
Improving QoT Estimation Accuracy with DGE 
Monitoring using Machine Learning 

Abstract— In optical transport networks, Dynamic Gain 
Equalizers (DGE) are typically used at each link. A DGE 
selectively attenuates the channels to compensate the cumulative 
Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the 
multi-span link, resulting in almost flat output power at the end of 
the link. We leverage monitored per link DGE attenuation profiles 
and coherent receivers Signal to Noise Ratio (SNR) information, 
and propose a machine learning (ML) based scheme to estimate 
the EDFA gain ripple penalties for new connections. Using that in 
realistic simulation scenarios we observed a design margin 
reduction from ~1dB to ~0.3dBs. 
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Machine Learning, Margins 

I. INTRODUCTION 

For effective network planning, it is necessary to estimate 
the Quality of Transmission (QoT) of the connections, prior to 
their establishment. This requires an accurate physical layer 
model (PLM) / a tool to estimate the QoT of existing and new 
connections [1]. In general, network designers add a significant 
margin, referred to as the design margin in such PLMs to cover 
several uncertainties (either in input parameters or within the 
PLM itself) [2], [3]. This ensures that all connections fulfill their 
target QoT performance but result in network inefficiency. 
Removing such uncertainties would allow the increase of 
estimation accuracy and an equivalent reduction in margins [3]. 

EDFAs are one of the key devices in wavelength division 
multiplexed (WDM) optical transport networks to ensure the 
required connection QoT level. However, EDFAs are the 
dominant noise source, referred to as amplified spontaneous 
emission (ASE) noise, in those networks [4]. Current generation 
commercial EDFAs are dual staged and have a low noise figure 
(NF), and a large dynamic range (up to 15 dB) [5]. However, 
even high quality EDFA have gain profile which is not flat 
(wavelength dependent) and also varies from one EDFA to 
another [4], [6]. The non-flat EDFA gain may be from 
imperfections in the gain flattening filters (GFF) at the amplifier 
output or wavelength dependent absorption/emission 
coefficients of erbium ions [7]. The wavelength dependent non-
flat EDFA gain, referred to as the gain ripple, results in 
wavelength varying penalties, leading to inaccurate QoT 

estimation. Due to gain ripples, in deployed networks, a 
Dynamic Gain Equalizers (DGE) is used per link to compensate 
the cumulative EDFA gain ripple effect of the multiple spans of 
the link. The DGE employs a feedback loop driven from Optical 
Channel Monitors (OCMs) at the end of the link/ start of optical 
node. The DGE selectively attenuates the channels at a previous 
span to achieve almost flat output power at the end of the 
link/node input [8]. DGEs considerably reduce the gain ripple 
effect, but there is still some residual effect present, which 
affects the QoT estimation accuracy. 

In this work, we assume per link installed DGEs that use 
feedback driven from OCMs. We also use the SNR performance 
monitored/identified at the coherent receivers. We use the 
information from those to fit a machine learning (ML) model 
that understands the gain ripple penalties of the established 
connections. Then we use that model to estimate the gain ripple 
penalty of new connections. Compared to our previous work in 
[9], where we used per node installed electrical SNR monitors, 
we only use optical information here, making this scheme much 
more cost effective. Keeping a realistic simulation environment, 
we observe a related margin reduction greater than 70% at a load 
of 400 connections on the 12 node Deutsche Telekom (DT) 
network. 

