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Résumé/Abstract

Accidents involving motorbikes constitute an important part of the overall road accidents
in France, and death rates reach 20%, efforts to reduce them led to an increase in research in
stability analysis of these vehicles. Corners and curves are the situations that lead the most to
instability, as they make the driver make control decisions that might turn out to be counter
intuitive. And as the study and analysis of these motorcycle’s critical driving situations, falls
and accidents, are difficult to be described analytically because of the simultaneity of different
and complex phenomena which make the dynamics quite elaborate. In this work, a model
able to describe the strong non-linearities conveyed by the complex dynamic of a two-wheeled
vehicle in curves, is presented. The model takes into account the necessary components needed
to accurately calculate the adherence, and thus use a state observer for difference situations, to
estimate it in curves, along with the forces involving the tire-road contact dynamics. A stability
analysis in these situations has been done for different critical variables along with the forward
speed. The ultimate objective being the synthesis of an alert system in case of instability.

Les accidents impliquants des motos constituent une partie importante des accidents routières
en France et présente un taux de mortalité de 20%, des prorammes de recherches sur ce types de
vehicules ont était renforcé afin de réduire le risque des accidents pour type de véhicules. Les vi-
rages sont les situations qui mènent le plus à l’instabilité de ces deux roues motorisés, puisqu’ils
déclenche un changement parfois brusque et incontrolable chez le conducteur. Ces scénarios
sont importants et ils sont difficiles à analyser analytiquement en raison de la simultanéité des
différentes situations. Dans ce travail, un modèle capable de décrire les fortes non-linéarités
véhiculées par la dynamique complexe d’un véhicule à deux roues dans les virages est présenté.
Le modèle prend en compte les composants nécessaires pour calculer avec précision l’adhérence,
et utilise donc un observateur d’états pour des différentes situations, pour l’estimation de ceux-ci
dans les virages, ainsi que les forces impliquant la dynamique du contact pneumatique-chaussée.
Une analyse de stabilité dans ces situations a été effectuée pour différentes variables critiques,
ainsi que la vitesse. L’objectif ultime étant la synthèse d’un système d’alerte en cas d’instabilité.
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CHAPTER 1
INTRODUCTION

1.1 Background
Currently, motorized two-wheelers (M2W or 2RM / Deux roues motorisés in French, for the
sake of this work being done in a french company, this term will be used) is an increasingly
popular means of transport, especially for the possibilities it offers to avoid traffic congestion.
This is justified by the number of 2RMs circulating daily and involving more and more traffic.
This increase in the fleet of motorized two-wheelers is followed by the explosion of the number
of accidents related to their use.

For several decades, the French society, like all industrialized societies, has recorded on
its roads several thousands of deaths and several tens of thousands of wounded per year. These
worrying figures have prompted successive French and European governments to make a strong
commitment to the fight against road insecurity by adopting severe measures (withdrawal of
points from the driver’s license, the installation of speed limitation radars, the control of alco-
holemia ...). These measures have lead to good results, as the number of deaths has dropped
significantly in recent years.

However, while the number of killed has generally decreased on the roads, the 2RM still
remains a mode of transport particularly dangerous and its users very vulnerable. The number
of drivers of 2RM victims of accidents in France represents more than 23% of all deaths (15%
for Europe as a whole) and 40% of total injuries [1].

The development of safety systems for cars, unlike the motorcycle, has experienced
tremendous growth. Active and passive (non-mandatory) safety systems have strengthened
the safety of motorized cars, the main ones being the conductive Airbags and passengers, brake
booster, traction control, seat belt pretensioners. During the same period, the delay by the bike
has increased considerably. The most prominent example is that of ABS, which has been in
existence for more than 20 years and is still not required, while the braking resistor is relatively
light in the market. still remaining marginal. The latest technological innovation in this area is
the Airbag, which has only required 15 years of Honda’s development, which should be critically
reviewed for its effectiveness, because of the lack of cockpit.

Indeed, manufacturers’ policy in terms of safety systems, following the 2RMs, has been
geared towards adapting existing technologies to four-wheeled vehicles. to the world of two-
wheelers. However, the particularly complex dynamics of two-wheeled vehicles makes any trans-
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CHAPTER 1. INTRODUCTION 2

position of the safety system, developed for the auto-mobile world, difficult or even ineffective.
It must then be taken into account that 2RMs have a specific dynamic behaviour that will
sometimes lead to greater control difficulties. Their size and performance can create particular
difficulties.

1.2 Motivation and Objectives
It is well known that the most dangerous situation where a two-wheeler is at a high risk of
falling (instability) is in a cornering situation (turn situation), especially that a motorcycle is
inherently unstable and its stability is usually hard to evaluate, and depends on numerous and
multiple factors such as forward speed and steering force.

It is thus very important to consider a model that takes into account this situation,
and predicts the 2RM’s dynamics with most fidelity in such a scenario, that would of course
include the road profile, the adherence, and the different angles and positions to fully describe it.

Not surprisingly, this work focuses and tries to help fill the gap of an effective safety
offer for 2RMs to reduce the number of deaths, its objective being to develop a precautionary
adherence estimator in corners, we would do this using model based / state based observers.
For this, the choice of a realistic model with a realistic tyre model with all the important degrees
of freedom that a real motorcycle has, is crucial.

1.3 Host Company
This work is part of an internship realised within the french state company Cerema, a french
acronym that stands for : The center of studies and expertise on risks, the environment, mobility
and development, and specifically within the Lyon Laboratory Department, this section presents
these two entities in general as well as their activities and research interests.

1.3.1 Presentation of Cerema

The center of studies and expertise on risks, the environment, mobility and development or
Cerema (Le centre d’études et d’expertise sur les risques, l’environnement, la mobilité et
l’aménagement, in french) is a public administrative institution under the joint supervision
of the French Minister of Ecology, Sustainable Development and energy, and the Minister of
Transport, Equality of Territories and Rurality. Cerema develops close relationships with the
local authorities that are present in its governing bodies. It was created on January 1, 2014.
Its head office is located in Bron, on the site of the former CETE Lyon

1.3.2 Cerema’s activities and objectives

Cerema’s missions concern all aspects of planning and sustainable development (town planning,
environment, transport infrastructure, risk management, etc.). It provides support, in particu-
lar, to local authorities and decentralized State services.

Thanks to its multidisciplinary research potential, its technical expertise and its transver-
sal know-how, Cerema intervenes in particular in the fields of planning, housing, the city and
sustainable buildings, transport and their infrastructure, mobility, road safety, the environment,
risk prevention, the sea, energy and the climate. Cerema’s mission is to provide enhanced scien-
tific and technical support for Develop, implement and evaluate public policies for sustainable
development and development, involving all the stakeholders involved (State, local authorities,
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economic or associative actors, scientific partners).

For this, the Cerema :

• Develop methodologies and tools to respond to new modes of territorial management.

• Works closely and in complementarity with all actors (partnerships, co-construction, ani-
mation and participation in networks, implementation of projects)

• Ensures the link between research developed in research organizations and application in
the field, through continuous innovation and experimentation

• Develops a multidisciplinary and transversal approach that integrates all environmental,
economic and social factors

• Provides state and territorial support in terms of engineering and technical expertise on
sustainable development and development projects

• Assists public clients in managing their transport infrastructure assets and real estate
assets

• Contributes to the standardization activity and the development of regulations and tech-
nical methodology on priority issues at national, European and international levels

• Promotes the rules of art and know-how developed in the framework of its missions,
diffuses them and capitalizes them

For the accomplishment of its missions, the establishment implements activities of ad-
vice, assistance, studies, control, innovation and experimentation, expertise, tests, research and
capitalization. dissemination of knowledge as is show in Figure 1.1.

Figure 1.1: Cerema Lyon’s main activities.
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1.3.3 DLL : Lyon Laboratory Department

The site of Bron in which the internship was done, includes three entities :

• The management and support functions of Cerema Center-Est.

• The laboratory department of Lyon.

• The mobility department.

The laboratory department of Lyon is specialized in the following themes (Fig. 1.2) :

Figure 1.2: DLL’s missions and research fields.

the French government decided to make the fight against the road accidents one of the large
programs of its actual period. In spite of encouraging results obtained since the installation of
speed control systems, the motorcycle remains a particularly dangerous mean of transport: the
number of death is still very high, and if one takes account of the number of travelled kilometres,
the risk of death for a motorcycle rider is 21 times higher than that of other transportation
modes.

Even if motorcycles are now experimenting several electronic equipments such as front-
rear coupled braking, ABS systems on the top range models, accident still occur because of
inadequacy between the dynamics, the inputs of the driver (or various other inputs) and in-
frastructure characteristics, accidents occur because of a loss in stability, and a loss in stability
is due to an interrupted or a too weak of an adherence. In fact, the driver could always be
surprised by sudden change in road curvature or profile which affect adherence, his inputs could
lead to overreactions as a consequence. This is why one of the most important roles of the Lyon
Laboratory Department is studying road adherence.

1.4 Contribution
This report describes a motorcycle model that unifies all motorcycle dynamics in one model.
The model is robust since it is valid for all driving conditions of a motorcycle, including turning
or cornering situations.

This motorcycle model available in literature has its roots in robot modelling and will be
coupled with a tyre-road model. This model will be used to elaborate a state observer that will
be used to estimate the forces applied to the motorcycle, and consequently the adherence in
cornering situations, in order to asses and analyse stability in these situations used to eventually
consider a security system as is shown in figure 1.3.
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Figure 1.3: Architecture of the estimation system.

1.5 Outline and Structure of the report
The "autonomous motorcycle" model is a model that includes all the possible important degrees
of freedom in a realistic motorcycle, and that is valid in all situations, even those involving
corners and turns allowing for more efficacy when it comes to state estimation and stability
analysis. In Chapter 1, an elaborate introduction to the problem dealt with in this report has
been explained as well as the objective of this work.

Chapter 2 starts with a literature review. The literature review is divided in two main
topics, namely motorcycle dynamics in cornering situations, which itself is divided into three
parts : Motorcycle and tyre models, and stability in cornering situations.

Chapter 3 of this report explains the derivation of the equations of motion of a motorcycle.
This involves the lagrangian method and includes Coriolis and all gyroscopic terms (made by
W. Ooms BSc. [2].). The model, generalized coordinates as well as Tire-Road contact dynam-
ics are explained, and the model’s general architecture is given. The equations of motion are
programmed in MATLAB/Simulink.

The criteria based stability is then studied in Chapter 4 for different planes and variables
in multiple simulated cornering situations. The design of an elaborate observer is the main topic
of Chapter 5. Chapter 5 starts with a discussion of several ways of observing and estimating
the state variables and a solution that does not involve all parts of the motorcycle model for
this sake has been studied as well.



CHAPTER 2
LITERATURE REVIEW

Introduction
The literature review is divided into two main topics. These topics are the motorcycle model,
observers. A good starting point to learn more about motorcycle dynamics, is the book of
V.Cossalter "Motorcycle Dynamics" [5].. Although this book does not explicitly cite a certain
motorcycle model, it does provide a lot of insight in the kinematics and dynamics of motorcycles.
It should be noted that for our case, controlling the motorcycle is not the focus point, but
rather studying and estimating its stability using observers, driver-less motorcycle models were
therefore targeted for study.

2.1 Motorcycle dynamics in Cornering Situations
As this work focuses on stability analysis of motorcycles in cornering situations, choosing,
studying and establishing a model based on motorcycle dynamics that best describe and predict
the vehicle’s behaviour in such cases, is the objective. Many motorcycle models have been
developed in literature, two parts need to be considered however, the motorcycle model and the
tire model.

Although many models are available from literature as a set of first order differential equa-
tions, most of them are linear, and parameters used in these models can be fairly meaningless
especially for stability analysis. Therefore, many other factors should be taken into account
when establishing a model.

2.1.1 Motorcycle Models

From a modelling point of view, simplified motorcycle models are similar to simplified bike
models (Modèles bicyclette), and can be used to represent either of the two. Therefore, bikes and
motorcycles are treated as the same. Many models describing bike and motorcycle dynamics can
be found in literature today. The simplest models that can still reveal some of the dynamics are
second order. Examples of these models are [6] and [7]. These models stem from the beginning
of the twentieth century.

These models are very simplistic and cannot be used for a realistic dynamic motion sim-
ulation. These models also do not predict a self-stabilizing velocity region for the motorcycle.
A picture of a simple bicycle model is drawn in Figure 2.1, [6].

In the first half of the twentieth century, the investigation of the stability of bikes has lead
to ever more complex mathematical descriptions of bikes and as time progresses, the order of

6
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Figure 2.1: Simple bicycle model. [6]
.

these models increases as well.. A good example is the work of Döhring [8]. [9]’s description of
Döhring is complex and accurate. However, in that time however, there was no possibility to
evaluate the equations of motion, since there was no computer based verification available.

With an ever increasing complexity of models, also the number of parameters increases.
These parameters have to be estimated and inaccurate parameters can lead to an inaccurate
model. A good balance between model complexity and number of model parameters is thus
important. A literature study reveals that different models require different sets of parameters.
This has a large impact on the model size, but also on ease of measurement. Some variable
definitions are easier to measure on a real bike than others. Another thing to mention is that
the order of a bike model varies between two and almost infinite. The choice of the number
of degrees of freedom is important since it defines which physical phenomena can be simulated
and which cannot.

With the diffusion of computers, more advanced software packages arised as well, that
made hand calculations old fashioned. With model based simulations an almost unlimited num-
ber of DoFs (degrees of freedom) can be utilized. Software packages can nowadays predict the
motorcycle dynamics and motion without explicitly requiring the equations of motion. Although
the motion itself may be sufficient, the equations of motion give more insight in the motorcycle
behaviour.

In work of Oms [2] the minimal number of degrees of freedom were sought that can still
predict the position of the motorcycle in three dimensional space as a function of time. A two
degree of freedom motorcycle model is too simple to be used for stability analysis purposes. To
be able to study the stability in turns, at least 6 degrees of freedom (DOF) are needed, namely
to describe the position and orientation of the motorcycle as a rigid object in three dimensional
space. Reference [5] summarizes the most important degrees of freedom in a motorcycle to
be the rotation of the handlebar, the suspension and the rotation of the wheels and explains
that the absolute minimum would be 7, 6 DoFs in a conventional 3D space and the rotation
or steering of the handlebar. With suspension and rotation of both wheels, this adds up to 13
DoFs.
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2.1.2 Tyre Models

The tyre is probably the single most important component of the motorcycle, which defines
the largest part of the motorcycle dynamic behaviour, especially considering the fact that what
matters to us the most here is stability analysis, meaning that adherence is important, and ad-
herence is accurately simulated or calculated using an accurate tyre-road model. This is due to
the tyre being the only component that delivers desired interaction forces with the environment
of the motorcycle.

