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Once upon a time, there was the evolution of all life on Earth. Let me tell the simplified
version of this story and how to put this into figures called phylogenies, before moving to
the more complex details. The formation of the Earth began approximately 4.5 billion
years ago (Dalrymple 2001). From an evolutionary biologists’ point of view, this was a dull
time, until the first living organism appeared.

This First Universal Common Ancestor (FUCA) came into existence at least 3.48 billion
years ago (Noffke et al. 2013). FUCA may not have been alone, but these other early life
forms went extinct 1 and are ignored in this story . We can depict the evolutionary history
of FUCA at that point in time with figure 1.1.

Figure 1.1 | Evolutionary history of the First Universal Common Ancestor (FUCA). Time goes from past (left)
towards the present (right).

One unknown day, the descendants of FUCA became dissimilar enough to say that
the one species called FUCA gave rise to two species (note the difficulty in determining
what a species is at that time!). This event doubled the biodiversity on Earth. The two
species that FUCA evolved into will be called species A and B. Species A and B are sister
species. We can depict the evolutionary history of these two species in figure 1.2.

Figure 1.2 | Evolutionary history of the two descendants of FUCA. Time goes from past (left) towards the present
(right).

Both species A and B have their unknown histories. One of them may have gone
extinct, as extinction is a common event: it is estimated that more than 99% of all species
that has ever lived on Earth has gone extinct (Newman 1997). Alternatively, they may
have given rise to new species, but these are just as likely to go extinct. For this story, we
will assume A and/or the clade of its descendant species went extinct and that species
B created a sister species C. Species B and C gave rise to all contemporary biodiversity.
This ancestor of species B and C is called the Last Universal Common Ancestor, or LUCA.
LUCA is estimated to have lived between 3.48 (Noffke et al. 2013) and 4.5 (Betts et al. 2018)
billions of years ago. We can depict the evolutionary history of LUCA in figure 1.3. Here,
billions of years ago, is where the story ends and we will move on to the present.

1by definition!
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Figure 1.3 | Evolutionary history of the three descendants of FUCA, of which one (A) went extinct. Assuming
B and C gave rise to all contemporary biodiversity, the Last Universal Common Ancestor (LUCA) existed at
timepoint t2. Time goes from past (left) towards the present (right).

The idea that all life on Earth is related was first posed by Charles Darwin in his book
’On the Origin of Species’ in 1859 (Darwin 1859). His first sketch of an evolutionary tree is
shown in figure 1.4.

Figure 1.4 | Charles Darwin’s first sketch of an evolutionary tree (1837).

The biodiversity derived from the first life on Earth is important to us humans (apart
from that is has created us) for many reasons. One of these is that biodiversity usually
improves ecosystem services (Cardinale et al. 2012), where ecosystem services are features
of biological systems that are positive for human well-being, for example food, carbon
sequestration, waste decomposition and pest control. Therefore, biodiversity is linked to
human well-being. Biodiversity is considered so important that the European Union has
an explicit Biodiversity Strategy, which aims to halt the loss of biodiversity (see https:
//ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm ).

https://ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm
https://ec.europa.eu/environment/nature/biodiversity/strategy/index_en.htm
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Figure 1.5 | Left: a diversity-function relationship found to be typical from hundreds of studies. The red line
represents an average, where the gray polygon represents a 95% confidence interval. The red dots show the
lower and upper limit for monocultures. From Cardinale et al. 2012. Right: Darwin’s finches, by John Gould.

Speciation is the process that increases biological diversity. This process is studied
from multiple angles; among others, we can study the mechanism (’what causes a spe-
ciation event?’) or we can study the patterns of many of such events (’is speciation rate
constant through time?’). Darwin’s finches (see figure 1.5) represent an iconic example
of speciation with 25,000 results on Google Scholar. There are many suggested mech-
anisms underlying speciation events, such as reproductive incompatibilities arising in
geographical isolation (e.g. Mayr 1942), ecological factors (e.g. Lack 1947) causing diver-
gent selection, and sexual selection resulting in assortative mating. However, listing and
explaining all mechanisms is beyond the scope of this thesis. In this thesis I assume speci-
ation occurs and I focus on the questions what impact it has on evolutionary relationships
between species and how we can infer speciation events from observed evolutionary
relationships, as encoded in a phylogenetic tree. Getting such a phylogeny is not trivial,
as I will discuss below. But once we have such a phylogeny, we can ask many question
such as ’How often do speciation and extinction events take place?’ ’Are speciation and
extinctions rates constant, or do they change?’, ’What causes a change in the speciation
rate or the extinction rate?’ or ’Is there an upper limit to the number of species?’.

There are two methods to study speciation patterns in evolutionary time: the use of
fossils or the use of molecular phylogenies.
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Figure 1.6 | Left: El Graeco fossil, from Fuss et al. 2017. Right: Evolution of the Homininae, based on Stringer
2012

Using fossils is a classic way to look back in evolutionary time. Fossils show a glimpse
of the biodiversity in the past. We can deduce the age of fossils, by dating the rock layers
they are found in. Using fossils has its limitations. First, it is mostly species with hard body
parts that fossilize. Even in such species, organisms are only rarely preserved, and only
a fraction of preserved fossils are preserved under ideal circumstances. Of these fossils,
only a fraction is discovered. One example of a famous fossil is ’El Graeco’, which may be
the oldest known hominin (Fuss et al. 2017), where hominins are the tribe (taxonomic
group) we Homo sapiens share with the Panini.

Figure 1.7 | Left: phylogeny of the human influenza virus type A subtype H3, from Bush et al. 1999. Right: the
evolutionary history of sauropod dinosaurs, from Upchurch 1995

Using molecular phylogenies is the modern way to look back in evolutionary time. It
is the use of heritable molecules (for example DNA, RNA, or proteins) of contemporary
species to infer phylogenies. The field of phylogenetics is the research discipline that in-
tends to infer the most accurate phylogenies possible, regarding topology, speciation and
extinction times, optionally adding morphological data and/or fossil data. Phylogenetics
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is applied in many settings, among others, species classification, forensics, conservation
ecology and epidemiology (Lam et al. 2010).

One example of the importance of an accurate phylogenetic tree is demonstrated
in Bush et al. 1999. This study investigated which loci of the H3 hemagglutinin surface
protein are under selection, by contrasting nonsynonymous and synonymous mutation
rates along the branches of a phylogeny. They noted that most selection rates were
either below or above the statistical threshold depending on the phylogeny. This study
contributed to recommendations on the composition of influenza virus vaccines.

Figure 1.8 | Left: The ED (evolutionary distinctiveness) of species A is higher than that of species B or C, as more
evolutionary history will be lost when that species goes extinct. Right: The Largetooth Sawfish (Pristis pristis) is
at number 1 of the EDGE (ED = ’Evolutionary Distinctiveness’, GE = Globally Endangered status) list, with an
EDGE Score of 7.38 and an ED of 99.298.

Another example of the importance of an accurate phylogenetic tree comes from
conservation biology, in which phylogenies are used to calculate an EDGE (’Evolutionarily
Distinct and Globally Endangered’) score. Species with a high EDGE score are prioritized
in conservation. To calculate an EDGE score, one needs a metric of evolutionary distinc-
tiveness (’ED’) and globally ’endangeredness’ (’GE’). The GE score is a conservational
status, ranging from zero (’Least Concern’) to four (’Critically Endangered’). The ED
embodies the amount of evolutionary history lost if the species went go extinct, which
can be calculated from a (hopefully accurate) phylogeny.

Phylogenetics has taken a huge flight, due to the massively increased computational
power and techniques. A first milestone in this field is the work of Felsenstein in 1980,
creating (and still maintaining!) PHYLIP (Felsenstein 1981), the first software package for
classical phylogenetic analysis. Another milestone is the Metropolis-Hasting algorithm,
which allowed Bayesian phylogenetics to thrive, resulting in contemporary tools such as
BEAST (Drummond & Rambaut 2007), BEAST2 (Bouckaert et al. 2019) (of which more
below), MrBayes (Huelsenbeck & Ronquist 2001) and RevBayes (Höhna et al. 2016).
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Figure 1.9 | Left: PHYLIP logo. Center: BEAST2 logo. Right: BEAST2 example output

A clear example of the power of modern phylogenetics, is the Tree Of Life. The Tree Of
Life is based on the proteome of 3,083 species. A proteome of a species consists of all the
proteins found within that species. To be able to compare between different species, the
researchers used part of the proteome that is common in most of these species, which
consisted of 2,596 amino-acids. To create the Tree of Life, it took 3,840 computational
hours on a modern supercomputer (Hug et al. 2016).

Figure 1.10 | Tree of Life, from Hug et al. 2016

To create such a tree from protein sequences, one has to specify an evolutionary
model. This evolutionary model embodies our set of assumptions, such as the way a
protein sequence evolves (also called the site model), the rate(s) at which this happens
(the clock model) and the way in which a branching/speciation event takes place (the
tree model). For example, the amino acids of the Tree Of Life are assumed to change over
time according to the LG model (Le & Gascuel 2008). The speeds at which amino acids
change to others are called the transition rates. The LG model is a model for amino acid
transitions, which uses the average rates found in nature.

There are many evolutionary models to choose from, and selecting which one to use
is hard, due to the many sets of assumptions to choose from. In general, modelers are
looking for that set of assumptions that is as simple as possible, but not simpler. And
even then, sometimes an overly simplistic model is still picked, due to computational
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constraints.
Ideally, one would like to have a rational way to select an evolutionary model that is as

simple as possible, but not simpler. Model comparison algorithms have been developed
that select the evolutionary model that is most likely to have generated the data, without
being overly complex. The idea is that the best evolutionary model should result in the
most accurate phylogenetic trees.

