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SUMMARY

The theory of the static structure factors of simple
liquid metals is presented,and,in particular,the long-wavelenght
limit of the structure factor is studied by means of the extended
random phase approximation (ERPA) ( Evans and Schirmacher,1978)
and Gaskell's approximation (GA) (Gaskell,1978).

The theoretical structure factors for Rubidium
(T=1900K, 350K, 313X ), Aluminium (T=1330K,978K,943K) and Lead
(T=613K) were computed.It was found that in all studied cases the
contribution of the terms beyond random phase approximation (RPA)
was smaller than 1%.

It is demonstrated that the Gaskell's approximation can
be obtained by taking the second order MacLaurin expansion of tha
inverse structure factor about the reference fluid and neglecting
the reminder term,instead of using the coupling—parameter formula
and expansion of the integrand.This method is extended to the
third order MacLaurin expansion.The extra term which is expressed
in terms of the triple density correlation functions is given.

In order to obtain ERPA the theory of classical equili-
brium statistical mechanics of inhomogenous liquids and the gene-—
rating functional method are presented.The Weeks-Chandler-
Andersen (WCA, 1971) theory and the 'blip' function method of
Jacobs and Andersen (1975) were utilized to give the structure

factor of the reference fluid.



The characteristic features of the simple liquid metals
are incorporated by means of the effective pair—-potential which
represents interactions between pseudo-atoms.The model pseudopo-
tential of Ashcroft (1968) and the dielectric function of
Vashista and Singwi (1972) have been used to construct this

potential.
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CHAPTER 1
INTRODUCTION

The aim of the thesis is to describe the low - angle (1i.e,
long wavelength ) structure factor of simple liquid metals using:
i) the so-called Gaskell's approximation for the static structure
factor, ii) the standard pseudopotential theory to obtain the
interionic forces and iii) the theory of classical liguids to
deduce the relevant structure properties.

We obtained the structure factor in low-k region for 1ligquid
Rubidium, Aluminuim and Lead in the Gaskell's approximation. The
results are compared with calculations for two other models for
the long wavelength structure factor - the random phase
approximation (RPA) and the extended random phase approximation
(ERPA).

In 1966 Ashcroft and Lekner used a solution of the Percus-
Yevick equation for hard spheres (HS) to obtain a structure
factor for some simple liquid metals. Their results agreed only
moderately well with experiment. The 'blip' function theory of
Weeks, Chandler and Andersen (1971) also utilized the hard sphere
model. They divided the pair potential into a repulsive short
range part and an attractive tail. The model liguid with only a
repulsive short range interaction was called the soft sphere
fluid., It can be used as a reference system for perturbation
theories. The attractive, long range part of the potential plays
the role of a perturbation. The WCA expression for the soft
sphere liquid structure factor produced a spurious bump at low k

and this defect was later corrected by Jacobs and Andersen, (JA),

(1975).
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The Jacobs and Andersen structure factor based on improved
results for the hard sphere fluid (Verlet and Weis,1972) 1is, at
the moment, one of the best available for the flﬁids with harsh
repulsive potentials, The JA soft sphere structure factor
reproduces the experimental values for real liguid metals well
from about the second peak outwards (McLaughlin and Young,1982a).

In recent years some other types of reference systems for
liquid metals have been intensively studied. One is called the
one—-component-plasma system (OCP), (Hansen,1973; Rcss et al,1981;
Mon ef al,1981; Evans and Sluckin,1981; Iwamatsu et al,1982).

It is described by the Coulombic part ( ?E=(3292)/r) of the
effective pairwise interatomic potential derived from standard
linear-screening theory (see Chapter 5). The OCP reference system
has been applied successfuly for alkali liquid metals, but for
polyvalent metals the HS reference system still plays a dominant
role and gives better results (Mon ef al,1981).

The other reference system, which is also of particular
importance for alkalis, is called the charged hard spheres model
(CHS). The important difference between the CHS and OCP is that
in OCP ions are treated as point charges, whereas in CHS model
ions are treated as objects of finite extension in space,
(Hansen,1981). Singh and Holtz (1983) used CHS in their study on
five liquid alkalis and found good agreement with experiment.

Another example of models applied in the liquid metal theory
is the sticky hard sphere (SHS) liguid (Gopala Rao and
Satpathy,1980). The structure factor for SHS liquid is obtained
in analytical £form, depends on two parametres and agrees with

experiment reasonably well.



The WCA expression for the structure <factor fails to
describe the long wavelength range well. The notion that the
tail of the pair-potential manifests its presence in the low-k
region of the structure factor became generally accepted. There
exist various perturbation theories that attempt to explain the

role of the potential tail in this region.

The simplest of such theories, the random phase
approximation (RPA) was for the first time applied in the study
of liquid argon with a Lennard-Jones 6-12 potential by Woodhead-
Galloway el al,(1968). Later in 1976 Henderson and Ashcroft in
their study on binary mixtures derived an expression for the
structure factor that is valid at long wavelength. It is called
the mean-density approximation (MDA). The MDA was applied
frequently in recent years in studies of liquid metal structure
factors in the low-k range (McLaughlin ef a/.1981, McLaughlin
and Young,1982a,b).

The MDA gives results which reproduce the characteristics
and trends in real systems in the low-k region very well
(McLaughlin and Young,1984a, b). Evans and Schirmacher (1978)
have shown that by neglecting the density dependance of the
radial distribution function in a derivation of the MDA one
obtains a simpler formula. It was named by authors the extended
random phase approximation (ERPA), They calculated the long
wavelength limit of the structure factor for a number of

insulating liquids and liquid metals.
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Gaskell (1978) reported +the derivation of vyet another
approximation for low angle structure factor. The Gaskell
approximation (GA) 1s formally much simpler and easier to compute
than the MDA and, although derived from quite different reasoning
it resembles the ERPA. The only difference between the GA and the
ERPA 1is the presence of an extra factor (Soz) in the integral
term.

Recently Olsson and Dahlborg (1982) posed a problem of
extracting a coarse form of the attractive part of the effective
pair potential (or the perturbation part to a given reference
potential) for liquid Al, Pb and Bi from the experimental low-k
structure factor. They employed the GA, assuming its wvalidity in

-6
the low angle range of the structure factor. They used the r

and r_12 reference system structure factor obtained from
molecular dynamics simulations and also computed values for the
hard sphere system. In order to model the perturbation part of
the potential an elaborate expression, containing six adjustable
parameters, was chosen. It consisted of a sum of a differentiated
Gaussian function with a weight function displaceable along the
r—-axis and an exponential function. This combinration of
analytical expressions allowed very different shépes of the
potential tail. It varied £rom a purely one-period oscillation

to a simple exponential. They assumed that all kinds of

oscillations of larger periodicity were damped out.
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A similar approach to study the form of the potential tail
was undertaken by Bretonnet (1983), but using the RPA. The liquid
metal was modelled by the hard spheres supplemented with the
oscillatory, exponentially decaying tail. This analytical model
of the potential tail was proposed earlier by Cummings (1979). It
depends on 5 adjustable parameters. Bretonnet, using the RPA,
fitted experiments at low-k to find the effective pair potential
for some liquid metals.

An alternative method of extracting the effective pair
potential was proposed by McLaughlin and Young (1982c). In their
approach, the long range part of the potential is deriﬁed from an
observed structure factor and the RPA.

In contrast to the above approaches, the object of the
present study was to test the wvalidity of the Gaskell's approxi-
mation and so test the importance of the term representing the
coupling of the density fluctuations of different wavevectors.
This term expresses the correlation effects which are omitted in
the RPA. 1In order to fulfill this purpose we applied the well
accepted and tested effective pair potential derived_ from the
pseudopotential theory. We used the simple, local, Ashcroft
empty-core pseudopotential, which proved to be successful in
simple liguid metals theory (Cohen and Heine, 1970). The

scresning of electrons was taken into account by means of

vashishta and Singwi (1972) form of the local field.

4]
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The calculated potential was separated according to the WwChA
prescription. Its short range part was used for computing the
soft sphere reference system structure factor. The Iattractive
long-range tail exhibited the typical oscillations. These, so-
called Friedel oscillations, were included fully in all
computations of the low-k structure factor.

The plan of the thesis is as follows. The relation between
the radial distribution function, the total correlation function,
the direct correlation function and the static structure factor
13 demonstrated in Chapter 2.

The hard sphere and the WCA soft sphere reference liquid
models which were used in the present study are deécribed in
Chapter 3.

The development of the theories of the low angle structure
factor will be presented in Chapter 4. In the second section of
this chapter we present a new derivation of Gaskell's result. We
extend +this method to cobtain the third order term in McLaurin
expansion of the structure factor about the soft sphere reference
system. The final expression is given in Appendix A. In Chapter 5
the effective pair potential for simple 1ligquid metals is
introduced.

In the last Chapter of this thesis the calculations of the
small angle structure factor for liquid Rubidium (T=1900k, 350K,
313K), Aluminium (T=1330K, 978K, 943K) and Lead (T=613K) are
presented. The results are presented graphically (Tables and
Figures), and are discussed in detail. The last section (6.2)

brings the final comments and conclusions.
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CHAPTER 2

STATISTICAL MECHANICS OF LIQUID STATE
In this chapter we introduce some of the most important
physical quantities of the classical statistical theory of dense
fluids.We consider one-component monoatomic fluids in equilibrium

described by canonical or grand canonical ensembles.

2.1 REDUCED DISTRIBUTION FUNCTIONS
The notions given here may be found in many standard
textbooks (Rice and Gray,1965;Hansen and McDonald, 1976 or Crox-—
ton,1974).In this paragraph we follow the presentation contained
in (Balescu,1975).
In order to make our consideration more general we assume
that the physical system is a member of an ensemble‘specified by

a phase-space distribution function,F(q,p).where

(q,p)=(ql...qN,pl,..pN) are the generalized coordinates which
span the phase-space of N particles.We do not specify any parti-—

cular realization of the ensemble at the moment ,but require that

qudpl’(q.p)ﬂ (2.1.1)

and
F(q,p)?0 _ (21,20

The phase-space distribution F(q.p) plays the role of the
probability density of finding the system at point (q,p) in
phase-space. It is postulated that any macroscopic quantity which

is a function of physical space coordinates x and time t:A(X,t)
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is a linear functional of a unique microscopic dynamical function

a(q,p,x,t).The link between the two is given by:

A(x,t)= qudp a(q,p,x,t)F(q,p)=<a> (2:.1.3)

where the integration is carried over the entire phase space.
Let wus wuse the notation iE(Ei'Ri) for the set of

canonical variables describing the i-th particle, and define the

reduced n—-particle distribution function fn(xl....xn) by the
equation
£l x )—*-El~ dx dx F(x b L 4 )
n L T (N-n)I 1825 MR | I IR R 1 h R
,n<N (2.1.4)

The reduced distribution functions are symmetric under
permutations of the particles. This feature results from the

assumption of the indistinguishibility of the particles of the

system.

