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Experimental Demonstration of a Machine 
Learning-Based in-band OSNR Estimator from 

Optical Spectra 

Abstract—Channel spectral monitors are becoming a cost 
effective solution to improve the management, resiliency and 
efficiency of next generation optical transport networks. We 
experimentally demonstrate a technique based on machine 
learning (ML) for the in-band estimation of amplified 
spontaneous emission (ASE) noise and filter 3-dB bandwidth, 
using optical spectra acquired after the reconfigurable optical 
add/drop multiplexers (ROADMs) filters. We assess the 
performance of the proposed method, considering laser drift 
and filters bandwidth tightening scenarios, showing quite good 
estimation accuracy under such conditions.  

Keywords—Machine learning, optical performance 
monitoring, optical spectrum  

I. INTRODUCTION  

Optical performance monitoring (OPM) has a key role in 
guaranteeing the end-to-end quality of transmission (QoT) 
and quality of service (QoS) of the network. Among all the 
parameters that can be monitored by OPM, optical signal to 
noise ratio (OSNR) is one of the most important, since it is 
transparent to both the bit rate and the modulation format and 
it is directly related to the bit error rate (BER) [1]. Monitoring 
OSNR is key for optimizing channels when planning or 
upgrading the network. For non-operating channels, this is 
typically done by turning ON and OFF the connection [2]. 
However, such monitoring approach is not feasible in 
operating channels. Monitoring OSNR degradations that may 
occur in an operating network in a distributed/per link or node 
fashion, as shown in Fig. 1, can feed a closed control loop. 
Combined with appropriate algorithms it can allow the 
identification of link-degrading impairments, helping to 
prevent soft-failures or to dynamically optimize the network 
[3]. To do so, cheap and small form factor OSNR monitoring 
solutions must be developed. Furthermore, while passing 
through the optical nodes, the reconfigurable optical add/drop 
multiplexers (ROADMs), the connection will cross a certain 
number of optical filters. Conventional OSNR monitoring 
techniques struggle in presence of strong filtering effects, 
which make the noise level identification difficult [4]. Thus, 
the OSNR must be measured in-band [5]. 

 In an optical network, an ideal scenario would include 
omnipresent and powerful OPMs, i.e. before and after every 
network element. However, in reality this solution is not 
feasible because of its cost. We envision the use of cheap/low 

resolution optical spectrum analyzers (OSA) as OPM to be 
used for OSNR monitoring and other applications [6]. It 
stands to reason that the most appropriate position of the OSA 
would be close to the ROADMs, at the ingress ports (before 
the ingress wavelength selective switches -WSSs-), in the 
WSS interconnections, and at the egress ports (after the egress 
WSS). Fig. 2 shows these possible locations of the OSAs. 
Again due to cost reasons, we might have to limit/select their 
placement. Moreover, in a disaggregated network scenario, 
the OSAs placement could be non-uniform, i.e. varying from 
node to node [7], [8]. Indeed some nodes could be equipped 
with monitoring only at their input, some others at their output 
and some could not be monitored at all.  
      In [9], the authors identified support vector machine 
(SVM) regression as the most promising machine learning 
(ML) approach for OSNR estimation. However, [9] assumed 
a wide-band signal and in the majority of their evaluations 
used spectra coming from simulations. In our previous work 
[10], we also examined the performance of ML based models 
for in-band OSNR estimation, in particular SVM regression 
and a Gaussian process regression (GPR) model. However in 
[10], our experimental setup didn’t include any optical filter; 
we post-processed the set of collected optical spectra to 
replicate it. Moreover, [10] was lacking the verification of our 
proposed method under strong filtering conditions.  
      In this paper, we further assess the GPR ML-based in-band 
OSNR estimation method proposed in [10] with a new set of 
experimental collected spectral data. We have chosen GPR 
over SVM model, because of the results obtained in our 
previous work [10]. The new experimental setup included an 
optical filter, which we configured appropriately by reducing 
and shifting its bandwidth to replicate two common 
impairments: the laser drift and the filter tightening effects. In 
our experiments, we placed the OSA after the optical filter, 
reproducing the scenario in which the optical monitors are 
present only after the nodes. Therefore, the monitored spectra 
suffer from strong filtering making it hard to identify the 
actual noise levels, as previously mentioned. The proposed 
solution showed quite good estimation accuracy under such 
realistic conditions. In addition, we demonstrate a 3-dB filter 
bandwidth estimator based on the GPR model.  

