim-
ulator thereof helps us to determine the accurate execution times of our software.
Our software is written in a mix of C and AVR assembly language. In detail, only
the performance-critical MAC operation and Keccak permutation are developed
in AVR Assembler while all of other functions are written in C. We compiled
our source codes with avr-gcc 5.4.0, using the optimization option -O2, on the
ATmega1284 microcontroller.

Table 1 specifies the execution time of MAC operation, key generation, en-
capsulation and decapsulation of our software. A speed-optimized MAC costs
only 605 k clock cycles while the memory-optimized MAC needs, almost the
double-time. The speed gap between these two types of MAC directly affects
the overall running time of ME- versus HS- BabyBear(Ephem), because there
are several MACs in each of KeyGen, Encaps and Decaps. Taking HS-BabyBear
as an example, KeyGen, Encaps and Decaps respectively needs about 6.12 M,
7.90 M, and 12.48 M clock cycles, which is more than 1.5 times faster as its ME
variant.

Table 2 illustrates both the RAM footprint and code size of MAC, KeyGen,
Encaps and Decaps. The speed-optimized MAC takes 934 bytes dynamic memory
while the memory-optimized MAC requires 82 bytes which is only 9% of the
former one. Thanks to a memory-optimized MAC and a full-radix representation
for field elements, ME-BabyBear takes 1.7 kB RAM for each of KeyGen and
Encaps. Decaps is a little bit more costly and needs 2.4 kB RAM. More notably,
ME-BabyBearEphem requires only about 1.7 kB in total. In contrast, the HS
implementations cost more than 1.5 times RAM memory than their ME variants.
In terms of code size, each of the four implementations consumes more or less
around 11 kB.

Table 1. Execution time (in clock cycles) of our implementations on AVR

Implementation Security MAC KeyGen Encaps Decaps

ME-BabyBear CCA-secure 1,183,453 9,345,332 13,188,102 20,075,571

ME-BabyBearEphem CPA-secure 1,183,453 9,345,332 13,333,525 3,743,596

HS-BabyBear CCA-secure 604,703 6,123,527 7,901,873 12,476,447

HS-BabyBearEphem CPA-secure 604,703 6,123,527 8,047,835 2,586,202

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 13

Table 2. RAM usage and code size (both in bytes) of our implementations on AVR

MAC KeyGen Encaps Decaps Total
Implementation

RAM Size RAM Size RAM Size RAM Size RAM Size

ME-BabyBear 82 2,710 1,715 6,382 1,735 7,504 2,368 10,060 2,368 12,214

ME-BabyBearEphem 82 2,710 1,715 6,382 1,735 7,590 1,731 8,220 1,735 10,948

HS-BabyBear 934 3,332 2,733 7,000 2,752 8,140 4,559 10,684 4,559 11,568

HS-BabyBearEphem 934 3,332 2,733 7,000 2,752 8,226 2,356 8,846 2,752 10,296

Table 3. Comparison of our software with other key-establishment algorithms (all of
which target 128-bit security) on 8-bit AVR platform.