Another, equivalent way of defining fn is

NS SURRRED M0 del' Fdx L ‘EO (yy ™300 (y,7%;) -

X6 (y ~% ) IF(x, ..X0) (2.1.5)
n

According to the above expression the n-particle reduced

distribution function may be treated as the n-point density in

phase space.On the other hand the number density of particles 1in

physical space is given by:



K
pP(x)= jdqdpEG(9j~§)P(qu) (2.1.6)

3=

N
where 5(§)=Eﬁ(gj—5} is density operator.
J=l

Similarly the two-point number density is defined by the

expression:

(2)
X, X = —X - ’ o N
P (X .X,) dqdij%O(gJ X,)6(g,~%, )F(4,P) (2:1.7)
i#n
The important point to note is that the integration in the
formulas (2.1.6) and (2.1.7) is over the entire phase space.It 1is
easy to show that in the canonical and the grand canonical
ensembles the integration over momenta is immediately done due to
particular forms of phase space distribution function and the
hamiltonian.

Suppose the one-component system of N particles confined

within the volume ¥ has the hamiltonian:

H =THU+V {2518

where the first term represents the kinetic energy

N op?
T=f == (2.1.9)

sl

of the particles of mass m and momentum pi,and

U=0(g,s -Gy (2.1.10)
is the potential enexgy of interaction of particles

and

N
V=l Ve .(9;) (2.1.11)

=l

i3 a contribution to the total configurational energy arising

from the interaction of the particles with an external field.Thais




last term often introduces spatial inhomogeneity in the system.

in the canonical

The phase space distribution function

ensemble for the system described by the hamiltonian given above

is

- -1 -1
F(g,p)=nh 3N(Nl) 1z exp{-BHN(q.p)} (22432

where B=(kBT)-l.kB is the Boltzmann's constant,T is temperature

and h—-the Planck's constant.

7 is the partition function defined as

N -1 .

Z=h" (NIl) ‘qudp exp{-BHN(qu)} (2.1.13)

The integration in the above formula with regspect to the
variables p=(gl,...,EN) yields factorization:

Z=ZTQ (2.1.14)

where 2 is the partition function of the ideal Boltzmann gas
(classical system of particles without interactions)
-1 N —-3N
ZT=(N[) A (2.1.15)
z Z
and A=(_7E___) is called de Broglie thermal wavelength. The
genuinely interesting factor in formula (2.1.14) 1is Q-the

configurational integral given by

—-N
Q(T,V,N)=v qu exp(—-B(U+V)} (2.1.16)

We may apply formulas (2.1.12)—(2.1.15) together with the
[ general definition of the reduced distribution function (2.1.4)

b in order to obtain one and +two-particle reduced distribution

functions in the canonical ensemble:

10

e — — R——
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£.(4,.R,)=p(g,)P(P,) (2.3,17)

here p(p) is the Maxwell distribution of momenta

3 3
_ B8 3 p*
£(p)= (1;55} exp(-B5-=) (2.1.18)
and
-N -1
p(a)=nv 0 S\dgz...dgu exp(-B(U+V)} (2.1.19)

is the configurational one particle density.The two-body reduced
distribution function is found to be:

(2) ,
£,(9,,9,/R,/R,)=p  (4,:9,)P(P,)P(P,) (2.1.20)

2
p( )

The function {gl,gz) is sometimes called the

configurational +two-body distribution. It can be demonstrated
that in a fluid phase in equilibrium the one particle density is

constant:

N
p(a)=p==5 (2.3.21)

One can easily check the following properties of one and two-body

distribution functions:

and

(2)(31.32) (201239

dp dp_f e B < B =
Obviously the expressions (2.1.22) and (2.1.23) are equivalent to
the definitions (2.1.6) and (2.1.7) respectively.The two-body
distribution function plays the central role in liquid state

|

theory, usually it 1is represented 1in terms of the air

distribution funcition g(gl,gz):

2 2
p( )(91-92)=p a(q,.9,) (2.1.24)

11




In the case of homogeneous fluid due to translational invariance
the pair distribution function may be written
9(g,,9,)=9( 1 x,7X, 1 )=g(x,,) (2.1.25)

and 1s then called the radial distribution function (Hansen and

McDonald, 1976).

It can be interpreted as a probability of finding a particle at
the distance r from another particle at the origin.Clearly,it
possesses the property:

lim g(r)=1 (2.1.26)
r—co

It is customary (Ashcroft and Stroud,1978) to introduce the total

correlation function , h(r), at this point ,by the equation:

h(r)=g(r)-1 (2:4:87)

with the obvious property
lim h(x)=0 (2.1.28)
Y-+co

From Eq.(2.1.27) we see that h(r) expresses the entire effect of
correlations. It can be demonstrated (Hansen and McDonald,1976;
Balescu,1975), that the total correlation function is related to
the isothermal compressibility xT,Via so called the
compresibility equation:

1+p5 h(g_)d_r_r-pﬁ_le (2.1.29)
This interesting equation is very useful in the theory of the

equation of state of dense liquids.Its relevance to the theory of

the structure factor will be shown later.

b e



2.2 DIRECT CORRELATION FUNCTIONS

In this subchapter we introduce the concept of direct
correlation functions.The style of presentation adopted is
similar +to +this given by (Evans,1979).The systems studied here
are the classical ,monoatomic ,one-component ,non-uniform fluids.
We use the grand canonical ensemble which is more suitable for
the generating functional method (Lebowitz and Percus,1963).

Let us assume that the system is described by the
hamiltonian HN ,given by Egs.(2.1.8)—(2.1.11).The .number of
particles N in the system may fluctuate and the equilibrium phase
space distribution for N particles is:

1
Fo=E = exp(-B(Hy-uN)) (2.2.1)
where g 1is the chemical potential and = 1is the grand
partition function:

E=Tr_, exp(-B(Hy—LN)} (2.2.2)

cl

Trcl is an operator of the form:

° 3N -1
Tr =L(n N gdsl...dzugdgl..dgn (2.2.59)

Similarily as in the previous section ,(2.1.3), we define the
grand canonical ensemble average of a microscopic dynamical
function a(q,p,X,N,t) to be

<aA>=Tr (2.2.4)

F a
cl 0
It can be shown (Evans,1979) that any functional of the

given phase space distribution may be treated as a unique

functional of the density p(x).

13




we construct two functionals which occupy a central position
in the development of the theory.The first is the intrinsic

Helmholtz free energy of the system:

-1
F[p]=<TN+U+B lnP°> (2.2.5)

The other is written:

ﬂvtpledzp(z)vext(y + Flp] - #jdl_rp(z) - (2.2.6)
It can be demonstrated that the equilibrium density 90(5)

(corresponding to Fo) minimizes the above expression and gives

the grand thermodynamic potential 0N:

onv[p
e =0 (2.2.7)
6p(x) 0o
and
_l —
ﬂv[p0]=-ﬁ InE = 0 {2.2:.8)

From Egs.(2.2.6) and (2.2.7) we immediately obtain the important

result of the theory of non—-uniform fluids:

unvext(£)+gin[90:£] (2.2.9)
where
v OFLR])
#in[p,z] 5p(z) (2.2.10)

is the intrinsic chemical potential.In the case of non-
interacting systems (U=0) Eq.(2.2.5) reduces to
-1 3
Fiqlpl=8 " | drp(x){(1n(A p(x))-1} (22110
where A is de Broglie thermal wavelength (2.1.15).For the given

potential U the effects of the particle interactions can be

incorporated by the unique functional of p(x),®[p].

14




Now the expression (2.2.5) is rewritten:

Flp)l = Fi4lP) + @[p] (2.2.12)

We define the first member of the hierarchy of the direct

correlation functions by:

r] = g22LR]
clpix] ﬁﬁp(z) (2.2:13)
From Eqs.(2.2.10)—-(2.2.13) one gets
o .
B, pix)=ln(A p(x))-clp;x] (2.2.14)

This result applied together with Eq.(2.2.9) gives the equilib-
rium density of non-uniform fluid po(g) in terms of a given
external potential Vext(z) and fugacity z=A—3 exp(BL}):
p0(£)= z exp{—ﬁvext(z) + c[po:g]} (2.2.15)

EQ.(2.2.15) provides an interpretation of the meaning of c[p:r]
as the additional, effective one-body potential which determines
the equilibrium density in a self-consistent way (Evans,1979).

The most important of the higher order direct qorrelation

functions generated by D[p] is

bclpixi] _ 0 Olp]
6p(x,) 6p(x,)0p(x,)

clpix, x,1 = (2.2.16)

This function taken for the equilibrium density is called the
Ornstein—-Zernike direct correlation function of the non—uniform

fluid.It can be represented as

C(Z r ]= _C-'_{_.EL:-EE)_ — .Qmﬁ_‘i(_.l_-_[.)__ (2.2.17)

) s !
(X):X,) = clpgity X, Po(E) 8po(x,)

where u(r)=u—vext(£} and Egs.(2.2.15)-(2.2.16) were used.

15




The grand thermodynamic potential (2.2.8) is a dgenerating
functional for the configurational densities (Balescu,1975):
6N

o -po(E) (2:2.18)

Differentiating this equation again we obtain the density-density

correlation function or the density fluctuation G(El.gz}:

-1 6
__EELII =<[p(r )= po l)][8(52)_1)0(.;.2)]):‘:’(21‘32) (2.2.19)

It is easy to prove (Balescu,1975),that the density fluctuation

is related to the two-body density via the eguation:

q (2)
G(E) E)=p (XX )+p (X, )0( L, X, )P (X, )P (X,) (2.2.20)
We substitute this representation , together with (2.2.17) into
the equation defining the inverse G_l(r o )=ﬁ—EEL£—l—=
“n)end 690(52)
‘gdg G- (rl,r )u(r ' X ):6(:1 52) ©(2.2.21)
and we obtain the integral equation:
(2) 2
(2) (2)

This reduces to the famous Ornstein-Zernike egquation (Ornstein
and Zernike,1914) in a case of a uniform fluid of density p :
_.(2) (2)

h(r)=c (r) + py d;lh(rl)c ('E—El') (2.2.23)
where we used definitions (2.1.24),(2.1.25) and (2.1.27).