II. RELATED WORK

QoT estimation for new connection requests ranges from 
older generation QoT tools based on PLM with analytical 
formulas to more advanced ML-estimation tools [10], [11]. 
Most approaches assume flat gain EDFAs. This assumption 
requires high design margins to address the QoT estimation 
inaccuracy (in total 2-3 dB in SNR) [2], [12]. The EDFA gain 
ripple effect was recently addressed in [13] for linear SNR (only 
ASE). However, [13] did not quantify the benefits in terms of 
accuracy improvement or margin reduction for QoT estimation. 
A hybrid approach based on joint fundamentals of analytical and 
machine learning modelling for EDFAs was also presented in 
[14]. In that work, the authors proposed a single EDFA 
modelling with 12000 sample points, which limits its practical 
usability. Moreover, the authors did not consider the cascading 
of EDFAs and its effect on gain ripple. In our previous work [9], 
we presented a ML based approach to estimate EDFA gain 
ripple penalty, addressed for the total SNR i.e. linear and non-This work is a part of Future Optical Networks for Innovation, Research and
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linear noise. We assumed electrical SNR monitors at each node, 
which is a quite strong assumption. Such assumption makes the 
overall scheme rather expensive in contrast to optical data 
monitoring-based schemes. 
 In this work, we assume that each link has a DGE (at mid-
span) to flatten the channels’ output power at the end of the link. 
To do so, the DGE uses an OCM at the end of the link as 
feedback. OCMs were used for monitoring purposes in [15], 
[16]. We also make use of SNR information measured at the 
coherent receivers. Using monitored DGE attenuation profiles 
and receivers SNR, we define a ML model and train it to 
understand the gain ripple penalties of the established 
connections. This ML model is then used to complement/ refine 
an estimation tool by predicting the EDFA gain ripple penalty 
for new connection. The use of OCMs employed by the DGEs 
makes this scheme more cost efficient than our previous work 
[9].  

III. MATHEMATICAL MODELLING 

We consider an optical network with links consisting of 
multiple fiber spans, an example of such link is shown in Fig. 1. 
Typically, span EDFAs are operated in Automatic Gain 
Controlled (AGC) mode with near to zero tilt (first order/ linear 
correction) to get a flat gain in the C-band as shown in Fig. 1. 
However, although the gain tilt profile is maintained at zero still 
there are gain fluctuations/ripples within the gain bandwidth of 
EDFAs [9]. For a typical scenario of a 6 span link without DGE, 
a penalty of ~1dB due to gain ripple is observed in [9]. For this 
6-span link scenario, DGE is generally applied at the 3rd span 
to get flat output power at the link end as shown in Fig. 1. For 
longer links a new DGE is installed every ~6 spans [8]. In 
general, an EDFA gain profile with constant average gain 𝑔௩ 
and ripple profile 𝑔 ሺ𝜆ሻ (in linear scale) depending on 
wavelength 𝜆 (where 𝜆 is in the C-band) can be represented as: 

 

𝑔ሺ𝜆ሻ ൌ 𝑔௩ .𝑔 ሺ𝜆ሻ              (1) 
 

 
Fig. 1. Multispan WDM transmission link with dual stage EDFAs indicating 
DGE location at mid span with flat output power at link end. 

 
As a starting point, we assume the Gaussian Noise-GN 

model [17] and flat EDFA profiles as the PLM. Under flat gain 
assumption, the span EDFAs completely compensate for the 
span loss. We also assume that all channels are launched with 
the same power 𝑃௨ሺ𝑚ሻ at link m. The SNR at the end of a 
link m for the connection c using wavelength 𝜆, is given by 

 

𝑆𝑁𝑅ோሺ𝑚, 𝜆ሻ ൌ
ீሺሻ

ீೌೞሺሻା ீ_ೃೆሺ,ఒሻ
ൌ ீሺሻ

ீಿೞ_ೃೆሺ,ఒሻ
       (2) 

where 𝐺ሺ𝑚ሻ is the output signal psd, which is independent of 
the wavelength 𝜆 under the flat power assumption,  and 
𝐺ே௦_ோሺ𝑚, 𝜆ሻ is the accumulated noise (ASE + Non Linear 
interference, NLI) at end of link m under the flat EDFA gain 
assumption.  

A typical assumption of PLMs is that the inverse SNR per 
link is additive. We denote a connection by c=(𝑝 , 𝜆) that 
traverses path 𝑝, consisting of links 𝑚 ∈ 𝑝, with central 
wavelength, 𝜆. With the ripple unaware PLM of Eq. (2), the 
total SNR at end of connection c is given by 

 

ሾ𝑆𝑁𝑅ோሺ𝑝 , 𝜆ሻሿௗ ൌ 

       ൣ1 ൫∑ 𝑆𝑁𝑅ோ
ିଵሺ𝑚, 𝜆ሻ∈ ൯⁄ ൧

ௗ
 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛ଵ         (3) 

The penalty due to gain ripple fluctuations is included in the 
design margin1.We call this as ripple unaware (RU)-Qtool and 
denote it by QRU. 