Several mathematical tyre models have been developed in the twentieth century. These
models range from mainly theoretical descriptions to empirically derived descriptions. The goal
of every model is to represent the tyre dynamic behaviour accuratily. The bike models developed
at the beginning of the twentieth century did not include a tyre model at all and treated the
tyre as a simple kinematic constraint. For example in Reference [10], the wheel in this model is
a body fixed to the rear frame that is able to move in longitudinal direction, and not in lateral
direction and the rolling of the wheel is not included.

Other advanced models such as the University of Arizona tyre model and the TNO-Delft
tyre model [12], are able to slip in longitudinal direction, as well as sideways, these two models
are basically the same, except for some minor slip definitions. They use the slip and camber
angle in the contact patch between the tyre and the road in order to generate a force. Tyre
force is believed to be a result of microscopic electromagnetical force. Therefore the force as a
function of slip assumption is justified.

2.1.3 Stability and adherence in Cornering Situations

We have already established that a motorcycle is inherently and naturally unstable, even more
in corners and turns, and even with an initial speed, a lot of reasons might lead to this insta-
bility, reasons that might or might not be under the control of the driver :

• Intersections : Due to anything that could obstruct the driver’s line of sight (trees, parked
vehicles, signs...).

• Roundabouts : They favour driving at excessive speeds, which is problematic in general,
especially with a weak entry angle.

• Urban Areas : The design of rolling urban infrastructures, with a visual perspective with
large and multiple pathways, favours overflows of queues.

• Pavement’s or Roadway’s adherence : To illustrate the importance of adherence, a study
was conducted in the United States between 2001 and 2004, which accounts for no less
than 97% of fatal accidents as a single vehicle on wet road [3], study in Britain reported
that 2RMs are more likely that cars to drive on both dry roads (17.9% of landings versus
10.4% for cars) and wet (26.2% against 18.6% for cars), and are particularly vulnerable
in the presence of mud or oil on the roadway (66.4% vs. 52.3%) [4].

All of these general and environment related factors might affect the stability of a motor-
cycle, in literature, the most valued factor in the one related to adherence, as in can in a way
be controlled, but many other factors are analysed. In this work we have divided them into two
parts, non numerical factors or factors relative to the driver’s surroundings and uncontrollable
factors, and numerical factors that can be programmed.
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2.2 Observers
An observer is a dynamic system that can reconstruct or estimate in real time the current state
of a real system from the available measurements, the inputs of the real system and a prior
knowledge of the model. It then makes it possible to follow the evolution of the state of the
system in real time. The observer also allows us to estimate other parameters related to the
behaviour of the vehicle, such as tire / ground contact forces or the detection and isolation of
faults or failures.

Initially the systems approached were the linear systems, for which the observers of
Kalman and Luenberger gave good results. The Kalman filter is used in the case of stochas-
tic systems by minimizing the covariance matrix of the estimation error, and the Luenberger
observer has been used for deterministic linear systems.

In the case of non-linear systems, state observation is a little more delicate and there is
currently no universal method for observer synthesis. The possible approaches are either an
extension of linear algorithms or non-linear algorithms specific. In the first case, the extension
is based on a linearisation of the model around an operating point. For the case of specific non-
linear algorithms, the numerous researches carried out on this subject (cf. [13], [14]) gave birth
to numerous algorithms of observation. We will present these algorithms in a later chapter.

1. Non-linear transformation methods: This technique uses a change of coordinates to trans-
form a non-linear system into a linear system. Once such a transformation is made, the use
of a Luenberger-type observer will be sufficient to estimate the state of the transformed
system, and thus the state of the original system using the inverse coordinate change.

2. Extended observers: In this case, the observer’s gain is calculated from the linearised
model around an operating point. This is for example the case of the extended Kalman
filter and the extended Luenberger observer.

3. Generalized Luenberger Observers (OLGs): This is a new type of observer that has re-
cently been proposed for the class of monotonic systems. This new design consists in
adding to the Luenberger observer a second gain inside the nonlinear part of the system.

4. High gain observers: First introduced in [15], this type of observers is generally used for
Lipschitz systems. Its name is due to the fact that the gain of the chosen observer is
sufficiently large to compensate for the non-linearity of the system.

5. Sliding Mode observers : This type of observer is based on systems with variable structure
[20] (Emelyanov 1967). It has good robustness properties with respect to parametric errors
and bounded disturbances. For this and other reasons, the sliding mode observer will be
used later to estimate vehicle condition and tire / road contact forces.

6. Observers based on contraction theory : This type of observers (First introduced in [16],
[17], [18] and [19]), as the name implies, is based on the theory of contraction used as
a tool for analyzing convergence. This technique leads to new conditions of synthesis
different from those provided by the preceding techniques.

2.3 Conclusion
In this chapter, every study element that can be potentially needed for our work has been
reviewed from existing literature, from motorcycle models and the choice, tyre-road contact dy-
namics, stability and adherence and finally the observers. The next chapter discusses modelling
of the motorbike.



CHAPTER 3
MODELLING AND SIMULATION

Introduction
In this chapter, the model that was picked is a thirteen degrees of freedom motorcycle model
is derived. It is obtained by deriving the equations of motion, it is based on the reference [2],
the base in his work that was done for an eleven degrees of freedom, being the derivation of the
equations of motion, it is believed that the model is going to be accepted and exploited more
easily (Fig. 3.1).

The chapter starts with an introduction to the model, a description of the bodies that
make up the motorcycle, and the reason for this choice, the choice of generalized coordinates
and parameters is also discussed here. The model is formulated on the so called Euler-Lagrange
equations, for this, the forces (and thus works) exercised on the motorcycle are derived, the
position vectors are needed for this, and are obtained as a mathematical function of the param-
eters (that have been chosen) and the generalized coordinates, the final system’s architecture is
given and simulation results are presented.

Figure 3.1: Motorcycle global model.

3.1 13 DoFs Motorcycle Lagrangian Model
Just as in [2], the motorcycle model presented here is a set of thirteen second order differential
equations instead of just eleven. These equations are derived from classical mechanics and
describe the motion of the motorcycle as a function of the forces acting on the separate bodies
of the motorcycle. Therefore, these equations are also called the equations of motion. The basis

10
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of the motorcycle motion equations are the Euler-Lagrange equations.
The Euler-Lagrange equations can be stated as :

M(q) · q̈ + C(q, q̇) · q̇ + P (q) = W (q, q̇) (3.1)
In the Lagrangian equation 3.1, q is a vector containing thirteen independent, called

generalized coordinates. These coordinates are a bunch of variables that are independent of
each other and that describe the system’s positions (whether it be positions or angles). The
first derivative with respect to time of the generalized coordinates is q̇, and the generalized
coordinates’ second derivative with respect to time is q̈. These two vectors (q̇ and q̈) are called
generalized velocities and generalized accelerations respectively.
The meaning of the other terms is explained thoroughly in the next section. It is imporatant
to note that the equations of motion in this form comes from robot modelling, (refer to [21],
"Robot modelling and control").

3.1.1 Model description

Motorcycle bodies

The motorcycle is modelled as six rigid bodies represented in Fig. 3.2.. These rigid bodies are :

1. Rear Wheel : along with the front wheel are one of the most important parts of the
motorcycle, as they define most of the generalized coordinates as we are going to see in
subsection 3.1.1.

2. Swingarm : It is sometimes argued that the dynamics of the swingarm are neglected, the
main reason for including it in the model however is to make a clear distinction between
sprang and unsprung mass, by separating it from the front fork.
The vertical dynamics can therefore be united with lateral dynamics, which is important
for transient cornering dynamics even at large forward velocity and a sharp turn radius.

3. Main body : It contains the largest part of all mass. The engine, transmission, fuel tank,
frame and seat are all parts of the main body, this is the most important component of
the motorcycle.

4. Steering head : The steering head is connected to the main body and the front fork and
the three positions is space of the motorcycle are defined by it.

5. Front Fork : is connected to the front wheel as well as the steering head, and represents
the unsprung mass.

6. Front Wheel : same as the rear wheel, but is connected to the front fork.

The parts in this choice of division form a path starting at the rear wheel and ending at
the front wheel. Expanding the model by separation of the main body into smaller bodies, it
is thus easy to expand the current model, since the newly defined bodies are not part of this
chain, but can be added on top of the main body.

It is also to be noted that the dynamics of the separate bodies have comparable timescales,
each having a direct contribution to the overall dynamics of the motorcycle. High frequency
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dynamics such as the valve train will need very small time steps, while the objective, is more
on the global motion and in the lower frequency dynamics. It is surely better to model these
dynamics as noise, or as disturbance force term.

These dynamics are neglected in this report and not considered, since it will not severely
influence the overall dynamics of our model. The driver is also not included in the model since
it is not part of the motorcycle as it is not a rigid body with respect to the other components
of the motorcycle bodies and the motion that is executed by the driver is unpredictable and
cannot be precisely controlled.

It is clear from 3.1, and meaning of the terms explained in subsection 3.1.1 that the
position vectors of these bodies should be written as a function of the generalized coordinates
q. To do that, the set of generalized coordinates should be defined first.

Figure 3.2: Body composition of the motorcycle model.

Generalized Coordinates

Choice of the generalized coordinates :

The motorcycle model presented has thirteen degrees of freedom (DoFs). These are defined
as follows :

• The motorcycle as an object in 3D, three dimensional space has six degrees of freedom:
three translational, and six rotational degrees of freedom, three of the front wheel and
three of the rear wheel. 9

• On top of these nine DoFs, there are two DoFs for the front and rear suspension deflection.
2

• Two DOFs for the rotation of the wheels, front and rear. 2
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Table 3.1: List of generalized coordinates and their corresponding descriptions.

Generalized coordinate Notation Description Unit
q(1) qx x-coordinate m
q(2) qy y-coordinate m
q(3) qz z-coordinate m
q(4) q0 Rear yaw angle rad
q(5) q1 Rear pitch angle rad
q(6) q2 Rear roll/camber angle rad
q(7) q4 Front yaw angle rad
q(8) q5 Front pitch angle rad
q(9) q6 Front roll/camber angle rad
q(10) q7 Swingarm angle rad
q(11) qf Fork length m
q(12) q8 Rear wheel orientation rad
q(13) q9 Front wheel orientation rad

Together, this adds up to thiteen DOFs and are illustrated in figure 3.3. 13 DoFs means
that thirteen independent generalized coordinates have to be defined. In the process of deriving
the model equations, several iteration steps have led to different sets of generalized coordinates.

Each generalized coordinate has been given a name and notation so that it can easily
be referred to. The coordinates and their names are summarized in Table 3.1. The order in
which the generalized coordinates are stored in the vector q is the same as in Table 3.1.. These
generalized coordinates will thoroughly be explained in the next section.

Description and meaning of the generalized coordinates :

qx, qy, qz : x, y and z coordinates.

The first three generalized coordinates are translational and measured in meters. the free-
dom to translate is given to the motorcycle via these coordinates. The x coordinate, and the y
coordinate are not the same as the lateral and longitudinal directions of the motorcycle.
These x-, y-, and z-coordinate together form a 3 dimensions vector, and define the position of
the joint between the main body/frame and the steering head. This point is defined in a three
dimensional space and are measured with respect to an inertial reference frame fixed to the
earth and independent of any coordinate frame internal to the motorcycle.

q0, q4 : Rear and front wheel yaw angles

the Rear yaw angle is the vertical orientation of the main body of the motorcycle. It is
the angle between the x axis of the global motorcycle’s reference frame and the line of intersec-
tion between the ground plane and the plane of symmetry of the motorcycle. The rear wheel
as well as the swingarm with the main body will experience the same yaw angle. the same can
be said for the front wheel yaw angle except that it’s the relative angle between the motorcycle
main body and the steering head. a positive yaw angle means a rotation to the left.

No matter if the bike is standing straight, or laying on its side, the yaw is always a rotation
around the axis (whichever) perpendicular to the plane spanned by the x and y coordinates.
That is, Yaw maps the x coordinate of the global reference frame to the longitudinal coordinate
of the motorcycle. The yaw coordinate is visualized in figure :
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q1, q5 : Rear and front wheel roll/camber angles

The rear roll/camber angle is the same as the frame inclination angle, inclination of the
main body. Therefore, it is also the inclination of the motorbike swingarm. In papers, this
coordinate is - most of the time - interchangeably called roll or camber.

The font roll angle is defined in the same way, it is however affected by the steering
joint, as the front wheel is consolidated with the front fork, contrary to the rear wheel which is
considered to have the same roll as the main frame. This is the angle between a vector that is
perpendicular to the steering axis and front wheel rolling direction, and the ground plane. It is
the angle between the wheel plane of symmetry and the line normal to the road plane.

From this definition camber angle is the angle between the tire vertical plane and the
absolute vertical plane. this means that on banked corners, it is theoretically possible to have
a camber angle of 90 degrees or more.

Inclination is the angle that maps the absolute vertical axis to the motorcycle’s vertical
axis. This is visualized in figure 3.2.

q2, q6 : Rear and front wheel pitch angles

Pitch angles (front or rear) is the toughest generalized coordinate to explain. In fact, in
a lot of texts about the subject, pitch is given as the angle between the horizontal ground plane
and a vector fixed to the motorcycle in its plane of symmetry. This definition is not accurate
enough. another definition would be that the pitch is the rotation around an axis perpendicular
to the motorcycle plane of symmetry that is needed to keep the front wheel on the ground
surface.

In the model studied and used in this work however, these angles need to be independent
coordinates, and the definitions given above although correct, imply that these coordinates are
dependent and thus cannot be used.

The best way to define this coordinate is to say that it is the rotation around whichever
axis perpendicular to the motorcycle’s plane of symmetry, that is there to give its main body
its final DoF and allow it to obtain any orientation in space.

Note that when the camber/roll angle is 90 degrees, pitch coincides with yaw. For this,
a camber angle of 90 degrees in normal operating conditions is considered to imply that the
motorcycle is unstable, a maximum roll angle is later defined to avoid this.

q3 : Steering angle

This angle is not a generalized coordinate but will be explained because of its importance, in
fact, the steering angle is the relative angle between the motorcycle main body and the steering
head. This angle is measured perpendicular to the steering axis that of the steering head.

q7, qf : Swingarm angle and front suspension

The coordinate q7 (swingarm angle) is a rotation to map from the fixed world directly to
the pitch angle of the swingarm. It has a similar meaning as the pitch angle q2 for the main
body, but then for the swingarm. This coordinate allows the swingarm to move with respect to
the frame.

The front suspension translational degree of freedom of the front fork is called qf . the
notation f is used to refer to the front part of the suspension.

These two coordinates are important to the dynamics because they describe the relative
motions of the wheel centre with respect to the frame.
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q8, q9 : Rotation of the rear and front wheel

The coordinates q8 and q9 are the rotation of the rear and front wheel respectively. These
coordinates are added to include the longitudinal slip from the tire model. The tire model that
we’re going to talk about in subsection 3.2, calculates forces applied on the tire because of the
velocity differences between the road and the road-tire contact patch.

q8 and q9 also have a close meaning to the pitch angle q2 for the main body, but this time
for the wheel bodies. These angles are absolute angles.