Because model comparison is hard, there have been multiple studies investigating
the effect of picking the wrong evolutionary models.

Figure 1.11 | Figure from Revell et al. 2005. Left: true tree. Middle: inferred tree, inferred using the generative
model (i.e. the model that generated the true tree) Right: inferred tree, inferred using an inference model that is
simpler than the generative model

One example that demonstrates the effect of using a too simple inference model
is provided by Revell and colleagues (Revell et al. 2005). They first simulated many
phylogenies. From those phylogenies, they simulated DNA sequences for each of the
virtual species. DNA is the heritable material all life on Earth possesses, which consists
of a sequence of the four DNA nucleotides. In the simulation of the DNA sequences,
the experimenters used different DNA substitution models. A DNA substitution model
embodies the transition rates of these nucleotides (see figure 1.19 for an example). From
the simulated DNA sequences, the researchers inferred phylogenies again, with either
the correct or a simpler DNA substitution model. Ideally, the inferred phylogenies match
the phylogenies the alignments are based upon. They found that when the DNA model
is the correct one, inference of the phylogenies is not flawless but satisfactory. However,
when using an overly simplistic DNA model, the inferred tree shows a slowdown in their
speciation rates, even when the original tree was simulated with a constant speciation
rate. This study shows that a decreasing speciation rate may be attributed to an overly
simplistic DNA model, instead of an interesting biological process.
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Figure 1.12 | Left: example lineage-through-time plots, for different speciation completion rates: yellow = 0.01,
red = 0.1, green = 1.0, blue = 10. Note the slowdown in the accumulation of new lineages when speciation
completion rate is lowered. Right: number of species through time plots for four bird phylogenies, (after
Phillimore & Price 2008) Both figures are adapted from Etienne & Rosindell 2012

A more recent example that demonstrates the effect of using an overly simple infer-
ence model is the study by Duchêne and co-workers (Duchêne et al. 2014), who looked
into the consequences of assuming a wrong clock model. A clock model embodies our
assumptions regarding the mutation rates in the histories of different taxa. The simplest
clock model, called the strict clock model, assumes these mutation rates are equal across
all taxa. Using a wrong clock model has a profound impact on the inferred phylogenetic
trees, unless we can specify the timing of some early speciation events (Duchêne et al.
2014).

Figure 1.13 | Phylogeny with speciation events labelled A to D, where B is the earliest speciation event. Figure
from Duchêne et al. 2014.

The tree model is the most important part of the evolutionary model needed for
phylogenetic inference, with regard to speciation. The assumptions of a tree model are
collectively called the tree prior, where ’prior’ refers to the knowledge known before
creating a phylogeny. The tree prior specifies the probability of processes that determine
the shape of a tree. These two processes are (1) the formation of a new branch, and (2) the
termination of an existing branch. In the context of speciation, we call these two events a
speciation and an extinction event respectively.

There are two standard tree models, called the Yule and Birth-Death model. The
most basic speciation model is the Yule model (Yule 1925), which assumes that speci-
ation is constant and there is no extinction. Although extinction is a well-established
phenomenon, the utility of the Yule model is its simplicity: it is the simplest evolutionary
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model to work with, and the computation of the probability of a tree under the Yule pro-
cess is very fast, making it a good first step in an evolutionary experiment. Similar to the
simplest models of bacterial growth, the Yule model predicts that the expected number of
species grows exponentially through time. Because the Yule model was later classified as
a Birth-Death model without extinction, it is nowadays also called the Pure-Birth model.

Figure 1.14 | Left: An example Yule tree Right: A lineages-through-time plot of the example Yule tree. In all cases,
time goes from past (left) towards the present (right).

The Birth-Death model (Nee S., May R. M. & Harvey P. H. 1994) is an extension of the
Yule model, as it adds extinction. Similar to the constant birth rate, the extinction rate is
assumed to be constant as well. As a consequence, the BD model predicts two outcomes:
if the speciation rate exceeds the extinction rate, the expected number of extant species
grows exponentially through time. The other way around, however, when the extinction
rate exceeds the speciation rate, the expected number of lineages is expected to decline
exponentially. It is clear that exponential growth in the expected number of lineages
is biologically nonsensical. To state the obvious: a finite area (Earth) results in a finite
number of species. Applying the BD model to molecular data already shows that it does
not always hold, as shown by figure 1.15.

Figure 1.15 | Left: An example Birth-Death tree Right: A lineages-through-time plot of the example Birth-Death
tree. In all cases, time goes from past (left) towards the present (right).
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Figure 1.16 | An LTT plot for bird/lizards showing a slowdown in speciation rate, adapted from Etienne et al.
2012. Because the number of lineages on the y-axis are plotted on a logarithmic scale, exponential growth would
show as a straight line.

A recent study investigating the effect of picking a wrong standard tree prior was
provided by Sarver and colleagues (Sarver et al. 2019). In this study, they first simulated
trees using either a Yule or a birth-death tree model, after which they simulated an
alignment from that phylogeny using two different standard clock models. From these
alignments, they inferred the original trees using all of the four different clock and tree
prior combinations. They showed that, regardless of which priors are used, the estimated
speciation and diversification rates from the inferred trees are similar to those of the
original tree.

Figure 1.17 | Estimation of the speciation rate (λ) on inferred trees using 4 evolutionary models. The original
trees had 100 taxa and were simulated with a strict clock model and BD tree model, with a speciation rate of
1.104. Adapted from Sarver et al. 2019.

This thesis investigates the effect of picking a wrong standard tree prior, when the tree
is generated by a non-standard, novel tree model. I will describe one new biologically
relevant tree model, as well as the re-usable framework to determine the effect of using a
standard tree prior.

This novel and non-standard tree model is the multiple-birth death (MBD) model
by Laudanno and colleagues (unpublished). While the standard BD models assume
that a speciation event occurs in one species only at a time, the MBD models allows
for speciation events to occur in multiple species at the same time. The biological idea
behind this model, is that when a habitat (lake or mountain range) gets split into two, this
may trigger speciation events in both communities at the same time. This mechanism is
posed as an explanation for high biodiversity in the African rift lake Tanganyika, where
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the water level rises and falls with ice ages, splitting up and merging the lake again and
again, triggering co-occurring speciation events at each change.

This thesis investigates the effect of picking a wrong standard tree prior, when the
tree is generated by a non-standard tree model, using the phylogenetic software called
BEAST2 (Bouckaert et al. 2019), an abbreviation of ’Bayesian Evolutionary Analysis by
Sampling Trees’.

Figure 1.18 | BEAUti, after having picked a DNA alignment

We chose to use BEAST2 (Bouckaert et al. 2019) over other phylogenetic software,
because BEAST2 is popular, beginner-friendly, flexible, has a package manager and a
modular well-designed software architecture. The beginner-friendliness comes from the
BEAST2 program called BEAUti, in which the user can set up his/her evolutionary model
from a graphical user interface. There are many (in the order of dozens to hundreds)
options to set up an evolutionary inference model. These choices are categorized in a site
model, clock model and a tree prior.

Figure 1.19 | Classification of nucleotide substitutions. The simplest nucleotide substitution model (JC69)
assumes all 6 rates are equal, whereas the most complex one (GTR) allows all of these to differ.

A site model embodies the way the characters - nucleotides in our case of DNA
sequences - change over time. One can specify the proportion of nucleotides that changes,
or let it be estimated. Furthermore, one can specify how dissimilar different transition
rates may be between different nucleotides. Most essential is the nucleotide substitution
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model, which entails the relation between the twelve transition rates from any of the
four nucleotides to any of the other three nucleotides. The simplest model (called JC69)
assumes all are equal, whereas the most complex model (called GTR) assumes that all
may differ. The standard BEAST2 software has four site models, but there is a BEAST2
package that contains 18 additional nucleotide substitution models.

Figure 1.20 | Specifying a site model in BEAUti

To give an idea of the flexibility of BEAST2, I will zoom in on specifying one simple
aspect of the inference model: the proportion invariants. The proportion invariants is the
proportion, ranging from a value of zero (for ’none’) to one (for ’all’), of nucleotides that
remains unchanged throughout the evolutionary history. This proportion can either be
set to a certain value, or be estimated. If the value is set to a certain value, BEAST2 assumes
this as the truth. If the value is to be estimated by BEAST2, then one must additionally
specify an initial value and a distribution how probable the different values are. By default,
BEAST2 assumes a uniform distribution, that assigns an equal probability to all values
between (and including) zero and one. Instead of using a uniform distribution, there are
ten other distributions that can be picked as well, allowing, for example, to assign higher
probabilities to certain proportions. So, for one simple value, there is already a plethora
of options, and there are even more that I will not discuss. Within BEAST2, this liberty is
the rule, instead of the exception, rendering it very flexible.

The clock model embodies how the mutation rates vary between different species.
The simplest clock model, called the strict clock, assumes that mutation rates are identical
in all species at all times. Two models (called relaxed-clock models) assume that mutation
rates between species are independent (yet all rates are from one probability distribution),
but stay constant after each species’ inception. The last standard clock model (called a
random local clock) assumes that all species have the same mutation rate at any time, yet
the mutation rates varies through time.

Figure 1.21 | Specifying a clock model in BEAUti
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The tree prior specifies how a tree is built up, or, in our context, how speciation takes
place in time, at the macro-evolutionary level. In our context, these are the Yule and
Birth-Death model, which I already described earlier.

