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ABSTRACT

Recently microfacets on reconstructed
TiO2(100)1 x 3 have been observed with atomic res-
olution by scanning tunneling microscopy (Murray et
al. 1994) and surlace core-level-shift photoelectron d-
ilfraction (Hardman ¢f al.  1993). Determination of
the electronic structure of extended surface defects is a
formidable computational problem and only now possible
by using the most powerful computers.

Earlicr studics. by one of the authors {Michalewicz
1994a, 1994b, Michalewicz and Priebatsch 1995), on the
electronic structure of transition metal oxides with high
concentration of poini defects in a very large atomistic
models of up to 500.000 atoms. have now heen extended
to the very large samples with extended surface defects
such as microfacets.

We present compuled resulls for the Local Density
of States (I1.DOS) for up Lo 13 uneguivalent "T'i and O sur-
face atows in the vicinity of a microfacet. for five different
moaclels of a microfacet. This type of calculation might be
useful for extracting information on atomic composition
in the spectroscopic mode of operation of the Scanning
‘Tunneling Microscope.

We also present the results of benchunark analysis of
our clectronic strieture code on a vector-parallel comput-
er (Cray CC90). We compare vector-parallel perforinance
with the SIMD perforinanee (MasPar MP-1, MP-2 16K
PE) and report on our efforts to implement. the code on
MIMD architecture (C'ray 13D).
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I. INTRODUCTION

During the last four years a number of refined ex-
perimental studies of the rutile 702100} surface have
appeared in the liteeature (Muryn ef al, 1991; Clark and
Kesmodel, 1992; Zschack et al., 1992; Muceay f al., 1994;
Hacdman ¢of al., 1993). With sophisticated experimental
methods such as S'TM, glancing angle X-ray diffeaction
and LEED, the researchers were able (o observe sutfiee
reconstruclion and the appearance of 70+ (100}1 x 3 mi-
crofacets, ‘The surface electronie valence-hand steuctire
of Ti04 (100) and (110} faces was studied recently using
angle-resolved photoemission by ardman ¢f al.. (194.1).
It is hoped that by understanding the atomic and elee-
tronic structure of rutile surface, and especially the of-
fects of surface steps and microfacels,
the mechanism of photocatalytic decomposition of water
observed by Fujusima and Honda in 1972 could be hetter
understood (Mueyn ef al., 1991).

While experiments give more new insights into the
complex structure of surfaces, there has heen rather -
low progress in theoretical deseription of such systemn-
s. The electronic structure of rtile surfaces, hoth ideal
and containing point defects was studied hy Munnix and
Scheits (198 ta, 198:4h, 1985 1986).

The theorctical descriplion of non-periodic strue-
tures poses formidable dilliculties. When periodicity of
infinite solid is lost one can no longer resort to simplilica-
tions offered by the Bloch ‘Theorem and usually compu-
tations need to be done in direet space. Further, if barge
scale corrugations on the surface are Lo he included, the
methods applicable for clusters or simpler atomic steps
could prove to he
(still) limited. Yang ¢t al, (1994) computed the elee-
tronic structure for a stepped Cu(110) surlfinee using the
recursive Gireen function method. Their sample was con-
strucled [rom a supeccell consisting of 150 atoms dix-
tributed over 5 layers and 25 chains. ‘Tlie electeoniic strue-
ture was computed for four aloms adjusting to the square
angle atomic step,



Aninteresting computationally feasib|e alternative,
hased on the recursion method and e angmented-space
Tormalism was recently proposed by Saha ef al., (199:1).
It still needs to be proven if it can he applied to realistie
systems sinee, as anthors note: “Iy spite of
its immense potential the method conld nol. he used for
practical caleulations hecause of the large dimension of
the augmented space™ (Saha ef al., 1991). It was exeit-
ing to see that ab wnitio method of Car-Parrincllo was
successfully applied to study dissocialion of waler al
astepped MyO surface (Langel and Parrinello, 19919,
These computations showed that in contrast to the per-
fect surlace. dissociation of water proceeds very rapidly
at the stepped surface.

I the present work we use the equation of motion
method (EoM) (Alben of al. 1075: Beeman and Alhen
1977) to compute the local eloctronic densitios of stales
for up to thirteen outermost unequivalent 74 and O aton.
s in the vicinity of a microfacet. Five dilferent microfacet
models of reconstructod Ti02(100)1 x 3 surface which
we studied will be deseribed in the next section, I'he
equation of motion method was deseribed in detail in a
number of previous publications: €.9. see (Michalewicz,
199:1b) for further references.

