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Abstract

The first digits of twin primes follow a generalized Benford law with size-dependent exponent and tend to
be uniformly distributed, at least over the finite range of twin primes up to 10™, m=5,...,16 . The extension

to twin prime powers for a fixed power exponent is considered. Assuming the Hardy-Littlewood
conjecture on the asymptotic distribution of twin primes, it is claimed that the first digits of twin prime
powers associated to any fixed power exponent converge asymptotically to a generalized Benford law
with inverse power exponent. In particular, the sequences of twin prime power first digits presumably
converge asymptotically to Benford’s law as the power exponent goes to infinity. Numerical calculations
and the analytical first digit counting compatibility criterion support these conjectured statements.

Keywaords: First digit; twin primes; Hardy-Littlewood conjecture; probabilistic number theory; asymptotic
distribution; mean absolute deviation; probability weighted least squares.
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1. Introduction

Newcomb [17] and Benford [3] observed that the first digits of many series of real numbers obey Benford’s law

P®(d) = log,, (1+d)—log,, (d), d=12,...9. (1.1)

The increasing knowledge about Benford’s law and its applications has been collected in various bibliographies by
Harlimann [10], Berger and Hill [4] and Beebe [2]. Two recent books are Berger and Hill [5], and Miller [15]. In
Number Theory, it is known that for any fixed power exponent s>1, the first digits of some integer sequences,
like integer powers and prime powers, follow asymptotically a Generalized Benford law (GB) with exponent

a=s"e(0]] (see Hurlimann [9,11]) such that

Pf%d):%, d=12...9. (1.2)

Clearly, the limiting case a — 0, respectively « =1, of (1.2), converges weakly to Benford’s law, respectively the
uniform distribution.

As a follow-up to Hirlimann [11,12], we study the first digits of powers of the first prime in twin prime pairs
using a numerical and an analytical method. Based on the numerical method we fit the GB to appropriate samples
of first digits using two size-dependent goodness-of-fit measures, namely the ETA measure (derived from the mean
absolute deviation) and the WLS measure (weighted least square measure derived from the chi-square statistics). In
Section 2, we determine the minimum ETA and WLS estimators of the GB over finite ranges of twin primes up to

10™, m=5,...,16, which suggest convergence to the uniform distribution. Based on the Hardy-Littlewood

conjectured twin prime counting function, the computation in Section 3 for twin prime powers with a fixed power
exponent s> 2 , illustrates convergence of the size-dependent GB with minimum ETA and WLS estimators to the
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GB with exponent s™*. Moreover, we show the existence of a one-parametric size-dependent exponent function
that converges to these GB’s and determine some approximate value that is close enough to the minimum ETA and
WLS estimators to support the suggested convergence. Section 4 uses the analytical criterion of first digit counting
compatibility introduced in [11,12]. In general, this criterion permits to decide whether or not a given size-
dependent GB that belongs to the first digits of some integer sequence is compatible with the asymptotic counting
function of this sequence, if it exists. Theorem 4.1 shows the existence of a parameter-free size-dependent GB for
the sequence of twin prime powers that is first digit counting compatible with its conjectured asymptotic counting
function. Besides the numerical support stated above, this result provides mathematical evidence for the assertion

that the asymptotic distribution of the first digits of twin prime powers follows a GB with exponent s™*.

2. Size-dependent generalized Benford law for twin prime powers

To investigate the optimal fit of the GB to first digit sequences of twin prime powers, it is necessary to specify
goodness-of-fit (GoF) measures according to which optimality should hold. For this purpose, Hirlimann [11]
introduces and motivates the following two GoF measures. Let {x,} < [1,%), n>1, be an integer sequence, and let
d, be the (first) significant digit of x,. The number of x,’s, n=1...,N, with significant digit d, =d is
denoted by X (d). The ETA measure for the GB is defined to be

ETA () = % MAD, (a), MAD, (a)=

9
DOt 21)

1

©| -

where MAD, () is the mean absolute deviation measure. The WLS measure is defined by

PR )

1
WLS, (@) = —
T )

(2.2)
We consider now the sequence of twin prime powers {p°,(p+2)°}, p°® <10°™, for a fixed exponent
s=1,2,3, ..., and arbitrary primes below 10™, m> 4. Denote by 1;(d) the number of twin prime powers below

10, k >1, such that the first prime power in the twin prime power pair has first digit d . This number is defined
recursively by the relationship