Figure 1.22 | Specifying a tree prior in BEAUti

This thesis investigates the effect of picking a wrong standard tree prior, when the tree
is generated by a non-standard tree model. It does so, by using the same experimental
setup, called ’pirouette’, which is described in chapter 3. This framework is built up a
foundation of R packages called ’babette’, which is described in chapter 2.

Figure 1.23 | Environment that follows an unknown speciation model.

In the end, we want to know how well we can infer a phylogeny from molecular data
found in the field. That field, outside, follows an unknown speciation model. Rather than
just hope that our inference is robust to whatever novel model we throw at it, with this
thesis I have aimed at providing methodology that can assess that robustness.
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ABSTRACT

1. In the field of phylogenetics, BEAST2 is one of the most widely used software tools. It
comes with the graphical user interfaces BEAUti 2, DensiTree and Tracer, to create BEAST2
configuration files and to interpret BEAST2’s output files. However, when many different
alignments or model setups are required, a workflow of graphical user interfaces is cumber-
some.
2. Here, we present a free, libre and open-source package, babette: ’BEAUti 2, BEAST2
and Tracer for R’, for the R programming language. babette creates BEAST2 input files,
runs BEAST2 and parses its results, all from an R function call.
3. We describe babette’s usage and the novel functionality it provides compared to the
original tools and we give some examples.
4. As babette is designed to be of high quality and extendable, we conclude by describing
the further development of the package.

Samenvatting

1. In de fylogenetica is BEAST2 een van de meest gebruikte hulpprogramma’s. Het is
gebundeld met de grafische gebruiksinterface BEAUti 2, DensiTree en Tracer, om BEAST2-
configuratiebestanden te maken en om BEAST2-outputbestanden te interpreteren. Echter,
als veel verschillende aligneringen of modelopzetten nodig zijn, is een werkvolgorde van
meerdere grafische gebruiksinterfaces onhandig.
2. Hier presenteren we een gratis, vrij en open-source package, babette: ’BEAUti 2, BEAST2
en Tracer voor R’, voor de programmeertaal R. babette schrijft BEAST2-configuratiebestanden,
start BEAST2 and verwerkt de resultaten, alles met een enkele R functie-aanroep.
3. We beschrijven hoe babette te gebruiken is en de nieuwe mogelijkheden die het biedt
vergeleken met de originele programma’s, aan de hand van enkele voorbeelden.
4. Omdat babette ontworpen is voor uitbreidbaarheid en hoge kwaliteit, sluiten we af
met het beschrijven van de verdere ontwikkeling van dit package.

Keywords: computational biology, evolution, phylogenetics, BEAST2, R

2.1. INTRODUCTION

Phylogenies are commonly used to explore evolutionary hypotheses. Not only can phy-
logenies show us how species (or other evolutionary units) are related to each other,
but we can also estimate relevant parameters such as extinction and speciation rates
from them. There are many phylogenetics tools available to obtain an estimate of the
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phylogeny of a given set of species. BEAST2 (Bouckaert et al. 2014) is one of the most
widely used ones. It uses a Bayesian statistical framework to estimate the joint posterior
distribution of phylogenies and model parameters, from one or more DNA, RNA or amino
acid alignments (see figure 1 for an overview of the workflow).

BEAST2 has a graphical and a command-line interface, that both need a configuration
file containing alignments and model parameters. BEAST2 is bundled with BEAUti 2
(Drummond et al. 2012) (’BEAUti’ from now on), a desktop application to create a BEAST2
configuration file. BEAUti has a user-friendly graphical user interface, with helpful default
settings. As such, BEAUti is an attractive alternative to manual and error-prone editing of
BEAST2 configuration files.

However, BEAUti cannot be called from a command-line script. This implies that
when the user wants to explore the consequences of various settings, this must be done
manually. This is the manageable workflow when using a few alignments and doing
a superficial analysis of sensitivity of the reconstructed tree to model settings. For ex-
ploring many trees (for instance from simulations), for a sliding-window analysis on a
genomic alignment, or for a more thorough sensitivity analysis, one would like to loop
through multiple (simulated or shortened) alignments, nucleotide substitution models,
clock models and tree priors. One such tool to replace BEAUti is BEASTmasteR (Matzke
2015), which focuses on morphological traits and tip-dating, but also supports DNA data.
BEASTmasteR, however, requires hundreds of lines of R code to setup the BEAST2 model
configuration and a Microsoft Excel file to specify alignment files.

BEAST2 is also associated with Tracer (Rambaut & Drummond 2007) and DensiTree
(Bouckaert & Heled 2014). Both are desktop applications to analyze the output of BEAST2,
each with a user-friendly graphical user interface. Tracer’s purpose is to analyze the
parameter estimates generated from a (BEAST1 and) BEAST2 run. It shows, among
others, the effective sample size (ESS) and time series (’the trace’, hence the name) of each
variable in the MCMC run. Both ESS and trace are needed to assess the strength of the
inference. DensiTree visualizes the phylogenies of a BEAST2 posterior, with many options
to improve the simultaneous display of many phylogenies.

However, for exploring the output of many BEAST2 runs, one would like a script to
collect all parameters’ ESSes, parameter traces and posterior phylogenies. There is no
single package that offers a complete solution, but examples of R packages that offer a
partial solution are rBEAST (Ratmann 2015) and RBeast (Faria & Suchard 2015). RBeast
provides some plotting options and parsing of BEAST2 output files, but the plotting
functions are too specific for general use. rBEAST was developed to test a particular
biological hypothesis (Ratmann et al. 2016), and hence was not designed for general use.

Here, we present babette: ’BEAUti 2, BEAST2 and Tracer for R’, which creates BEAST2
(v.2.4.7) configuration files, runs BEAST2, and analyzes its results, all from an R function
call. This will save time, tedious mouse clicking and reduces the chances of errors in
such repetitive actions. The interface of babette mimics the tools it is based on. This
familiarity helps both beginner and experienced BEAST2 users to make the step from
those tools to babette. babette enables the creation of a single-script pipeline from
sequence alignments to posterior analysis in R.
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2.2. DESCRIPTION

babette is written in the R programming language (R Core Team 2013) and enables the
full BEAST2 workflow from a single R function call, in a similar way to what subsequent
usage of BEAUti, DensiTree and Tracer would produce. babette’s main function is
bbt_run, which configures BEAST2, runs it and parses its output. bbt_run needs at
least the name of a FASTA file containing a DNA alignment. The default settings for the
other arguments of bbt_run are identical to BEAUti’s and BEAST2’s default settings. Per
alignment, a site model, clock model and tree prior can be chosen. Multiple alignments
can be used, each with its own (unlinked) site model, clock model and tree prior.

babette currently has 108 exported functions to set up a BEAST2 configuration file.
babette can currently handle the majority of BEAUti use cases. Because of BEAUti’s
high number of plugins, babette uses a software architecture that is designed to be
extended. Furthermore, babette has 13 exported functions to run and help run BEAST2.
One function is used to run BEAST2, another one installs BEAST2 to a default location.
Finally, babette has 21 exported function to parse the BEAST2 output files and analyze
the created posterior. babette gives the same ESSes and summary statistics as Tracer.
The data is formatted such that it can easily be visualized using ggplot2 (for a trace,
similar to Tracer) or phangorn (Schliep 2011) (for the phylogenies in a posterior, similar
to DensiTree).

Currently, babette does not contain all functionality in BEAUti, BEAST2 and their
many plug-ins, because these tools themselves also change in time. babette currently
works only on DNA data, because this is the most common use case. Nevertheless,
babette provides the majority of default tree priors and supports the most important
command-line arguments of BEAST2, provides the core Tracer analysis options, and has
the most basic subset of plotting options of DensiTree. Up till now, the babette features
implemented are those requested by users. Further extension of babette will be based
on future user requests.

2.3. USAGE

babette can be installed easily from CRAN:

install . packages (" babette ")

For the most up-to-date version, one can download and install the package from babette’s
GitHub repository:

devtools :: install _ github (" richelbilderbeek / babette ")

To start using babette, load its functions in the global namespace first:

library ( babette )

Because babette calls BEAST2, BEAST2 must be installed. This can be done from R, using:

install _ beast2 ()

This will install BEAST2 to the default user data folder, but a different path can be specified
as well. BEAUti, and likewise babette, needs at least a FASTA filename to produce a
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BEAST2 configuration file. In BEAUti, this is achieved by loading a FASTA file, then saving
an output file using a common save file dialog. After this, BEAST2 needs to be applied to
the created configuration file. It creates multiple files storing the posterior. These output
files must be parsed by either Tracer or DensiTree. In babette, all this is achieved by:

out <- bbt_run(fasta_ filenames = " anthus _aco.fas")

This code will create a (temporary) BEAST2 configuration file, from the FASTA file with
name anthus_aco.fas (which is supplied with the package, from Van Els & Noram-
buena 2018), using the same default settings as BEAUti, which are, among others, a
Jukes-Cantor site model, a strict clock, and a Yule birth tree prior. babette will then exe-
cute BEAST2 using that file, and parses the output. The returned data structure, named
out, is a list of parameter estimates (called estimates), posterior phylogenies (called
anthus_aco_trees, named after the alignment’s name) and MCMC operator perfor-
mance (operators). An example of using a different site model, clock model and tree
prior is:

out <- bbt_run(
fasta _ filenames = " anthus _aco.fas",
site_ models = create _hky_site_model (),
clock _ models = create _rln_ clock_model (),
tree_ priors = create _bd_tree_prior ()

)