To capture the gain ripple effect and penalties due to it, we 
extended the standard GN model [9], [17]. For that, we assume 
that we know the EDFA gain profile 𝑔ሺ𝑚, 𝑖, 𝜆ሻ along the spans 
i of link m. Based on that, for each channel we go span by span 
and we calculate the span output signal psd 𝐺, ASE noise 𝐺௦, 
and NLI noise having contribution for ripple effect 𝐺_ோ. 
Once we reach the last span we feed these signal and noise 
containing factors in Eq. (4) to calculate SNR at end of link m. 
The SNR at the end of link m, using this extended GN model 
which accounts for ripple generated noise is given by 

 

𝑆𝑁𝑅ோሺ𝑚, 𝜆ሻ ൌ
ீ ሺ,ఒሻ

ீೌೞሺሻା ீ_ೃಲሺ,ఒሻ
ൌ

ீ ሺ,ఒሻ

ீೌೞሺሻା ீ_ೃೆሺ,ఒሻାீೃಲሺ,ఒሻ
 = 

ீ ሺ,ఒሻ

ீಿೞ_ೃಲሺ,ఒሻ 
                   (4) 

where 𝐺ே௦_ோሺ𝑚, 𝜆ሻ is the total noise accumulated at the 
link m end, including the additional noise/penalty term 
𝐺ோሺ𝑚, 𝜆ሻ generated due to the EDFA gain ripples. Also, note 
that the psd of the signal 𝐺 ሺ𝑚, 𝜆ሻ is now wavelength 
dependent.  
The total SNR at end of connection c is given by 
 

ሾ𝑆𝑁𝑅ோሺ𝑝 , 𝜆ሻሿௗ ൌ 

    ൣ1 ൫∑ 𝑆𝑁𝑅ோ
ିଵሺ𝑚, 𝜆ሻ∈ ൯⁄ ൧

ௗ
 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛ଶ           (5) 

The penalties due to other uncertainty effects (excluding gain 
ripple) are included in the design margin2. We call this as ripple 
aware (RA)-Qtool and denote it by QRA. 

IV. PROPOSED SOLUTION 

A. DGE-based equivalent link model 

The ripple aware Qtool (QRA) described above assumes that 
we know the gain profiles of all EDFAs with good accuracy, 
which is a strong and unrealistic requirement. So we propose to 
use monitoring information (DGE attenuation profile) in an 
operating network combined with machine learning (ML) to 
model the penalties due to the ripple effect. Then we use our 



 

 

ML model to estimate the ripple penalties of the future 
connections. 

To be more specific, the first step of our proposed solution 
uses monitoring information from mid span DGEs per link to 
create an equivalent link model 𝑚ோா. The DGE monitoring 
information pertains to the applied attenuation profile (for 
lighted channels) to get the flatten output at the link end. 
Consider that the DGE is applied on span d then the attenuation 
profile of that span for connection c is denoted by 𝑎ሺ𝑚,𝑑, 𝜆ሻ. 
 

 

 
Fig. 2. Equivalent link model (for grey box of Fig. 1) based on collected DGE 
attenuation information.  

 
For the WDM link m with uniform transmitted launch power 

(e.g. 0dBm for all lighted channels) 𝑃௨ሺ𝑚ሻ, we can map 
an equivalent power profile to span d as 𝑃ீாሺ𝑚,𝑑, 𝜆ሻ ൌ
𝑃௨ሺ𝑚ሻ െ  𝑎ሺ𝑚,𝑑, 𝜆ሻ (in dB scale). Note that since the 
gain of the previous EDFAs (before span d) is also not flat. 
Hence the actual power profile upto span d also accumulates 
cascaded EDFA gain ripple effect of previous span EDFAs in 
the output power of span d EDFA as 
ሾ ∏ 𝑔௩ .𝑔  

ௗ
ೞୀଵ ሿሺ,ೞ,ఒሻ .  𝑃௨ሺ𝑚,𝑛௦, 𝜆ሻ . This is the 

ideal output power profile without any feedback from OCMs to 
DGE.  Note that 𝑃ீாሺ𝑚,𝑑, 𝜆ሻ is the power profile at span d 
tailored by the DGE to get almost flat output power for 
connection c centered at 𝜆. Hence the monitored  
𝑃ீாሺ𝑚,𝑑, 𝜆ሻ is different from the one that is without the use 
of DGE (ideal one stated above). Since the number of spans 
within the link m is known, it is possible to replace the 
multispan link of Fig. 1 with  an equivalent link model 𝑚ோா as 
shown in Fig. 2. For this, firstly we convert the 𝑃ீாሺ𝑚,𝑑, 𝜆ሻ 
to output signal psd of span d. For the connection c, we denote 
psd of output signal at span d as  𝐺 ሺ𝑚,𝑑, 𝜆ሻ. The 
𝐺 ሺ𝑚,𝑑, 𝜆ሻ depends upon the baudrate 𝑅ௌ  of 𝜆 and is given 
by 