15.,(d) =7,/ +1)-10°) - 7, /d -10 ) + 13(d), k=12,..., (2.3)

where the counting function 7,(x) yields the number of twin prime pairs below x. Therefore, with
N =7,(10™) onehas X, (d)=1:,(d) in(2.1)-(2.2). Alistofthe I, (d), m=5,...,16, together with the sample

sizz N =7,(10"), is provided in Table 5 of the Appendix. Based on this we have calculated the so-called

minimum ETA and minimum WLS estimators, which minimize these GoF measures. The obtained optimal
estimators are reported in Table 1 below. Note that the minimum WLS is a critical point of the equation

. B 2 Xn(d)y2

iWLSN(a)=i~iaPa @ B @ ) =0

oa N i3 oa P (d)* 24)

oPZ (d) _ (+d) {In;)10” —InL+ d)}—d“{In(iI0” —In@)} L |
a - 10" -1 T

For comparison, the ETA and WLS measures for the following size-dependent GB exponents
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a,,;(m)=1-(In(0™) —In*(10™))™", c, =0.8416781, (25)
a, ,(m)=1-(>In10™) -In2(@10™) ™", c, =0.816203531, '

called LL estimators, are listed. This type of estimator is named in honour of Luque and Lacasa [14] who
introduced a variant of it in their GB prime number analysis. By construction the LL1 estimator matches the

approximate minimum WLS for N =z}"(10%), where  z/“(x) is the Hardy-Littlewood conjectured
approximation to  z,(x) (see the formulas (2.6)-(2.7) below). The LL2 estimator matches the exact minimum
ETAfor N =7,(10").

Table 1 below displays exact results. The ETA (resp. WLS) measures are given in units of 10" ™% (resp.

10-™9), By trying to extend the results beyond m=16 one encounters at least two difficulties. The Table in
Nicely [18], which is used to calculate Table 5, stops at m=16. At the cost of a slight loss in accuracy, one can
overcome this difficulty by using an approximation formula for 7z,(x), for example the conjectured logarithmic

integral approximation by Hardy-Littlewood [7] given by (see Hardy and Wright [8], Section 22.20, Riesel [19],
Chapter 3, Shanks [20], Section 12, Narkiewicz [16], Section 6.7, Conjecture B, Crandall and Pomerance [6],
Section 1.2.1, among others)

() =H,-Li2(x), Li2(x)= f In?(t)dt, H,=2- H% =1.320323632. (2.6)
2

p=3 \F™
So far, nobody has been able to prove this conjecture. However, based on Hardy-Littlewood’s circle method, Lavrik
[13] obtained an almost-all result, which has been derived recently with an elementary method by Baier [1]. Based

on it we replace N =,(10™) and formula (2.3) by Hardy-Littlewood’s approximations N = 7, (10™) and

15,(d)=7z"@/d+1)-10°) -z~ (/d -10* ) + 15 (d), k=12,... (2.7)

In this way the Table 1 extends (here in single precision only) to Table 2.

Again, the ETA (resp. WLS) measures are given in units of 10~™% (resp. 107 ™). Taking into account the
decreasing units, one observes that the optimal ETA and WLS measures decrease with increasing sample size.

While the LL2 estimator beats the LL1 estimator over the fixed ranges [1,10™], m=5,...,22, the LL1 estimator is

best for the higher fixed ranges [1,10™], m=23,...,31. Moreover, the latter converges faster to the miminum ETA
and WLS estimators than the LL2 estimator, at least over the displayed fixed ranges.

Table 1. GB fit for twin primes up to 10™: ETA versus WLS criterion

parameters ETA GoF measures WLS GoF measures

m= |WLS ETA LL1 LL2 WLS ETA LL1 LL2 WLS ETA

5 0.802466 |0.793906 |21.86 [19.00 16.18 15.88 |33992 23218 17737 17959
6 0.837296 [0.825771 (16.57 /11.05 8.925 8.652 |13965 5874 2778 3369
7 0.858052 |0.861267 |15.26 9.532 8.659 8.582 [8361 3031 1977 2040
8

9

0.882252 ]0.885525 [17.14 8.327 3.601 3.586 |7136 1665 260.3 346.8
0.897119 |0.896164 |17.69 7.746 1.645 1.637 |5852 1098 48.51 57.92
10 |0.907801 |0.907706 |17.39 6.635 1.205 1.204 |4534 634.9 20.26 20.38
11 |0.916659 |0.917041 |17.27 5.726 1.350 1.262 |3643 [380.6 19.92 22.19
12 ]0.923951 |0.924460 |16.92 4.601 1.166 1.106 |2929 204.5 12.90 17.72
13 ]0.930114 |0.930510 |16.56 3.483 1.121 1.055 |2383 [99.73 9.947 13.40
14 ]0.935324 |0.935669 |16.11 2.359 1.139 1.072 |1929 [38.14 8.849 11.89
15 ]0.939820 |0.940123 |15.58 1.308 1.139 1.073 |1564 [10.85 7.658 10.36
16 ]0.943730 |0.943992 |14.98 1.066 1.134 1.066 |1265 8.945 6.640 8.945