This code uses an HKY site model, a relaxed log-normal clock model and a birth-death
tree prior, each with their default settings in BEAUti. Table 2.1 shows an overview of all
functions to create site models, clock models and tree priors. Note that the arguments’
names site_models, clock_models and tree_priors are plural, as each of these can
be (a list of) one or more elements. Each of these arguments must have the same number
of elements, so that each alignment has its own site model, clock model and tree prior.
An example of two alignments, each with its own site model, is:

out <- bbt_run(
fasta _ filenames = c(

" anthus _aco.fas",
" anthus _nd2.fas"

),
site_ models = list(

create _tn93_site_model (),
create _gtr_site_model ()

)
)

babette also uses the same default prior distributions as BEAUti for each of the site
models, clock models and tree priors. For example, by default, a Yule tree prior assumes
that the birth rate follows a uniform distribution, from minus infinity to plus infinity.
One may prefer a different distribution instead. Here is an example how to specify an
exponential distribution for the birth rate in a Yule tree prior in babette:

out <- bbt_run(
fasta _ filenames = " anthus _aco.fas",
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tree_ priors = create _yule_tree_prior(
birth_rate_ distr = create _exp_distr ()

)
)

In this same example, one may specify the initial shape parameters of the exponential
distribution. In BEAST2’s implementation, an exponential distribution has one shape
parameter: its mean, which can be set to any value with BEAUti. To set the mean value of
the exponential distribution to a fixed (non-estimated) value, do:

out <- bbt_run(
fasta_ filenames = " anthus _aco.fas",
tree_ priors = create _yule_tree_ prior(

birth_rate_ distr = create _exp_distr(
mean = create _mean_param(

value = 1.0,
estimate = FALSE

)
)

)
)

babette also supports node dating. Like BEAUti, one can specify Most Recent Common
Ancestor (’MRCA’) priors. An MRCA prior allows to specify taxa having a common ancestor,
including a distribution for the date of that ancestor. With babette, this is achieved as
follows:

out <- bbt_run(
fasta_ filenames = " anthus _aco.fas",
mrca_ priors = create _mrca_prior(

taxa_names = sample (get_taxa_names(" anthus _aco.fas"), size
= 2),

alignment _id = get_ alignment _id(" anthus _aco.fas"),
is_ monophyletic = TRUE ,
mrca_ distr = create _ normal _ distr(

mean = create _mean_param(value = 15.0 , estimate = FALSE),
sigma = create _ sigma _param(value = 0.025 , estimate =

FALSE)
)

)
)

Instead of dating the ancestor of two random taxa, any subset of taxa can be selected,
and multiple sets are allowed. babette allows for the same core functionality as Tracer to
show the values of the parameter estimates sampled in the BEAST2 run. This is called the
"trace" (hence the name). The start of the trace, called the "burn-in", is usually discarded,
as an MCMC algorithm (such as used by BEAST2) first has to converge to its equilibrium
and hence the parameter estimates are not representative. By default, Tracer discards
the first 10% of all the parameter estimates. To remove a 20% burn-in from all parameter
estimates in babette, the following code can be used:
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traces <- remove _burn_ins(
traces = out$estimates ,
burn_in_ fraction = 0.2

)

Tracer shows the ESSes of each posterior’s variables. These ESSes are important to deter-
mine the strength of the inference. As a rule of thumb, an ESS of 200 is acceptable for any
parameter estimate. To calculate the effective sample sizes (of all estimated variables) in
babette:

esses <- calc_ esses(
traces = traces ,
sample _ interval = 1000

)

Tracer displays multiple summary statistics for each estimated variable: the mean and
its standard error, standard deviation, variance, median, mode, geometric mean, 95%
highest posterior density interval, auto-correlation time and effective sample size. It
displays these statistics per variable. In babette, these summary statistics are collected
for all estimated parameters at once:

sum_stats <- calc_ summary _ stats(
traces = traces ,
sample _ interval = 1000

)

babette allows for the same functionality as DensiTree. DensiTree displays the phyloge-
nies in a posterior at the same time scale, drawn one over one another, allowing to see
the uncertainty in topology and branch lengths. The posterior phylogenies are stored as
anthus_aco_trees in the object out, and can be plotted as follows:

plot_ densitree ( phylos = out$ anthus _aco_ trees)

Instead of running the full pipeline, babette also allows to only create a BEAST2 configu-
ration file. To create a BEAST2 configuration file, with all settings to default, use:

create _ beast2 _ input_file(
input _ filenames = babette :: get_ babette _path(" anthus _aco.fas")

,
output _ filename = " beast2 .xml"

)

This file can then be loaded and edited by BEAUti, run by BEAST2, or run by babette:

run_ beast2 (
input _ filename = " beast2 .xml",
output _log_ filename = "run.log",
output _trees _ filenames = " posterior .trees",
output _state _ filename = "final.xml.state"

)

run_beast2 is a function that only runs BEAST2, and does not parse the output files
(unlike bbt_run). In the example above, we specify the names of the desired BEAST2
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output files explicitly, and these will be created in the R working directory, after which they
can be inspected with other tools, or used to continue a BEAST2 run. When the names of
these files are not specified, both bbt_run and run_beast2 put these files in the default
temporary folder (as obtained from temp.dir()) to keep the working directory clean of
intermediate files.

2.4. BABETTE RESOURCES

babette is free, libre and open source software available at
http://github.com/richelbilderbeek/babette
and is licensed under the GNU General Public License v3.0. babette uses the Travis

CI (https://travis-ci.org) continuous integration service, which is known to signif-
icantly increase the number of bugs exposed (Vasilescu et al. 2015) and increases the
speed at which new features are added (Vasilescu et al. 2015). babette has a 100% code
coverage, which correlates with code quality (Del Frate et al. 1995, Horgan et al. 1994).
babette follows Hadley Wickham’s style guide (Wickham 2015), which improves software
quality (Fang 2001). babette depends on multiple packages, which are ape (Paradis et al.
2004), beautier (Bilderbeek 2018b), beastier (Bilderbeek 2018a), devtools (Wick-
ham & Chang 2016), geiger (Harmon et al. 2008), ggplot2 (Wickham 2009), knitr (Xie
2017), phangorn (Schliep 2011), rmarkdown (Allaire et al. 2017), seqinr (Charif & Lobry
2007), stringr (Wickham 2017), testit (Xie 2014) and tracerer (Bilderbeek 2018c).
We tested babette to give a clean error message for incorrect input, by calling babette
one million times with random or random sensible inputs, using a high performance
computer cluster. The test scripts are supplied with babette.

babette’s development takes place on GitHub,
https://github.com/richelbilderbeek/babette,
which accommodates collaboration (Perez-Riverol et al. 2016) and improves trans-

parency (Gorgolewski & Poldrack 2016). babette’s GitHub facilitates feature requests
and has guidelines how to do so.

babette’s documentation is extensive. All functions are documented in the pack-
age’s internal documentation. For quick use, each exported function shows a minimal
example. For easy exploration, each exported function’s documentation links to related
functions. Additionally, babette has a vignette that demonstrates extensively how to use
it. There is documentation on the GitHub to get started, with a dozen examples of BEAUti
screenshots with equivalent babette code. Finally, babette has tutorial videos that can
be downloaded or viewed on YouTube, https://goo.gl/weKaaU.

2.5. CITATION OF BABETTE

Scientists using babette in a published paper can cite this article, and/or cite the
babette package directly. To obtain this citation from within an R script, use:

> citation (" babette ")

http://github.com/richelbilderbeek/babette
https://travis-ci.org
https://github.com/richelbilderbeek/babette
https://goo.gl/weKaaU
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Name Description
bbt_run Run BEAST2
create_gtr_site_model Create a GTR site model
create_hky_site_model Create an HKY site model
create_jc69_site_model Create a Jukes-Cantor site model
create_tn93_site_model Create a TN93 site model
create_rln_clock_model Create a relaxed log-normal clock model
create_strict_clock_model Create a strict clock model
create_bd_tree_prior Create a birth-death tree prior
create_cbs_tree_prior Create a coalescent Bayesian skyline tree prior
create_ccp_tree_prior Create a coalescent constant-population tree prior
create_cep_tree_prior Create a coalescent exponential-population tree prior
create_yule_tree_prior Create a Yule tree prior
create_beta_distr Create a beta distribution
create_exp_distr Create an exponential distribution
create_gamma_distr Create a gamma distribution
create_inv_gamma_distr Create an inverse gamma distribution
create_laplace_distr Create a Laplace distribution
create_log_normal_distr Create a log-normal distribution
create_normal_distr Create a normal distribution
create_one_div_x_distr Create a 1/X distribution
create_poisson_distr Create a Poisson distribution
create_uniform_distr Create a uniform distribution

Table 2.1 | babette’s main functions
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Figure 2.1 | Workflow using GUI tools. From an alignment (1) and BEAUti (2), a BEAST2 configuration file (3) is
created. BEAST2 (4) uses that file to infer a posterior, storing it in multiple files (5). These results are visualized
using DensiTree (6) and Tracer (7). babette allows for the same workflow, all from an R function call
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ABSTRACT

1. Phylogenetic trees are currently routinely reconstructed from an alignment of character
sequences (usually nucleotide sequences). Bayesian tools, such as MrBayes, RevBayes and
BEAST2, have gained much popularity over the last decade, as they allow joint estimation
of the posterior distribution of the phylogenetic trees and the parameters of the underlying
inference model. An important ingredient of these Bayesian approaches is the species tree
prior. In principle, the Bayesian framework allows for comparing different tree priors,
which may elucidate the macroevolutionary processes underlying the species tree. In prac-
tice, however, only macroevolutionary models that allow for fast computation of the prior
probability are used. The question is how accurate the tree estimation is when the real
macroevolutionary processes are substantially different from those assumed in the tree
prior.
2. Here we present pirouette, a free and open-source R package that assesses the inference
error made by Bayesian phylogenetics for a given macroevolutionary diversification model.
pirouette makes use of BEAST2, but its philosophy applies to any Bayesian phylogenetic
inference tool.
3. We describe pirouette’s usage providing full examples in which we interrogate a
model for its power to describe another.
4. Last, we discuss the results obtained by the examples and their interpretation.