Figure 3.3: Illustrative representation of generalized coordinates.

Meaning of Lagrangian terms

Equation 3.1 describes the general architecture of the used model, this section explains each
term of the terms used in the equation. But first it is important to define the joints that the
motorcycle as a whole is comprised of, meaning the connection between the different components
of the motorcycle, these are defined by local rotation frames, these are defined in subsection
3.1.2.

Acceleration term M(q) : The first term of 3.1 is the only term that contains the
generalized accelerations. The matrixM(q) is the dynamic mass matrix (a 13 by 13 matrix) and
is a function of the generalized positions and the motorcycle parameters. Because the model
doesn’t contain any transport kinetic energy and mutual kinetic energy terms, the M(q) can be
formulated as :

M(q) =
n∑
i=1

mi

2 · (
∂Oi
∂q

)T · ∂Oi
∂q

+
n∑
i=1

3∑
j=1

(Iji2 · ω
T
ji · ωji) (3.2)

The following remarks can be made :
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• In equation 3.2 there are two terms :

– The first term sums the translational kinetic energy of all bodies,
– The second term sums over the rotational kinetic energy of all bodies.

Therefore, the index n = 6, as the motorcycle is divided into six separate bodies.

• The mass of body i is mi,and Oi (as explained further in the report) is the position of the
center of mass of body i.

• The rotational inertia of body i around the jth axis of the inertial reference frame equals
Iji, and ωji is the angular velocity of the ith body around the jth axis of the inertial
reference frame. They (Iji and ωji) can be calculated as follows :

I1i = 1
2 · (Iyi + Izi − Ixi), ω1i = ∂

∂q · (Ri · [0 0 1]T ),
I2i = 1

2 · (Ixi + Izi − Iyi), ω2i = ∂
∂q · (Ri · [0 0 1]T ),

I3i = 1
2 · (Ixi + Iyi − Izi), ω3i = ∂

∂q · (Ri · [0 0 1]T ).

In these equations :

– Ri is the rotation matrix that maps the vectors of the inertial reference frame to the
local orientation of body i,

– Ixi Is the inertia around the body’s local x axis,
– Iyi is the inertia around the body’s local y axis,
– Izi is the inertia around the body’s local z-axis,
– The body’s local x, y, and z axis are the principal axes of the body.

Velocity term C(q, q̇) : The second term of equation 3.1 appears from differentiating
the kinetic energy towards the generalized coordinates and generalized velocities. C(q, q̇)is a 13
by 13 matrix containing the contribution of the centrifugal and Coriolis forces to the equations
of motion. In literature, C(q, q̇) is usually called the Christoffel matrix. The Christoffel matrix
can easily be calculated from the mass matrix.

Ckj(q, q̇) =
13∑
i=1

1
2 · (

∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk
) · q̇i (3.3)

The subscripts i, j and k in 3.4 refer to the elements of the mass matrix and the column of
generalized coordinates and have nothing to do with the meaning of the subscripts in equation
3.2.

Gravitational term P (q) : The third term on the left side of equation 3.1, due to
the fact that the system is located in the earth’s gravitational field, arises from potential energy
stored in the system . Other forms of potential energy could have been added to this term. For
spring and damper terms of suspensions, however, since the non-conservative part of the force
must be placed inside W (q, q̇), it is easier to place both the conservative and non-conservative
force inside W (q, q̇). The potential energy due to the earth’s gravity field can be calculated as :

P (q) =
6∑
i=1

∂Oi
∂q
·G ·mi (3.4)

• Oi is the position of the center of mass of body i.

• In 3.4, G represents the gravitational vector, and is given as : [0 0 − g]T .

• And g is the gravitation constant.
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Force term W (q, q̇) : Finally, and as stated previously, the last part of Equation 3.1,
consists of all applied forces minus the internal forces.

Internal forces are forces inside the system, that do not deliver work. This term here is
called the external force term, and is a form of all virtual works done by all external forces. The
virtual work done by the external forces can be calculated using equation 3.5.

W (q, q̇) =
m∑
i=1

∂OTi
∂q
· Fi +

n∑
i=1

∂T

∂q
· Ti (3.5)

Once again, Oi is the position of the center of mass of body i, these terms will be further
elaborated in the next subsection.

The virtual work term, W (q, q̇), is divided into a sum of seven (m = 7) applied forces (Fi)
and three (n = 3) applied torques (Ti).

• Three forces are acting on each wheel (Longitudinal, lateral and vertical for each wheel).

• The front suspension is treated as an applied force, but the rear suspension is handled as
an applied torque.

• Two other torques are used as control variables (engine and steer).

All of these are given in more details in Section 3.2 (Model architecture), where the forces
and torques are elaborated further.

Before this however, we need to distinguish between the separate bodies and develop
expressions for positions and orientations of each of the component bodies, these being is de-
pendent on the generalized coordinates vector (q) but also the motorcycle parameters, they will
be defined first.

It is also noted that equation 3.1, and all of its terms is calculated using Maple before
being implemented on Matlab.

3.1.2 The system parameters

The motorcycle model uses parameters that can be divided into three groups :

• Kinematic parameters,

• Inertia or dynamic parameters,

• Force parameters.

They are presented and explained in the following subsections.

Kinematic parameters

The kinematic parameters are here to describe the geometrical dimensions of the motorcycle as
well as the wheels. They’re also used to describe the position of the joints and rotation points.

These parameters are presented in the following table (3.2), and shown in Figure 3.4.
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Table 3.2: List of Kinematic parameters.

Kinematic parameter meaning Unit
l2 Swingarm length m
l3 Fork offset m
l4 Frame length m
b1 Rear tire roll radius rad
b6 Front tire roll radius rad
a1 Rear tire crown radius rad
a6 Front tire crown radius rad

Figure 3.4: Illustration of kinematic parameters.

Where :

c1 = b1 − a1, c6 = b6 − a6

Dynamic/Inertia parameters

Dynamic parameters relate specifically to the mass and inertia properties of the different bodies
the motorcycle is comprised of.

There are four dynamic/inertia parameters for each body. These are the mass mi, and
the inertia Ii (Table 3.3), the position relative to its nearest joint and the orientation relative
to the orientation of the nearest joint, figure ..... shows the joints as well as the positions.

Table 3.3: List of dynamic parameters.

Dynamic parameter meaning Unit
mi Mass of body i m
Ii Inertia matrix of body i measured in mass center m
pi Position vector pointing from the closest joint to the mass center m

Force parameters

Force parameters described in table 3.4 represent characteristics like spring constant or tire
stiffness. They are used in the formulation of the forces. Force parameters can however not be
visualized in a figure.
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Table 3.4: List of force parameters (Most of them are with no unit).

Force parameter meaning
g gravity constant
q70 rear suspension neutral angle
qf0 front suspension neutral length
k1 rear tire vertical spring stiffness
k2 rear suspension vertical spring stiffness
k3 front suspension vertical spring stiffness
k4 front tire vertical spring stiffness
b1 rear tire vertical damping constant
b2 rear suspension vertical damping constant
b3 front suspension vertical damping constant
b4 front tire vertical damping constant
blr rear tire longitudinal damping constant
t1 rear tire lateral (transversal) damping constant
blf front tire longitudinal damping constant
t6 front tire lateral (transversal) damping constant
dlr rear tire longitudinal relaxation constant
dtr rear tire lateral (transversal) relaxation constant
dlf front tire longitudinal relaxation constant
dtf front tire lateral (transversal) relaxation constant

Now that the generalized coordinates and the parameters we can write down the position
and orientation of the joints and mass centers as those are the ingredients needed to formulate
the position vectors and orientation matrices necessary for the equations of motion. They’re
explained in the next subsection.

Orientation matrices and position vectors :

In this subsection, expressions for particular points inside the motorcycle are given. Because a
point inside the motorcycle is given by its x-, y- and z- coordinates with respect to the inertial
reference axis, the expression for a point in the motorcycle is given by a vector equation.
Rotation of a vector is easiest described with rotation matrices. To rotate a vector, it only
has to be pre-multiplied with the right rotation matrix. Therefore, this section starts with
the definition of the rotation matrices that are used in the expressions for the positions. The
rotation matrices contain sine and cosine functions. For convenience, the sine of qi is denoted
as si, and the cosine of qi is denoted by ci.

si = sin(qi) (3.6)

ci = cos(qi) (3.7)

Rotation matrices :

The rotation matrices are stated below. Each of these rotations is a basic rotation. Vectors
are used for pointing to a specific joint or location inside the model. These rotation matrices
are used to perform a rotation of a vector. The rotation matrix can be seen as a new set of unit
length vectors, perpendicular to each other, that together form a new reference frame.

With rotation matrices, a vector can simply be rotated by pre-multiplying the column
with the rotation matrix. Frames with multiple rotations can therefore be built from several
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basic rotations, but the basic frames have no physical meaning when considered separately.
They only mean something in combination with other frames.

In other words, a position is described by a vector which is represented by a column of
length three. The matrix that is in front of the vector is the frame in which the vector is
expressed.

R0 =

 c0 −s0 0
s0 c0 0
0 0 1

 , R1 =

 1 0 0
0 c1 −s1
0 s1 c1



R2 =

 c2 0 s2
0 1 0
−s2 0 c2

 , R4 =

 c4 −s4 0
s4 c4 0
0 0 1



R5 =

 1 0 0
c5 −s5 0
0 s5 c5

 , R6 =

 c6 0 s6
0 1 0
−s6 0 c6



R7 =

 c7 0 s7
0 1 0
−s7 0 c7

 , R8 =

 c8 0 s8
0 1 0
−s8 0 c8



R9

 c9 0 s9
0 1 0
−s9 0 c9


These matrices represent respectively :

• R0 : Rear yaw basic rotation.

• R1 : Rear roll basic rotation.

• R2 : Rear pitch basic rotation.

• R4 : Front yaw basic rotation.

• R5 : Front roll basic rotation.

• R6 : Front pitch basic rotation.

• R7 : Swingarm angle basic rotation.

• R8 : Rear wheel angle basic rotation.

• R9 : Front wheel angle basic rotation.

Position vectors :

The position vectors pointing to the center of mass of a body, and the origin of a force
or torque are expressed here. Oi is a rotation point. There are eight rotation points in the
model and are summarized in table 3.5, and the expressions are given in equation 3.8 [2].

Joint position are expressed as :
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Table 3.5: List of joint positions and their short descriptions

Joint position meaning
O0 Rear wheel contact patch
O1 Lowest point in the rear wheel torus centerline
O2 Center of the rear wheel hub
O3 Joint between swingarm and main body
O4 Steering joint: joint between main body and steering head
O5 Center of the front wheel hub
O6 Lowest point in the front wheel torus centerline
O7 Front wheel contact patch
Omi position of mass center of body i

O0 = O4 +R0 · (R1 · (R2 · [−l3 0 0]T +R7 · [−l2 0 0]T + [0 0 − b1]T ) + [0 0 − a1]T )
O1 = O4 +R0 · (R1 · (R2 · [−l3 0 0]T +R7 · [−l2 0 0]T +R8 · [0 0 − b1]T ))
O2 = O4 +R0 · (R1 · (R2 · [−l3 0 0]T +R7 · [−l2 0 0]T ))
O3 = O4 +R0 · (R1 · (R2 · [−l3 0 0]T ))
O4 = [qx qy qz]T
O5 = O4 +R4 · (R5 · (R6 · [l4 0 − qf ]T ))
O6 = O4 +R4 · (R5 · (R6 · [l4 0 − qf ]T +R9 · [0 0 − b6]T ))
O7 = O4 +R4 · (R5 · (R6 · [l4 0 − qf ]T + [0 0 − b6]T ) + [0 0 − a6]T )

(3.8)
All vectors are explained and elaborated in equation 3.8, and previous tables.

3.2 Tire-Road contact dynamics and Adherence
A motorcycle has more or less grip on the wet road... Are the tires soft, medium or hard tires ?
these terms are frequently used to define the behaviour and quality of tires and their expected
performance vis-a-vis the road surface.

these "street" terms however mean nothing as they’re not associated with any numerical
values expressed in whatever unit.

The term grip, is commonly known as adherence or adhesion in literature, it is generated
through a chemical liaison (like a glue), but also a mechanical deformation, this means that the
bigger the contact patch, the greater the grip/adherence (Fig. (3.5).

The tire must perform two tasks :

• Allow the transfer of the driving force or braking force to the ground/road and,

• Generate the necessary lateral forces in order to maintain the equilibrium of the motorcycle
in the curve or along a curvilinear path such as for example those generated to avoid an
obstacle etc... this part is very important as we focus on stability in curvatures in this
work.

At this point, it is also important to understand how the lateral force is generated and
how much it needs to be when the bike is running in constant rotation at constant speed (stable
condition) and which parameter depends on the force, the latter part is going to be explained
in the chapter 4, reserved for stability analysis.
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(a) Contact patch when in straight line
(b) Contact patch in curves

Figure 3.5: Illustration of how camber angle affects the contact patch.

It is easy to understand that the lateral force depends on the normal vertical load
applied on the wheel. A high vertical load creates a high lateral force. Understanding the
dependence of the lateral force on the camber angle and the skidding of the tire (tire slippage
expressed by a skid angle that will be defined later) is less intuitive.

The lateral force also depends on two other parameters that bikers know very well : tire
pressure and tire temperature in working condition, these depend on the tire type and will not
by addressed thoroughly in this work.

We first consider the camber angle effect. In a vertical position, the tire footprint is
elliptical and symmetrical; The tire footprint shown in Figure 3.5 is painted with shades of gray
whose intensity is proportional to the pressure between the tire and the ground, it can clearly be
observed form the figure 3.5, that when the wheel is tilted, the rubber particle that through the
imprint doesn’t follow the path that it would follow if there wasn’t the contact between tire and
ground. Because of there is contact with the ground the particle has to follow a different path,
therefore the ground contact cause a deformation of tire carcass, this deformation generates a
lateral force that increases when the camber angle increases.

Understanding better that phenomenon it is helpful to think about a shape-retaining tire,
as if it was metallic, in that case the contact patch becomes like a point, there is not carcass
deformation, hence the force due to the camber is null.

The camber force depends on shape and dimension of contact patch and the contact patch
itself depends on tyre’s geometric characteristics (rolling radius and cross section radius, Table
3.2 and carcass lateral/radial stiffness...
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Lateral slip effect :

The side-slip angle is the angle between the forward direction and the central plane of
the wheel. The contact patch is asymmetrical when the there is lateral slip. In the first part of
contact patch the rubber particles tend to follow speed direction but, since the speed direction
doesn’t coincide to the wheel plane, the particles located inside contact patch are deformed with
respect to tire carcass. This is the contact patch part with adherence. When the deformation
is al little more, the elastic recall forces due to the deformation of the rubber are greater then
the adherence force so the particles start to slider. This is the contact patch part with slide.
The integral of contact patch pressure give the lateral force due to the side-slip (Fig. 3.6).