The physical interpretation of the direct correlation function

follows from the above formula .

16




The total correlation function which represents the entire effect
of correlations in fluid is separated into direct correlation
between the particle at the origin and the other one at the
distance r from it , and the convolution of the correlation
between all the particles of the fluid and the one at r.The vital
property of c(z)(r) is its range comparable with the raﬁge of the
pair—-potential.The Ornstein-Zexrnike equation is exact but it can
be solved only if the prcovisional independent relation between
the total and direct correlation functions is given.One of the
most successful closure relations in liguid state theory is
Percus-Yevick formula which will be discussed briefly in the next

chapter.

17




2.3 THE STATIC STRUCTURE FACTOR

In equilibrium classical statistical mechanics the knowledge
of the partition function ,(2.1.13) or (2.2.2) ,enables one to
calculate +he thermodynamic potentials and hence from it by
algebraic operations or by differentiations all other
thermodynamic functions (Balescu,1975). In the theory of dense
fluids however it is the pair distribution function (2.1.24), not
the partition function, which plays the most important role.

Let us make the most common and essential assumption at this
point that the potential energy of interaction of particles in

a ligquid, (2.1.10), is the sum of pair-wise potentials ¥(x):

U(x reeery) = L ¥(x; (2.3.1)

J££<J'\w J )
Wwith the above assumption the thermodynamic functions of the
liguid such as the internal energy, the specific heat per
holecule at constant volume, pressure (via the equation of state)

and others are expressed as functionals of the pair distribution

fif function and the pair-potential (or  their  derivatives),
(Egelstaff,1967).
Another very important feature of the pair distribution

function is +that it can be determined experimentally.The

structure of liguids is studied experimentally by means of X-ray,
fi neutron and electron diffraction (Waseda,1980).Suppose the
incident and scattered X-rays have wave—vectors Ei and Ef

respectively.

18




The momentum transfer is then §=§f751 and we write the amplitude

where fi(E) is the atomic scattering factor for the i-th atom
located at position . The measured intensity of the wave
scattered by N particles forming the one—-component fluid is the

ensemble average of the absolute square of the amplitude (2.3.2):

2
I(k)=<IA(k)! >=|f(k)l2< M exp{—ig-(zj—gn)}> (2.3.3)
j n
This can be written:

I(k) = £k )1 °NS(k) (2.3.4)

~where the function

m

S(x) = N <(Fexp(~ik-x,))(Dexplik-r,))> (2.3.5)
n

J

is called the static structure factor or simply the structure

factor. It 1is easy to notice that the Fourier transform of the

A N .
density operator p(g)aﬂd(sjﬁg) is
J=i

5 N
Pk=‘[d£ exp(-ik-r}p(x) = £Iexp{~15'£j} (2.3.6)
—_— J!

and now the structure factor (2.3.5) can be interpreted as the
autocorrelation function of the particle density in k-space.

We write it

S(k) = N . <PyP 3> (2:3.7)
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It is convenient to redefine the definition (2.3.5) or (Z:3:7)s
We exclude the contribution which corresponds to the forward

gcattering of radiation (k=0). Now Egs.(2.3.5) and (2.3.7) are

written
-1 ) " B
S(k) =N < ? g exp{—lg'(zj ;ﬂ)}) NOE,O (2.3.5a)
and
S(k) = N_1< > k#0 2.3.7
2 p}_[p_}_c' s (2.3.7a)

One easily finds the fundamental relation between the pair
distribution function and the structure factor (Hansen and
McDonald,1976; Balescu,1975; Waseda,1980). In order to do this we
separate the terms for which j=n in Eq.(2.3.5a) and write
S(k) = 148 jdzdz' exp(-ik*(z-r')}< L L8(z-r;)0(x'~xr,)>

J n

: i#n
NO 0 (2,3.8)

o

Now we recall Eqs.(2.1.7) and (2.1.24) and use the equivalence

-1
bk,o =V ‘[dg exp(-ik-r) (2.3.9)

and the equation (2.3.8) for isotropic system becomes

S(k) =1 + deg exp(-ik-r}[g(r)-1] (2.3.10)

or

FaY
S(k) = 1 + ph(k) (Z.3.11.%

where ﬁ(k) is the Fourier transform of the total correlation
function defined by Eq.(2.1.27), We observe that the structure
factor is the Fourier transform of the total correlation
function. One immediately obtains the reciprocal relation:

-3 1 .
g(r)-1 = (2m7) p [dz[s(k)-llexmﬁ,s'y (2.3.12)
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From the compressibility equation (2.1.29) and the formula

(2.3.10) we find the value of the structure factor for k=0
-1
5(0) = pB X (2.3.13)

The experimental values of the isothermal compressibility xT
can be obtained from measurements of the sound velocity and the
ratio of specific heats and hence the formula {2.3;13) provides
an independent experimental test of the zero k 1limit of the
structure factor obtained from diffraction experiments or the
theory (Evans and Schirmacher,1978).

The Fourier transform of the Ornstein-Zernike equation
(2.2.23) together with EqQ.(2.3.11) yields the link between S(k)

and the direct correlation function:

A -1
S(k) = {1-pc(k)) (2.3.14)

If the system is subjected to a weak external potential then the
linear density response is related to the structure factor by the

equation (Hansen and McDonald, 1976; Ashcroft and Stroud, 1978):

=y
S(k) = = (pBA) Xx(k,0) (2.3.15)

where X(k,w) is the linear response function.
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CHAPTER 3
THE WCA REFERENCE FLUID

The successful development of the theory of liquids in the
last two decades rests on the van der Waals idea that the model
system with the harsh repulsive forces will exhibit most of the
thermodynamic and structural features of a real system. The
simplest and yet nontrivial model system is the hard sphere
fluid.

3.1 THE HARD SPHERE FLUID

In their well known paper Percus and Yevick (1958)
established the approximate relation between the radial
distribution function (2.1.25) and the pair potential (2.3.1).
Their result was later rederived by a graph summation method
(Stell,1953) and by a generating functional method (Lebowitz and
Percus,1963). Following the latter approach one can expand the
ingeniously chosen generating functional A(E;W)=p(£;w)exp{ﬂvbl}
,where ¥ is the interaction of an extra (N+1) particle with the
N particle system and ?01=$(£(N+1)1), in powers of the functional
B(xr;¥)=p(x;¥). The expansion, truncated at the linear term
and combined with (2.2.20) ,(2.2.17) (where u=¥) and (2.2.23)
after some manipulation yields the relation between the radial
distribution function and the direct correlation function

(Balescu, 1975):

c(x)=[1l-exp{B¥(r)}lg(x) (3.1.1)

This 1is the Percus-Yevick closure formula which can be used +to

solve the Ornstein-Zernike equation (2.2.23).
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The resulting equation is called the Percus—Yevick equation (P-Y)
and is written
g(xr)exp(BY¥(x)} = 1 - pj‘dz'[expiﬁr(r')}-llg(r')

x[g(lx—x'l)-1] {3l 2)

This nonlinear integral equation for the radial distribution
function is one of the best available in the liquid state theory.
The reason is twofold.

Pirstly, the P-Y solutions for various model systems (e.qg.
hard spheres, Lennard-Jones) consistently are closer +to the
results of computer experiments then other approximations., They
give consistent pressure and compressibility equations of state
for hard spheres and better numerical values of fourth and higher
virial coefficients over the wide range of densities then other
approximate analitical expressions like hypernetted-chains
equation (HNC). sSecondly, there exist rigorous solution for the
special but very important case of a hard sphere fluid. The
solution was obtained independently by Wertheim (1963a,b) and
Thiele (1963),(W-T).

They consider the fluid of hard spheres defined by the pair
potential of the form:

¥ (x)= 4+ r<go
a (3.1.3)

Va(r)= 0 r>0

where o0 1is the diameter of the hard spheres.
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Due to the singular form of the potential and from (3.1.1) one

obtains:
go(r)=0 r<a,
go(r)=70(r) r>ao,
c(r)=—T0(r) <o,
c(r)=0 r>o (3.1.4)
where
Ta(r)zexp{ﬁ$a(r)}go(r) { BB

Rewritting the P-Y equation in bipolar coordinate system and
Laplace~-transforming it one achives the factorization in terms of
the functions of a complex argument. One exploits the properties
of the entire functions and after considerable calculations one
obtains the direct correlation function for the fluid of hard

spheres:

* -4 2 2_x 2, %3
c(r y=(1-m) (—(1+27m) +67m(1+0.57M) ¥ —0.57(1+2m) (¥ )},

*
r <1 (3.1.6)

where

1 3
N=g7pPo (3.1.7)

is the dimensionless packing density and r =ro © is the scaled
distance. As a result of the discontinuity of the direct
correlation function c(r"), (3.1.4) and (3.1.5), at r*ml the
radial distribution function ga(r*) is piecewise analytic

function and can be represented as:

* ol * *
g (r )=pH(x —n)g (xr ) (3.1.8)
a n=0 n

where H(x) is the Heaviside step function.
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The W-T radial distribution function is continous exept at
r*=1 and hence, for n#1l, gn(n)=0. FProm (3.1.4) follows that
go(r*)=0. The analytic expression for gl(r*} was given by
Wertheim (1963) and Thiele (1963) and for gi(r*), i=2,§,4 by
Smith and Henderson (1970). It was also demonstrated that for

*

L3
r >5 g(r ) can be well approximated by unity. 1In the interval

*
1<r <2 the W-T radial distribution function is given by:

(x )=(x" )t —2f t (r
=(r - - .
g ) (1-7m) ank exp( k(r 1)) (3.1.9)
where
-12 .mk
=3 H 3 .
A3 L Hy
and
1
Ho=1437,

My =—(4m) CE41/8) Y 20 P (amam-an® v (1572 01,

=l 2 -1l/2 2
Hy=(an) (£41/8) " 2ix 2 (1-am-an yex_(1-(5/2)7%)1,

One also has, for k=0,1,2
-1 k ~K
te=2n(1-7) T[-14x 3 43 ),
. 2
J=exp(37i)

172173

x, =t [£E+(E +1/8)" %)

and

2 -1 2
f=(4m ) (3+37-71 )
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The Fourier transform of the direct correlation function
(3.1.5) applied in Eq.(2.3.14) gives the structure factor of the
hard sphere fluid. Ashcroft and Lekner (1966) used this method in
their study on the structure and resistivity of 1liquid metals.
They treated the packing density 7 as an adjustable parameter.
An agreement of their results and the experimental structure

factor in the region of the major peak was observed for 7=~0.45

but was not satisfactory beyond that region.
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3.2 THE METHOD OF WEEKS, CHANDLER AND ANDERSEN (WCA)

It is a well accepted notion of liguid state theory that the
effective pair potential ¥(r) (see Eg.2.3.1) consists.
irrespective of details, of a quickly decaying, repulsive part.
decreasing to the principal minimum which occurs at =r, and a
long range tail representing the attraction.