Keywords: Bayesian model selection, BEAST2, computational biology, evolution,
phylogenetics, R, tree prior, babette

3.1. INTRODUCTION

The development of new powerful Bayesian phylogenetic inference tools, such as BEAST
[Drummond & Rambaut 2007], MrBayes [Huelsenbeck & Ronquist 2001] or RevBayes
[Höhna et al. 2016] has been a major advance in constructing phylogenetic trees from
character data (usually nucleotide sequences) extracted from organisms (usually extant,
but extinction events and/or time-stamped data can also be added), and hence in our
understanding of the main drivers and modes of diversification.

BEAST [Drummond & Rambaut 2007] is a typical Bayesian phylogenetics tool, that
needs both character data and priors to infer a posterior distribution of phylogenies.
Specifically, for the species tree prior - which describes the process of diversification -
BEAST has built-in priors such as the Yule [Yule 1925] and (constant-rate) birth-death
(BD) [Nee et al. 1994] models as well as coalescent priors. These simple tree priors are
among the most commonly used, as they represent some biologically realistic processes
(e.g. viewing diversification as a branching process), while being computationally fast.
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To allow users to extend the functionalities of BEAST using plug-ins, BEAST2 was writ-
ten [Bouckaert et al. 2019] (with BEAST and BEAST2 still independently being developed
further). For example, one can add novel diversification models by writing a BEAST2
plugin that contains the likelihood formula of a phylogeny under the novel diversification
model, i.e. the prior probability of a species tree. Plugins have been provided, for instance,
for the calibrated Yule model [Heled & Drummond 2015], the BD model with incomplete
sampling [Stadler 2009], the BD model with serial sampling [Stadler et al. 2012], the BD
serial skyline model [Stadler et al. 2013], the fossilized BD process [Gavryushkina et al.
2014], and the BD SIR model [Kühnert et al. 2014].

Many other diversification models (and their associated likelihood algorithms) have
been developed, e.g., models in which diversification is time-dependent [Nee et al. 1994,
Rabosky & Lovette 2008], or diversity-dependent [Etienne et al. 2012], or where diversifi-
cation rates change for specific lineages and their descendants [Alfaro et al. 2009, Etienne
& Haegeman 2012, Laudanno et al. 2020, Rabosky 2014]. Other models treat speciation
as a process that takes time [Etienne & Rosindell 2012, Lambert et al. 2015, Rosindell
et al. 2010], or where diversification rates depends on one or more traits [FitzJohn 2012,
Herrera-Alsina et al. 2019, Maddison et al. 2007].

These are, however, not yet available as tree priors in BEAST2, for reasons explained
below. In this paper, we present methodology to determine whether such new plug-ins
are needed, or whether currently available plug-ins are sufficient. We show this using
the Yule and BD species tree priors, but our methods can be used with other built-in tree
priors as well.

The rationale of our paper is as follows. When a novel diversification model is intro-
duced, its performance in inference should be tested. Part of a model’s performance is its
ability to recover parameters from simulated data with known parameters (e.g. [Etienne
et al. 2014]), where ideally the estimated parameter values closely match the known/true
values. Even when a diversification model passes this test, it is not necessarily used as
tree prior in Bayesian inference. Bayesian phylogenetic inference often requires that the
prior probability of the phylogeny according to the diversification model has to be com-
puted millions of times. Therefore, biologically interesting but computationally expensive
tree priors are often not implemented, and simpler priors are used instead. This is not
necessarily problematic, when the data are very informative or when the prior is truly
uninformative, as this will reduce the influence of the tree prior. However, the assumption
that tree prior choice is of low impact must first be verified.

There have been multiple attempts to investigate the impact of tree prior choice. For
example, Sarver and colleagues, [Sarver et al. 2019] showed that the choice of tree prior
does not substantially affect phylogenetic inferences of diversification rates. However,
they only compared current diversification models to one another, and thus this does not
inform us on the impact of a new tree prior.

Similarly, Ritchie and colleagues [Ritchie et al. 2016] showed that inference was accu-
rate when birth-death or skyline coalescent priors were used, but they simulated their
trees with a Yule process only, as their focus was not so much on the diversification
process but on the influence of inter- and intraspecific sampling.

Another way to benchmark a diversification model, is by doing a model comparison,
in which the best model is determined from a set of models. A good early example is
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Goldman 1993 in which Goldman compared DNA substitution models. A recent approach
to test the impact of tree prior choice, proposed by Duchene et al. 2018, allows to measure
model adequacy for phylodynamic models that are mathematically described (i.e. have a
known likelihood equation).

Here we introduce a method to quantify the impact of a novel tree prior, i.e., a tree
model, for which we can simulate phylogenies, but not yet calculate their likelihoods. This
new method simultaneously assesses the substitution, clock and tree models [Duchêne
et al. 2015]. The method starts with a phylogeny generated by the new model. Next,
nucleotide sequences are simulated that follow the evolutionary history of the given
phylogeny. Then, using BEAST2’s built-in tree priors, a Bayesian posterior distribution
of phylogenies is inferred. We then compare the inferred with the original phylogenies.
How to properly perform this comparison forms the heart of our method. Only new
diversification models that result in a large discrepancy between inferred and simulated
phylogenies will be worth the effort and computational burden to implement a species
tree prior for in a Bayesian framework.

Our method is programmed as an R package [R Core Team 2013] called pirouette.
pirouette is built on babette [Bilderbeek & Etienne 2018], which calls BEAST2 [Bouck-
aert et al. 2019].

3.2. DESCRIPTION

The goal of pirouette is to quantify the impact of a new tree prior. It does so by mea-
suring the inference error made for a given reconstructed phylogeny, simulated under a
(usually novel) diversification model. We refer to the model that has generated the given
tree as the ’generative tree model’ pG. A ’generative tree model’, in this paper, can be either
the novel diversification model for which we are testing the impact of choosing standard
tree priors for, or it is the model with which we generate the twin tree that is needed for
comparison (see below). In the latter case, we also refer to it as the actual generative tree
model, and it thus serves as a baseline model. This is is done in the example, where the
Yule model is the generative model.

The inference error we aim to quantify is not of stochastic nature. Stochastic errors are
usually non-directional. We, instead, aim to expose the bias due to the mismatch between
a generative model (that has generated the phylogeny) and the model(s) used in the actual
inference. We define the birth-death (BD) model [Nee et al. 1994] as the standard tree
model, as many (non-standard) tree models have a parameter setting such that it reduces
to this model. One such example is the diversity-dependent (DD) diversification model
[Etienne & Haegeman 2020, Etienne et al. 2012] in which speciation or extinction rate
depends on the number of species and a clade-level carrying capacity. The BD model can
be seen as a special case of the DD model, because for an infinite carrying capacity, the
DD model reduces to the BD model. When benchmarking a novel tree model, one will
typically construct phylogenies for different combinations of the diversification model’s
parameters, to assess under which scenarios the inference error cannot be neglected.
While we recommend many replicate simulations when assessing a novel tree prior, our
example contains only one replicate, as the goal is to show the workings of pirouette,
instead of doing an extensive analysis. The supplementary material includes results of
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replicated runs under multiple settings.
pirouette allows the user to specify a wide variety of custom settings. These settings

can be grouped in macro-sections, according to how they operate in the pipeline. We
summarize them in Table 3.1 and Table 3.2.

3.2.1. PIROUETTE’S PIPELINE

The pipeline to assess the error BEAST2 makes in inferring this phylogeny contains the
following steps:

1. The user supplies one or (ideally) more phylogenies from a new diversification
model.

2. From the given phylogeny an alignment is simulated under a known alignment
model A.

3. From this alignment, according to the specified inference conditions C, an inference
model I is chosen (which may or may not differ from the model that generated the
tree).

4. The inference model and the alignment are used to infer a posterior distribution of
phylogenies.

5. The phylogenies in the posterior are compared with the given phylogeny to estimate
the error made, according to the error measure E specified by the user.

The pipeline is visualized in Fig. 3.1. There is also the option to generate a ’twin tree’,
that goes through the same pipeline (see supplementary subsection 3.5.5).

The first step simulates an alignment from the given phylogeny (Fig. 3.1, 1a → 2a).
For the sake of clarity, here we will assume the alignment consists of DNA sequences, but
one can also use other heritable materials such as amino acids. The user must specify a
root sequence (i.e. the DNA sequence of the shared common ancestor of all species), a
mutation rate and a site model.

The second step (Fig. 3.1, 3a) selects one or more inference model(s) I from a set of
standard inference models I1, . . . , In . For example, if the generative model is known and
standard (which it is for the twin tree, see below), one can specify the inference model
to be the same as the generative model. If the tree model is unknown or non-standard -
which is the primary motivation for this paper -, one can pick a standard inference model
which is considered to be closest to the true tree model. Alternatively, if we want to run
only the inference model that fits best to an alignment from a set of candidates (regardless
of whether these generated the alignments), one can specify these inference models (see
section 3.5.6).