Figure 3.6: Resultant lateral force due to the side-slip angle.

to summarize, apart from the normal force, two main elements contribute to the lateral
force : the side-slip angle and the camber angle, the longitudinal force however heavily depends
on the engine torque (and obviously the normal force as well).

3.3 Model architecture
The final ingredient before the equations of motion can be derived are the forces and torques.
The forces have been mentioned before. to complete the equations of motion two elements are
still needed :

• Forces acting on the motorbike :
Forces and torques are calculated in the next section.

• Virtual work resulting from forces :
This is calculated using equation 3.5, since the forces and torques are given, Maple is used
for this before it is implemented on Matlab.
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It was said that there are seven forces and three torques. These torques are directly related
to a specific degree of freedom. The next level are the virtual suspension work terms. Table 3.6
summarizes forces and their brief description, and table 3.7 the resulting virtual works.

Table 3.6: List of forces and torques applied to the motorcycle

Force/torque Meaning
Frs Rear suspension torque
Ffs Front suspension force
Fzr Rear normal/vertical force
Fzf Front normal/vertical force
Flr Rear longitudinal force
Flf Front longitudinal force
Ftr Rear lateral/transversal force
Ftf Front lateral/transversal force
Fu1 Input engine torque
Fu2 Input steer torque

Table 3.7: List of works resulting from forces/torques

Work Meaning
Qrs Rear suspension virtual work
Qfs Front suspension virtual work
Qzr Rear normal/vertical virtual work
Qzf Front normal/vertical virtual work
Qlr Rear longitudinal virtual work
Qlf Front longitudinal virtual work
Qtr Rear lateral/transversal virtual work
Qtf Front lateral/transversal virtual work
Qu1 Input engine virtual work (2)
Qu2 Input steer virtual work

Virtual works and the corresponding forces/torques are calculated in the next two sub-
sections.

3.3.1 Input Torques Fu1 and Fu2

The two control inputs are engine torque and steering torque, the braking torque is integrated
into the engine torque, in fact, when the latter is negative, inferior to zero, it is considered as
being a braking action.

3.3.2 Suspensions force and torque Ffs and Frs

The suspension force includes some constants and velocities and are given by the equations 3.9.

Ffs = k2 · (q2 − q6 − q70) + b2 · (q̇2 − q̇6)
Frs = k3 · (qf − qf0) + b3 · q̇f

(3.9)

The parameters needed for these forces are listed in table 3.8, and a short description of
their meanings is given.
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Table 3.8: Suspension parameters and their meaning

Suspension parameter Meaning
k2 Rear suspension spring stiffness
k3 Front suspension spring stiffness
b2 Rear suspension damping constant
b3 Front suspension damping constant
q70 Rear suspension spring neutral angle
qf0 Front suspension spring neutral length

3.3.3 Vertical Forces Fzr and Fzf

The calculation of the tire vertical force requires information about the vertical position and
velocity of the tire contact patch. they’re given by equations 3.10. The parameters are explained
in table 3.9.

Fzr = −k1 · zr − d1 · żr
Fzf = −k4 · zf − d4 · żf

(3.10)

Table 3.9: Vertical force parameters and their meaning

Suspension parameter Meaning
k1 Rear tire vertical spring stiffness
k4 Front tire vertical spring stiffness
d1 Rear tire vertical damping constant
d4 Front tire vertical damping constant

We can also integrate the profile of the road to these equations, specifically into zr and
zf . Consider d an input containing the road profile (bumps etc), the new zr and zf expressions
become :

zr = zr − d ż = żr − ḋ

zf = zf − d ż = żf − ḋ

It is to be noted that when the d is a constant, its theoretical derivative in infinity, but
in reality it should be null.

3.3.4 Lateral/transversal Forces Ftr and Ftf

The derivation of the tire lateral force used here is derived from the linear tire model used in
[11]. Fzr and Fzf are the rear and front tire vertical forces as has been explained in the previous
section. The rest of this term is called the slip angle just as in [11]. the longitudinal force
parameters are presented in table 3.10.

Ftr = Fzr · arctan(−vtr/ | −vlr |)
Ftf = Fzf · arctan(−vtf/ | −vlf |)

(3.11)
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Table 3.10: Lateral force parameters and their meaning

Suspension parameter Meaning
vtr Rear contact patch transversal (lateral) velocity
vlr Rear contact patch longitudinal velocity
vtf Front contact patch transversal (lateral) velocity
vlf Front contact patch longitudinal velocity

These velocities can be obtained using equations 3.12.

vtr = −sin(q0) · vxr + cos(q0) · vyr
vlr = cos(q0) · vxr + sin(q0) · vyr
vtf = −sin(q8) · vxf + cos(q8) · vyf
vlf = cos(q8) · vxf + sin(q8) · vyf

(3.12)

Where (referring to 3.8) :

xr/f = O0/7 · [I 0 0]T
yr/f = O0/7 · [0 I 0]T (3.13)

Velocities are derivatives of these positions referring to 3.13, and I is an identity matrix.

3.3.5 Longitudinal Forces Flr and Flf

The tire longitudinal force is also calculated from the equation in [11]. The velocities in this
expression can be calculated with 3.12.The expression for the tire longitudinal force is given
in 3.14. The last part of this term is the difference in velocity between the road and the tire
contact patch and is called slip.

Flr = Fzr · ((b1 + a1 · cos(q1)) · q̇8 − vlr)
Flf = Fzf · ((b6 − a6 · cos(q5)) · q̇9 − vlf ) (3.14)

3.3.6 Overall model architecture

In the previous sections all the ingredients needed to calculate the equations of motion were
discussed and all variables and terms are defined, equations of motions can be calculated. The
state space representation is then derived from the equations of motion, figure 3.7 shows the
overall model architecture.

Figure 3.7: Overall model representation.

Figure 3.8 shows the structure of the complete model. The model of the motorcycle is
the most important block. Around this block, there are three other blocks.
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The name of these blocks should make it clear what is happening inside these blocks.
The velocity vector of the contact patches. The contact patch velocities can also be obtained
directly by measuring inside the motorcycle model block. The two blocks in the lower right
corner called "rear wheel forces" and "front wheel forces" calculate the forces acting on the tire
contact patches.

Figure 3.8: Motorcycle global model composition.

3.4 Simulation and Results
Figure 3.9 shows the structure of the complete model on Simulink. The model of the motorcycle
is on a lower layer in the block called ’motorcycle’. That block is the most important block.

A real time input data for this motorcycle’s parameters (See Appendix) has been recorded
and used for simulation. Two cases are studied :

• The first is the ’straight line’ case (Figure 3.10 and 3.12), where the motorcycle starts with
an initial speed, then various engine manoeuvres are applied without a steering torque
input.

The engine input starts with a null value till t = 2 seconds, but since the motorbike starts
with an initial speed, it keeps rolling, at 2 seconds though, a negative value is applied, this
corresponds to a braking force, we notice that the speed starts to decrease consequently,
and then increases at around 3.25 seconds, as the engine torque becomes positive (meaning
that the motorcycle enters the acceleration mode).

• The second is the ’curve’ case (Figure 3.13 and 3.15), where the motorcycle starts with an
initial speed again, then various steering manoeuvres resulting in a curvature are applied
without any engine torque input.

• A speed bump is simulated in both cases at around 3.5 seconds, this is done using the
road profile entry, explained in the previous section.

Selected generalized coordinates are then given for both case, as well as the various forces
and velocities for the rear and the front wheels. Appendix C shows the full set of generalized
coordinates.
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Figure 3.9: Motorcycle global model on Simulink.

Figure 3.10: X-Y plane and engine torque in case of a straight line (No steer).



CHAPTER 3. MODELLING AND SIMULATION 29

Figure 3.11: Forces and velocities in case of a straight line (No steer).

Figure 3.12: Selected generalized coordinates in case of a straight line (No steer).
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Figure 3.13: X-Y plane and steer torque in case of a curve (With initial speed and no engine
torque).

Figure 3.14: Forces and velocities in case of a straight line (No engine torque).
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Figure 3.15: Selected generalized coordinates in case of a curve (No engine torque).

We notice, as expected, that in the case of a straight line, the lateral forces are null, this is
normal as there is no steering torque and thus no camber, as explained in the previous section,
no camber (and consequently no sideslip angle) means that there is no lateral force applied on
the motorbike (at the contact patches).
Conversely, in the second case, that of a cornering situation, with no engine torque and an initial
speed, lateral forces emerge and depend heavily on the vertical forces, but mostly velocities,
affected by the camber angles, which are themselves affected by the steer torque. it is also
noticed that the longitudinal forces are null, as there is no engine torque applied.

Front and rear rotations might look the same but there is an offset in amplitude and
phase, this is normal as the two contact patches do not react at the same time to inputs.

3.5 Conclusion
In this chapter, a relatively complete 13 degrees of freedom model, in the three dimension, of the
motorcycle was developed based on the work of [2], and Lagrangian formalism. Components of
the Cristoffel and mass matrices were calculated using Maple, and given in Appendix A. Forces
and resulting works where then calculated, again using Maple. The last section presented
simulation results for different input scenarios, the important one being the second, as it is the
scenario that describes a cornering situation.



CHAPTER 4
STABILITY ANALYSIS IN CORNERING SITUATIONS

Introduction
Our ultimate goal in this work is not to control the system but rather to study its stability in
turns, and considering how our system is written some possibilities or options might be very
time consuming. we have two possibilities/options, either we linearise the system and study
its stability using "modes" in the traditional way, or we use what we would call criteria based
stability analysis. And since our model is already complex enough and presents too many
non-linearities, it was more fidelity and time efficient to opt for the latter option.

4.1 Criteria Based Stability in Cornering Situations
in a general way, the stability of the vehicles is conditioned by the dynamics of the tires which
play a fundamental role. For motorized two-wheelers, this role seems even more important.
Indeed, under the vertical load, the tire information gives birth to oval contact area (contact
patch). When the wheel rolls, the properties of the wheel / ground adherence in this contact
area, and the complex complexes of the whole carcass, influence the behaviour of tires. We can
distinguish two types of stability criteria in curves :

• Non numerical : these cannot be represented by numerical values and equations.

• Numerical : are the criteria that can be calculated using equations, their numerical values
are estimated as such.

The lateral thrust as explained previously is generated primarily by camber thrust and drift
(or side-slip) thrust, this creates the lateral adherence in curves, and when the engine torque
is applied (or a brake torque), a difference between tire speed and road speed emerges, this
creates the longitudinal adherence. Figure 4.1 shows the composition of this element (noted µ)
for both wheels, their sum gives the overall adherence, again, for both wheels.

32
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Figure 4.1: Front and rear wheel adherences.

This adherence (sometimes also called adhesion) insures the motorbike’s travel safety on
roads, it is the friction between the tire and the pavement. Enough friction (adherence) force
is obviously needed between the tire and road for continuous stability.

4.1.1 Non numerical criteria

In turns, stability criteria that would potentially lead to instability if not managed well, and
that are non measurable, as in, the motorcycle experiences any disturbance, which may be :
unintentional movement of the pilot, a gust of wind, a degraded coating, a curtain or balancing
of the wheels...

Whatever the disturbances, the transient behaviour of return to equilibrium depends on
specific characteristics of vehicle stability that can be studied by specific, unfortunately complex
studies.

The lateral behaviour in the neighbourhood of the straight line is altered by three insta-
bilities (or unstable or unstable natural movements) encountered in certain speed ranges and
that make the bike alone not stable :

• "Capsize mode" : a non-oscillating mode in which the wheel forward is deflected in the
direction of the roll but not enough to avoid a fall. It is a vibratory mode, controllable
by the driver if the speed is high enough, and by the foot on the ground if it is not.

• "Wobble mode" : a fast oscillating mode of the handlebar-front wheel assembly, well
damped in low and medium speeds, and moderately damped in high speeds. It occurs
when the handlebars begins to swing from one side to the other until the motorcycle falls.

• "Weave mode": a rather slow oscillatory mode unstable in low speeds, well damped at
medium speeds and stable at high speeds. It affects the entire two-wheeled vehicle, and
the trajectory undulates. In this mode.
4.2 shows the wobble and the weave modes.
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Figure 4.2: Wobble mode (right) and weave mode (left).

In open loop (without driver) and this for a wide range of longitudinal speed. This can be
explained by the fact that any equilibrium requires three points of support. On the other hand,
the damping of the associated poles is lower when the speed increases. Moreover, the action of
the driver is very crucial to stabilize the motorbike, but is very unpredictable and limited by
the characteristics of the oscillatory movement :

• Equilibrium : A two-wheeler maintains a state of equilibrium as long as the external
forces (gravity, inertia, centrifugal and aerodynamic) cancel those of the tire / ground
reaction. In a straight line driving, this stability is provided by the driver by controlling
the longitudinal speed. On the other hand, in a bend/curve, the biker applies a torque
to the handlebar, or even a lateral movement of his bust to control the roll angle of the
motorcycle. At high speeds, a small angle of the handlebar moves laterally and quickly,
the tire-ground contact point, while large handlebar movements are needed for the same
effect at low speed.

• Counter steering : The counter steering consists of turning the steering, by a small
movement, in the opposite direction of the turn. At low speed, obviously, the equilibrium
of a motorcycle is precarious, in this case it is necessary to turn the handlebars in the
desired direction to manoeuvre.

• Gyroscopic effect : When an object is in its own rotation, it tends to remain balanced
around its axis of rotation, we speak at that time of a gyroscopic effect. In the case of the
motorcycle, this effect is proportional to the speed of rotation of the wheels. This physical
phenomenon ensures the bike stays balanced when driving. It should be noted that the
amplitude of the gyroscopic effect is relatively small compared to the other moments,
although its character transient is crucial in cornering situations.

4.1.2 Numerical criteria

In general, the emergence of forces and moments during a turn as shown in Figure 4.3, where for
a roll angle the relevant forces (frictional, lateral and longitudinal, centrifugal and gravitational)
acting of the motorbike, the torque of the centrifugal force balances the torque of the weight
around the contact axis. Therefore, given a certain vertical load (weight), more camber angle
means more speed, but even more lateral force!
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Figure 4.3: Equilibrium of forces resulting from leaning in a curve.

Figure 4.4: Forces acting on wheels (both front and rear).

Their balancing yields the value of the lateral force Fy ou FL needed to maintain in equi-
librium of the vehicle in a curve that is equal to Fztanφ, where Fz is the vertical load. However,
falls and critical conditions cannot be captured under the aforementioned assumptions when



CHAPTER 4. STABILITY ANALYSIS IN CORNERING SITUATIONS 36

strong acceleration or braking occur.

The maximum safe-speed in a curve depends on the road geometry, the surface conditions,
the driver’s skills as mentioned in the previous subsection (or tolerance for discomfort) and the
roll-over stability of the vehicle, another main effect is the gyroscopic effect.