Implementation Algorithm Encaps Decaps RAM Size

This work (ME-CCA) ThreeBears 13,188,102 20,075,571 2,368 12,214

This work (ME-CPA) ThreeBears 13,333,525 3,743,596 1,735 10,948

This work (HS-CCA) ThreeBears 7,901,873 12,476,447 4,559 11,568

This work (HS-CPA) ThreeBears 8,047,835 2,586,202 2,752 10,296

Cheng et al [2] NTRU Prime 8,160,665 15,602,748 n/a 11,478

Cheng et al [3] NTRU 847,973 1,051,871 3,895 9,123

Düll et al [6] (ME) Curve25519 14,146,844 14,146,844 510 9,912

Düll et al [6] (HS) Curve25519 13,900,397 13,900,397 494 17,710

Table 3 compares implementations of both pre- and post-quantum schemes
(target 128-bit security) on AVR processors. Compared to another NIST can-
didate NTRU Prime with a CCA-security [2], HS-BabyBear is faster on both
Encaps and Decpas. Although a CCA-secure NTRU software in [3] is faster
than BabyBear, yet their target NTRU is not the latest version and is not sup-
ported in the 2nd round NIST PQC Standardization. But compared to it, ME-
BabyBear still saves 39.2% of RAM. On the other hand, when compared with a
high-speed implementation of Curve25519 (a widely-used ECC-based KEM) in
[6], both Encaps of ME- and HS-BabyBear are faster than a variable-base scalar
multiplication on Curve25519, while the Decaps of ME-BabyBear is slower but
that of HS-BabyBear is still a bit faster. Notably, the Decaps of our CPA-secure
implementations saves respectively 73.1% (ME) and 81.3% (HS) running time
compared to Curve25519.

One of the most significant advantages of the ThreeBears cryptosystem is the
pretty cheap RAM consumption, which is very friendly for employment on con-
strained devices especially AVR. Table 4 summarises the RAM consumption of
microcontroller implementations of ThreeBears and other NIST PQC schemes.
Due to the limited number of state-of-the-art implementations of other NIST
PQC candidates for 8-bit AVR, we give in Table 4 also some recent results from
the pqm4 library which targets 32-bit ARM Cortex-M4. We also list the origi-
nal low-memory implementations of BabyBear(Ephem) from the NIST package
of ThreeBears. We count both the consumption of stack memory and of heap
memory, as well as .data and .bss, to RAM consumption. Our memory-efficient
BabyBear is the most RAM-efficient implementation among all the CCA-secure
NIST PQC schemes, which saves 5% of RAM than the second most RAM-

14 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

Table 4. Comparison of RAM consumption of NIST PQC implementations (all of
which target NIST security category 1 or 2) on various microcontrollers.

Implementation Algorithm Platform KeyGen Encaps Decaps

CCA-secure schemes

This work (ME) ThreeBears ATmega1284 1,715 1,735 2,368

Hamburg [9] ThreeBears Cortex-M4 2,288 2,352 3,024

pqm4 [12] ThreeBears Cortex-M4 3,076 2,964 5,092

pqm4 [12] NewHope Cortex-M4 3,876 5,044 5,044

pqm4 [12] Round5 Cortex-M4 4,148 4,596 5,220

pqm4 [12] Kyber Cortex-M4 2,388 2,476 2,492

pqm4 [12] ROLLO-I Cortex-M4 3,624 3,540 3,608

CPA-secure schemes

This work (ME) ThreeBears ATmega1284 1,715 1,735 1,731

Hamburg [9] ThreeBears Cortex-M4 2,288 2,352 2,080

pqm4 [12] ThreeBears Cortex-M4 3,076 2,980 2,420

pqm4 [12] NewHope Cortex-M4 3,836 4,940 3,200

pqm4 [12] Round5 Cortex-M4 4,052 4,500 2,308

efficient scheme Kyber. Alternatively, ME-BabyBearEphem needs the least RAM
memory among all the (CPA-secure) NIST PQC schemes, which improved the
original low-memory implementation by a factor of 16.6%.

5 Conclusions

This paper presented the first highly-optimized and timing-attack-resistant im-
plementations of ThreeBears for the 8-bit AVR architecture. Our simulation
results confirm that ThreeBears offers good flexibility and is well suited for im-
plementation on smart cards. Both the two memory-efficient implementations,
as well as a CPA-secure high-speed variant, can be used on most AVR micro-
controllers, even on an ATmega128L, which features only 4 kB SRAM. For AVR
microcontrollers with more than 8 kB SRAM, both high-speed variants can be
deployed to shorten the running time. Our implementation sets a new record for
memory-efficiency among all known software implementation of second-round
candidates on microcontrollers. A comparison with Curve25519-based key ex-
change shows that our memory-efficient implementation with CPA-security still
exceeds the RAM footprint of Curve25519 by more than 1.2 kB, but the encap-
sulation is slightly faster than a scalar multiplication and the decapsulation is
even significantly faster. Furthermore, all proposed optimization techniques are
applicable to MamaBear and PapaBear as well. In summary, our work shows
that ThreeBears can be well optimized to achieve both low RAM footprint and
high speed on resource-constrained microcontrollers, which makes ThreeBears a
suitable post-quantum cryptosystem to secure IoT devices.