The third step infers the posterior distributions, using the simulated alignment
(Fig. 3.1, 2a → 4a), and the inference models that were selected in the previous step
(3a). For each selected experiment a posterior distribution is inferred, using the babette
[Bilderbeek & Etienne 2018] R package which makes use of BEAST2.

The fourth step quantifies the newimpact of choosing standard models for inference,
i.e. the inference error made. First the burn-in fraction is removed, i.e. the first phase
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Figure 3.1 | pirouette pipeline. The pipeline starts from a phylogeny (1a) simulated by the generative tree
model pG . The phylogeny is converted to an alignment (2a) using the generative alignment model A = (cG ,sG),
composed of a clock model and a site model. The user defines one or more experiments. For each candidate
experiment Xi (a combination of inference model Ii and condition Ci), if its condition Ci is satisfied (which can
depend on the alignment), the corresponding inference model I = Ii is selected to be used in the next step. The
inference models (3a) of the selected experiments use the alignment (2a) to each create a Bayesian posterior of
(parameter estimates and) phylogenies (4a). Each of the posterior trees is compared to the true phylogeny (1a)
using the error measure E, resulting in an error distribution (5a). Optionally, for each selected inference model
a twin pipeline can be run. A twin phylogeny (1b) can be generated from the original phylogeny (1a) using
the twin tree model pt , selected among standard diversification models; the default option is the standard BD
model, with parameters estimated from the original phylogeny. A twin alignment (2b) is then simulated from
the twin phylogeny using clock model cG and site model sG used with the generative tree model (the novel tree
model). The twin pipeline follows the procedure of the main pipeline, resulting in a twin error distribution (5b).
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of the Markov chain Monte Carlo (MCMC) run, which samples an unrepresentative part
of parameter and tree space. From the remaining posterior, pirouette creates an error
distribution, by measuring the difference between the true tree and each of the posterior
trees (Fig. 3.1, 4a → 5a). The user can specify a function to quantify the differences
between the true and posterior trees.

3.2.2. CONTROLS

pirouette allows for two types of control measurements. The first type of control is
called ’twinning’, which results in an error distribution that is the baseline error of the
inference pipeline (see supplementary materials, subsection 3.5.5 for more details). This
the error that arises when the models used in inference are identical to the ones used in
generating the alignments. The second type of control is the use of candidate models,
which result in an error distribution for a generative model that is determined to be the
best fit to the tree (see supplementary materials, section 3.5.6 for more details). The
underlying idea is that using a substitution model in inference than used in generating
the alignment may partly compensate for choosing a standard tree model instead of the
generative tree model as tree prior in inference. Additionally, multiple pirouette runs
are needed to reduce the influence of stochasticity (see supplementary materials, section
3.5.7 for more details).

3.3. USAGE

We show the usage of pirouette on a tree generated by the non-standard diversity-
dependent (DD) tree model [Etienne & Haegeman, 2020, Etienne et al., 2012], which is a
BD model with a speciation rate that depends on the number of species.

The code to reproduce our results can be found at https://github.com/richelbilderbeek/
pirouette_example_30 and a simplified version is shown here for convenience:

library ( pirouette )

# Create a DD phylogeny with 5 taxa and a crown age of 10
phylogeny <- create _ exemplary _dd_tree ()

# Use standard pirouette setup. This creates a list object with
all settings for generating the alignment , the inference

using BEAST2 , the twinning parameters to generate the twin
tree and infer it using BEAST2 , and the error measure

pir_ params <- create _std_pir_ params ()

# Do the runs
pir_out <- pir_run(

phylogeny = phylogeny ,
pir_ params = pir_ params

)

# Plot

https://github.com/richelbilderbeek/pirouette_example_30
https://github.com/richelbilderbeek/pirouette_example_30
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pir_plot(pir_out)

The DD tree generated by this code is shown in Figure 3.2.

Figure 3.2 | The example tree resulting from a diversity-dependent (DD) simulation.

The error distribution shown in Figure 3.3 is produced, which uses the nLTT statistic
[Janzen et al. 2015] to compare phylogenies (see section 3.5.8 for details regarding the
nLTT statistic and its caveats).
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Figure 3.3 | The impact of the tree prior for the example tree in Figure 3.2. The alignment for this true tree
was generated using a JC substitution model and strict clock model. For inferring the tree from this alignment
in the ’generative’ scenario, the same substitution and clock models were used, and a Yule tree prior (this is
the assumed generative model, because the real generative model is assumed to be unknown). For the twin
tree, the same inference models were used. In the ’best’ scenario, for the true tree, the best-fitting candidate
models were JC substitution model, RLN clock model and BD tree prior, while for the twin tree, the best-fitting
candidate models were JC substitution model, RLN clock model and Yule tree prior. The twin distributions show
the baseline inference error. Vertical dashed lines show the median error value per distribution.

In the upper panel of Figure 3.3, we can see that the error distributions of the (as-
sumed) generative model (i.e. the known generative substitution and clock models, and
the tree model that is assumed in inference of the true tree, and the tree model that is
used for generating and inferring the twin tree) differ substantially between the true and
twin tree. This difference shows the extent of the mismatch between the true tree model
(which is DD) and the (Yule) tree prior used in inference. Because these distributions are
distinctively different, the inference error made when using an incorrect tree prior on a
DD tree is quite profound.

Comparing the upper and lower panel of Figure 3.3, we can see that the best candidate
model is slightly worse at inferring the true tree, than the (assumed) generative model,
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indicating that the generative inference model we selected is a good choice.
The candidate model that had highest evidence given the simulated alignment, was

JC, RLN and BD (see Table 3.1 for the meaning of these abbreviations). The RLN clock
model is a surprising result: it assumes nucleotide substitutions occur at different rates
between the taxa. The JC nucleotide substitution model matches the model used to
simulate the alignment. The BD model is perhaps somewhat surprising for the true tree,
because the other alternative standard tree prior, Yule, is probably closest to the true DD
model because it shows no pull-of-the-present (but also no slowdown).

3.4. DISCUSSION

We showed how to use pirouette to quantify the impact of a tree prior in Bayesian
phylogenetics, assuming - for illustrative purposes - the simplest standard substitution,
clock and tree models, but also the models that would be selected among many different
standard tree priors according to the highest marginal likelihood, as this would be a likely
strategy for an empiricist. We recommend exploring different candidate models, but note
that this is computationally highly demanding, particularly for large trees.

Figure 3.3 illustrates the primary result of our pipeline: it shows the error distributions
for the true tree and the twin tree when either the generative model (for substitution and
clock models these are known, for the tree model it must be assumed for the true tree and
it is known for the twin tree) or the best-fitting set candidate model (i.e. combination of
tree model, substitution model and clock model) is used in inference. The clear difference
between the error distributions for the true tree and the twin tree suggests that the choice
of tree prior matters. We note, however, that only one tree from a novel tree model is not
enough to determine the impact of using an incorrect tree prior. Instead, a distribution of
multiple trees, generated by the novel tree model, should be used. In the supplementary
material we have provided some examples.

Like most phylogenetic experiments, the setup of pirouette involves many choices.
A prime example is the length of the simulated DNA sequence. One expects that the
inference error decreases for longer DNA sequences. We investigated this superficially
and confirmed this prediction (see the supplementary material). However, we note that
for longer DNA sequences, the assumption of the same substitution rates across the entire
sequence may become less realistic (different genes may experience different substitution
rates) and hence longer sequences may require more parameters. Hence, simply getting
longer sequences will not always lead to a drastic reduction of the influence of the species
tree prior. Fortunately, pirouette provides a pipeline that works for all choices.

Interpreting the results of pirouette is up to the user; pirouette does not answer
the question whether the inference error is too large to trust the inferred tree. The user is
encouraged to use different statistics to measure the error. The nLTT statistic is a promis-
ing starting point, as it can compare any two trees and results in an error distribution of
known range, but one may also explore other statistics, for example statistics that depend
on the topology of the tree, While pirouette allows for this in principle, in our example
we used a diversification model (DD) that only deviates from the Yule and BD models
in the temporal branching pattern, not in the topology. For models that make different
predictions on topology, the twinning process should be modified.
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As noted in the introduction, Duchêne and colleagues [Duchene et al. 2018] also
developed a method to assess the adequacy of a tree model on empirical trees. They
simulated trees from the posterior distribution of the parameters and then compared this
to the originally inferred tree using tree statistics, to determine whether the assumed tree
model in inference indeed generates the tree as inferred. This is useful if these trees match,
but when they do not, this does not mean that the inferred tree is incorrect; if sufficient
data is available the species tree prior may not be important, and hence inference may
be adequate even though the assumed species tree prior is not. In short, the approach
is applied to empirical trees and compares the posterior and prior distribution of trees
(with the latter generated with the posterior parameters!). By contrast, pirouette aims
to expose when assuming standard priors for the species tree are a mis- or underparame-
terization. Hence, our approach applies to simulated trees and compares the posterior
distributions of trees generated with a standard and non-standard model, but inferred
with a standard one. The two methods therefore complement one another.

Furthermore, we note that the pirouette pipeline is not restricted to exploring the
effects of a new species tree model. The pipeline can also be used to explore the effects
of non-standard clock or site models, such as relaxed clock models with a non-standard
distribution, correlated substitutions on sister lineages, or elevated substitutions rates
during speciation events. It is, however, beyond the scope of this paper to discuss all these
options in more detail.

In conclusion, pirouette can show the errors in phylogenetic reconstruction ex-
pected when the model assumed in inference is different from the actual generative
model. The user can then judge whether or not this new model should be implemented
in a Bayesian phylogenetic tool.
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3.5. SUPPLEMENTARY MATERIAL

This supplementary material contains additional facets of pirouette, such as the instal-
lation of the package, an overview of pirouette’s main functions and a guide for users,
based on multiple experiments that are shown here as well.