The gyroscopic effect occurs when the wheel equipped with a rotational movement
about its own axis, with a speed q̇8/9, is also rotated about a second axis, perpendicular to the
previous one, with a speed vx. The gyroscopic effect is manifested by a couple acting around an
axis perpendicular to the previous ones. In the dynamics of the bike, there are different gyro-
scopic effects, but the most important in curves is the gyroscopic yaw effect, it is generated by
the rotation of the wheels, in the stationary movement of the curve. The value of the gyroscopic
moment is equal to the product of the polar moment of inertia of the wheel, with the rotation
speeds.

Figure 4.5: Gyroscopic yaw effect.

Consider a front or rear wheel, which rotates around its own axis at a speed q̇8/9, while
the motorcycle runs along a radius curve R with a yaw rate q̇0/4. The movement of the wheel in
the curve generates a gyroscopic moment around the horizontal axis, which tends to straighten
the bike:

M = I · vx · q̇8/9 · cos(φ) (4.1)

where I indicates the moment of polar inertia of the wheel relative to its own axis, with
the speed of rotation about the same axis, q̇0/4 (that we can also call vx) the speed of yaw
rotation, equal to the ratio between the forward speed of the motorcycle and the radius of the
curve (R, Figure ??). Now let’s look at the effect of the two wheels. The gyroscopic moment
results :

M = (Ir + If ) · vx · q̇8/9 · cos(φ) (4.2)
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Figure 4.6: Curvature radius (calculated using max and min functions).

Where If and Ir indicate the moments of inertia of the front and rear wheels. If the
gyroscopic effect is assumed to be zero, and if it also neglects the effect due to the thickness
of the tires, the equilibrium condition in the curved stationary bike (speed of travel and the
radius of the constant curve) imposes the resultant of the force of weight and the centrifugal
force crosses the line which connects the points of contact of the two wheels. In this ideal case,
the angle of roll of the motorcycle is ensured by the simple relation 4.3.

In a turn, a two-wheeled vehicle is essentially subjected to four major forces : centrifugal
force, gravitational force, vertical load, and lateral sliding force. The condition of equilibrium is
reached when the external torsor/sum of all these efforts is zero. This condition is ensured when
the motorcycle is inclined by a roll angle presented in equation 4.3, a function of the square of
the longitudinal velocity vx and the curvature of the turn R, as follows :

φ = arctan(R·v2
x

g ) (4.3)

It is important to note that in the model used in this work, and as opposed to many
models studied and used [22] in literature, steady state cornering condition is not assumed,
meaning that in cornering situations adherence varies as well.

4.3 is a necessary but not sufficient condition, to integrate the road surface to the equation
the following condition must also be satisfied :

v2
x < R · g · l (4.4)

Where l = tan Φ in 4.4, represents the road condition, l = 0.8 when it’s normal, and
l = 0.4 when it’s wet (Fig. 4.9).

Obviously this is an estimation and is not completely accurate, as the road condition
affects the forces, the forces in the model used, however, are represented in a linear form. But
for the sake of this study we consider that these two conditions are sufficient. The next sections
try to analyse the stability in curves.

4.2 Speed - Steer Stability Analysis
The strategy here is based on an algorithmic approach, two loops are used, the first loop
represents the steering force (the force in N.m applied on the steering head), this force is
controlled using a coefficient M . The curve is then simulated, the different parameters derived,
and the conditions studied above verified (also, when the the roll angle exceeds a certain value,
the simulations stops and the system is considered to be unstable). the motorcycle is stable if
they are respected and unstable when they are not.
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Figure 4.7: Forward speed - Steer stability when the road is dry (l = 0.8).

Figure 4.8: Forward speed - Steer stability when the road is wet (l = 0.4).

The blue part (circles) represent the stability region, and the red part (Xs) represent the
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unstable region, this goes for all other figures. Obviously the steering force (and consequently
the roll angle) is variable and not constant, this means that we had to measure the resulting
roll angles at a specific point of the curve, we choose the the middle of the curve, the point in
which the roll angle is at its maximum, the radius of the curve is then calculated using the max
and the min of the X-Y plane (Fig. 4.5).

Figure 4.7 shows the stability region in terms of forward speed and steering force when
the road is dry (l = 0.8), we notice that when the steer force increases, the speed needed to
maintain stability increases as well. When the speed is too low what ever the steer force (and
angle) the motorcycle falls, the same can be said when it’s too high, in a curve this is normal,
as the speed must imperatively be high enough for the steer force applied by the driver to have
a gradual turning effect, when it is too high however, the steer needed becomes high as well,
here only stability for certain values of the weighing coefficient are presented (0.1−1) and their
consequent steer forces as shown in Table 4.1, (resulting angles heavily depend on the speed
and cannot be represented in the table) we can however go beyond, but when it becomes too
high we fall into instability again.

Figure 4.8 analyses stability the same way but this time, on a wet road (l = 0.4), we
observe that the stability region diminishes, this is normal as the adherence or the friction
coefficient becomes weaker and thus the speed must not be too high or there will be a risk of
sliding (instability), in fact the driver must be able to measure this adequately knowing the
impact of the speed on the steer.

Table 4.1: Resulting steer input force for each value of the weighing coefficient M .

Value of coefficient M 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Corresponding steer force (N.m) 2,96 5,92 8,87 11,83 14,79 17,74 20,7 23,66 26,62 29,58

It is also important to observe and analyse the evolution of the lateral forces, notably the
difference between the front wheel and read wheel’s lateral forces Fyr and Fyf .

Figure 4.9: Speed limit in terms of curve radius and the coefficient l = tan Φ [28].
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Figure 4.10: Stability in terms of the percentage between the rear/front forces (l = 0.8 and
M = 1).

Figure 4.11: Stability in terms of the percentage between the rear/front forces (l = 0.8 and
M = 0.5).

For this we chose a steer coefficient, and for each speed (starting from the one where the
system is stable) and then calculated the difference (in %) between the lateral forces.



CHAPTER 4. STABILITY ANALYSIS IN CORNERING SITUATIONS 41

Figure 4.10 shows that of a dry road l = 0.8 and a steer weighing coefficient M = 1 and
figure 4.11 that of a dry road and a steer weighting coefficient M = 0.5, we observe in both
cases that at first the system is stable and that Fy% decreases until it reaches a minimum, this
occurs as the steer force become insufficient for the speed and the % is not sufficient, and after
that the system becomes unstable, and Fy% starts to increase again, this is where the speed
is too high. and intuitively, more the steer force is high (and the speed too) more percentage
between the lateral forces is high as well. This means that Fy% has a heavy impact on the
stability.

4.3 Speed - Lateral Forces Stability Analysis
In this section we try to interpret the impact noticed previous on stability by the difference
between the front and rear lateral forces. in fact, this can be caused by different factors, a hit
of a wind blow or even a small rock can cause a brusque change in lateral forces.

Figure 4.12 shows how much for a weighing coefficient of the steering input force M = 1
the difference between the two lateral forces in % can affect stability, this is done by taking into
account only the range of speeds in which the system was originally stable.

For this we fixM and force vary Fy% from 0 to 100%, and then stop when the motorcycle
keeps falling into instability, we then see the region in which it is stable, and the region in which
it is not.

Figure 4.12: Stability in terms of the percentage between the rear/front forces and forward
speed when M = 1.

Figure 4.13 depicts the same thing as Figure 4.12, but this time for a steer input weighing
coefficient of M = 0.6.
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Figure 4.13: Stability in terms of the percentage between the rear/front forces and forward
speed when M = 0.6.

We can easily deduct that in both cases, and for the stability range of speeds, the mo-
torcycle falls into instability when Fy% exceeds 25%, this means that when the lateral force at
the front wheel’s contact patch is 25% higher than that of the rear wheel’s contact patch, and
even with the correct steering force, the motorbike falls.

This is mostly important, when studying the impact of disturbances on the motorbike, in
fact, and as stated before, a blow of a wind can cause an uneven distribution of lateral impact
on different parts of the vehicle, and thus increase Fy%. Even more impactful in a turn would
be running into a rock or a sudden road elevation, as in a curve the front wheel is almost always
the wheel that runs into such an obstacle first, so it would be eventually interesting to study the
effect of these kind of obstacles, considered as disturbances in our model, on the lateral forces
and consequently, on Fy%.

4.4 Speed - Adherence Stability Analysis
This section studies the adherence’s, or friction coefficient’s, as it is frequently called in litera-
ture, influence on stability, with respect to the adherence. Intuitively the friction coefficient is
very crucial for the motorbike’s stability, especially in curves and cornering situations, the mo-
torcycle’s tire-road contact patch is not big enough to assure continuous adherence to the road,
and in curves, it leans, which means there is a risk, if the speed, or any other variable that af-
fects adherence for that matter, is not correct, an adhesion failure occurs, this means instability.

Figure 4.14 shows our system’s stability region, when varying adherence for each forward
speed incrementation. The coefficient E is varied between the values 0.5 and 1.5 and then the
transversal forces of the two contact patches are weighed with this coefficient, the adherence is
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then measured (Table 4.2) and stability is tested using the criteria previously described.

Figure 4.14: Stability - adherence analysis for a normal steering coefficient.

We notice that, at low speeds, the system is unstable even when adherence is high, this is
normal as when the speed is not high enough even with sufficient friction, the bike eventually
falls, for correct speeds however, the bike stabilizes only when the friction is high enough.

Table 4.2: Resulting steer input force for each value of the weighing coefficient M .

Value of coefficient E 0.5 0.7 0.9 1.1 1.3 1.5
Corresponding max adherence 0.23 0.32 0.45 0.52 0.66 0.88

4.5 Conclusion
In this chapter, the stability of the motorcycle has been studied for different variables and var-
ious conditions taking into account criteria based stability, all involving the forward speed, we
have first studied stability regions for speed with respect to steer force, then speed with respect
to the lateral forces, and finally speed with respect to adherence.

Figure 6.1 depicts the idea behind this study, in fact, once the speed stability regions
of a motorcycle are defined for difference conditions in accordance with the most influencing
parameters, namely the steer force, the lateral forces and the adhesion/friction coefficient, a
real time algorithm can be conceived to use the state observers that are going to be studied in
Chapter 5 in order to construct a viable alert system for the driver, or an acting alert system
for the motorcycle. The next chapter, studies the state observers, and the estimation of vertical,
lateral and longitudinal forces, and eventually the adherence.



CHAPTER 5
MODEL OBSERVERS AND SIMULATION

Introduction
The use of observers for motorcycle state estimation, (estimation of state variables/motorcycle
dynamics) has been a focus point for researchers for decades, an observer is usually picked for
its simplicity, ease of establishment (whether it be theoretical or practical) but also for its per-
formances, but a compromise between these factors should be found for practical convenience
as not all state variables are measurable in reality or sensors might be too expensive.

5.1 State Space Representation and System Observability
Before presenting the non-linear observers, it is essential to study the observability of the system.
Since the seventies, the theory of the observability of non-linear systems is under construction.
In general, real processes have unavoidable non-linearities.

Thus, in some cases, linear methods are sometimes no longer suitable. In this sense,
several studies have been devoted to the study of the observability of non-linear systems such
as [25]. For the study of the observability of a non-linear system, we can use the derived from
Lie [Diop 1991]. The system is locally observable if the observability rank condition is satisfied,
ie the observability matrix (O) defined below is of rank n :

O =



dh(x)

dLfh(x)

:

dLn−1
f h(x)


(5.1)

Where : 
dh = ( ∂h

∂x1
,
∂h

∂x2
, · · · , ∂h

∂xn
)

Lf · h(x) = ∂h

∂x
· f(x)

(5.2)

The condition of observability is the following :

rang(O) = n (5.3)

44
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In chapter 3, where we have modelled the system using the Lagrangian formalism, we
have seen that the dynamics of the vehicle is described by the differential equation below :

q̈ = M−1(q)(W (q, q̇)− C(q, q̇)q̇ − P (q, q̇)) (5.4)

Where W, M, C, and P are work term (containing all forces and torques including input
torques), the mass matrix, the cristoffel matrix and the gravitational term respectively.

To be able to estimate the overall state of the system, it is interesting to write the model
5.4 in a canonical form, choosing the state vector x as follows :

x = (x1, x2)T = (q, q̇)T (5.5)

Equation 5.5 becomes :

x2 = −M−1(x1) · [C(x1, x2) · x2 + P (x1, x2)] +M−1(x1) ·W (x1, x2) (5.6)

We then get the shape of the complete vehicle model.
ẋ1 = x2
ẋ2 = f(x1, x2, F ) + U(x1)
y = h(x1)

(5.7)

f(·) is a function, and U(x1) = M−1(x1) ·u(x1) is the part of W (x1, x2) containing inputs
and F are the forces.

The proposed vehicle model has three properties :

• The matrix M(x1) is symmetric definite positive (passivity, see next section),

• The difference M(x1)− 2C(x1, x2) is antisymmetric,

• C(x1, x̂2) = C(x1, x2), V (x1, x̂2) = V (x1, x2), where x̂2 denotes the estimate of x2.

5.2 Sliding Mode Observer
As presented in chapter 2 (literature review) many observers were presented, but the sliding
mode observer presents more advantages and robustness (due to its sliding modes). Two main
observers are mainly used in most literature, 1st order sliding mode and 2nd order sliding mode
(also called higher order sliding mode observer).

To estimate the overall condition of the motorcycle using sliding mode observers, we
must have important information about the measurements. So the output vector composed of
measurements from the sensors must be well chosen. We can define the following hypotheses :

• We assume that the position vector is fully measurable : y = x1

yT = [qx, qy, qz, q0, q1, q2, q4, q5, q6, q7, qf , q8, q9]

• The forces are in fact variable, (not only the steady state is considered), this means that
for driving situations in a straight line with almost constant speed, such as on a highway,
we assume that the tire / road contact forces F are constant only in steady state situation,
obviously if the vehicle is travelling on a road that is not deformed and without bumps.
In cornering situations however, it is variable in both states.
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The state space model is presented in equation 5.7 We use here the algorithm proposed
by Levant [26] to generate sliding modes of any order. In our case, the order of the observer is
taken equal to 2 :

O :
{
x̂1 = x̂2 + z1
x̂2 = f(t, x̂2, u) + z2

(5.8)

where x̂1 and x̂2 are respectively the estimate of x1 and x2 and u is the input. z1 and z2
are calculated by the super-twisting algorithm as described in [26], equation 5.9.{

z1 = −α · |x̂1 − x1|
1
2 · sign(x̂1 − x1)

z2 = −β · sign(x̂1 − x1) (5.9)

sign(x̂1−x1) is a vector composed of sign functions of errors between the estimated state
vector and the measured one.

α = [α1, α2, ...] and β = [β1, β2, ...] are vectors containing weighing/gain coefficients used
to ensure convergent/stability, these are determined while studying the stability of errors.