Volume 9, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm 1343




Journal of Progressive Research in Mathematics(JPRM)
ISSN: 2395-0218

Table 2. GB fit for first digits of twin primes with Hardy-Littlewood’s approximation

parameters ETA GoF measures WLS GoF measures

m= |WLS ETA LL1 LL2 WLS ETA LL1 LL2 WLS ETA
5 0.796621 |0.791400 |14.22 7.841 2.875 2.546 |13891 4500 544.9 624.9
6 0.836692 |0.835025 |15.48 8.183 1.349 1.325 [10841 2992 77.19 89.38
7 0.863351 |0.863284 |16.36 8.129 1.141 1.140 |[8665 2110 39.08 39.11
8

9

0.882316 |0.882791 |16.97 (7.869 1.178 1.127 |6927 1447 30.21 32.03
0.896542 |0.896969 [17.22 [7.276 1.177 1.116 |5547 956.3 23.51 25.39
10 |0.907659 [0.908000 (17.26 6.502 1.167 1.104 |4465 608.3 18.55 20.04
11 |0.916597 [0.916872 |17.14 |5.594 1.158 1.095 |3609 366.5 14.98 16.16
12 |0.923946 [0.924448 |16.90 4.578 1.151 1.086 |2925 203.3 12.36 17.07
13 |0.930097 |0.930515 |16.55 3.470 1.145 1.079 |2375 98.69 10.38 14.22
14 ]0.935324 |0.935677 |16.11 2.352 1.141 1.074 |1929 38.10 8.840 12.03
15 |0.939820 [0.940123 |15.58 1.306 1.137 1.069 |1565 10.82 7.621 10.33
16 ]0.943730 [0.943993 |14.98 1.065 1.134 1.065 |1265 8.948 6.640 8.966
17 ]0.947162 |0.947392 (14.32 2.012 1.131 1.062 |1019 26.58 5.837 7.844
18 ]0.950198 [0.950401 |13.60 3.344 1.129 1.059 |815.6 59.27 5.172 6.929
19 ]0.952903 |0.953084 (12.82 4.788 1.126 1.056 |647.6 103.6 4.615 6.164
20 ]0.95533 |0.955491 |11.99 6.273 1.125 1.054 |508.8 156.9 4.144 5.520
21 ]0.957518 |0.957663 |11.11 7.796 1.123 1.052 |394.5 217.2 3.741 4.976
22 ]0.959501 |0.959633 |10.19 9.355 1.121 1.050 |300.7 282.8 3.394 4.507
23 10.961307 |0.961426 [9.229 10.95 1.120 1.049 |224.4 352.6 3.094 4.087
24 10.962959 [0.963068 |8.229 12.57 1.119 1.047 |162.7 4254 2.832 3.733
25 10.964476 |0.964576 |7.193 14.22 1.118 1.046 |113.7 500.5 2.602 3.436
26 ]0.965873 |0.965964 16.126 15.92 1.113 1.042 |75.65 576.9 2.382 3.122
27 10.967164 |0.967249 |5.022 17.67 1.115 1.043 |46.69 655.1 2.216 2.911
28 10.968361 |0.96844 |3.889 19.44 1.115 1.043 |25.85 733.7 2.057 2.705
29 ]0.969474 |0.969547 |2.774 21.24 1.114 1.042 |11.99 812.6 1.914 2514
30 ]0.970511 |0.970579 |1.669 23.06 1.113 1.041 |4.189 891.7 1.785 2.340
31 ]0.97148 |0.971543 |1.113 2490 1.113 1.040 |1.668 970.6 1.668 2.183