II. MODELS OF MICROFACETS ON
Ti04(100)1 x 3

The crystallographic strueture of ideal rutile Ti0-
(Grant. 1959: Howard et al., 1991) and its most stable
surfaces (110) and (100) (Henrieh and Cox. 1993) is well
known. The tetragonal unit coll consists of two 77 and
four O atoms. ‘I'he titanium atoms occupy the posilions
(0.0,0)and (1.1 1) whereas oxyvgens are at the positions
(e 2, 0). and £(£4r L0 1) where + = 0.306+0.001
(Grant 1959). = = 7

Based on data derived from LEED symmetry and
photoemission spectra Muryn el al. (1991) proposed the
missing row model (MR) for the reconstrieted Ti0.(100)
surlace (IMgnre 1).

FIG. 1. Missing row model of Ti0s( 10)1 x 3 projected on
(001) plane,
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Soon after, Zschack ef al. (1992) Tound that 1l
microlacet model (M) (Figure 2) was in hetter e
ment with glancing angle X-ray diffraction LEED
measurements then the missing row model.

FIG. 2. Four dificrent realisations of microfacet nodel;
three with ordered arravs of oxygen vacancies (A 13 amd )
and the microfacet model with no rows of OXNECI Vacanep s
(MM) viewed along the [001] direction (alter Hardman ¢ of |
1993)

We nsed all five models: missing row (M), i
crofacet model (MM) and microfacet models A, 13 and ¢
(MMALMMB and MMC respectively) o study the eflect
of the local environment on the loeal electronie density
ol states (LDOS). This type of information is especially
uselul when analysing Scanning Tounneling Microseopn
(STAL) images. STM images of reconstrueted aml
duerd surlaces of TiOs(100)1 % 3 were obtained by o
number of groups (Clark and Kesmodel, 1992: Hardman
ol al, 1993). In all studies the inages are oblained ar
positive saanple bias, ¢.e. the eloctrons tannel from the
Lip into unoceupied T7 3d states. 1t was reported tha
the images at negative tip bias conld not be obiained
This means that the STM probe the loeation of the 7
atoms and ean not distinguish hetween different redieed
surface models (MNMAL MMB or MMC). The resuli< ol
our calenlations which we present in the [oHowing section
attempt to answer the question: which modil is physi-
cally realised?

Fignree 3 represents the stade-of-theart 1M e

of TiO(100)1 x 3 surlace.




FIG. 3.

A constant  current  image of the vicinal
1102 (100)1 %3 surlace (+21,0.3n ). The image, in which the
rows lie parallel to the [001] direction. is displayed as a tilted,
three-dimensional figure for case of viewing ([rom Murray et
al.. 1991).

III. LOCAL DENSITY OF STATES

The massively parallel implementation of the
equation-of-motion program designed for array proces-
sor SIMD architecture (Michalewicz, 1991b) was modi-
fied specifically for NIMD (as well as SIMD) machines.
T'he sample can now be rotated, arbitrary crystallograph-
ic faces can be exposed aud the extended surface defects
such as steps, islands and microfacels can easily be built
as soltware masks. The local electronic density of states
for up to thirteen unequivalent atoms on the surface of
microfacet for five models of microfacetl (MR, MM, M-
MA, MAMB and MMC) were computoed using the new ver-
sion of our program. “The [ull results will he published
elsewhere, Here we present the characteristic results for
the Microfacet Model at positions indicated in Figure -1

Tinta

FIG. 1. Five 79 (small black cireles) and eight O (large
circles) atom sites at which the LDOS was computed.
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The results are presenled in Figure 5. 'The 1,DOS
for all four models derived from Microfacet Maodel are
very similar, One striking feature is complete lack of co-
valent mixing and narrow s and p bands at oxygen site
05.2. This fealure is present in all three models (M-
M, MMC and MMB). This indicates lack of honding of
05.2 atom at microfacel. It would mean that Microfacel
Model Cis the most likely to represent. the reduced recon-
structed T704(100)1 % 3 surface. This resull is diflerent
from the conclusions of Hardman el al., 1993, Based on
time-reversed dynamical LEED formalism those anthors
suggest Lhat Microfacet Model A is Lhe one which gives
the closest agreement with their LEED experimental da-
ta. We need Lo investigale the arguments hased on the
local symimetry at ecach sites (AB and C') in order 10
conlirm our linding,.
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FICG. 5. The Local Electronic Density of States for surlace
atoms in Microfacet Model (MA) - at positions-indicated in
Fignre 4. Note complete lack of covalent mixing and spread
of bands at site 05.2.