[27] cites that assuming :

||f(t, x1, x2, u)− f(t, x1, x̂2, u) + ξ(t, x1, x2)|| ≥ f+

f+ is a constant that does not depends on the elasticity terms, α and β satisfy the
inequalities :

α > f+

β >

√
2

α− f+ ·
(α+ f+)(1 + q)

1− q
(5.10)

Where q a chosen constant between 0 and 1. Taking x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2, the
error terms, they can be written in the following form :

¨̃x1 = g(x1, x1, x̂2, u, F )− β

2 ·
˙̃x1|x̃1|−1/2 − αsign(x̃1) (5.11)

Where g(·) = f(·)− f (̂·) + ξ and d
dt |x| = ẋsign(x) :

¨̃x1 ∈ [−f+, f+]− β

2 ·
˙̃x1|x̃1|−1/2 − αsign(x̃1) (5.12)

In 5.12 and in the case of x̃1 > 0 and ˙̃x1 > 0 the trajectory is confined between the axis
x̃1 = 0, ˙̃x1 = 0 and the trajectory of the equation ¨̃x1 = −(α− f+). Let x̃1M be the intersection
of this curve with the axis ˙̃x1 = 0. Obviously 2 × (α − f+) · x̃1M = ˜̇x2

10. It is easy to see that
for x̃1 > 0, ˙̃x1 > 0 :

¨̃x1 ≤ f+ − αsign(x̃1)− 1
2 · β ·

˙̃x1
|x̃1|1/2

< 0 (5.13)

This implies that :

| ˙̃x1M |
| ˙̃x10|

<
1− q
1 + q

< 1 (5.14)

These insure the convergence of the state (x̃1i, ˙̃x1k) to x̃1 = ˙̃x1 = 0, to prove the finite
time of convergence consider the dynamics of x̃2. x̃2 = ˙̃x1 when x̃1 = 0 taking into account :

˙̃x2j = gj(·)− αsign(x̃1j)

and :
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0 < α− f+ ≤ | ˙̃x2| ≤ α+ f+

Holds in small vicinity of the origin, this : | ˙̃x1k| ≥ (α−f+)tk Where tk is the time interval
between the successive intersection of the trajectory with the axis x̃1 = 0. Hence :

tk ≤
| ˙̃x1k|
α− f+

The total convergence time is given by equation 5.15.

T ≤ Σ | ˙̃x1k|
α− f+ (5.15)

Figure 5.1: State and force estimation structure.

The next section, the simulation results obtained are presented.

5.3 Simulation
Simulation is done for the same input used in Fig. 3.10. Figure 5.2 shows selected real elements
of the position vector x1 = q comparing them with their estimates. 5.3, compares some selected
velocity elements of velocity vector x2 = q̇ with their estimates. Figures 5.4 and 5.5 show real
front and rear contact patch forces and suspension force/torque and compares them with their
estimated values.

We notice that the performance ie. convergence of estimates towards the real values,
is fairly good, in fact, they converge in the 0.2 seconds mark, which is very fast considering
the motorcycle dynamics. And lastly, Figure 5.6 depicts the real front and rear adherence,
calculated using the following equations :

µry = Ftr/Fzr, µrx = Flr/Fzr, µfy = Ftf/Fzf , µfx = Flf/Fzf

From left to right are the rear and front, lateral/transversal and longitudinal adherences,
these are obtained using the z-y or z-x forces (vertical-lateral or vertical-longitudinal). The
global adherences are obtained using :

µr =
√
µ2
ry + µ2

rx, µf =
√
µ2
fy + µ2

fx

Their estimates are calculated using the estimated forces, and it’s these estimates that are
used to evaluate stability in accordance with the road/pavement conditions, adherence, security
norms etc...
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Figure 5.2: Selected angles and positions and their estimates.

Figure 5.3: Selected velocities and their estimates.
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Figure 5.4: Front wheel real forces with their estimates.

Figure 5.5: Rear wheel real forces with their estimates.
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Figure 5.6: Real rear and front contact patch adherences with their estimated values.

5.4 Passivity Based Decoupling of the Model
The dynamics of motorcycle has been studied in [2]. However, the properties of the model are
not always detailed and studied, especially the property of passivity. In the complete dynamic
model with 13 degrees of freedom of the vehicle detailed in chapter 3, we find several passive com-
ponents coupled together, namely the body, the front wheel, the rear wheel and the suspensions.

The objective of here is to study the property of passivity and the division of the dynamic
model of the motorcycle into four subsystems, which are the translations of the bike according
to the three axes x, y and z, the angles of turning of both the front and the rear wheel as well
as their rotation angles, and finally the turns of two suspensions.

These four subsystems are subsequently grouped into four blocks. This division is justified
by calculating and tracing the different coupling terms that connect the four blocks. The interest
of cutting and its usefulness lies in the possibility of using models partially (only 1 block for
instance) neglecting the other blocks. For this, two properties are important: the preservation
of passivity of the block or sub-model, and the effect of the couplings coming from the
other blocks must be negligible. Using Matlab-Simulink, we can illustrate the usefulness of this
division. This is done later in this chapter.

5.4.1 Passivity theorem and properties

In order to show the passivity of the model, it is essential to present some definitions of passivity
as well as theorems related to this property. Recall that a passive system satisfies the following
property (described in [23]) :

E(t1) = E(0) + Es(0, t1)− EL(0, t1) (5.16)
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where E(t1), E(0) are respectively the energy of the system at time t1 and at the initial
moment t = 0, Es(0; t1) is the energy supplied to the system during the interval of time [0; t1],
EL(0; t1) is the energy lost by dissipation in friction in the time interval [0; t1]. Definition: A
system with an input u and an output y where u(t), y(t) ∈ Rn Rn is passive if there is a strictly
positive constant β such that (Inequality of Popov) [Brogliato 2000]

∫ T
0 yT (t) · u(t)dt ≥ β (5.17)

And that viable for any function u, and any T ≥ 0.

Now suppose there is a continuous positive function V (t) such that :

∫ T
0 yT (t) · u(t) dt ≥ V (t)− V (0) (5.18)

for all functions u, and all T ≥ 0 and all V (0), then the input system u(t) and output
y(t) is passive.

Presented in a similar manner in [24], we recall that by using Lagrange’s formalism, the
dynamic model of the motorcycle is given as follows:

τ = d

dt
(∂Ec
∂q̇

)− ∂Ec
∂q

+ ∂Ep
∂q

(5.19)

Where Ec = 0.5 · (q̇TM(q)q̇) represents the kinetic energy, Ep the potential energy, and
τ couples and external forces. After calculating the potential and kinetic energies we we can
establish the dynamic model from Lagrange’s equations. This gives us :

τ = M(q) · q̈ + C(q, q̇) · q̇ + V (q, q̇) + C0(t, q, q̇)) (5.20)

We can from equations 5.20 and 5.19, deduce :

q̇TM(q)q̈ = q̇T · (τ − V (q, q̇)− C0(t, q, q̇)) (5.21)

by integrating we find (assuming q0 = q(0)):

∫ t
0 q̇

T · (τ − V (q, q̇)− C0(t, q, q̇)) dt = 1
2 · (q̇

T (t1) ·M(q)(t1) · q̇(t1)) (5.22)

So our system checks Popov’s inequality.
For the motorbike if we consider for input u = (τ − V (q, q̇) − C0(t, q, q̇)) and for output

y = q̇, then the transfer of u = τ − V (q, q̇)− C0(t, q, q̇), is passive.

Interconnection between passive systems

Generally, we find three types of interconnections of two passive systems S1 and S2. The first
interconnection is said to be parallel, illustrated by Figure 3.1. As its name suggests, with this
interconnection both systems have the same input u = u1 = u2 (no feedback) and the output
y = y1 + y2.

• The combination of two or more passive systems in parallel gives us a passive system.∫ t1
0 yT (t) · u(t) dt =

∫ t1
0 yT1 (t) · u1(t) dt+

∫ t1
0 yT2 (t) · u2(t) dt (5.23)
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Figure 5.7: Parallel interconnection.

• The interconnection of two or more passive systems into feedback gives us a passive system.

Figure 5.8: Feedback interconnection.

5.4.2 Decoupling of the global model

In this subsection, we present a proposal to split the complete dynamic vehicle model into
four subsystems. This decomposition is based on the passivity property, presented previously,
of the dynamic model. the generalized coordinates vector q, is going to be divided into 4
parts as stated previously, at the level of the box, we find three translation movements qTA =
[qx qy qz]T and three rotational movements for each wheel in addition to their orientations.
qTB = [q0 q1 q2 q8]T for the rear wheel, and qTC = [q4 q5 q6 q9]T for the front wheel. The
suspensions give us two de-beats along the vertical axis qTD = [q7 qf ]T . So we can write the
generalized coordinate vector q as follows :

qT = [qA qB qC qD]T
qTA = [qx qy qz]T
qTB = [q0 q1 q2 q8]T
qTC = [q4 q5 q6 q9]T
qTD = [q7 qf ]T

(5.24)

Meanings of qi are described in Table 3.1.
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Figure 5.9: Wheel decoupling into four blocks.

Decoupling shown in figure 5.9, that is based on the decomposition in equation 5.24.

We can then split the complete dynamic vehicle model into four subsystems, assuming
that the inertia matrix M(q) and the Coriolis and Centrifuge matrix C(q, q̇) are originally 13
by 13 matrices, and are composed of four rows and four columns.

M(q) =


M̂3×3

11 M̂3×4
12 M̂3×4

13 M̂3×2
14

M̂4×3
21 M̂4×4

22 04×4
23 M̂4×2

24
M̂4×3

31 04×4
32 M̂4×4

33 M̂4×3
34

M̂2×3
41 M̂2×4

42 M̂2×4
43 M̂2×2

44

 (5.25)

Where M̂k×l
ij is the sub matrix, according to the chosen decomposition, of the mass matrix

M(q), of dimensions k × l and position ij.

C(q, q̇) =


03×3

11 Ĉ3×4
12 Ĉ3×4

13 Ĉ3×2
14

04×3
21 Ĉ4×4

22 04×4
23 Ĉ4×2

24
04×3

31 04×4
32 Ĉ4×4

33 Ĉ4×3
34

02×3
41 Ĉ2×4

42 Ĉ2×4
43 02×2

 (5.26)

Where Ĉk×l
ij is the sub matrix, according to the chosen decomposition, of the Coriolis ma-

trix C(q, q̇), of dimensions k× l and position ij. 0̂k×l
ij is a matrix of dimensions k× l containing

only zeros.

Our work matrix W (q, q̇) is equal to a Jacobian times the force vector J(q) · F , however,
we are not going to decompose it as such for simplicity purposes.

W (q, q̇)T =
[
Ŵ 1×3

1 Ŵ 1×4
2 Ŵ 1×4

3 Ŵ 1×2
4

]
(5.27)

Where Ĉij , M̂ij and Ŵij are components of matrices C, M and W , and are matrices
themselves.

Expressions of sub-models A, B, C and D are given by matrix equation 5.28.
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W = M · q̈ + C · q̇ − P (5.28)

Assuming that the couplings terms CoA,B,C,D are bounded Cji < ki, the five subsystems
can be written in the following the form in equations 5.29, 5.30, 5.31, and 5.32.

ΣA : q̈A = fA(qA,WA, PA) + CoA (5.29)

ΣB : q̈B = fB(qB,WB, PB) + CoB (5.30)

ΣC : q̈C = fC(qC ,WC , PC) + CoC (5.31)

ΣD : q̈D = fD(qD,WD, PD) + CoD (5.32)

We have presented here the various subsystems ΣA, ΣB, ΣD and ΣD which correspond
respectively to the translations and rotations of the wheels, and the suspensions, equations 5.33,
5.34, 5.35, and 5.36 give the expressions of the coupling terms. Figure 5.10 shows the different
blocks of the dynamic vehicle model.

CoA = M12 · q̈B +M13 · q̈C +M14 · q̈D + C12 · q̇B + C13 · q̇C + C14 · q̇D (5.33)

CoB = M21 · q̈A +M24 · q̈D + C24 · q̇D (5.34)

CoC = M31 · q̈A +M34 · q̈D + C34 · q̇D (5.35)

CoD = M41 · q̈A +M42 · q̈B +M43 · q̈C + C42 · q̇B + C43 · q̇C (5.36)

Figure 5.10: The four submodels of the global model.
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5.4.3 State space representations of the Submodels

Sub-model ΣA

Based on equation 5.29 and by choosing x1A = qA and x2A = q̇A, the state space representation
is equivalent to the subsystem’s and can be written as in equation 5.37.

ẋ1A = x2A
ẋ2A = f(t, x1A, x2A) + CA
yA = h(x1A, x2A)

(5.37)

Sub-model ΣB

Equation 5.30 and given that x1B = qB and x2B = q̇B, the state space representation is
equivalent to the subsystem’s and can be written as in equation 5.38.

ẋ1B = x2B
ẋ2B = f(t, x1B, x2B) + CB
yB = h(x1B, x2B)

(5.38)

Sub-model ΣC

Given that x1C = qC and x2C = q̇C , and according to equation 5.31, the state space represen-
tation is equivalent to the subsystem’s and can be written as in equation 5.39.

ẋ1C = x2C
ẋ2C = f(t, x1C , x2C) + CC
yC = h(x1C , x2C)

(5.39)

Sub-model ΣD

Again, from Equation 5.32, and choosing x1D = qD and x2D = q̇D, the state space representation
is equivalent to the subsystem’s and can be written as in equation 5.40.

ẋ1D = x2D
ẋ2D = f(t, x1D, x2D) + CD
yD = h(x1D, x2D)

(5.40)

Passivity of the sub-models

In order to justify this decomposition it is essential to prove the passivity of each subsystem by
checking the Popov inequality presented previously. The dynamic subsystem j, the dynamic
equation is given by equation 5.41.

Mj(x1j) · ẍ1j = Wj − Cj(x1j , x2j)ẋ1j − P (x1j , x2j)− Cj (5.41)

Where j = A, B, C, or D.Mj(x1j), Wj , Cj(x1j , x2j), P (x1j , x2j) and Cj are the Mass ma-
trix, the Work term, Cristoffel matrix, Gravitational term and the Coupling term respectively
(for each subsystem).

Following the same approach presented in the previous subsection, kinetic energy Ecj of
subsystem Σj is equal to :

Ecj = 1
2 · (ẋ

T
1j ·Mj(x2j) · x2j) (5.42)
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The integral in 5.22 is applied here on equation 5.42, we find :

1
2 · (ẋ

T
1j(t1) ·Mj · ẋ1j(t1))− 1

2 · (ẋ
T
1j0 ·Mj · ẋ1j0) (5.43)

Where x1j0 = x1j(0). It can thus be concluded that the subsystems are passive.

5.4.4 Simulation and comparison

Figure 5.11 shows the implementation of the subsystems studied previously, on Simulink,

Figure 5.11: Sub-models in Simulink.