3. Size-dependent generalized Benford law for twin prime squares and higher powers

The results of the preceding Section are extended to twin prime power sequences {p°,(p+2)°}, p® <10°™, for a
fixed power s=1,23,..., and arbitrary primes below 10™, m>5. In the next Section, we provide analytical

support for the affirmation that the first digits of twin prime powers p°® <10°™, m>5, are approximately GB
distributed with size-dependent exponent of the form

a(N,s,c)=s*-{L-(In(N)-In°(N) '}, N=10",ce(0]), (3.1)

and converge asymptotically to the GB with exponent s provided the Hardy-Littlewood conjecture is true. This
extends Theorem 4.1 in Hirlimann [11] from prime powers to twin prime powers. In particular, asymptotically as
the power s— oo the sequences of twin prime powers presumably obey Benford’s law. Moreover, similarly to
Luque and Lacasa [14], Section 5(a), we develop from (3.1) the asymptotic twin prime counting function (4.7) (with
optimal parameter a =1) of the same asymptotic order as the Hardy-Littlewood logarithmic integral approximation
(2.6) to the twin prime counting function =, (X).
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The extension of the results from Section 2 is first illustrated at twin prime squares with fixed s =2. A Table of
twin prime squares count in form 12 _(d), m=5,...,16, does not seem to be readily available, but the Hardy-
Littlewood values (2.7) suffice for the present purpose. Table 3 is similar to Table 2 and holds in single precision.

Table 3. GB fit for first digit of twin prime squares with Hardy-Littlewood’s approximation

parameters ETA GoF measures WLS GoF measures

m= |WLS ETA LL1 LL2 WLS ETA LL1 LL2 WLS ETA

5 0.405660 (0.403749 ([107.0 106.5 55.2 54.42 (82626 81811 27139 27259
6 0.420091 |0.419201 |87.11 86.35 13.67 12.82 |35818 35204 928.3 967.7
7 0.432107 |0.431809 |91.24 90.34 5.573 5.397 |25846 25342 99.41 105.6
8

9

0.441621 |0.441588 |95.41 94.41 3.457 3.443 |21087 20648 24.91 25.01
0.448654 |0.448607 |97.17 96.08 3.195 3.170 |17005 16625 16.29 16.55
10 |0.454141 |0.454102 |97.63 96.45 3.126 3.101 (13747 13415 12.51 12.74
11 |0.458555 ]0.458523 ([97.17 95.90 3.104 3.080 (11152 10861 10.11 10.30
12 |0.462188 ]0.462160 |95.98 94.62 3.093 3.069 [9072 8816 8.365 8.536
13 0.465232 |0.465207 |94.15 92.70 3.085 3.061 [|7392 7166 7.046 7.196
14 10.467819 |0.467798 [91.78 90.25 3.079 3.056 |6025 5825 6.019 6.151
15 |0.470047 ]0.470029 |[88.94 87.32 3.074 3.051 |4905 4728 5.203 5.320
16 |0.471985 |0.471969 |85.66 83.97 3.070 3.048 |3983 3827 4.544 4.648
17 ]0.473687 |0.473673 |82.01 80.23 3.067 3.045 |3222 3084 4.002 4.096
18 ]0.475194 |0.475181 |78.00 76.15 3.065 3.043 |2591 2469 3.553 3.638
19 |0.476537 |0.476525 ([73.68 71.75 3.063 3.041 |2069 1962 3.175 3.252
20 |0.477741 |0.477731 |69.06 67.05 3.061 3.039 |1636 1542 2.855 2.925
21 |0.478828 |0.478819 |64.17 62.09 3.059 3.038 |1278 1196 2.581 2.643
22 |0.479814 |0.479805 |59.03 '56.87 3.058 3.036 |982.7 911.9 2.345 2.403
23 |0.480712 |0.480703 |53.65 51.41 3.056 3.035 |741.0 680.3 2.140 2.194
24 0.481533 |0.481525 |48.05 45.74 3.055 3.034 |544.6 493.3 1.961 2.010
25 10.482287 ]0.48228 42.24 39.85 3.054 3.034 |387.0 344.4 1.803 1.848
26 10.482982 10.482976 |36.26 33.80 3.096 3.076 |262.9 228.4 1.706 1.745
27 |0.483624 |0.483618 |30.05 27.52 3.058 3.037 |167.1 [140.2 1.544 1.584
28 0.484219 |0.484214 |23.68 21.07 3.052 3.032 |96.39 76.41 1.430 1.467
29 |0.484773 |0.484768 |17.14 14.47 3.051 3.031 |47.20 33.78 1.330 1.365
30 |0.485289 [0.485285 |10.64 8.050 3.051 3.031 |16.77 9.493 1.241 1.273
31 |0.485772 |0.485767 |4.193 3.030 3.050 3.030 |2.689 1.192 1.161 1.192

Here, we compare the size-dependent exponent (3.1) with ¢, =0.8416781 as in (2.5), called LL1 estimator,
with the size-dependent exponent c, =0.841244875548, called LL2 estimator, that by construction matches the

minimum ETA for twin prime squares over the range [1,10%]. The ETA (resp. WLS) measures are given in the

somewhat changed units of 10?2 (resp. 107 ™®). One observes that the LL2 estimator yields optimal size-
dependent exponents that outperform uniformly the ones from the LL1 estimator over the fixed ranges
[1,10°™], m=5,...,31.