Weeks, Chandler and Andersen (1971) proposed the separation
of the potential into 'soft core' repulsive part:

i W(r)-¥(ry) (x<ry)
0 €228 (3.2.1)
and the 'tail'-remainder of the interaction:
?(ro) (r(ro)

¥,(r)=
Y(r) (r>r.) (3.2:2)

0
wcA used the Lennard-Jones ('12-6') model potential in theix
study, but the general expression (3.2.1)-(3.2.2) is sufficient
for further discussion and still valid fer realistic liquid
metals potentials ( Chapter 5 ).

Following the van de Waals idea, WCA treat the repulsive
part of the potential, vo(r) as a dominant part responsible for
the gquantitative behavior of the liquid structure factor at
intermediate and large wave vectors. The contribution of a 'tail’
is treated as a perturbation of a particular importance only in
the small wave vector part of the structure factor.

we define the ‘'soft sphere' reference fluid as the one

described by the repulsive part of the potential YolT):
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One introduces the Boltzmann factors for hard (eo) and soft (e)

sphere fluid by the equations:

e, (x)=exp(-B¥ (x)) (3.2.3)

etr)=exp{—ﬂro(r)} (3.2.4)

where ?c and ?0 are given by Egs.(3.1.3) and (3.2.1)
respectively.

We observe that, if the hard core diameter O 1is chosen
properly, the function &e(r)=e(r)—eo(r) takes non—-zero values
in a very narrow range of arguments centered around r=0. The
recipe for finding the optimum hard core diameter 0 is given
within the framework of the blip-function theory (see for example
Andersen ef al.,1971,1976).

The excess Helmholtz free energy Aex for a system of

particles described by a Hamiltonian (2.1.8) is given by:

-1
A, = -8 1nQ (3.2.5)

where Q is the configurational integral defined by Eq.(2.1.16).
When the external potential is not applied (V=0 in EqQ.2.1.16)
then one writes a functicnal Taylor expansion of the
dimensionless excess Helmholtz free energy density A=-£Aexﬁﬁ

in powers of Ae(r):

A(B,p:e)=A(p; e, )+jd£.%(.2.i.?_§_

bea(r) Le(r)

+ higher order terms (3.2.6)
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We employ the result (Hansen and MacDonald, 1976):

(o) 1 2
Belz) =~ 2 P T(®) (3.2.7)

where T(r)=exp(B8%(r)}g(r), and then Eg.(3.2.6) becomes:

I 2
A—Aa= 3 o] ‘{dgrc(riﬂe(r)+... (3.2.8)
where AUnA(p;eo) and Tc(r) is given by Eq.(3.1.5).
In order to minimize the difference on the LHS of .the above

equation WCA naturally require the fulfilment of the condition:

‘gngo(r)= 0 {(3:2.9)

where Ba(r) i5 called the 'blip function' and is given by:
B =
o(r) To(r)ﬁe{r) (3.2.10)

We define the Fourier transform of the 'blip function':

E(k)*—'-jngo(r)exp{ii_:-g} (3.2.11)

and now the condition (3.2.9) for the best temperature- and
density—dependent hard sphere diameter O associated with the

soft sphere system with the potential ¥,. is rewritten:

A
B(0)= 0 (3.2.12)
It was proven (Andersen el al.,1971) that in terms of the

softness parameter £:

[¥4]
=1
£=0 JdrlBa(r)l (3.2.13)
o

which, for harshly repulsive potentials is much less than unity,

- the expressions (3.2.8) and (3.2.9) give:
4
A=AU+O(E ) (3.2.14)
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The formula (3.2.14) serves as a Prescription for studyinag
the thermodynamical properties of the soft sphere fluid. In order
to study the structure one has to find an expression for the
radial distribution function. We notice that from Egs.(3.2.7),

(3.2.8) and (3.2.9) follows the result:

T(r)=Ta(r) + higher order terms (3.2.15)

And from the definition of the function T(r) (see comment below
Eq.(3.2.7)) one obtains the radial distribution function in the

WCA approximation

2
Iwcal T)=exp(=B¥ (X))} T (r)[1+0(£7)] (3.2.16))

Combining Egs.(3.2.9), (3.2.15) and (3.2.16) yields an important
relation between the structure factors of the WCA reference fluid

and the corresponding hard sphere fluid in k=0 limit:

Sucal®) = Syg(0im)  3.2.273

Physically, the above expression states the requirement of equal
isothermal compressibilities of the WCA soft sphere and the hard
sphere fluid (see Eq.(2.3.13)).

Inspection of the formulas (3.2.14) and (3.2.16) sSuggests
that the thermodynamic functions will be better approximated
within the WCA theory than the structure. From Eq.(3.2.16) one

easily obtains:
h(r)=ho(r)+B(r) - (3.,2.18)

where h(r) is the total correlation function given by (2.1.27).
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Now we apply the expression (2.3.11) and this vyields the

crudest form of the structure factor in WCA theory:

Sucalk) = Satk)+pﬁ(k) (3.2,19)

This formula is not appropriate for potentials which are softer
than the repulsive part of a typical Lennard-Jones potential, as
is the case for liquid metals (Kumaravadivel and Evans, 1976).
Jacobs and Andersen (1975) point out that the spurious peak
at k~7/0 in the liquid metal structure factor is caused by the
presence of the extremas in g(k) at multiples of w/0. They
present a more accurate approximation which is obtained within
the diagramatic summation method. After topological reduction of
the bonds in a diagramatic representation of the total
correlation function h(r), they sum only selected terms of the
expansion which give non-negligible contribution. This procedure
yields the approximate expression for the structure factor of the
reference soft sphere fluid which (denoted by so), was adopted in
the present study, (another derivation can be found in Telo Da

gama and Evans,1980):
S (k) =S (k){1-pB(k)S _(k (3.2.20)

In order to calculate So(k) we only need to know the radial
distribution function for the hard sphere fluid. The Wertheim-
Thiele solution for go(r) (Eg.3.1.9) did not prové to be
accurate enough for this kind of calculation. Verlet and Weis
{1972) derived an analytical expression for the radial
distribution function of the hard sphere f£luid based on the W-T

solution.
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Their result fits the 'exact' computer experiment values very
well and we used it in the course of our calculations. We denote
all functions and parameters introduced by Verlet and Weis by a
subscript — and that due to Wertheim—Thiele by a subscript &'

Verlet and Weis postulate that:

Iywl T/ Oy Mg =9 ,(X/0, 7 )+Bg, (T) (32.21)
where the following relation holds:

12
=N Tvw (3.2.22)

ogl(r) 15 a short range term defined by:

69, (x)=(n/x)exp(-L(T-0,, )}cosu(r-0

vw) (3.2.23)

By inserting =0, in Eg.(3.2.21) and with a help of the
empirical equation of state for hard spheres due to Carnahan and

Starling (1969) one obtains the expression for calculating the

parameter A:

3

A 2 2 -4
—— = = 77(1-0.711779-0.1147" )(1-71) (3.2.24)
O

The parameter i is found from the demand that the hard sphere
fluid compressibilities calculated wusing the Carnahan and
Starling equation of state and the W-T approximation be the same

at the transition point. This yields:

24(B/9)) _ 24(A/00)
n9,(1.7) 7

. 2 1 -1
HOy™ (1=m)"(1+ 57) (3.2.25)
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Now, with the Corrected radial distribution function the formula
1 (3.2.20) is written:
. 1

A i
Solk) = Sy(k) (1-pBy(K)S (k) (3.2.26)

\
! :
..f
e
e 1;
i 4
3
I s
; '
g i |
i 1 |
A e
& i
bt
b

33




CHAPTER 4
THE LOW ANGLE STRUCTURE FACTOR THEORY

In Chapter 3 the structure factor of the reference fluid of
soft spheres, determined by the repulsive part of the effective
pair-potential (3.2.1) has been derived. The expression (3.2.26)
gives accurate numerical results for higher angles of scatter
(Jacobs and Andersen,1975; Meyer el al.,1980,1981; McLaughlin
and Young,1982a). The potential tail (3.2.2) manifests its
importance 1in a low-k region of the structure factor (Henderson
and Ashcroft,1976; McLaughlin and Young,1981,1982b). The various
theoretical approaches which aim at explaining the long wave-—

length range of the liquid structure factor are presented in this

chapter.