For these experiments, we limited the number of replicates by time, aiming at a
duration of 24 hours per setting, when run on the Peregrine computer cluster of the
University of Groningen. Due to this, for example, a run of 40 taxa only has few replicates,
because one run takes 4 hours. For all experiments, the intermediate results can all be
downloaded from their respective websites, which is approximately 5 gigabyte in total.

All the figures shown in this section are shown without any aesthetical modifications,
with the exception that the arrangement of the sub-figures in subsection 3.5.10, where we
aligned parts of the figure by hand.

Here is an overview of the various sections:

• subsection 3.5.1: guidelines for users

• subsection 3.5.2: installation

• subsection 3.5.3: resources, such as website, tutorials, packages used, bug reporting
and contributing

• subsection 3.5.4: citation of pirouette

• subsection 3.5.5: the twinning process

• subsection 3.5.6: candidate models for the inference

• subsection 3.5.7: the effects of stochasticity

• subsection 3.5.8: the nLTT statistic

• subsection 3.5.9: main functions

• subsection 3.5.10: code, extra figures and diagnostics regarding the main example.

• subsection 3.5.11: the result of using multiple trees, as generated by the same
stochastic process as the main example

• subsection 3.5.12: the effect of the number of taxa

• subsection 3.5.13: the effect of the DNA alignment sequence length

• subsection 3.5.14 shows the effect when performing inference in the simplest use
case

• subsection 3.5.15 shows the effect when performing inference with an under-
parameterization

• subsection 3.5.17 shows the effect when the twin alignment is allowed to have a
different number of substitutions
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• subsection 3.5.18 shows the effect of different mutation rates

• subsection 3.6: Acknowledgments

• subsection 3.7: Data accessibility

• subsection 3.8: Author contributions

3.5.1. GUIDELINES FOR USERS

From the experiments shown below, we composed some rough guidelines. These guide-
lines should be treated as preliminary results, as the total runtime of these experiments is
’only’ 19 days.

• The use of 20 replicates results in decent plots.

• The use of more taxa increases the inference error

• The use of longer DNA sequences decreases the inference error.

• When we do not impose the same number of substitutions between true and twin
alignment, we observe a difference in the error distributions with respect to the
standard case (presented in the main text) where they are forced to have the same
number of substitutions.

• Using a mutation rate less than 1.0 / crown age, decreases the inference error. We
predict this will increase the error in the parameter estimation.

3.5.2. INSTALLATION

pirouette will be made available on CRAN from which it can then be easily installed:

install . packages (" pirouette ")

Until it is on CRAN, and for the most up-to-date version, one can download and
install the package from pirouette’s GitHub repository. We first need the mcbette and
nodeSub packages:

remotes :: install _ github (
" richelbilderbeek / mcbette "

)
remotes :: install _ github (

" thijsjanzen / nodeSub "
)

Now we can install pirouette:

remotes :: install _ github (
" richelbilderbeek / pirouette "

)
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which also installs its dependencies from CRAN.
To start using pirouette, load its functions in the global namespace first:

library ( pirouette )

Because pirouette calls BEAST2, BEAST2 must be installed. This can be done from
within R, using:

beastier :: install _ beast2 ()

For the option to select the best candidate model, pirouette needs the "NS" BEAST2
package [Russel et al. 2019]. It can be installed from within R, using:

mauricer :: install _ beast2 _pkg("NS")

3.5.3. RESOURCES

pirouette is free, libre and open source software available at
http://github.com/richelbilderbeek/pirouette,
licensed under the GNU General Public License version 3. pirouette depends

on multiple packages, which are: ape [Paradis et al. 2004], assertive [Cotton 2016],
babette [Bilderbeek & Etienne 2018], DDD [Etienne & Haegeman 2020], devtools [Wick-
ham & Chang 2016], dplyr [Wickham et al. 2019], ggplot2 [Wickham 2009], knitr
[Xie 2017], lintr [Hester 2016], magrittr [Bache & Wickham 2014], mcbette [Bilder-
beek 2019], nLTT [Janzen 2019], phangorn [Schliep 2011], phytools [Revell 2012], plyr
[Wickham 2011a], rappdirs [Ratnakumar et al. 2016], rmarkdown [Allaire et al. 2017],
Rmpfr [Maechler 2019], stringr [Wickham 2017], TESS [Höhna 2013, Höhna et al. 2016],
testit [Xie 2014], testthat [Wickham 2011b] and tidyr [Wickham & Henry 2019].

pirouette’s development takes place on GitHub,
https://github.com/richelbilderbeek/pirouette,
which allows submitting bug reports, requesting features, and adding code. To im-

prove quality, pirouette uses a continuous integration service, has a code coverage of
above 95% and enforces the most commonly used R style guide [Wickham 2015].

pirouette’s is extensively documented on its website, its documentation and its
vignettes. The pirouette website is a good starting point to learn how to use pirouette,
as it links to tutorials and videos. The pirouette package documentation describes all
functions and liberally links to related functions. All exported functions show a min-
imal example as part of their documentation. The pirouette vignette demonstrates
extensively how to use pirouette in a more informally written way.

The code used in this article and more examples that are periodically tested, can be
found at

https://github.com/richelbilderbeek/pirouette_examples.

3.5.4. CITATION OF PIROUETTE

To cite pirouette this article from within R, use:

> citation (" pirouette ")

http://github.com/richelbilderbeek/pirouette
https://github.com/richelbilderbeek/pirouette
https://github.com/richelbilderbeek/pirouette_examples
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3.5.5. THE TWINNING PROCESS

pirouette allows to perform a control measurement, by use of a process we call twinning.
This control results in an error distribution that is the baseline error of the pipeline. The
difference between the ’true’ and ’twin’ error distributions is caused only by the mismatch
between the true tree model and the tree prior used in the actual inference.

The twinning process, T , encompasses two steps: T1, that generates a ’twin tree’
(Fig. 3.1, 1b) and T2, which generates a ’twin alignment’ (Fig. 3.1, 2b). Both twin tree and
alignment will be analyzed in the same way as the true tree and alignment.

We define a phylogeny τ as the combination of branching times ~t and topology
ψ, and denote as τG the phylogeny produced by a (possibly non-standard) generative
diversification model, having branching times~tG and topology ψG.

The first step (T1) of the twinning process creates a tree τT with branching times~tT

while preserving the original topology ψG:

τG = (~tG,ψG)
T1−→ τT = (~tT ,ψG) (3.1)

We chose to preserve the original topology to increase the similarity between the
twin to the original tree. This works well in the cases of BD or DD models we consider
in our example, because all these models make the same assumption about topology
(all topologies are equally likely). However, this might not be suitable for new models
that assign different probabilities to trees with the same branching times but different
topologies. The default option for the twin diversification model pT is the standard BD
model. pirouette has a built-in function to use a Yule model as well. Additionally, a
user can specify a function to generate a twin tree from any speciation model, such as, for
example, a coalescent model.

It is then possible to use the likelihood function LT for this diversification model to
find the parameters θ∗T (e.g. speciation and extinction rates, in case of a BD model) that
maximize this likelihood applied to the true tree, conditioned on its number of tips nG:

max[LT (θT |τG,nG)] → θ∗T . (3.2)

We use θ∗T to simulate a number nT = nG of branching times~tT for the twin tree τT , under
the process pT , while preserving the topology. We simulate the new branching times
using the TESS package [Höhna et al. 2016]. For simplicity, when simulating phylogenies
we assumed a sampling fraction of 100%. A different choice might have an effect on model
performance.

The second step (T2) of the twinning process simulates the twin alignment with the
same clock model, site model and mutation rate used to simulate the alignment on
the true. The twin alignment can be simulated in any user-defined way. pirouette
provides the option simulate it with the same mutation rate as the true alignment. By
default, however, not only the same mutation rate is used, but also the total number of
substitutions matches the true alignment. The total number of substitutions is defined as
the number of different nucleotides between the (known) root sequence compared to the
sequences at the tips.
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3.5.6. CANDIDATE MODELS

The user has to specify exactly one standard inference model, but may be unsure which
one to pick. To account for this, the user can specify a set of candidate inference models.
Each of these candidate inference models is run in an initial, relatively short, analysis; the
candidate model with the highest evidence (i.e., marginal likelihood) will then be used
in another, longer, inference run, resulting in another error distribution. The evidence
for an inference model is estimated by nested sampling [Russel et al. 2019], using the NS
BEAST2 package.

If twinning is used, a candidate model that has the highest evidence for the twin
alignment is also used to create the twin error distribution.

3.5.7. STOCHASTICITY CAUSED BY SIMULATING PHYLOGENIES

The goal is to evaluate BEAST2’s performance on a non-standard tree model, one must
also consider the last source of stochasticity: the different phylogenies a tree model
generates. A single phylogeny cannot be considered as fully representative of the model.
For this reason multiple phylogenies must be considered (at least 100 independent true
and twin trees). If the number of considered phylogenies is high enough, the comparison
between the main pipeline’s aggregated error distribution and its twin counterpart leads
to a fair evaluation of the new tree model with respect to the baseline error.

3.5.8. THE NLTT STATISTIC

The nLTT statistic is the absolute difference between the normalized lineages-through-
time plots of two trees. The nLTT statistic is chosen, as it can operate on any two trees
(regardless of their crown ages and number of taxa) and its results have a clear range from
zero to one. This normalized result makes it possible to compare trees from a distribution
of trees from any tree model. The nLTT statistic is not suitable, however, to distinguish
between a constant-rate BD model and a family of time-dependent models [Louca &
Pennell 2020].