 
 

𝐺 ሺ𝑚,𝑑, 𝜆ሻ =  
ವಸಶሺ,ௗ,ఒሻ

ோೄሺఒሻ
                                                   (6) 

 

We then use our extended GN model (discussed in last part 
of the previous section and also in [9]) and feed it with 
𝐺 ሺ𝑚,𝑑, 𝜆ሻ to calculate the approximate mid-span noise psd 
of link m at channel 𝜆, denoted by 𝐺෨ே௦_ௗሺ𝑚,𝑑, 𝜆ሻ. In 
general, the worst case of gain ripple occurs when all spans 
EDFAs are assumed to have the same ripple profile. So we 
assume that all spans have the same ripple profile. Under this 
worst case assumption, we calculate the approximated total 
accumulated noise psd at end of link m having 𝑁ௌ spans as 

𝐺ே௦_ோாሺ𝑚, 𝜆ሻ  ൌ 𝑁ௌ . ቀ𝐺෨ே௦_ௗሺ𝑚,𝑑, 𝜆ሻቁ                       (7) 
 

Note that 𝐺ே௦_ோாሺ𝑚, 𝜆ሻ contains an approximation error 
for link m as the equivalent model is made up from monitored 
information at a single point, extended with a worst-case 
assumptions, as described above. We use this per link 
equivalent model along with  inverse linear additive assumption 
as Eq. (4) and Eq. (5) to calculate the overall accumulated noise 
along path 𝑝, 𝐺ே௦_ோாሺ𝑝 , 𝜆ሻ  for connection c, and 
𝑆𝑁𝑅ோாሺ𝑝 , 𝜆ሻ. Since, we use the link equivalent model 𝑚ோா  
which approximates multiple cascaded EDFAs and fiber spans 
and contains an approximation errors, our SNR estimation is 
not perfectly accurate (but still better than standard QRU, as 
shown in results).  We call this DGE-ripple aware equivalent 
link model Qtool as QREA. 

B. Machine learning based ripple penalty estimation 

We now describe how we further improve the ripple-DGE 
aware Qtool QREA using ML. In short, we make use of the SNR 
monitoring information at the connection coherent receivers, 
and by taking into account their used links, we move to the link 
level. At the link level, we correlate information of connections 
crossing the link to create a wavelength dependent gain ripple 
penalty model. So we use end-to-end information (SNR) to 
correct the approximation error of the DGE equivalent link 
model. 

 

 
 

Fig. 3. Overall flowchart for EDFA gain ripple penalty estimation with DGE 
monitoring for training (blue box) and testing phase (green box)  

In more detail, we assume an optical network with 
established connections and their attributes (also referred to as 
the state of network at a given time) denoted by C. Note that C 
contains attributes for each established connection such as, the 
traversed path 𝑝, central wavelength 𝜆, modulation format 
etc. We also assume that the network has DGEs installed that 
use OCM feedback at the end of each link. We assume a ripple 
unaware (RU)-Qtool QRU, as discussed above, which calculates 
end-to-end noise of each established connection as 
𝐺ே௦_ோሺ𝑝 , 𝜆ሻ, for all connections c ∈ C. As a first step, 
using the monitored DGE attenuation (power) profiles 𝑃ீா we 
can improve such estimations. We use the DGE-ripple aware 



 

 

Qtool QREA as described above that takes into account the 
monitored 𝑃ீா at the DGE spans. As discussed, the QREA 
calculates the (ASE and NLI) noise at the end of the path 
𝐺ே௦_ோாሺ𝑝 , 𝜆ሻ. We denote this set of estimated values for 
all established connections C by YREA(C). 