Figure 5.12: Position x and fork length of the original model versus the decoupled model.
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Figures 5.12 to 5.14 show comparison between the original model, and the decoupled
model.

It can clearly be seen that there are visible differences (error), in fact, some simula-
tion problems have been encountered during this, some coupling terms were derived before
other needed information were provided, this problem needs to be remedied for more precision.
Therefore this should be investigated and developed further for more precision and a null error.

Figure 5.13: Rear roll and pitch angles of the original model versus the decoupled model.

Figure 5.14: Front roll angle and transversal force of the original model versus the decoupled
model.

For the sake of this study, we are going to consider that the results are good enough for
us to be able to use the decoupled model for observer synthesis.
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5.5 Partial state observers and Combination of Observers
Up until now, the observers were synthesised considering that the entire position vector is mea-
surable, this in fact, is an ideal case, but not always possible in reality, as it unrealistic to
consider that variables such as camber/roll and yaw angles are measurable. Table 5.1 shows
the actually measured variables, and variables that are not.

In this section, this problem is treated using partial state observers. In vehicle dynam-
ics, in order to study a particular phenomenon, it is useful to look at certain state variables.
Thus, in the case of the study of braking, only the wheel / ground contact forces and the states
concerning the wheels are interesting, likewise, in the case of the study of passenger comfort,
only the states corresponding to the orientation and positioning of the body are interesting. In
this regard, a partial observation of the system may be sufficient, hence the idea of designing
partial observers. For this, we will use the decomposition of the dynamic model of vehicle pre-
sented in the previous section. In this context, we are interested in the high gain observer
as it presents many advantages, advantages that cover the obligation to use the sliding mode
observer for situations where it would be complicated to.

As it was presented in section 1, equations 5.5 and 5.7 are used to describe the variables
in table 5.1.

Table 5.1: Resulting steer input force for each value of the weighing coefficient M .

Positions Measurable (Yes/No) Velocities Measurable (Yes/No)
x11 = qx Yes x21 = q̇x Yes
x12 = qy Yes x22 = q̇y No
x13 = qz Yes x23 = q̇z Yes
x14 = q0 No x24 = q̇0 Yes
x15 = q1 No x25 = q̇1 Yes
x16 = q2 No x26 = q̇2 Yes
x17 = q4 No x27 = q̇4 Yes
x18 = q5 No x28 = q̇5 Yes
x19 = q6 No x29 = q̇6 Yes
x110 = q7 Yes x210 = q̇7 Yes
x111 = qf Yes x211 = q̇f Yes
x112 = q8 No x212 = q̇8 Yes
x113 = q9 No x213 = q̇9 Yes

5.2 shows the dependency of the different forces needed to calculate the adherences, this
information is needed, as the variables that are not measurable are replaced with their estimates.

Table 5.2: Force-generalized coordinates / velocity dependence.

Forces Function of
Front suspension f(x16, x110, x26, x210)
Rear suspension f(x111, x211)
Front vertical f(x23, x14, x15, x110, x24, x25, x210)
Rear vertical f(x23, x18, x19, x111, x28, x29, x211)
Front lateral f(Fzr, x14)
Rear lateral f(Fzf , x17)

Front longitudinal f(Fzr, x15, x212)
Rear longitudinal f(Fzf , x18, x213)
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As a reminder, our system is written as :
ẋ1 = x2
ẋ2 = f(t, x1, x2, u, F )
y = h(x1, x2)

(5.44)

Where F are the forces and u is the input. Figure 5.15 represents the schematic diagrams
of our observers, since in the first subsystem, we need to observe the y velocity, that can be
calculated by differentiation, sliding mode observer is used. This, however, is not possible for
subsystems B and C, as it’s the positions, or rather angles that cannot be measured, this is why
the high gain observer is used in this case.

Figure 5.15: Combination of observers/sub-observers.

5.5.1 High Gain Observer

In the previous subsection, 3 observers were used, the first one is a higher order sliding mode
(second order) observer discussed earlier in the report. The two other observers used are high
gain observers, the principle of these is explained here. These observers have some advantages
that can be summarized as follows :

• High-gain observers are relatively simple to design as it is not needed to solve complex
differential equations nor use complicated formulae. Determining a suitable value for the
gain is typically done through experimentation.

• For large class of non-linear systems, they can provide global or semi-global stability results
for large class of systems. This means that their use can provide stability guarantees for
any arbitrarily chosen initial conditions.

• They can be relatively fast.

• They can be robust to modelling uncertainty and external disturbances...
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The big disadvantage of these observers is that a high gain can amplify noise as well, but
so long as we don’t have very much of noise in measurements (e.g., small noise power) or process
disturbances (a very good models as in vehicle dynamics which is the case for our study), high
gain observers do much better, as the state estimate converges to the actual state rapidly.

For multi-input multi-output systems, the general form is :{
ẋ = f(x) + g(x) · u
y = h(x) (5.45)

Where : x ∈ Rn, g ∈ Rm and y ∈ Rp, n = 26 is the number of state variables, m = 2
number of inputs and p = 17 is the number of outputs/measured state variables. A use of a
change of variables is needed, we put z = Φ(x), where :

zT = [z1, z2, ..., zp] (5.46)

zTj = [zj1, zj2, ..., zjj ] (5.47)

Where dim(zj) = nj and
∑p
i=1 nj = n. The system can be then rewritten as :{
żj = Ajzj + ϕ(z1, z2, ..., zj , y, u)
yj = Cjzj

(5.48)

So, synthesising the observer is done in the following manner :
żij = Aj ẑj + ϕj(ẑ1, ..., ẑj , y, u)− S−1

θj C
T
j (Cj ẑj − yj)

θjSj +ATj Sθj + SθjAj = CTj Cj
θj > 0

(5.49)

Where :

Aj =


0 1 0 ... 0
0 0 1 ... 0
...

...
...

0 ... ... 0

 (5.50)

Sθj is calculated next, in equation 5.52. Consider our system :
ẋ1 = x2
ẋ2 = f(x1, x2, u)
y = [C1 C2] · [x1 x2]T

(5.51)

Where [x1 x2]T = [q q̇] and C1/2 are output matrices of dimensions 1 × 13 contain-
ing zeros and ones, zeros for variables that are not measurable, and ones for those that are.
Replacing the equations, we have :

θSθ1 = CT1 C1
θSθ2 + Sθ1 = CT1 C2
θSθ3 + Sθ1I = CT2 C1
θSθ4 + Sθ2I + Sθ3 = CT2 C2

(5.52)

I is an identity matrix, the gain matrices are found by regulating the term θ, one of
the many advantages of the high gain observer, it’s the only term we need to fix to ensure
convergence.
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5.5.2 Simulation

Figure 5.16: X, Y and Z coordinates (qx, qy and qz) and their estimates.

Figure 5.17: Rear yaw, roll, pitch and orientation (q0, q1, q2 and q8) and their estimates.
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A selection of elements and their estimates are presented in this section, the simulation is
done on the basis of what has been studied previously, sub-observers were used for different
subsystems. A sliding mode observer for translational positions/velocities, and two high gain
observers for rear and front wheel angles/velocities. For the sliding mode observer the 6 gains
were regulated until convergence was reached, and for the high gain observers only one gain
each was modified and convergence took less time to be found, but with more simulation time,
as the entire vectors had to be used even the measured values.

Figure 5.16 compares translational coordinates qx, qy and qz with their estimates q̂x, q̂y and q̂z.
Figure 5.17 compares rotational positions of the rear wheel q0, q1, q2 and q8 and their esti-
mates q̂0, q̂1, q̂2 and q̂8. Figure 5.18 on the other hand shows the force estimations of the rear
wheel forces. These forces are used to calculate or rather estimate the adherences.

Figure 5.18: Rear forces and their estimates.

5.6 Conclusion
In this chapter, the state representation of the system has been formulated from the Lagrangian
formalism of the modelled motorcycle, this was necessary for the synthesis of a state observer.
A sliding mode observer has then been used to estimate the velocities and other state variables
assuming the hypothesis where the position vector is entirely measurable (can be measured
using sensors), this indeed is unrealistic. A more realistic case was studied, where not all
positions and not all velocities are measurable, for this, the model was then decoupled, using
the passivity theorem, into multiple subsystems, and multiple observers were used for each
subsystems, namely, one 2nd order sliding mode observer, and two high gain observer, simulation
results and performance of the observers were then explained and commented.



CHAPTER 6
CONCLUSION AND RECOMMENDATIONS

6.1 Study Conclusion
In this work, a 13 degrees of freedom motorcycle model has been adapted to the study of stability
in curves and corners, meaning that all the parameters and variables needed for stability analysis
are integrated into the model namely the vertical, lateral and longitudinal forces, a simulation of
this model with different inputs has been shown, validation is done intuitively however. Different
stability criteria have then been studied, namely numerical based and non numerical based, the
difference is that numerical ones can and have been used in our stability analysis algorithm that
is based on loops with different condition verifications based on a specific variable and forward
speed. This stability analysis is useful to create an alert system in case the motorcycle condition
is located in the instability region, however, to elaborate the stability and instability regions
for different factors, a state estimator/observer is necessary. In chapter 5 we have synthesized a
state observer (higher order sliding mode) for the ideal case where all positions and angles are
measured, and then the system had to be decoupled into sub-models and high gain observes
were also used, as not all of the position vector is always measured nor is the velocity vector
(both containing 13 state variables). Simulation results of comparing real state variables with
their estimates was then shown and their performances evaluated and commented.

6.2 Study Recommendations
Many difficulties were encountered during this work, notably the fact that the model presents
many non-linearities and is too large, obtaining the inverse of the analytical value of the mass
matrix M was not feasible for example, so a smaller but even less slightly efficient model could
have easily been tolerated. For stability analysis, it is crucial to further improve the stability
testing algorithm as it does not take into account a number of real time factors (it is in fact
an algorithm that is based on off-line testing), linearities the system and analysing stability
in the traditional could prove to be efficient as well. And as for the observers, as mentioned
before having a system where the mass matrix can be inverted and expressions shrank, could
have made the synthesis of the observers smoother. The idea behind all of this is to develop an
interactive alert system as is depicted in figure 6.1 either for the driver, or a stabilising control
system for the motorbike.

63
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Figure 6.1: Stability - adherence alert system.
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Appendix A
Motorcycle Parameters

%---------------------------------------------------------------------------%
% Parameters
%---------------------------------------------------------------------------%
% rear wheel parameters

% parameters relating to the shape
a1 = .09 ; % crown radius
b1 = .3149-.09 ; % centerline radius

% dynamic parameters
m1 = 16.85 ; % mass
i1 = .8380 ; % inertia around rotation axis
j1 = .4796 ; % inertia around the other two axes

% parameters relating to the interaction forces
f1 = 20 ; % friction coefficient
e1 = 1 ; % rolling resistance coefficient
k1 = 1e6/2 ; % normal force stiffness
d1 = 1500 ; % normal force damping
t1 = 1 ; % tangential stiffness (for numerical stability)

% Rear suspension parameters
% shape parameters

l2 = 0.5675 ; % swingarm length
% dynamic parameters

m2 = 19.31 ; % mass
x2 = .2 ; % mass local x position
i2 = .8 ; % inertia (average inertia to reduce parameter set)

% parameters relating to the interaction forces
t2 = 1 ; % top end
b2 = 1000 ; % bottom end
p2 = 1 ; % preload damping
d2 = 1 ; % compression damping
e2 = 1 ; % rebound damping
k2 = 20000 ; % spring stiffness
n2 = 1 ; % spring progressiveness
f2 = 1 ; % friction coefficient

% Main frame parameters (sprung)
% shape parameters

l3 = 0.816630 ; % frame length
% dynamic parameters

m3 = 224.2+78.13 ; % mass
x3 = .31 ; % mass local x position
z3 = 0.3 ; % mass local z position
i3 = 30 ; % inertia (average inertia to reduce parameter set)
k3 = 1e9 ; % frame torsion stiffness (together with fork and swingarm)
d3 = 1 ; % frame torsion damping (together with fork and swingarm)

% Steering head parameters (sprung)
% shape parameters

l4 = 0.0198 ; % fork offset
% dynamic parameters

m4 = 9.09 ; % mass
x4 = 0.036 ; % mass local x position
z4 = 0.2235 + 0.09985863931372 ; % mass local z position
i4 = .5 ; % inertia (average inertia to reduce parameter set)

% Front fork/suspension parameters (unsprung)
% dynamic parameters

m5 = 9.02 ; % mass
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x5 = -0.0114 ; % mass local x position
z5 = 0.15 ; % mass local z position
i5 = .3 ; % inertia (average inertia to reduce parameter set)

% parameters relating to the interaction forces
t5 = .5 ; % top end
b5 = .3 ; % bottom end
p5 = 0.45 ; % preload damping
d5 = 6500 ; % compression damping
e5 = 12000 ; % rebound damping
k5 = 15000 ; % spring stiffness
n5 = 1 ; % spring progressiveness
f5 = 1 ; % friction coefficient

% Front wheel parameters
% parameters relating to the shape

a6 = .06 ; % crown radius
b6 = .2999-.06 ; % centerline radius

% dynamic parameters
m6 = 13.57 ; % mass
i6 = .5020 ; % inertia around rotation axis
j6 = .333 ; % inertia around the other two axes

% parameters relating to the interaction forces
f6 = 20 ; % friction coefficient
e6 = 1 ; % rolling resistance coefficient
k6 = 1 ; % normal force stiffness
d6 = 1 ; % normal force damping
t6 = 2000 ; % tangential stiffness (for numerical stability)



67

Appendix B
Mass Matrix

%---------------------------------------------------------------------------%
% Mass Matrix
%---------------------------------------------------------------------------%

M(1,1) = m1 + m2 + m3 + m4 + m5 + m6;
M(1,2) = 0;
M(1,3) = 0;
M(1,4) = -sin(q0)*(cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + sin(q2)*z3*m3 +
cos(q7)*((x2 - l2)*m2 - l2*m1)) + cos(q0)*sin(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1
+ m2)) + cos(q2)*z3*m3- sin(q7)*((x2 - l2)*m2 - l2*m1));

M(1,5) = sin(q0)*cos(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3
- sin(q7)*((x2 - l2)*m2 - l2*m1));

M(1,6) = cos(q0)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3) +
sin(q0)*sin(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);

M(1,7) = -sin(q4)*(cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) + sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + cos(q4)*sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6)+ cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));

M(1,8) = sin(q4)*cos(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) +
cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));

M(1,9) = cos(q4)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+ cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + sin(q4)*sin(q5)*( -cos(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6) - sin(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));

M(1,10)= -cos(q0)*sin(q7)*((x2 - l2)*m2 - l2*m1) - sin(q0)*sin(q1)*cos(q7)*((x2 -
l2)*m2 - l2*m1);
M(1,11)= cos(q4)*sin(q6)*(-m5 - m6) + sin(q4)*sin(q5)*cos(q6)*(-m5 - m6);
M(1,12) = 0;
M(1,13) = 0;