Post-Quantum Key Encapsulation on 8-bit Microcontrollers 15

Acknowledgements This work was supported by the EU Horizon 2020 re-
search and innovation programme under grant agreement No. 779391 (FutureTPM).

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak. In T. Johansson
and P. Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, pages
313–314, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

2. H. Cheng, D. Dinu, J. Großschädl, P. B. Rønne, and P. Y. A. Ryan. A lightweight
implementation of NTRU Prime for the post-quantum internet of things. In
M. Laurent and T. Giannetsos, editors, Information Security Theory and Prac-
tice, pages 103–119, Cham, 2020. Springer International Publishing.

3. H. Cheng, J. Großschädl, P. B. Rønne, and P. Y. Ryan. A lightweight imple-
mentation of NTRUEncrypt for 8-bit AVR microcontrollers. In Proceedings of
the 2nd NIST PQC Standardization Conference, 2019. Available online at http:

//csrc.nist.gov/Events/2019/second-pqc-standardization-conference.

4. G. Chunsheng. Integer version of ring-lwe and its applications. Cryptology ePrint
Archive, Report 2017/641, 2017. https://eprint.iacr.org/2017/641.

5. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data sheet,
available for download at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAz_Datasheet.pdf, Jan. 2006.

6. M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and
P. Schwabe. High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers.
Designs, Codes and Cryptography, 77(2–3):493–514, Dec. 2015.

7. N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing ellip-
tic curve cryptography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater,
editors, Cryptographic Hardware and Embedded Systems — CHES 2004, volume
3156 of Lecture Notes in Computer Science, pages 119–132. Springer Verlag, 2004.

8. M. Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. https://eprint.iacr.org/2015/625.

9. M. Hamburg. ThreeBears: Round 2 specification, 2019. http://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions.

10. M. Hutter and P. Schwabe. Multiprecision multiplication on AVR revisited.
Cryptology ePrint Archive, Report 2014/592, 2014. Available for download at
http://eprint.iacr.org/.

11. John M. Kelsey and Shu-jen H. Chang and Ray A. Perlner. Sha-3 derived func-
tions: cshake, kmac, tuplehash and parallelhash, 2016. NIST Special Publica-
tion 800-185, available for download at https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-185.pdf.

12. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. pqm4: Testing and
benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
2019/844, 2019. Available for download at http://eprint.iacr.org.

13. A. A. Karatsuba and Y. P. Ofman. Multiplication of multidigit numbers on au-
tomata. Doklady Akademii Nauk SSSR, 145(2):293–294, ?? 1962.

14. Z. Liu, H. Seo, J. Großschädl, and H. Kim. Reverse product-scanning multiplication
and squaring on 8-bit AVR processors. In L. C.-K. Hui, S. Qing, E. Shi, and S.-M.
Yiu, editors, Information and Communications Security — ICICS 2014, volume
8958 of Lecture Notes in Computer Science, pages 158–175. Springer Verlag, 2015.

16 Hao Cheng, Johann Großschädl, Peter B. Rønne, and Peter Y. A. Ryan

15. National Institute of Standards and Technology. Submission require-
ments and evaluation criteria for the post-quantum cryptography standard-
ization process. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/call-for-proposals-final-dec-2016.pdf.
16. National Institute of Standards and Technology (NIST). NIST reveals 26 algo-

rithms advancing to the post-quantum crypto ‘semifinals’. Press release, available
online at http://www.nist.gov/news-events/news/2019/01/nist-reveals-26-

algorithms-advancing-post-quantum-crypto-semifinals, 2019.
17. A. L. Toom. The complexity of a scheme of functional elements realizing the

multiplication of integers. Soviet Mathematics - Doklady, 4(3):714–716, May 1963.