For higher twin prime powers the convergence of the size-dependent GB with minimum ETA and WLS
estimators to the GB with exponent s is illustrated in Table 3.2. Here, the ETA (resp. WLS) GoF measures are
given in units of 107™? (resp. 107™®)). Over the finite ranges [1,10°™], m=10,15, 20, 25,30, s=3, 4, 5,8, the

size-dependent minimum WLS and ETA exponents increase to the expected limiting GB exponent s, and the fit
in the WLS and ETA GoF measures becomes better as s increases.
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Table 4. GB fit for first digit of higher twin prime powers

s= 3 4 5 8 3 4 5 8
m = minimum WLS exponents minimum ETA exponents
10 0.302802 0.227111 0.181692 0.113561 (0.302806 0.227062 0.181661 0.113549
15 0.313383 0.235042 0.188035 0.117523 (0.313380 0.235021 0.188022 0.117518
20 0.318504 0.238881 0.191106 0.119442 (0.318503 0.238869 0.191098 0.119439
25 0.321531 0.241150 0.192921 0.120576 |0.321530 0.241143 0.192916 0.120574
30 0.323531 0.242649 0.19412 0.121325 |0.323530 0.242644 0.194117 0.121324
m = WLS GoF measures ETA GoF measures
10 247.27 77.480 33.030 4.7037 1.3862 0.7592 0.4857 0.1793
15 103.82 32.888 13.464 2.0493 1.3626 0.7595 0.4784 0.1821
20 57.055 18.083 7.4042 1.1271 1.3575 0.7579 0.4772 0.1816
25 36.061 11.432 4.6816 0.7127 1.3554 0.7573 0.4773 0.1816
30 24.847 7.8787 3.2265 0.4913 1.3542 0.7574 0.4769 0.1815

4. Analytical first digit counting compatibility for twin prime powers

. . . N N .
The Tables 3 and 4 provide numerical support for the analytical approximation % ~ P::?om o) (d), which
T, "
holds with increased precision by growing value of m. Since «(10™,s,c) - s (m — ) this approximation
< (d)

suggests the asymptotic convergence
;" (10™)

- Ps‘ff‘ (d) (m — o). With this, the relative density of the first

digits of twin prime powers converges asymptotically to a GB with exponent s™*. Unfortunately, a rigorous proof
of this statement is not available, even conditionally on the truth of the Hardy-Littlewood conjecture. However, it is
possible to support its validity through application of the first digit counting compatibility criterion introduced and
applied in [11,12].

Recall its definition. Let {x,}, n>1, be an arbitrary integer sequence, and suppose that the asymptotic counting

function Q(N) as N — oo of this sequence exists. Further, let «(N) €[0,1] be a size-dependent exponent such

that the sequence of numbers generated by the power-law density x*™) has a GB first digit distribution
P\, (d) with exponent 1—a(N).

Definition 4.1. The generalized Benford law P2, (d) is counting compatible with the counting function Q(N)
N

if there exists a constant c(N) such that the generalized Benford counting function defined by c(N)- [x “™dx
2

is asymptotically equivalentto Q(N).

Let us apply this criterion to the sequence of twin prime powers. Starting point is the asymptotic counting function
(2.6) for twin primes, which give their total number in the inteval [1, N], denoted by Q(N). Itis given by

Q(N)=H, -N/In?(N), (N—>wx), H,=2. H% =1.320323632. 4.1

p=3 \F

Similarly, for any fixed positive integer s=>1, the number of twin prime powers p°® in the interval [1,N°],

denoted by Q,(N°®), follows the same asymptotic distribution
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Q.(N®*)=H, -N/In*(N), (N — ). 4.2)

This follows from the fact that p°® < N° if, and only if, one has p < N . In the notation of Definition 4.1, consider
the following slightly modified parametric GB size-dependent exponent that corresponds to (3.1), namely

a(N,s,c,a) =

w 7 a a>0,ce(0]). (4.3)

SN TR )