: e ace partr—
IV. BENCHMARKS thenumnber-of-protessors—abeve el V

: code on 16 pracessors, the pecformance on each processor
The production code was run on the CRAY  guteriornted Lo only about@RMFlops/s per procesor.
C9016F/16256-4 vector-parallel machine with 16 proces- e wallclock was again 34.5s, and the total speed ~=t—

sors. 256 Mwords memoty and having 4.167 nanosccond GElopsfs, liowever-tmtota CHHHMTws-tenri-doble—
clock. This is the thied version of the code. This one ran cthat-forright-processors—

nearly ten_times faster on a single processor C90, thany

the first. vectorized version on Gray 2 (Michalewicz el al., I_ ' v T v T \ v
(T0Z). The size ol the system had to be lacge enough to 200} [ # of processors i

enable efficient vectorization, Depending on the size of
the sample the program ran between 550 to 630 MFlop-
s/s on a single processor (290. ‘This means we achicved
about 55% to 63% efficiency of a siugle vector processor
of CRAY CY0. ‘The sample sizes in r,y and = dimensions
were 6 x 6 x 6 (1296), 10 x 10 x 12 (7200) 12 x 12 x |2
(L0368), 16 x 16 x 16 (21571) and 18 x 18 x 18 (31992)
unit cells (atoms). Each unit cell contained six atoms,
/7 The results of benchimarks are given in Figures 6 and 7.
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. Figure 7 shows that the computational complexity
sor y of the vector-parallel version of the equation of motion
ask | program is linear with the size of the sample, The slope

grows stnaller when larger munber of processors is eni-
0 e Y Y ve— ployed. It is interesting to compare this with “perfioet”

scaling achioved on SIM D MasPar machine (Michalewicr
and Priebatsch, 1995). SIMD architecture had a numn-

ber of very appealing leatures. 11 was easier to visaalize
mapping physical dimensions onto the dimensions of ar-
ray of processors. ‘The programming model was casier.
It was simple to scale up the size of the system in - and
¥ dimensions. However, the scaling in = diniension was
not. “perfect”™, but linear and the small local miemory on
each processor limited the thickness of sample in a se-
rious way. ‘The high performance on Lhe SIND machine
was achieved by enlarging the system size up to the limits
enforced by the available memory resources. “Thix way it
was possible to run Lhe program for nearly 500,000 atoms
on 16K processors of MasPar with 1Ghyles mnemory, Wi

Number of processors

FIG. 6. Running time for sysiems of lonr dilforent sizes rs.
mumber of pracessors of 16 processor ("RAY C:91),

The running time was defined as the total CPU time
divided by the number of processors which ran a particu-
lar job. The running time defined this way differs slightly
(up to about 15%) from the wallclock figures given on
completion of each job. The discrepancy is attributed
to the fact that we run our program on a husy machine
with many jobs competing for the resources. For a giv-
en sample size the slope of cach curve decrenses with
the nmmber of processors. This indicates deterioration . - :
of performance of cach processor as the nunther of pro- nmuagml‘ Lo achieve the speed of 740 MFlops/s on Mas-

Par MP-2216 (Michalewicz and Prichatsch, 1995). la the

cessors uscd grows. ‘The best performance achjcved_was
present. work we achicve similar specd on a single proces.

43 GFlops when we run our code on R processors (wal .
\J'\:F{fl —e ! ( sor CRAY (=90 for systems of smaller sizes.
clock Hs, system size 21576 atoms)y (alorwnatolioce

-
. -




V. CONCLUSIONS

There is a need for very fast and clficient codes to
calculate the electronic structure of novel complex ma-
terials. Delects engineering might lead lo exciting new
materinls and devices. The equation-of-motion method,
as implemented in this work, can be used to study dis-
ordered transition metal oxides, amorphous semiconduc-
tors, the electronic structure of candom point and extend-
ed defects and Lheir influcnce on the electronic properties
of materials.

With the program reported in this work we stud-
iod the local electronic structure of Té and O atomns in
the vicinity of TiO2(100)1 x 3 microfacets. The samples
were up to 39992 %toms in size. The wallclock time for
the sample of 24576 atoms for all thirteen atoms (cach
atom requires new initialization) Lakes about 730 sccond-
s (280648 CPU) on four processors of sixteen processor
CRAY_('90. The peak speed achieved in benchmarks
was 1Flops/s. .

e are working on the massively parallel MIMD
Ainplementation of this program on Cray T3D machine.
{ ‘The curcent version of the program. developed specifical-
Iy for MIMD architecture scales identically in all three
spatial dimensions of a sample. It is possible to manip-
ulate a sample, rolate it, study various crystallographic
faces and extended surface defects.

In the ncar future we plan to extend the report-
ed work to study Ti02(110) sutfaces without and with
defects.
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