We then monitor the electrical SNR of the established 
connections and thus their noise only at the receiver/ path level, 
𝑌ோ(𝐶) and store it in the Qtool database. Note that, this 
approach is generic and it can correct penalty due to any effect. 
But in this particular work, we used this approach to estimate 
the EDFA ripple penalties (and in particular we used QRA to 
generate the ground truth), and so we denote it here as 𝑌ோ. This 
data serves as the ground truth, it defines the true 𝐺ே௦_ோሺ𝐶ሻ, 
with zero margin (due to gain ripples). We denote the difference 
of the monitored 𝐺ே௦_ோ and the estimated 𝐺ே௦_ோா noise 
at path level as 𝐸ோሺ𝐶ሻ=𝑌ோாሺ𝐶ሻ െ 𝑌ோሺ𝐶ሻ. 𝐸ோ is a vector that 
includes the estimation errors of QREA of the established 
connections due to the real gain ripples. From established 
connections attributes C, we extract features which depend on 
connection’s routes, central wavelengths and modulation 
format. To be more specific, for each connection c we assign its 
used wavelength 𝜆 on the links that it utilizes 𝑚 ∈ 𝑝 (links 
used in the path are one hot encoded). Additional to these 
features, a bias is also considered to account for any monitoring 
calibration error and for the non-zero equalized tilt. The per 
connection features along with the bias term are merged into a 
gain ripple features matrix 𝑋ோ=f(C). The feature matrix enables 
the correlation among connections crossing the same link while 
accounting for their utilized wavelengths. Our goal is to identify 
the function 𝛩ோ(𝑋ோ)≈ 𝐸ோ that maps well the features matrix 𝑋ோ 
to the penalty 𝐸ோ generated due to gain ripple. Based on the 
monitored information of established connection, we can train 
supervised ML models on the above features and their 
corresponding labels, 𝐸ோ, and thus find a good estimation 
model 𝛩ோ. Assuming a new connection request r∉ C, we will 
use QREA to obtain the total approximated noise 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴 ൌ
𝑌ோாሺ𝑟ሻ. Then we use our trained ML model 𝛩ோ to estimate the 
ripple noise penalty on the new connection 𝛩ோ(f(r)) and 
estimate total noise including ripple as 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴+𝛩ோ(f(r)). The 
testing error will be identified once we establish the connection, 
monitor its SNR at the receiver and compare it to our 
estimation. The interactions between the collected monitoring 
information, the Qtool QREA and the ML assisted ripple noise 
penalty estimation (both training and testing phase) are depicted 
in Fig. 3. The next step was to try several ML regression models 
and opt for the one that showed the lower prediction errors as 
discussed in next section. 

 
V. RESULTS & DISCUSSION  

The proposed ML model improves the QoT estimator 
accuracy, by estimating the EDFA gain ripple penalties for new 
connections. To quantify its benefits, we performed simulations 
to identify the amount of margin reduction on DT topology with 
12 nodes and 20 bidirectional (40 unidirectional) links, shown 
in Fig. 4(a). 

We assumed uncompensated bidirectional fiber links with 
spans of 80km of standard single-mode fiber (SSMF). We 
assumed 4 different traffic loads of {100, 200, 300, 400} total 
connections with uniformly chosen source-destination pairs.  
We served each demand with one wavelength, assumed to be 
modulated at 32Gbaud with a modulation-tunable pol-mux 
transponder. We assumed that the transponder could adapt to 
{QPSK, 8-QAM, 16-QAM} modulation formats, leading to 
{100, 150, 200} Gbps of datarate, respectively. We assumed a 
frequency slot size of 12.5GHz and allocated 3 spectrum slots 
for each 32Gbaud connection. We assumed a stable network 
state, where we have a specific set of connections established 
and we want to establish a new set of connections. 

 
 

 
Fig. 4. (a) DT-12 node network topology (link lengths in km), (b) penalty 
distribution for 400 connections, indicating min. required design margin to 
accommodate ripple as well as high/low limits 

To do so, we assume a number of connections e.g. 100 
connections and divide them into two sets of 90%/10%, the 
training and testing datasets, respectively. Note that we did not 
use a validation set, because we did not tune any hyper-
parameter. The training set was assumed to be the established 
connections C and the testing set to correspond to the new 
connections to be established, r∉C. We assigned 
experimentally measured gain ripple profiles, g(λ), to each span 
EDFA after applying random time shifting and amplitude 
scaling to them. We assumed that OCM are installed before 
each node and that we can also monitor the attenuation hence 
power profiles applied by DGEs through their feedbacks. All 
these were integrated in the QRA, that calculated the DGE power 
profiles and also the total noises at the receivers YRA(C).  