II. EXPERIMENTAL ACQUISITION OF THE OPTICAL SPECTRA 

AND THEIR PROCESSING 

Fig. 3 depicts the experimental setup we used to capture 
the spectral data and replicate scenarios were the monitored 
signal suffers from strong filtering effects, i.e. the OSAs are 
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placed inside or after the ROADMs (positions ii and iii in Fig. 
2). By means of a tunable laser working at 1550.116 nm, we 
generated a 64 GBd polarization multiplexed-quadrature 
phase shift keying (PM-QPSK) modulated signal, with 0.1 
roll-off factor. We did all the measurements in a back to back 
(B2B) scenario. After the transmitter, we placed a variable 
optical attenuator (VOA) and an erbium-doped fiber amplifier 
(EDFA) operating in automatic power control mode. With this 
configuration, we obtained 9 different OSNR levels, which 
ranged between 13 and 28 dB. Right after the EDFA we 
placed an OSA with resolution bandwidth of 12.5 GHz, which 
gave us the amplified spontaneous emission (ASE) noise level 
of the signals to be used as reference values. Then, the signal 
passes through an optical band-pass filter (OBPF) with 75 
GHz pass-band, centered at the laser’s wavelength. Note that 
for the used 64 GBd signal, the control plane would configure 
the filter bandwidth at 75 GHz. Finally, by means of a second 
OSA with spectral resolution of 150 MHz, we acquired the 
spectra of the optically filtered signal. By shifting the central 
wavelength of the OBPF and tuning its bandwidth, we 
reproduced two typical optical impairments: laser drift and 
filter tightening. In particular, we considered 5 filter’s 
bandwidths (i.e. 75, 72, 69, 66, 63 GHz) and for each one of 
them 4 shift scenarios: ± 1 GHz and ± 2 GHz. With this 
configuration, we acquired 1125 optical spectra. We repeated 
each acquisition 5 times and averaged them during the post-
processing phase. In addition, we replicated the same scenario 

with the same modulation format (i.e. PM-QPSK) and a roll-
off factor of 0.2. In this situation, we acquired 180 spectra with 
the filter bandwidth set at 75, 75+2, 69 and 69-2 GHz. Finally, 
we used the same setup with a PM-16 quadrature amplitude 
modulation (QAM) format and 0.1 roll-off factor, and again 
captured 180 optical spectra with the filter bandwidth set at 
75, 75+2, 69 and 69-2 GHz. Once we collected the spectra, to 
replicate the situation of a wavelength division multiplexing 
(WDM) network, we normalized their peak to 0 dBm. The 
results of this processing are shown in Fig. 4a and Fig. 4b, 
where the optical spectra of the 9 VOA levels are depicted 
before and after the filtering process, respectively, for 75 GHz 
OBPF bandwidth.   
      Following a similar notation to [10], we represent each 
acquired optical spectrum with the vector 𝒔 of length 𝑛. When 
collected, the original length of the spectral data was equal to 
50000 (75 GHz channel at 150 MHz granularity). We then 
applied a cut, which just maintained the rising and the falling 
part of each spectrum and resulted in a reduction of their 
length 𝑛 to 800 samples. Fig. 4c shows the filtered spectra 
after the cutting process at different filter bandwidths. We 
observe a slight asymmetry in the spectra, which originates 
from the imperfect alignment between the laser and the OBPF 
central frequency, although both were set to the same values 
in the lab. Such issues are quite typical in real networks and 
exacerbate in long paths with several filters in cascade, which 
motivated our study of further misalignment levels. Finally, 
we associated each spectrum 𝒔  to its reference ASE noise 
value 𝑦, measured with OSA1, and to its reference 3-dB filter 
bandwidth value 𝑧.                                                                                   