4.1 THE RANDOM PHASE APPROXIMATION (RPA),
THE MEAN DENSITY APPROXIMATION (MDA)
AND THE EXTENDED RANDOM PHASE APPROXIMATION (ERPA).
The first attempt +to incorporate the effects of the
potential tail on the small-angle structure factor in dense
fluids was made, using the random phase approximation (RPA), by
Woodhead-Galloway ef a/ in 1968. In their study on the
structure of binary mixtures Henderson and Ashcroft (1976)
derived the mean density approximation (MDA) which was superior
to RPA. Evans and Schirmacher (1978) obtained the extended random
phase approximation (ERPA) as a special case of MDA. We present
the derivation of the above three approximations within the

framework of the statistical mechanics of non-uniform, classical

fluids (Evans,1979).
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Let us use the result (McDonald and 0'Gorman,l1l978,p.81):

(2) - 5 00u(Pe]
P (31.52) ZﬁVizl'Ez) (4.1.1)

where nv[pol ig the grand thermodynamic potential given by
Eqs.(2.2.6) and (2.2.8) and ?(51.52) is the pair-wise potential
given by EqQ.(2.3.1) in a case of the non-uniform fluid. From the

above formula and Egs.(2.2.6) and (2.2.12) one obtains:

p Nz, x,) 26,#,(51'32) (%.242)

where the intrinsic Helmholtz free energy F[p] is defined by
Eq.(2.2.5). We chose the parametrization of the potential

W(El.gz) in the following way:

"'u_ L 'V(}El-_r.ziﬂ)"?o(.{l-lz) + p'*l(_r..l'.gz) (4'1‘3)

where the terms ¥, and ¥, are defined by Egs.(3.2.1) and
(3.2.2) xrespectively and are appropriate for non-uniform fluids.
The parameter 0<jS1 switches on (1r#0) and off (K=0) the
long-range effects. Now the functional integration of the
expression (4.1.2) along a one—-parameter integration path (4.1.3)

yields:

I

_ 6F[po] d¥u(xri,Xa)
Flpyl-FolPo] Jdﬂjdzldizﬁwﬂtzl'sz} an (2.1.4)
[¢]

where Fo[po] corresponds to the reference system. This

formula, with a help of the results (4.1.2) and (4.1.3) gives:

/
_ (2)
4]
(4.1.5)
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p Prom EGs.(2.2.10),(2.2.14) and (2.2.16) it follows that :

2 .
g BTRIBY . Bl Yo I g
. B=5p(x)6p(x") 8(z-x' Vg~ clPiEE] (4.1.6)

2
b :
one applies the operator ——————=—— 0N both sides of EQ.(4.1.5)
= Bp(x)0PL’ )

and in a case of a fluid in which the interaction potential 1s
central this yields:

(2)

c (T

2
K. o B o 2y,

12 26p(x,)0p(x,)
(4.1.7)

In order to progress any further it is necessary to evaluate
p(z)(”;El'Ez)' The random phase approximation (RPA) is easily
obtained if all correlations between the particles are ignored

and we put:

2
p'F N pix, x,)=p0x, IPLE,) (4.1.8)

From +this, Egs.(4.1.7) and (2.3.14) it follows that in RPA the

structure factor is expressed by the formula:
e B
= s - -
Srpalk) otk){lwpso(kwl(k)} (4.1.9)

where So(k) is the structure factor of the reference system
(Eq.(3.2.26)) and rl(k) is the Fourier transform of the
potential tail.

one can simplify the calculations by expanding the integrand in
Eq.(4.1.7) 1in terms of the two-body distribution function of the
reference, non-uniforxrm £fluid p(2)(ﬂ=0;£l,£2)=p(2)(51.52)-

The integral in (4.1.7) is than written:

A (2)
J J~d£14529 (zlezz)vl(rlzi (4.1.10)
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Let us assume that the f£luid is weakly non-uniform. The

configurational two-body distribution function can be evaluated

at the mean local density (Henderson and Ashcroft,1976) and this

is written:

(2)
2 2 dpe (T )
082 (e, 1z, 1=t P ey 41/ 218002, OP(E N Fe
2 (2} o
+ 1/2 0p(x,)0p(Z, )——B-,_ F e C8udA1)

This approximation was named the mean-—-density approximation (MDA).

Applying it in Eq.(4.1.7) leads to the result:

> (2)
(2 () c(,, )(r) = - (ﬂ/zwl(r)%g—zﬂt—r—)— (4.1.12)
After Fourier transforming, this becomes:
2}, @) ¥ (2
(k)-cp (k) = - E{_E?rP g‘#l(q}g —Po (1k—gl) (% Lo 2
1t is easy to check that:
(2) 3 2 ,
p T (k)=(2m) p B(k) + p{S(k)-1} (4.1.14)

where one uses Egs.(2.3.10) and (2.1.24).
From (4.1.13), (4.1.14) and (2.3.14) it follows that:

=1
(X) + Bp¥ (X)

-1
s (k) = s

MDA
_ad()-a-sll s 1

+ Bp(2m) gy, (q ol 19-k1)+(P/2) 57754 g-k1))

(4.1.15)

As was noted by many authors (Henderson and Ashcroft,1976; Evans

and Schirmacher,1978) the above relation, also called the mean-—

density approximation (MDA) can be valid only at small wave

vectors because the expansion (4.1.11) assumes slow and small

variations of the density p(xr) about the mean value.
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At the k=0 limit the MDA result is exact to first order in
rl (see 4.1.10) and can be derived in the theory of uniform
f£luids wusing the conmpregsibility sum yule and the coupling
constant algorithm for free energies per atom of a homogeneous
fluid (Evans and schirmacher,1978).

The calculations of the structure factor using the MDA for
Al, Mg, Na and Pb near melting were reported by McLaughlin and
Young (1982a). For metals with resonably hard-core like repulsive
part of the potential (Al, Mg) they obtained satisfactory results
for both high and low argument range. They suggested, that in the
case of Na and Pb the discrepances between MDA results and the
experimental values at low-k region result from the softness of
the potential (Na) and the importance of many-ion and density-
dependent forces in this region (Pb).

One can obtain a simpler result than (4.1.15) if the_density
dependence of the radial distribution function g(r) in (4.1.12)

is neglected. This yields:

(2)

2
! )(r)-co (x) = — (B/2)¥,(X)9,(%) (4.1.16)

and Fourier transformation leads to the formula:

B -1
SERPA(k)=So(k){1+50(k)[,6'p‘rl(k]+ Zny dgrltq)(sot Ig-k1)-1)]}

(4.1.17)

This result, named the ERPA-extended random phase approximation

was obtained by Evans and Schirmacher (1978).

38




4.2 THE GASKELL'S APROXIMATION ( GA)
wWe present yet another approximation for the long—-wavelength
limit of the structure factor, which was originally derived by
Gaskell in 1978. We show that Gaskell's approximation is a member
of the hierarchy of approximations based on the MacLaurin
expansions of the structure factor in terms of the perturbing
'tail' of the potential.

Let us recall the definition of the structure factor:
S(k) = e > k# 2
PEP_E , k#0 (2.3.7a)

where 0, is the particle density in k-space defined by
EQ.(2.3.6). One utilizes the parametrization of the potential in
terms of switch onfoff parameter OSu<l introduced by
Eq.(4.1.3). The potential energy arising from ¥,(r) is

represented in terms of the density fluctuations:

U = (4.2.1
" (2n) gw (q)p51 - ( )

Now the parametrized structure factor can be written:

B JHGE-P p_,exp(-BH _L8 E?‘ (AP P_g}
S#(k)=N 1 ) e 0 2N 1 q —q (4.2.2)

j‘Hdr exp(-H,y~ 5y Zvltq)p_qp_g}

where HD is a soft sphere system Hamiltonian.

ﬂ l(k) can be found by using MacLaurin expansions of

different orders. In general, for a function f£(p), oxdinary

MacLaurin expansion including remainder term is written:

I

n n-=1
D £(1) (1-4)
opn”  (n-1)1

nal -1 9 E(p)

f(p=1)=r(s!) =—s5—| + |du
520 e

=0

(4.2.3)

0
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Let us consider three cases when n=1,2,3 and f(u)=su-1(k)-
We expand the reciprocal of the structure factor because it has
an immediate connection with the short ranged direct correlation
function (2.3.14).

For n=1 we obtain the commonly used coupling parameter
formula:

=1

-1 -1 2
S (k) =S k) + \ du=-— x 4.2.4
(%) (k) ngps, 00 ( )

0

where So(k) is the structure factor of the soft sphere reference
fluid.

In order to calculate the complicated integral on the RHS of
the above expression Gaskell expands the integrand about p(=0

and neglects all terms exept the zeroth (independent of i) one

(Gaskell, 1961;1978). But this is equivalent to +taking the
MacLaurin expansion for n=2 and neglecting the remainder,

integral term in (4.2.3). This way we arrive to the result:

s k) = 50—1(k) + g%;ﬂ_l(k) (2.2.5)

which can be rewritten as follows:

!

- e " B |
S(k) = Sy(k)(1-Sy " (k)FS (k) (4.2.6)

| u=0’
Now our task is to calculate the partial derivative of the
structure factor appearing in the above formula. To end this we

write:

I . 07}
s,(k) =N O (4.2.7)

I

where the numerator LM and the denominatoxr zﬂ are given

explicitely by EQ.(4.2.2).
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zﬂ obviously represents the partition function of the canonical

ensemble with a Hamiltonian H0+#U With a help of this

shorthand notation we have:

‘T &

"'la I‘A(k) a
=-S5 (k) = N Z == - -t 2
a ”( ) { ) L (k) = az } (4.2.8)

and after differentiation we obtain:

) B -1 2 2
Zsu‘k)n" Eﬁfzu Ev’ltq)j{]dsilpgl !p,_:l exp{—B(Howl-'r)}

-2 Lu(k
+ N —"z"—(-—)tﬁfz)}:ﬂ'l(q)t. (a) (4.2.9)
" ¢ Jia

This, again, may be simply written as:

b _9_ - -2 2 2
SR AT DN oy F g 1%,

. -1 2 -1 2
+(ﬁ/2)£;1(q)<n Ip)_ci >#<N ng! >’u (4.2.10)

We notice, that each sum in this expression can be split into two

terms involving g=+k and the remaining sum over g#%k, and

il (4.2.10) is finally rewritten as:

2 2

¢ ik 2.2 -2 4

i gﬁsn(k)Lr__;ﬂvl(k){m lp}_ll > = <N lpEl >0}
+(ﬂ/23}§!1(q){<b€ 'pl‘.l > <N ipgl >o~<N Ip}":l ngl =
4 {42,345
'}

At this point we need to know the following matrix elements:

L i —_—

2 4 '
4.2.12
<N 'p}_c' >, » k#o ( )

and

-2 2 2
<N pgl 1oy 1 7> sk.gikEgro (4.2.13)
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The values of the above and similar expressions were calculated

in the quantum theory of liguid helium (Peenbergq,1969,1970) and
also in a very general and elegant way by Wu (1971a,b). The
latter method required the use of the convolution approximation
for the n-body configurational distribution function . (Wu and
Chien,1970). It is argued, (Gaskel,1978), that dispite the fact
that the convolution approximation produces distributions which
are unsatisfactory for very small interparticle separations, it
can be used in the present case where the distribution functions
are integrated against the longe-range potential component only.
Without going into details of these calculations we only

quote the results:

<Ndzlpqu>0= 2502(k) b N Ty, k#O (4.2.12')
and
. 2 -1_ 2 2
a2 1p 12 1y 1 23 gm SytaIsy(R) +.N TS (), 0x)
X[, ( 1k+q ! )+5,( 1k-g1)-2] . k,q,k+g#0
(4.2.13°)

We note at this point, that the formulas (4.2.12') and (4.2.13')

also wvalid for u#0, e.g. when we ‘'switch on' the

perturbation—tail of the potential. Now EQ.(4.2.11) becomes:

2 ~T.. 2 2
5,0, g= BFLZg (%) - AL 0 5,208 ()

X[Sy( 1k+g1)-1]) (4.2.1%)

We convert a sum into an integral:

© Y lax (4.2.15)
K (2m) =
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and finally combining (4.2.14) and (4.2.6) yields the Gaskell's

approximation (GA):

_ 8 2 -1
S5(k) So(k){l + S, (X)[Bp¥,(K) +(—{;)—;‘§dgw1(q)50 (aX(S ( 1x+ql)-1)]}

(4.2.16)

If we neglect the terms involving the coupling of density
fluctuations of different wavenumbers in (4.2.11) than the result
(4.2.16) reduces to the RPA given by Eg.(4.1.9). The correlation
parts of GA and ERPA, represented by integral terms in
Egs.(4.1.17) and (4.2.16), are very similar, the only difference
is the presence of SO2 factor in GA. The computed values of the
structure factor for some liguid metals in GA and ERPA will be
presented in Chapter 6.

wWe now return to the Gaskell initial expression (4.2.4). We

combine Eg.(4.2.4) and (4.2.14) and it gives:
|

S(k) = Sy(k)(1 + S (K)[Bp¥,(k) + BjdﬂG(k,#)]}-l (%.2.17)
where ¥
-3
G(k, ) = (2m) J'dgwl(q)sﬂz(q)isu( Ig+kl)-1] (4.2.18)

Chakravarty and Woo (1976) have shown, that assuming that
G(k,i) is slowly varying function of i and is also analytic

than instead of expanding it about pK=0 (Gaskell,1961) it can be

expanded about (=1 :

G(k, 1) = G(k,1) + (u—lj_a.,%(_lf_&)jﬂﬂf-.... (4.2.19)
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Truncating this expansion at the first +term leads to an

approximate expression:

-3 -
S(X)= S (k) (1+ S (k)[BPY, (k)+ B(27) jdg‘ﬁ‘l(CI)Sz(q)[S( Itk !)-1])

(4.2.20)

An integral equation of this type can in principle be solved

numerically by iterative method (Chakravarty and Woo,1976). The

initial equation to solve would be equation of the GA type
(4.2.16).

Now we can examine the last choice of n=3 in MacLaurin

expansion (4.2.3) which gives:
(k)=s (k)+§-s (k)Lo 8;1 s, (k) R (4.2.21)

Again we neglect the remainder term R. The second order partial
derivative of the structure factor involves +the higher order
density correlation functions. Its full form is presented in

Appendix A.
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CHAPTER 5

THE PAIR POTENTIAL FOR SIMPLE LIQUID METALS

In the previous chapters we developed the general theory of

the structure factor for a classical, one-component 1liquid. We
did not specify any particular physical system. The only
requirement we 1imposed on the potential was that it had +to be
pair-wise and additive, Eg.(2.3.1). We now turn to study the
spaecific case of the simple liquid metals.

Liquid metals are viewed as systems composed of two
intermingled fluids: the conduction valence electronl gas and
positively charged massive ions. Liguid metals have resistivities
in the range 10-1004ohm-cm and often a positive temperature
coefficient of resistivity (Ashcroft and Stroud,1978). Simple
liquid metals form a subgroup of liquid metals and are
characterised by two-particle and central interactions. Although
liquid metals consist of two types of particles: electrons and
ions and there are three types of two-body interactions (ion-ion,
electron-electron and electron—-ion), we can still apply the
formalism developed earlier for one component dense fluid. 1In
doing so we reduce the liquid metal to a quasi-one component
fluid characterised by the effective pair potential developed
between the pairs of ions. We can separate this effective pair
potential according to WCA prescription (3.2.1)-(3.2.2) and cal-

culate the ionic static structure factor for simple liguid metals.
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_f The method of obtaining the effective pair potential for
% ﬁi liquid metals is well established and widely accepted (Ashcroft
;h and Stroud,1978; Kumaravadivel and Evans,1976; Dharma-wardana and
i
8 4 Aers,1983; McLaughlin and Young,1982a).
j - In our exposition of the subject we follow the discussion
o contained in Ashcroft and Stroud,(1978).
. Let us write the full Hamiltonian for the liquid metal:
. 3 2 2 2
1sh e P,
E H=f 5= + 1/2 [ + T=2
E | pam MO TETED T
8 2202
. 3 + 1/2 Dro—mom—a + EVP(EifEl) (5.4
i 8 =1 =1 iL
ﬁ' 4 where one assumes that the liquid metal has a volume V and
,ﬁ;-fﬁ consists of N ions of valence Z and of NZ electrons; {Ei} and
E f {Ej} denoting electronic and ionic positions, {Ei} and [gj} the
i
e,
M corresponding momenta, m and M masses. The second, fourth and
.
% "ﬂ fifth terms in (5.1) represent electron-electron, ion-ion and and
1 5; ion-electron interactions respectively.
:: 3 Vp(r) is the Ashcroft empty core model (ECM) pseudopotential
i g "
E 3 (Ashcroft,1966,1968):
o
!.- ," zez
. =~ r,
e vP(r)=
by 8 PO (5.2)
ﬂ¥ c
.E 4 its Fourier transform is
"r‘: \ '
1% 3
h; 4 Vp(q) - = 28 cos(gr ) (5.3)
e q c
ﬁ; 3 where rc is the empty core radius which is fitted empirically.

b Eemm sk
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The basic idea of the pseudopotential method
(Harrison, 1966,1980; Heine,1970; Wiser and Greenfield,1971) is to
replace the one-electron Schrodinger equation

(T+V)¥. = E. ¥

i 1°1
with T being the kinetic energy and V the self-consistent
potential seen by each electron, by
A
APy =
(T }@k Eg@
A
where ¢%=(1npj?k is the pseudo wave function, ¥ is the
Fat
wave function of the valence electron, P 1s the operator
. R y A
projecting any function onto the core states and Vp is the
pseudopotential operator. The eigen—energy spectrum of valence
A
electron states of both T+V and T+vp are the same. The
Pl
pseudopotential VP is weaker (as proved by the concellation
theorem) than V and does not have bound core states. This means
that the core electrons are treated as rigidly attached to the
nucleus and only valence electrons' degrees of freedom are
explicitely taken into account.
A

I+ should be noted that the pseudopotential operator vp(r)
is not unigely defined and in general it is spatially ., non-local
and energy dependent.

We use particulary simple, local (VP is a function of «r
instead of an operator), one-parameter model pseudopotential of
Ashcroft (5.2) which proved to be useful in many applications
(McLaughlin and Young,1982a,1984; Hafner and Heine,1983). The
different forms of pseudopotential like the modified point model
(MPIM), the local Heine-Abarenkov (LHA) and many others are also

found in the literature (Kumaravadivel and Evans,1976; Wiser and

Greenfield, 1971;Dharma-wardana and Aers,1983; Tanaka,1980).

47

L=

AP P Thow w o S PTG 1



In order +to avoid the divergence problem exhibited by
systems with long-range interactions we rewrite Eq.(5.1) 1in a

following way:

2 2
c e
H=Z—§-r;+1/2 e~ B (5.4a)
L .J“ _i —j
2 2
e
+ 1/2 E—Tﬁ—:ﬁ_T + E' + E" (5.4b)
4 =1 =]
+L VP(EAfE ) — E” (5.4c)
il 171
2
P
+}E.-;,*g . (5.4d)

where E' represents the self-energy of a uniform charge density

NZ . i
pelel, (P ) and is written:

2
E' = 1/2 JdEJ dr %9-5-)— (5.5)

r-x'|

and E" is the Coulomb interaction between the ions and an i

uniform negative background. E" is written: i

E" = 1/2 T Sa; ————— (5.6)
A =

As was shown by Ashcroft and Stroud (1978) the Fourier ‘transform

of (5.4) is written: M
H = Heg + UH + H'ei + NEO + Hk (5.7) ¥

where Heg is +the Hamiltonian for an interacting electron gas

embedded in a uniform positive background ((5.4a) in q-

representation), UH ig the electrostatic energy of the chargad

point ions in a neutralizing background ((5.4b) in q-

representation), H'ei is the ion—electron interaction term, Eo—so

called Hartree energy and Hk is the ionic kinetic energy. The

first and the third terms only on the RHS of the above formula

involve electronic degrees of freedom.
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Without going into the details of the calculation we only
quote here the most important steps which have been performed
(Ashcroft and Stroud,1978) to obtain an effective potential
energy of the liquid metal.

i) The Helmholtz free energy per ion for the canonical

ensemble is:

P o= — (AN) ~ 1nZ (5.8)

here 2 is the partition function given by Eq.(2.1.13) and we use
the Hamiltonian (5.4).

Integration over momenta in the expression for Z and
separation of the terms involving electronic degrees of freedom

in the Hamiltonian yields:
27TM,3N/2 -1
2 = (—ﬁ') (N1) J\gdgiexp{uﬁ(UH+NEo)}

X[Tr exp{—ﬁ(H'ei+He Y} (5.9)

(elec) g

The bracketed factor can be replaced by:

Tr(elec)exp{—ﬁ(H'ei+Heg}] = exp{—ﬁNF'(El,...EN}} (5.10)

where F'(gl,..gn) can be treated as the Helmholtz free energy per
ion of an interacting electron gas placed in the external
potential described by H‘ei'

ii) Using the fact that H'ei is weak, one can apply a

coupling-constant formula which will express F' in terms of the

Helmholtz free energy per ion of a uniform electron gas, Feg:
I
ax .
L —_— - 5.11
NF NPeg + jﬁ >\<M—! e ( )
0
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iii) The above relation can be calculated with the aid of

the linear-response theory and this yields:

. "‘l l
NP® = NEy * Liz2% "~ L Xy ivPeay %o o_ (5.12)
q:0 L i |

where pg is the ionic density in g-space defined by (2.3.6).