M(2,1) = 0;
M(2,2) = m1 + m2 + m3 + m4 + m5 + m6;
M(2,3) = 0;
M(2,4) = cos(q0)*(cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + sin(q2)*z3*m3 +
cos(q7)*((x2 - l2)*m2 - l2*m1)) + sin(q0)*sin(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1
+ m2)) + cos(q2)*z3*m3 - sin(q7)*((x2 - l2)*m2 - l2*m1));

M(2,5) = -cos(q0)*cos(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3
- sin(q7)*((x2 - l2)*m2 - l2*m1));

M(2,6) = sin(q0)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3) -
cos(q0)*sin(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);

M(2,7) = cos(q4)*(cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) + sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + sin(q4)*sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6)+cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));

M(2,8) = -cos(q4)*cos(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+
cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));

M(2,9) = sin(q4)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) + cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) - cos(q4)*sin(q5)*(-cos(q6)*(x4*m4 + (l4 + x5)*m5 +

l4*m6)- sin(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(2,10)= -sin(q0)*sin(q7)*((x2 - l2)*m2 - l2*m1)+ cos(q0)*sin(q1)*cos(q7)*((x2 -
l2)*m2 - l2*m1);

M(2,11)= sin(q4)*sin(q6)*(-m5 - m6) - cos(q4)*sin(q5)*cos(q6)*(-m5 - m6);
M(2,12) = 0;
M(2,13) = 0;
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M(3,1) = 0;
M(3,2) = 0;
M(3,3) = m1 + m2 + m3 + m4 + m5 + m6;
M(3,4) = 0;
M(3,5) = -sin(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3-
sin(q7)*((x2 - l2)*m2 - l2*m1));

M(3,6) = cos(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);
M(3,7) = 0;
M(3,8) = -sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+ cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6)));

M(3,9) = cos(q5)*(-cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)- sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6)));

M(3,10)= -cos(q1)*cos(q7)*((x2 - l2)*m2 - l2*m1);
M(3,11)= cos(q5)*cos(q6)*(-m5 - m6);
M(3,12) = 0;
M(3,13) = 0;

M(4,1) = -sin(q0)*(cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + sin(q2)*z3*m3 +
cos(q7)*((x2 - l2)*m2 - l2*m1)) + cos(q0)*sin(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1
+ m2)) + cos(q2)*z3*m3- sin(q7)*((x2 - l2)*m2 - l2*m1));

M(4,2) = cos(q0)*(cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + sin(q2)*z3*m3+
cos(q7)*((x2 - l2)*m2 - l2*m1)) + sin(q0)*sin(q1)*( -sin(q2)*((x3 - l3)*m3 - l3*(m1
+ m2)) + cos(q2)*z3*m3 - sin(q7)*((x2 - l2)*m2 - l2*m1));

M(4,3) = 0;
M(4,4) = m1*(-cos(q2)*l3 - cos(q7)*l2)^2 + m2*(-cos(q2)*l3 + cos(q7)*(x2 -
l2))^2+ m3*(cos(q2)*(x3 - l3) + sin(q2)*z3)^2 + sin(q1)^2*( m1*(sin(q2)*l3 +
sin(q7)*l2)^2 + m2*(sin(q2)*l3 - sin(q7)*(x2 - l2))^2+ m3*(-sin(q2)*(x3 - l3) +
cos(q2)*z3)^2 ) + I3y + I2y + I1y + (I1x- I1y + I2x - I2y + I3x - I3y + (I2z -
I2x)*cos(q7)^2+ (I3z - I3x)*cos(q2)^2 )*cos(q1)^2;
M(4,5) = -((sin(q2)*l3 + sin(q7)*l2)*(-cos(q2)*l3 - cos(q7)*l2)*m1 +(sin(q2)*l3 +
sin(q7)*l2 - x2*sin(q7))(-cos(q2)*l3 - cos(q7)*l2 + x2*cos(q7))*m2 +(sin(q2)*l3 -
x3*sin(q2) + cos(q2)*z3)*(-cos(q2)*l3 + x3*cos(q2) + sin(q2)*z3)*m3)*cos(q1) +
(I2z - I2x)*cos(q7)*sin(q7)*cos(q1)+ (I3z - I3x)*cos(q2)*sin(q2)*cos(q1);
M(4,6) = ((x3^2 + z3^2 )*m3 + (l3*(m1 + m2 + m3) - 2*x3*m3)*l3 + I3y- ((x2 -
l2)*m2 - l2*m1)*l3*cos(q2 - q7))*sin(q1);
M(4,7) = 0;
M(4,8) = 0;
M(4,9) = 0;
M(4,10)= (l2^2*m1 + (x2 - l2)^2*m2 + I2y + (l2*m1 + (l2 - x2)*m2)*l3*cos(q2 -
q7))*sin(q1);
M(4,11)= 0;
M(4,12)= sin(q1)*I1y;
M(4,13)= 0;

M(5,1) = sin(q0)*cos(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3-
sin(q7)*((x2 - l2)*m2 - l2*m1));
M(5,2) = -cos(q0)*cos(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3
- sin(q7)*((x2 - l2)*m2 - l2*m1));
M(5,3) = -sin(q1)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3 -
sin(q7)*((x2 - l2)*m2 - l2*m1));
M(5,4) = -((sin(q2)*l3 + sin(q7)*l2)*(-cos(q2)*l3 - cos(q7)*l2)*m1 +(sin(q2)*l3 +
sin(q7)*l2 - x2*sin(q7))*(-cos(q2)*l3 - cos(q7)*l2 + x2*cos(q7))*m2 +(sin(q2)*l3 -
x3*sin(q2) + cos(q2)*z3)*(-cos(q2)*l3 + x3*cos(q2) + sin(q2)*z3)*m3)*cos(q1)+
(I2z - I2x)*cos(q7)*sin(q7)*cos(q1) + (I3z - I3x)*cos(q2)*sin(q2)*cos(q1);
M(5,5) = m1*(sin(q2)*l3 + sin(q7)*l2)^2 + m2*(sin(q2)*l3 - sin(q7)*(x2 - l2))^2+
m3*(-sin(q2)*(x3 - l3) + cos(q2)*z3)^2 + (I2x - I2z)*cos(q7)^2+ (I3x -
I3z)*cos(q2)^2 + I3z + I2z + I1x;
M(5,6) = 0;
M(5,7) = 0;
M(5,8) = 0;
M(5,9) = 0;
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M(5,10)= 0;
M(5,11)= 0;
M(5,12)= 0;
M(5,13)= 0;

M(6,1) = cos(q0)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3) +
sin(q0)*sin(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);
M(6,2) = sin(q0)*(-sin(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) + cos(q2)*z3*m3) -
cos(q0)*sin(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);
M(6,3) = cos(q1)*(-cos(q2)*((x3 - l3)*m3 - l3*(m1 + m2)) - sin(q2)*z3*m3);
M(6,4) = ((x3^2 + z3^2 )*m3 + (l3*(m1 + m2 + m3) - 2*x3*m3)*l3 + I3y- ((x2 -
l2)*m2 - l2*m1)*l3*cos(q2 - q7))*sin(q1);
M(6,5) = 0;
M(6,6) = l3^2 *(m1 + m2) + ((x3 - l3)^2 + z3^2 )*m3 + I3y;
M(6,7) = 0;
M(6,8) = 0;
M(6,9) = 0;
M(6,10)= (l2*m1 + (l2 - x2)*m2)*l3*cos(q2 - q7);
M(6,11)= 0;
M(6,12)= 0;
M(6,13)= 0;

M(7,1) = -sin(q4)*(cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+ sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + cos(q4)*sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6) + cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(7,2) = cos(q4)*(cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+ sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + sin(q4)*sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6)+ cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(7,3) = 0;
M(7,4) = 0;
M(7,5) = 0;
M(7,6) = 0;
M(7,7) = m4*(cos(q6)*x4 + sin(q6)*z4)^2 + m5*(cos(q6)*(l4 + x5) + sin(q6)*(-qf +
z5))^2+ m6*(cos(q6)*l4 - sin(q6)*qf)^2 + sin(q5)^2*(m4*(-sin(q6)*x4 +
cos(q6)*z4)^2+ m5*(-sin(q6)*(l4 + x5) + cos(q6)*(-qf + z5))^2+ m6*(-sin(q6)*l4 -
cos(q6)*qf)^2 ) + I6y + I5y + I4y +(I6x - I6y + I5x - I5y + I4x - I4y + (I5z - I5x + I4z -
I4x)*cos(q6)^2 )*cos(q5)^2;
M(7,8) = -(((-x4^2 + z4^2 )*m4 + ((-qf + z5)^2 - (l4 + x5)^2 )*m5 + (-l4^2 + qf^2
)*m6)*sin(q6)*cos(q6)+ (z4*x4*m4 + (-qf + z5)*(l4 + x5)*m5 -
qf*l4*m6)*cos(2*q6))*cos(q5)+ (I5z - I5x + I4z - I4x)*cos(q6)*sin(q6)*cos(q5);
M(7,9) = ((x4^2 + z4^2 )*m4 + ((l4 + x5)^2 + z5^2 )*m5 + I4y + I5y + l4^2*m6 -
qf^2*(-m5 - m6) - 2*qf*z5*m5)*sin(q5);
M(7,10)= 0;
M(7,11)= (l4*m6 + (l4 + x5)*m5)*sin(q5);
M(7,12)= 0;
M(7,13)= sin(q5)*I6y;

M(8,1) = sin(q4)*cos(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+
cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(8,2) = -cos(q4)*cos(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+
cos(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(8,3) = -sin(q5)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) + cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6)));
M(8,4) = 0;
M(8,5) = 0;
M(8,6) = 0;
M(8,7) = -(((-x4^2 + z4^2 )*m4 + ((-qf + z5)^2 - (l4 + x5)^2 )*m5 + (-l4^2 + qf^2
)*m6)*sin(q6)*cos(q6) + (z4*x4*m4 + (-qf + z5)*(l4 + x5)*m5 -
qf*l4*m6)*cos(2*q6))*cos(q5)+ (I5z - I5x + I4z - I4x)*cos(q6)*sin(q6)*cos(q5);
M(8,8) = m4*(-sin(q6)*x4 + cos(q6)*z4)^2 + m5*(-sin(q6)*(l4 + x5) + cos(q6)*(-qf +
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z5))^2+ m6*(-sin(q6)*l4 - cos(q6)*qf)^2 - (I5z - I5x + I4z - I4x)*cos(q6)^2+ I4z +
I5z + I6x;
M(8,9) = 0;
M(8,10)= 0;
M(8,11)= 0;
M(8,12)= 0;
M(8,13)= 0;

M(9,1) = cos(q4)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6)+ cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) + sin(q4)*sin(q5)*(-cos(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6) - sin(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(9,2) = sin(q4)*(-sin(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) + cos(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6))) - cos(q4)*sin(q5)*(-cos(q6)*(x4*m4 + (l4 + x5)*m5 +
l4*m6)- sin(q6)*(z4*m4 + z5*m5 + qf*(-m5 - m6)));
M(9,3) = cos(q5)*(-cos(q6)*(x4*m4 + (l4 + x5)*m5 + l4*m6) - sin(q6)*(z4*m4 +
z5*m5 + qf*(-m5 - m6)));
M(9,4) = 0;
M(9,5) = 0;
M(9,6) = 0;
M(9,7) = ((x4^2 + z4^2 )*m4 + ((l4 + x5)^2 + z5^2 )*m5 + I4y + I5y + l4^2*m6 -
qf^2*(-m5 - m6) - 2*qf*z5*m5)*sin(q5);
M(9,8) = 0;
M(9,9) = (x4^2 + z4^2 )*m4 + ((l4 + x5)^2 + z5^2 )*m5 + I4y + I5y + l4^2*m6 -
qf^2*(-m5 - m6)- 2*qf*z5*m5;
M(9,10)= 0;
M(9,11)= l4*m6 + (l4 + x5)*m5;
M(9,12)= 0;
M(9,13)= 0;

M(10,1) = -cos(q0)*sin(q7)*((x2 - l2)*m2 - l2*m1) -sin(q0)*sin(q1)*cos(q7)*((x2 -
l2)*m2 - l2*m1);
M(10,2) = -sin(q0)*sin(q7)*((x2 - l2)*m2 - l2*m1)+ cos(q0)*sin(q1)*cos(q7)*((x2 -
l2)*m2 - l2*m1);
M(10,3) = -cos(q1)*cos(q7)*((x2 - l2)*m2 - l2*m1);
M(10,4) = (l2^2*m1 + (x2 - l2)^2*m2 + I2y + (l2*m1 + (l2 - x2)*m2)*l3*cos(q2 -
q7))*sin(q1);
M(10,5) = 0;
M(10,6) = (l2*m1 + (l2 - x2)*m2)*l3*cos(q2 - q7);
M(10,7) = 0;
M(10,8) = 0;
M(10,9) = 0;
M(10,10)= l2^2*m1 + (x2 - l2)^2*m2 + I2y;
M(10,11)= 0;
M(10,12)= 0;
M(10,13)= 0;

M(11,1) = cos(q4)*sin(q6)*(-m5 - m6) + sin(q4)*sin(q5)*cos(q6)*(-m5 - m6);
M(11,2) = sin(q4)*sin(q6)*(-m5 - m6) - cos(q4)*sin(q5)*cos(q6)*(-m5 - m6);
M(11,3) = cos(q5)*cos(q6)*(-m5 - m6);
M(11,4) = 0;
M(11,5) = 0;
M(11,6) = 0;
M(11,7) = (l4*m6 + (l4 + x5)*m5)*sin(q5);
M(11,8) = 0;
M(11,9) = l4*m6 + (l4 + x5)*m5;
M(11,10)= 0;
M(11,11)= m5 + m6;
M(11,12)= 0;
M(11,13)= 0;
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M(12,1) = 0;
M(12,2) = 0;
M(12,3) = 0;
M(12,4) = sin(q1)*I1y;
M(12,5) = 0;
M(12,6) = 0;
M(12,7) = 0;
M(12,8) = 0;
M(12,9) = 0;
M(12,10)= 0;
M(12,11)= 0;
M(12,12)= I1y;
M(12,13)= 0;

M(13,1) = 0;
M(13,2) = 0;
M(13,3) = 0;
M(13,4) = 0;
M(13,5) = 0;
M(13,6) = 0;
M(13,7) = sin(q5)*I6y;
M(13,8) = 0;
M(13,9) = 0;
M(13,10)= 0;
M(13,11)= 0;
M(13,12)= 0;
M(13,13)= I6y;
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Appendix C
Full scope simulations

Figure 2: Selected generalized coordinates in case of a straight line (No steer).

Figure 3: Selected generalized coordinates in case of a curve (No engine torque).
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