III. OSNR AND 3-DB FILTER BANDWIDTH ESTIMATOR 

GPR model is a non-parametric kernel-based ML 
technique, which we trained using the squared exponential 
kernel function.  We use the GPR model to first find a 
mapping 𝑔 between the connection spectrum 𝐬 and its 3-dB 
filter bandwidth 𝑧, and then a further mapping 𝑓 between the 
same connection spectrum 𝒔 and its noise value 𝑦, that are 
𝑧 = 𝑔(𝒔) and 𝑦 = 𝑓(𝒔), respectively. We first define a matrix 
𝑺𝒅 , with dimensions 𝑛 × 𝑚ଵ , to represent the 𝑚ଵ  acquired 
optical spectra 𝐬  of length 𝑛  with the same transmission 
parameters 𝑑 = (𝑞, 𝑎), where 𝑞 represents the baud rate and 
𝑎  the roll-off factor. Then, we define the matrix 𝑺𝒄 , with 
dimensions 𝑛 × 𝑚ଶ, and parameters 𝑐 = (𝑙, 𝑞, 𝑎, 𝑏), where 𝑙 
represents the modulation format and 𝑏  the 3-dB filter 
bandwidth of each spectrum. Finally, with the two vectors 𝒛𝒅 
and 𝒚𝒄, of length 𝑚ଵ and 𝑚ଶ, we denote the reference 3-dB 
filter bandwidth and the reference noise values of each 
spectrum, respectively. To approximate the two estimation 
functions 𝑔 and 𝑓, we implemented two ML models 𝐺ௗ and 
𝐹௖, specific for channels with parameters 𝑑 and 𝑐. We trained 
𝐺ௗ  with the input set (𝑺𝒅, 𝒛𝒅)  and 𝐹௖  with the input set 
(𝑺𝒄, 𝒚𝒄) . 𝑑  and 𝑐  have different parameters because 𝐺ௗ 
generalize differently from 𝐹௖. Having no hyperparameter to 
tune, we didn’t use any validation set. The training phase has 
the purpose of identifying the two ML models that minimize 
some functions of the estimation error, such as the mean 
squared error (MSE) function. In fact, if we define the 
estimated 3-dB filter bandwidth as 𝒛ො𝒅 = 𝐺ௗ(𝑺𝒅)  and the 
estimated ASE noise values as 𝒚ෝ𝒄 = 𝐹௖(𝑺𝒄) , we can also 
define their respective estimation errors as 𝜺𝒅

𝒛 = 𝒛ො𝒅 − 𝒛𝒅 and 
𝜺𝒄

𝒚
= 𝒚ෝ𝒄 − 𝒚𝒄 . Once the ML models are trained with the 

spectra 𝑺𝒅 and 𝑺𝒄 and their reference values 𝒛𝒅 and 𝒚𝒄, they 
will be able to estimate from the spectrum 𝒔 of an operating 

      
Fig. 1. Network monitoring/decide/act loop. 

 

 
Fig. 3. Experimental setup. PM-IQ-MOD: polarization 
multiplexed-IQ-modulator, DAC: digital-to-analog converter, TX: 
transmitter, VOA: variable optical attenuator, EDFA: erbium-
doped fiber amplifier, OBPF: optical band-pass filter, OSA: 
optical spectrum analyzer.  

 

       
Fig. 2. OSAs placement: [i] at the ingress of the ROADM; [ii] in 
the WSSs interconnection; [iii] at the egress of the ROADM. 



 

 

channel with the same set of parameters 𝑑 or 𝑐, its 3-dB filter 
bandwidth 𝒛ො𝒅 and its ASE noise value 𝒚ෝ𝒄. 

IV. RESULT AND DISCUSSION 

For both the models 𝐺ௗ and 𝐹௖, we used the ⁓85% of the 
total data to train the algorithm and the remaining ⁓15% to test 
it. Furthermore, to evaluate their estimation accuracy, we 
randomly shuffled the training and the testing sets 200 times, 
trained a different ML model each time and tested it with the 
different corresponding test sets. We first evaluated the 3-dB 
filter bandwidth estimator 𝐺ௗ , bearing in mind that such 
estimation could be performed also with conventional 
algorithms. In all the cases, the maximum estimation errors 𝜺𝒅

𝒛  
were below 1 GHz. Then, we evaluated the performance of 
the ASE noise estimation model 𝐹௖. The MSE, the minimum 
(MIN) and the maximum (MAX) errors related to each set of 
parameters 𝑐  are summarized in Table I. We observed a 

maximum estimation error 𝜺𝒄
𝒚  lower than 1.7 dB in all the 

scenarios. In particular, for wider filter bandwidth the 
estimation is more precise because the noise level is not cut by 
the filter. In such situations, traditional method can also be 
adopted. On the other hand, when it comes to narrower 3-dB 
bandwidth, ML techniques can still understand the filter 
effects on the noise, while traditional methods struggle. Fig. 5 
shows the probability density function (PDF) of the noise 
estimation error, for the b = 69 GHz cases of each modulation  
format/roll-off factor scenario. We also trained and tested the 
𝐹௖  model without considering the bandwidth parameter 𝑏 in 
the set 𝑐 . The obtained MAX error was ⁓2.5 dB. This 
performance degradation was caused by the lack of a priori 
knowledge of the filter 3-dB bandwidth, a key parameter for 
ASE noise estimation.  