4 0 . : . .
X( )(q) is the density-density linear response function and can

be expressed in terms of the dielectric function, €(qg), as

follows:

¢ 1 '
percll prpriaded (5.13)

) =

The dielectric function is given by:

Ve (A)Xa(9)

€ e . ;
) I+ _(a)x,(9)5(Q) (R i
2 1
477e . : i

where Vc(q)=—a—— ¢ X 18 the free electron density response

function:

mik (1=y2) . ity
= = oo [T # 1 l = ; 1
?’{O(q) - [1/2 4 n 1~y 1 s Y Q/{ZKF) (5.15) k

and G(g) incorporates exchange and correlation effects and is i
called the local field. I
It should be pointed that there exists a whole range of
different models for the local field ,G(g), for example the
density functional local-density approximation, the Geldart— j
Taylor model or Ichimaru-Utsumi model, (Dharma-wardana and |
Aers,1983)., We use in our study a well accepted form due to
vashishta and Singwi (1972), which is written:
G(q) = A [1-exp(~4By}] (5.16)
where vy is defined by Eq.(5.15) and the parameters A ahd B for

different densities are tabulated in (Vashishta and Singwi, 1972).
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Wwith the results (5.9)-(5.16) we arrive at the expression for an
effective potential energy function, U, for ions, with no
explicit dependance on electronic degrees of freedom. The

function U can be written in real space as a sum:

U(R, .-+ By) = Ug(p) + 1/2 E (R "Ry:iP) (5.17)
where U (p) does not involve ionic coordlnates and depends on
the density of liquid. ¥(R,p) is an effective*pairwise ion-—
ion potential. Its Fourier transform is finally written (1in
atomic units):

2

4TTZ
v(a) = —q (1 = F(a)} (5.18)

where the function FN(q) is the normalised energy-wave number

characteristic expressed by:

P 2z
FN(Q) = (——sos=- )2{1 -€(q)) (5.19)

In actual calculations described in Chapters 3 and 4 we required

the effective pair potential in real space W(r). The relation

is given by the Fourier transform:

¥(x) = (2m) ‘fdg ¥(q)exp({-ig-x} (5.20)

The typical form of this potential for metals consists of the
repulsive part vo(r) (see £q.(3.2.1)) rapidly decreasing from
¥(0)= to its minimum value for r=r, (see Table II, column 3
and 4 ) and the oscillatory attracting *tail’ *1' The
oscillations are called Friedel oscillations and arise from the

Fourier transformation of the logarithmic term in €(q); this

term exhibits a singularity at q=2kF.
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The tail of the potential wl(r) obtained according to WCa
separation description (3.2.1)-(3.2.2) is shown in Fig.l in the
case of Aluminium, T=978K. The Fourier transform of the tail
vl(q) which enters the formulae (4.1.17)-ERPA and (4.2.20)-GA
is presented for the same case of Aluminium in Pig.2. The
practical method of calculating @rl(q) which avoids taking the
Fourier transform for the second time (back to g-space) 1is
sketched in Appendix B. We use this method because the Friedel
oscillations are long range and relatively small and hence are
very sensitive to the numerical procedure applied (for example
Fast TFourier Transform); the other method (Appendix B) provides
an appriopriate calculational tool for handling this sensitive

problem.
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CHAPTER 6

THE RESULTS OF NUMERICAL CALCULATIONS
AND DISCUSSION

In this final chapter the results of calculation of the low-k
region structure factor for three liquid metals at various
temperatures obtained using Extended Random Phase Approximation
(ERPA) and Gaskell's Approximation (GA) will be presented,

6.1 THE RESULTS OF CALCULATIONS

The theory of the structure factor for liquid metals which
forms the basis of our calculations was presented in the previous
chapters. We used expressions (3.2.20), (4.1.9), (4.1.17) and
(4.2.16) 1in order to obtain the soft sphere reference system,
RPA, ERPA and GA structure factor, respectively. This has been
calculated for Rubidium (T=1900K, 350K, 313K), Aluminium
(T=1330K, 978K, 923K) and Lead (T=613K). We used the effective
pair potentials derived from pseudopotential theoxry as was
discussed in Chapter 5. The relevant input data for all cases
studied are contained in Table I. An example of the typical, long
range part of the effective pair potential a&(r) (Egq.3.2:2)
obtained from expressions (5.18)-(5.20) with Vashista and Singwi
(1972) local field (5.16) for Aluminium at T=978K is shown in
Fig.l. 1Its Fourier transform calculated from expressions (B.2)
and (B.3) is presented in Fig.2. The values of +the principal
minimum of the effective pair potentials and their positions on
the r-axis, as well as the hard core diameters obtained from

'blip' function theory are presented in Table IT.
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For each case studied we present two Figures (a and b). The
first one (a) represents the comparison of the WCA-Jacobs and
Andersen-Verlet and Weis soft sphere reference fluid structure
factor So(k), (3.2.20), the RPA result SRPA(k),(4.l.9) and the
experimental values (where possible). Tha second one, (b), shows
the results for RPA, ERPA and Gaskell's Approximation. It is
important to notice the difference in scale of the k-axis in
figures (a) and (b). The whole range of k-values in figure (b) is
contained within the first two units of figure (a). One observes
that the correlation corrections to RPA included in ERPA and GA
are very small. We will discuss these effects shortly.

For Rubidium at T=1900K two different values of the Ashcfoft
empty core diameter, RC, were used (see column 8, Table I), For
the lower value of RC=2.45, (Fig.3a), the RPA results give too
high structure factor SRPA(R=D)=7'43' whereas the value obtained
by Franz ef al.(1980), by linearly extrapolating the
experimental results yields: Sexp(k=0)=l.95. The experimental
error in their measurement was about £15%. They also present
the wvalue calculated according to the Ornstein-Zernike
relation from pvT-data, SPVT(k=0)=1.78. For Rb=2'60 (Fig.4a) we
obtain a realistic result , SRPA(k=O)=1.503, which is comparable
with the experimental values of Franz et al.(1980), (s=e above).
McLaughlin and Young (1984a, b) calculated RPA and MDA theoreti-
cal values. Our vresult (Fig.4a) can be compared with their
results which are in good agreement with experiment and represent
noticeable improvement in this sensitive region, (FPig.3—-

MCL&Y,1984b and Fig.3, Fig.7- McL&Y,1984a).
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on the other hand Fig.4b shows no essential changes of the
RPA result introduced by ERPA and GA. One notices that Gaskell's
correction is even smaller in this case than the ERPA correction
(see also Fig.3h—Rc=2.45).

In Fig.5a and b we again observe very small positive
contribution of the GA correction to RPA for Rb, T=350K. This

time the ERPA correction can not even be distinguished from the

RPA (Fig.S5b). The last studied case of Rubidium (Fig.6a, b) near
melting, T=313K provides further confirmation of this situation.

The RPA produces higher values than WCA for k less than
~7.5 a_l in all studied cases for Rubidium. For T=350K and 313K
the GA correction increases further the values of the structure
factor whereas the ERPA correction is unnoticeable.

In Fig.7a and b the results for Aluminium at T?1330K are
presented. The RPA curve lies above the WCA results and the GA
term introduces further small increase. The ERPA term 1is too
small to be observed as a separate curve in Fig.7b.

Figures 8a,b and 9a,b illustrate the behaviour of the low-k
structure factor for Aluminium at lower temperatures: T=978K and
near melting point at T=943K. 1In these two cases the reference
system (WCA) describes the experimental S(k) rather well at small
This has been noticed previously by Olsson and Dahlborg (1982,
thereafter referred to as 0&D). According to their suggestion it
may be due to the high density of Al (Table I, column 9).

The results for the last case studied, Lead near melting
point (T=613K) are presented in Fig.l10a and b. Here the WCA
results are closer to experiment than the RPA. The ERPA and,

especially, the GA ‘'improve' this situation fractionally,
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(Fig.1l0b) and these contributions are relatively higher than 1n
the previous cases. Such behaviour may be related to the fact
rnat Lezd ednidits a more hard-sghere ke repulsive parkt of the

pairwise potential than the other metals studied. Blso it should

be pointed out that in our study the many-body and density

dependent foxces have been neglected, but in the case of Lead

these may play an important role (McLaughlin and Young,1l982a).
Experimental points drawn in Figs.6a, 9a and 1l0a are taken
from Waseda (1980) and in Fig.8a from 0&D. The experimental error _
in this k-region is about 10% (O&D, p.229). The contribution of ;
the ERPA and GA to RPA, on the other hand, varies from =0.6%
(Rb,T=1900K; Pb,T=613K) to ~0.08% for Al,T=1330K. Clearly, with

the present experimental abilities to perform measurements of the ;

structure factor in the low-k region we must interpret the ERPA

and the GA corrections as negligible.

Finally we present the contributions of the variocus terms to

the inverse total structure factor in GA (Pig.lla, b, c) and ERPA

(Fig.12a, b, c). The Figure of this type can be found in O0&D,

p.237 for Al,T=978K. There are few important differences in

these two graphs (our Fig.lla and O&D Fig.5 ).

0&D reference system contribution is smaller than total

1/5(k) and RPA contributes positively,

also their 5

1 2Gask S
(dotted line) is of higher order of magnitude than ours. Fig.lla
shows that in our case RPA contributes with negative sign and

1/5zcask term is only fractional part of the total 1/5. 1In fact

i+ appears to be zero in Fig.lla, and only magnification in

Fig.llc proves that J./s2Gask has very small, finite value.
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Figures 13 and 14 represent similar decomposition of 1/S for GA

and ERPA in a case of Aluminium at T=943K.

6.2 DISCUSSION AND CONCLUSIONS

The structure factor for three simple metals at wvarious
temperatures in the low-k region was calculated using the
Gaskell's approximation. Comparisons were made with RPA and ERPA
results. The effective pair potential derived from standard
pseudopotential theory was used. The pseudopotential was modeled
by a simple, local Ashcroft empty-core form and the screening of
electrons was accounted within Vashishta and Singwi form of
dielectric function, The pair potential exhibited typical
oscillatory behaviour in its long range part. This well-known and
tested pair potential was used to study the wvalidity of the
Gaskell's approximation. The contribution of the terms
representing the coupling of the density fluctuations of
different wavevectors was found to be less than 1% of +the RPA
values in all cases studied.