 

 
 

Fig. 5. Margin reduction and SNR (dB) overestimation error with DGE eq. 
model (without ML) and (DGE equivalent + ML) model 
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Taking as reference the QRU, we depict in Fig. 4(b) the 
estimation error for 400 connections, which pertains to the 
ripple penalty. Note that this estimation error, 
𝐸ோሺ𝐶ሻ=𝑌ோሺ𝐶ሻ െ 𝑌ோሺ𝐶ሻ is the noise difference between the 
ripple aware (monitoring) and unaware Qtool (the standard 
one). The penalties were distributed in positive and negative 
sides depending upon the ripple values and were ~1.8 dB in 
total. Positive/negative penalties result in upper/lower bounds 
for the design margin, which we call as “high/low margin”. 
Typically, ~2dB of design margin is required to accommodate 
all uncertainties [1], [2]. Moreover, since these 
penalties/margins are directly related to the input parameters of 
the Qtool. Hence an error in input parameters (due to 
monitoring etc.) results in direct propagation from these input 
parameter uncertainties to QoT estimation uncertainty and 
should be considered for more accuracy [18]. Fig. 4(b) clearly 
shows that ~1dB of QoT tool design margin (out of the 2dB 
mentioned above) is required to accommodate ripple penalties 
only (shown by histogram plot in dotted red circle). The 
remaining part of the design margin takes care of the other 
uncertain effects as indicated in Fig. 4(b).        

To improve the estimation accuracy, we used the monitored 
DGE power profiles with the QREA to obtain the noise at the 
receiver, YREA(C). As shown in Fig. 5, the margin reduction 
from this REA-aware analytical model is constant with load i.e. 
no learning. But still, this REA-aware analytical model is better 
than QRU in terms of related margins. Now to make this QREA 
more intelligent, we subtract YREA and YRA, to obtain the penalty 
vector ER. We then created the ripple features matrix XR and 
evaluated several ML assisted regression techniques to fit 
ΘR(XR) on ER, such as linear fitting, quadratic, polynomial 
fitting, neural network, Support Vector Machine Regression 
(SVMR) etc.  
 

  
Fig. 6. ref. and est. high/low margins @ different intensities of peak-to-peak 
ripple at a load of 400 connections 

 
In the presented results we used SVMR with linear kernel 

function that achieved maximum Mean Squared Error (MSE) 
of ~0.19 and ~0.096 on predicted SNR at a load of 100 and 400 
connections respectively. For the above set of simulations, the 
maximum used peak-to-peak ripple intensity among all span 
EDFAs was about ±0.5dB, which resulted in a reference 
margin (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛ଵ) of ~1.02dB (red lines of histogram 
in Fig. 4(b)). Fig. 5 shows the maximum overestimation error 

on SNR, relative to Fig. 4(b). This overestimation is the new 
reduced estimated high and low margin  (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛ଶ). 
For high margin, it is found to be ~0.28dB, yielding ~0.73dB 
margin reduction at a load of 400 connections. For low margin, 
we found ~0.63dB reduction as shown in Fig. 5.  

To verify our model with different level of ripple intensities, 
we divided the gain ripple profiles by a factor of 1 to 4, resulting 
in peak-to-peak fluctuations of ±0.5dB to ±0.125dB. We then 
estimated the high and low margins at a fixed load of 400 
connections. We observed in Fig. 6, over all those intensities, a 
reduction of >70% on high/low margin with our trained SVMR 
model at a load of 400 connections (reference max. peak to peak 
ripple of ±0.5dB). For low values of peak to peak ripple of 
±0.125dB, high and low margin reduction varied from 68% to 
73%, respectively. 
 

VI. CONCLUSION 

We presented a ML based approach to estimate EDFA gain 
ripple penalties with optical monitoring information at links and 
receivers information. In particular, by using monitored DGE 
attenuation profiles per link and SNR at the coherent receivers 
information, we trained an SVMR model. We used that model 
to estimate the gain ripple for new connection and we estimated 
the QoT more accurately with >70% reduction in the related 
margin. 
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