V. CONCLUSION 

      We presented a method based on GPR model to estimate 
the filtered 3-dB bandwidth and the ASE noise values from 
optical spectra that suffer from strong filtering effects, e.g. 
from an OSA placed after the filter. On experimental 
collected spectra our method achieved a good estimation 
accuracy in all examined scenarios; the 3-dB filter bandwidth 
estimation maximum error was 1 GHz, while the ASE noise 
estimator achieved a maximum error lower than 1.2 dB for 
filter bandwidths larger or equal to 69 GHz for a 64GBd 
signal. 
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TABLE I 
SUMMARY OF RESULTS FOR THE ASE NOISE ESTIMATION 

Mod.  
format (𝑙) 

Symbol 
rate 
(𝑞) 

Roll-off 
factor 

(𝑎) 

3dB 
filter 

bandwi
dth (𝑏) 

MSE 
MIN 
[dB] 

MAX 
[dB] 

PM-
QPSK 

64 
GBd 

0.1 

63 GHz 0.427 -1.880 1.693 
66 GHz 0.187 -1.573 1.430 
69 GHz 0.115 -1.194 0.813 
72 GHz 0.055 -0.966 0.549 
75 GHz 0.029 -0.627 0.497 

PM-
QPSK 

64 
GBd 

0.2 
69 GHz 0.228 -1.167 1.207 
75 GHz 0.172 -0.992 0.868 

PM-
16QAM 

64 
GBd 

0.1 
69 GHz 0.139 -1.280 1.172 
75 GHz 0.030 -0.923 0.895 

 

 
Fig. 4. (a) 9 VOA levels optical spectra collected by OSA1, before the optical filtering phase; (b) Normalized filtered spectra with filter 
3-dB bandwidth at 75 GHz and 9 different VOA levels; (c) Spectra filtered with 75, 72, 69 and 66 GHz 3-dB filter bandwidth, after the 
cutting process.  

 

 
Fig. 5. Probability density functions (PDFs) of the noise estimation error for the 69 GHz filter bandwidth scenarios: (a) 𝑙 = QPSK, 𝑎 = 
0.1; (b) 𝑙 = QPSK, 𝑎 = 0.2; (c) 𝑙 = 16-QAM, 𝑎 = 0.1.  



 

 

REFERENCES 
[1] C. C. K. Chan, Optical Performance Monitoring, Elsevier, 2010. 

[2] ITU G.697, “Optical monitoring for dense wavelength division 
multiplexing systems”, 2016. 

[3] K. Christodoulopoulos et al., “Toward Efficient, Relieable, and 
Autonomous Optical Networks: the ORCHESTRA Solution [Invited],” 
IEEE/OSA JOCN, vol. 11, no. 9, Sep. 2019. 

[4] J. M. Fàbrega et al., “On the filter narrowing issues in elastic  optical 
networks,” IEEE/OSA JOCN, vol. 8, no. 7, Jul. 2016. 

[5] IEC TR 61282-12, “Fibre Optic Communication System Design 
Guides – Part 12: In-Band Optical Signal-To-Noise Ratio (OSNR)”, 
2016. 

[6] L. Velasco, B. Shariati, A. P. Vela, J. Comellas, and M. Ruiz, 
“Learning from the Optical Spectrum: Soft-Failure Identification and 
Localization [Invited],” in OFC 2018. 

[7] Open and Disaggregated Transport Network (ODTN) Project [On-line] 
www.opennetworking.org/odtn/. 

[8] E. Riccardi et al., “An Operator view of the Introduction of White 
Boxes into Optical Networks,” IEEE/OSA JLT, vol. 36, no. 15, Aug. 
2018. 

[9] D. Wang et al., “Machine Learning-Based Multifunctional Optical 
Spectrum Analysis Technique,” IEEE Access, vol. 7, Jan. 2019. 

[10] F. Locatelli et al., “Machine Learning-Based in-band OSNR 
Estimation from Optical Spectra,” IEEE PTL, vol. 31, no. 24, Dec. 
2019. 

 

 
 
 
  