The different result of D&O for Al,T=978K (1982-Fig.5) can
be explained if one notices that they used r_lz reference system
(as opposed to our WCA-soft sphere) and the perturbing tail of
the potential was modelled by a function dependent on six
adjustable parameters which varied from a one-period oscillatory
to a simple exponential one.

It is a known fact that there is some arbitrarnass in the
potential &i(r) for separations ,r, 1less than the position of

the principal minimum ro, and so calculations were performed,
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were the value of '}?‘l(r) for r<ro was zero instead of v'l( ro)
— this corresponds to type I potential as defined by O&D (1982-
see their Fig.2). Although the absolute values of RPA, ERPA and
GA contributions to the total structure factor were changed, the
relative magnitude of ERPAR and GA corrections were again
negligible (less than 1%). Because of the purly manipulational
character of this trial we do not include the detailed results.

It can be mentioned at this point that the study of
different systems - liquid argon and neon — by means of ERPA,
where the pair potential was modelled by double Yukawa form
(Datta,1983) also 1led the author to the similar conclusion
that:"Compressibility wvalues in the RPA and ERPA are almost
identical, indicating that the ERPA does not represent any
significant improvement over the RPA, at least for this
particular long wave property"(Datta,1983,p.1021).

The formal reason for the smallnes of the correlational
contribution in ERPA and GA is that the integral in Egs.(4.1.17)

and (4.2.16) in both cases includes the expression:

¥,((S(1gkl) = 1)

Fig.2 shows that vl(q) factor exhibits tiny oscillations
about zero. The structure factor So(k) is a function oscillating
about unity, so the term (So(lg—hl) — 1) guickly reaches
values close to zero, and the integral in both ERPA and GA

expressions is quickly convergent and of very small value,
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It is a kxnown fact that the WCA reference system 1is not well
suited for alkalis at temperatures near melting point. Liquid
alkali metals have too soft core part of the potential.
Nevertheless at high temperatures the hard-sphere type of
description (e.g.WCA) is expected to be satisfactory,(McLaughlin
and Young,1984a). It 1is argued on general theoretical grounds
that:"..a typical Dbinary collision involves the convergion of
nakBT of kinetic energy into potential energy and so a steeper
part of the interatomic potential curve is probed as T increases.
Thus the core and therefore the large-k part of the structure
factor +take on more of a hard-sphere character"”, (McLaughlin and
Young,1l984a, p.2).

For lower temperatures alkalis can be described satisfactory
by other reference systems like the OCP or the CHS. It 1is a
matter of the new computational tests to say wheather the low-k
structure factor in the GA is sensitive on the reference system
chosen, (the integral term involves 502).

Both ERPA and GA are only =zeroth order theories (see
Eqs.(4.1.7) and (4.2.4)). It was demonstrated in another context
(Chakravarty and Woo,1976) that using iteration methods and
integrating the Gaskell type of expression (Eq.4.2.4) did not
essentialy improve the zeroth order approximation. It is
difficult to say whether similar procedure (full integration of
Eg.4.2.4 with respect to coupling parameter H) would bring a
new result. similarily it is impossible, without ' carrying
numerical tests, to judge the importance of the next term of the

McLaurin expansion that was derived 1in Appendix A.
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The results presented in this thesis for Gaskell's
Approximation has not been obtained earlier for simple 1liquid
metals +that are characterized by the effective pair—-potential
derived from pseudopotential theory. To the author's best
knowledge the only attempt to use GA in liquid metal theory was
made by Olsson and Dahlborg (1982). However, as pointed out
earlier, they were essentially attempting to find a crude
effective potential by fitting experimental results. We are
confident that our results are based on systematic, physical
assumptions about the effective pair potential developed between
the 1ions. The Friedel oscillations were included in all
computations and aimed at explaining the role and importance of
the 1long range part of the pair—potential on the low-k region of
the static structure factor. The ERPA and GA were tested and also
compared with the MDA results obtained by McLaughlin and Young
(1982a, 1984a,b). From the evidence given it appears that MDA is
superior to ERPA and GA. In all cases studied both ERPA and GA

corrections to RPA results are negligible.
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Appendix A
THE SECOND ORDER PARTIAL DERIVATIVE OF THE STRUCTURE FACTOR
WITH RESPECT TO THE COUPLING PARAMETER (U
We present here the final expression for the second order
partial derivative of the structure factor appearing in

Eg.(4.2.21). This can be written:

ks . A8 B B B
a—‘;-z—su(q)w(ﬁ /4)§Ewlckw1(w)[<ﬂ lp,_cl 'pg! Ol oy

2 2 2

= 2 2
= <
Sn(q).N IpEl |pE‘ >

- 2
- < =
p = S, T 1 ip 1

-2 2 2
-8 <N “lput a0 s L
2O P! 1pg ># + Zs#(k)Sﬂ(CI) #tw)] (A.1)

The double sum can be further split into five dgroups:
1) g=tk=kw;
2) g=tk and g, k#*w
3) g=*w and g,w#Zk
4) wétqg#tk and w=itk
5) w#kg#tk#tw

It 1is easy to see that groups 2) and 3) are eéuivalent.
Now the procedure described by Eqs.(4.2.12')—(4.2.15) may be
again applied to formula (A.l1) and this yields quite a lengthy

expression which involves the terms of the type:

=3 6 =3
<N | 1> ,
pg " <N T p
-3 2 2 2
and <N ngl |p5| Ip!I :>‘u

These terms represent the sixth order density correlation

a2
141012
g 'Px' 7y

functions. The structure of (A.1l) is identical to that of the
hierarchy of expansions (1) in Wu (1971a) and to Ursell-Mayer

expansion,
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Appendix B
THE PRACTICAL METHOD OF CALCULATING ¥#,(d)

As we mentioned in Chapter 5 relatively small Friedel
oscillations exhibited by a tail of the effective pair potential
should be treated with special care when vltr) is transformed
back to gq-space. The method which avoids straight Fourier
transformation of vl{r) was presented by McLaughlin and Young
(1982a). We applied this calculational method in our study and we
quote it here for sake of completness.

with the separation of the potential given by Eg@s.(3.2.1)-
(3.2.2) we write a Fourier transform of the tail of the potential

in the following way:
T
_ 2 singr
¥1(2)-¥(q)= |Qranr ———{¥(x4)-¥(1)}
0

a1 "
= a3-(511'1(11'0 - qrocosqro W‘(ro)
0
-1 sin(g-k)r sin(g+k)r
Q

One substitutes the expression (5.18) in (B.l1) and after
some integrations and simple manipulations one arrives at the

result:

wl(q)= gg {sinqro = qrocosqro)y(ro)

2
&1
- 35 (Fy(@) - cosary)

} (B.2)

==
433 dkl‘h(k){sin(q—k)ro _ sin(g+k)ro
k g-k gtk
0
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For g=0 one finds the limit ¥,(9=0):

el
2
3 67 ( sinkr, —kxoCoskr, )
¥,(q=0) = 4/3 Tx, (¥(xy) * = Sdkl’n(k) (kr,) )
0
2 2
-2mzxr, + w(g=0) (B.3)
where
2
¥(g=0) = 472 (rc2 * -E; = —:—2) (B.4)
P F

( see McLaughlin and Young,1982a).
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TABLE 1

INPUT DATA

1 2 3 4 5 6 7 ; o
VALENCY TEMPERATURE  [FERMI RADIUS V-S PARAMETER|V-S PARAMETER |ASHCROFT EMPTYNUMBER DENSITY
— CORE DIAMETER .
z T [K] k. [a,] ro  [a,] A B R [a] 0x1073[a_~7
RUBIDIUM o) 1 1900, 0 0.2705 7.0062 1,35 0.238 2.45 0.6681
RUBIDIUM &) 1 1900.0 0.2705 7.0962 1,35 0.238 2.60 0.6681
RUBIDTUM 1 350.0 0.3565 5.3826 1.2127 0.2635 2.48 1.5309
UBIDTOM 1 313.0 0.3568 5.3779 1.2123 0.2636 2.45 1.5349
ALUMTNTUM 3 1330.0 0.8723 2.2000 0.8796 0.3258 1,12 7.4734
ALUMINTUM 3 978.0 0.8852 2.1680 0.8757 0.3266 1.12 7.8088
ALUMINIUM 3 943.0 0.8867 2.1642 0.8752 0.3267 1,12 7.8500
LEAD 7 613.0 0.8161 2.3515 0.8982 0.3217 1.47 4.5900




-

TABLE 11

1 2 3 4 5
OCCURENCE OF THE VALUE OF THE POTENTIAL | HARD CORE DIAMETER
SRR, TEMPERATURE MINIMUM OF THE POTEN- |AT THE FIRST MINTMUM,
TIAL Ry, [aO] V(R\[. ) [a.u. x 10 _’{ 5 . ]
T EK] Min rin [ O
RUBIDTUM a) 1900.0 9,10 -0.4106 7.2769
RUBIDIUM 4) 1900.0 9.60 -0.3531 7.6296
RUBTDIUM 350.0 9,41 -0.2182 8.3388
RUBIDIUM 313.0 9,31 =g, 2818 8.3085
ALUMINIUM 1330.0 5.43 -0.1525 4.8899
ALUMINIUM 978.0 5.42 -0.1200 4,9345
ALUMINIUM 943.,0 5.42 -0.1161 4,9396
LEAD 613.0 5.99 -0.7795 5,7462
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THE TERMS 1/S1 AND 1/S2 CONTRIBUTING TO THE STRUCTURE FACTOR
GASKELL APPROXIMATION ALUMINIUM T=978K
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THE TERM 1/S2(k) CONTRIBUTING TO THE STRUCTURE FACTOR
GASKELL APPROXIMATION ALUMINIUM T=978K
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THE VARIOUS TERMS 1/S, (k) CONTRIBUTING TO THE STRUCTURE FACTOR
ERPA ALUMINIUM T=978K
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THE TERMS 1/S1(k) AND 1/S2(k) CONTRIBUTING TO THE STRUCTURE FACTOR
ERPA ALUMINIUM T=978K
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THE TERM 1/S2(k) CONTRIBUTING TO THE STRUCTURE FACTOR
ERPA ALUMINIUM T=978K
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THE VARIOUS TERMS 1/S.(k) CONTRIBUTING TO THE STRUCTURE FACTOR
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THE VARIOUS TERMS 1/S.(k) CONTRIBUTING TO THE STRUCTURE FACTOR
ERPA ALUMINIUM T=943K
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