Theorem 4.1 (Counting compatibility of the GB for twin prime powers). For any fixed ce(01), any fixed
positive integer s>1,andany m=>1, set

a(m,s,c,a)=1-a(10",s,c,a) = %(1— a-(In(10™ —In° (10m))‘1). (4.4)
Then, the generalized Benford law Pf(Bm,S‘C‘a) (d),d =1,...,9, is counting compatible with the twin prime power
counting function (4.2) if, and only if, the parameter a =1. More precisely, the choice of the constant

e-H,
C(N,S) = TZ(N) (45)

NS
implies that the generalized Benford counting function L (N®)=c(N,s)- | x *CN®¥dx is asymptotically
2

equivalentto Q,(N°)~H,-N/In*(N) (N — o) if, and only if, one has a=1.

Proof. Counting compatibility holds provided the following limiting condition holds:

LN “6)
N—= H, - N/In*(N)
Using (4.4) one obtains the equivalent asymptotic formula
(N S) - €- H2 N s(1-a(N,s,c,a)) _ e- HE Nl—/}(N,c,a)
* In?(N)-s-(@1-a(N,s,c,a)) In>(N)-(1— B(N,c,a)) “7)

_H,-N In(N)-In°(N) ex ~(@=DIn(N)+In°(N)
" In’(N) In(N)—In°(N)-a P IN(N) —In°(N)

Clearly, the factor

fage— SND  InN)-Int(N) | f @-DIn(N) +In°(N)
NUTH, ONJINZ(N)  In(N)—In°(N)-a In(N)—In°(N)

convergesto 1 as N —oo for any fixed ce(0,1) if, and only if, one has a=1, and in this case counting

compatibility holds. Moreover, the form (4.4) of the GB exponent in Definition 4.1 follows by setting N =10° in
Equation (4.3). The result is shown. ¢
Good values of c e (0,1) can be obtained through optimization. As an example, the size-dependent exponent (4.3)

with ¢=0.8416781 in (2.5) does the job. As shown in Table 2, this estimator is reasonable over the finite ranges
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of twin primes [1,10™], m=5,...,31. No attempt has been made to find similar good values of ¢ (0,1) for twin

prime powers higher than twin prime squares in Section 3.

Appendix: Tables of first digit distributions for the first prime in twin prime pairs

Based on the recursive relation (2.3), the computation of 1} (d), m=5,...,16, is straightforward by using the Table
from Nicely [18]. These numbers are listed in Table 5.

Table 5. First digit distribution of twin primes up to 10*, k =5, ...,16

k 5 6 7 8 9 10 11
sample size 1'224 8'169 58'980 440'312 3'424'506 27'412'679 224'376'048
/ first digit

1 172 1'108 7'810 56'237 429'296 3'392'831 27'489'251
2 151 985 7'046 52'531 405'640 3'227'743 26'274'262
3 148 958 6'886 50'747 392'000 3'126'294 25'527'383
4 141 902 6'505 48'853 381290 3'055'018 25'001'993
5 128 894 6'347 47'804 373'935 3'000'178 24'590'893
6 116 846 6'189 47'097 367'664 2'953'416 24'254'048
7 116 821 6'180 46'164 362'047 2'916'062 23'976'946
8 129 835 6'084 45'724 358'235 2'885'269 23'739'770
9 123 820 5'933 45'155 354'399 2'855'868 23'521'502
k 12 13 14 15 16

sample size [1'870'585'220 |15'834'664'872 {135'780'321'665 |1'177'209'242'304 |10'304'195'697'298
/ first digit

1 227'197'856 1'909'383'579 |16'273'581'482 [140'351'660'071 [1'222'900'721'441
2 218'075'309 1'839'065'151 |15'718'887'019 [135'901'489'797 [1'186'660'986'967
3 212'459'401 1'795'530'692 |15'374'094'333 [133'127'936'873 [1'164'011'766'240
4 208'406'589 1'764'067'516 |15'125'101'703 [131'120'433'445 |1'147'594'079'302
5 205'285'512 1'739'634'993 |14'931'051'942 [129'553'790'751 [1'134'760'621'160
6 202'731'495 1'719'763'349 (14'772'776'796 |128'272'594'921 1'124'253'391'604
7 200'581'005 1'702'963'537 |14'638'994'161 [127'190'543'411 [1'115'373'873'144
8 198'729'069 1'688'474'319 |14'523'564'595 [126'256'201'836 [1'107'697'639'212
9 197'118'984 [1'675'781'736 (14'422'269'634 ]125'434'591'199 |1'100'942'618'228
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