3.5.9. MAIN FUNCTIONS

An overview of pirouette’s main functions is shown in Table 3.3. All pirouette’s func-
tions are documented, have a useful example and sensible defaults.
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Name Description
pir_run Run pirouette
pir_plot Show the pirouette results as a plot
create_pir_params Create the pirouette parameters
create_alignment_params Create the alignment parameters
create_twinning_params Create the twinning parameters
create_experiment Create one experiment
create_error_measure_params Create the error measurement parameters

Table 3.3 | pirouette’s main functions and description.

3.5.10. MAIN EXAMPLE

This subsection describes the pipeline of the main example and its diagnostics in more
detail.

The pipeline starts at the top-left panel of figure 3.1 (which is identical to figure 3.2),
which is the ’true tree’. The ’true tree’ is generated by the diversity-dependent (DD) tree
model [Etienne & Haegeman, 2020, Etienne et al., 2012], which is a BD model with a
speciation rate that is dependent on the number of species, with (an arbitrarily chosen)
crown age of 10 time units and an expected number of 6 tips for an extinction rate of 0.1.
The carrying-capacity is set to 6. The initial speciation rate λ0 is chosen such that the
expected number of species in a constant-rate BD model would be equal to the number
of tips, which amounts to λ0 = 0.63. Note that in the main example, a tree was generated
with 5 tips, due to stochasticity in the tree generation algorithm.

From this ’true tree’, a ’true alignment’ is simulated, using the JC nucleotide substitu-
tion model and a strict clock model. The resulting alignment is shown at the center-left of
figure 3.1.

From the ’true alignment’ the generative inference model is run. Of course, it cannot
be the actual (DD) model. Instead, the default BEAST2 inference model is used, which
assumes a JC nucleotide substitution model, a strict clock model and a Yule tree model.
The resulting posterior trees are shown in the center-left panel of figure 3.1.

From this ’generative true’ posterior (center-left panel in figure 3.1), the difference
between each of its trees is compared to the ’true tree’ (top-left panel), using the nLTT
statistic, resulting in the error distribution shown in the bottom-left panel of figure 3.1.

Based on the ’true alignment’ (center-left panel), the candidate model with the highest
marginal likelihood is determined, from a set of 15 models. The set of models consists of
all combinations of all 4 nucleotides substitution models (JC, HKY, TN, GTR), all 2 clock
models (strict and relaxed log-normal) and 2 birth-death models (Yule and Birth-Death),
except the inference model used as the generative model (JC, strict clock, Yule). The
inference model that had the highest evidence (as shown in Table 3.8) was the inference
model with a JC nucleotide substitution model, an RLN clock model and a BD tree model.
The resulting posterior trees are shown in the second panel of the third row of posteriors
in figure 3.1.

From this ’best true’ posterior, the difference between each of its trees is compared
to the ’true tree’ (top-left panel), using the nLTT statistic, resulting in the second error



3

58 REFERENCES

distribution in the bottom row of figure 3.1.
From the ’true tree’ (top-left) we generated a BD twin tree (top-right).
From this ’twin tree’, a ’twin alignment’ was simulated, using the JC nucleotide substi-

tution model and a strict clock model. The resulting alignment is shown in the center-right
panel of figure 3.1.

From the ’twin alignment’ the generative inference model is run as well. Also here,
the default BEAST2 inference model is used, which assumes a JC nucleotide substitution
model, a strict clock model and a Yule tree model. The resulting posterior trees are shown
in the third panel of the third row of figure 3.1. From this ’generative twin’ posterior,
the difference between each of its trees is compared to the ’twin tree’ (top-right panel),
using the nLTT statistic, resulting in the error distribution shown in the third panel of the
bottom row of figure 3.1.

Based on the ’twin alignment’ (center-right panel), the candidate model with the
highest marginal likelihood is determined, from the same set of 15 candidate models. The
inference model that had the highest evidence (as shown in Table 3.9) was the inference
model with a JC nucleotide substitution model, an RLN clock model and a Yule tree model
(Note that this is different from how the twin tree was generated which was with a BD
process and the alignment was simulated with a JC substitution model and strict clock
model). However, the extinction rate used in simulating the twin tree was practically 0,
thus resembling a Yule process. From the ’twin alignment’ this best candidate inference
model is run. The resulting posterior trees are shown in the fourth panel of the third row
of posteriors in figure 3.1.

From this ’best twin’ posterior (fourth in third row of figure 3.1), the difference between
each of its trees was compared to the ’twin tree’ (top-right panel), using the nLTT statistic,
resulting in the fourth error distribution in the bottom row of figure 3.1.
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Figure 3.4 | Full pirouette pipeline, including comparison to baseline error. The true tree (top left) is used to
simulate an alignment. From this alignment two posterior distributions of trees are created: one using the
generative model and another one using the inference model with the highest marginal likelihood. For each
distribution of trees, a distribution of errors, measured with the nLTT statistic, between the posterior trees and
the main trees is drawn. From the true tree also a twin tree is created (right side of the figure) which follows the
same pipeline, leading to two additional error distributions to use as baseline errors.

To assess if the results of the inference are meaningful one important parameter is
the Effective Sample Size (ESS). This quantity describes how many independent trees are
sampled from the posterior distributions. For reliable results it is good practice to have at
least ESS = 200 (see

https://beast.community/ess_tutorial).
In the following we present the ESS for the posterior distributions of the 4 cases shown

in Fig. 3.4.
The ESSes of the ’true’ pipeline for the generative model are shown in Table 3.4. From

the estimated parameters, one can deduce that the JC nucleotide substitution model was
used (no estimated parameter needed), a strict clock model was used (again, no parameter
needed to be estimated) and a Yule tree prior is used (’Yule model’ and ’birthRate’ are
estimated). Note that although the actual true tree is created by a DD process, the default
and standard Yule tree model is used as the closest standard tree model.

https://beast.community/ess_tutorial
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parameter ESS
posterior 9889
likelihood 10001
prior 10001
treeLikelihood 10001
TreeHeight 9796
YuleModel 10001
birthRate 9443

Table 3.4 | ESSes for generative model

The ESSes of the ’twin’ pipeline for the generative model are shown in Table 3.5. Note
that the generative inference model is re-used (which assumes a Yule tree model) in the
inference, where the twin tree is actually created using a BD process, which is the default.

parameter ESS
posterior 9971
likelihood 9969
prior 9224
treeLikelihood 9969
TreeHeight 10001
YuleModel 9224
birthRate 9673

Table 3.5 | ESSes for generative model, twin tree
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The ESSes of the ’true’ pipeline for the best candidate model are shown in Table 3.6.
From the names of the estimated parameters, it is clear that the best candidate model
has a JC nucleotide substitution model (no parameter needed to be estimated) an RLN
clock model (which can be inferred from the parameter ’rate.mean’) and a BD tree prior
(’BirthDeath’, ’BDBirthRate’ and ’BDDeathRate’).

parameter ESS
posterior 3848
likelihood 3891
prior 8194
treeLikelihood 3891
TreeHeight 6356
kappa1 1388
kappa2 1150
freqParameter.1 824
freqParameter.2 761
freqParameter.3 744
freqParameter.4 729
BirthDeath 9377
BDBirthRate 8477
BDDeathRate 7540

Table 3.6 | ESSes for best candidate model
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The ESSes of the ’twin’ pipeline for the best candidate model are shown in Table 3.7.
From the names of the estimated parameters, it is clear that the best candidate model

for the twin tree is JC nucleotide substitution model (no parameter needed to be esti-
mated), an RLN clock model (which can be inferred from the parameter ’rate.mean’) and
a Yule model (’YuleModel’, ’birthRate’). Note that there is a mismatch between the actual
process of how the twin tree and twin alignment are generated, as the twin tree is gener-
ated by a BD process, and the alignment is simulated using a JC nucleotide substitution
model and a strict clock model. Again we note that the extinction rate used to simulate
the twin tree (estimated from the true tree) was practically 0, so the BD process resembled
a Yule process.

parameter ESS
posterior 10001
likelihood 10001
prior 10001
treeLikelihood 10001
TreeHeight 10001
BirthDeath 10001
BDBirthRate 9175
BDDeathRate 8610

Table 3.7 | ESSes for best candidate model, twin tree
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The marginal likelihood (or evidence) data for the model comparison performed in
the ’true’ pipeline is shown in Table 3.8. The best (that is, the one with the highest model
weight) candidate model assumes a JC nucleotide substitution model, an RLN clock and
a BD tree model.

Site model Clock model Tree prior log(evidence) log(evidence error) Weight ESS
GTR RLN BD -7282.474 6.785 0.000 10.083
GTR RLN Yule -7267.882 5.783 0.000 8.140
GTR Strict BD -7274.511 5.086 0.000 9.088
GTR Strict Yule -7289.592 7.130 0.000 12.707
HKY RLN BD -7268.992 5.798 0.000 11.579
HKY RLN Yule -7261.878 4.855 0.000 13.938
HKY Strict BD -7271.899 5.880 0.000 7.831
HKY Strict Yule -7266.470 5.180 0.000 8.572
JC RLN BD -7257.060 5.407 0.000 5.966
JC RLN Yule -7258.197 4.312 0.000 9.868
JC Strict BD -7251.971 4.289 0.000 6.081
TN RLN BD -7263.497 5.615 0.000 9.285
TN RLN Yule -7259.014 5.837 0.000 7.455
TN Strict BD -7243.286 2.241 1.000 10.916
TN Strict Yule -7265.062 5.232 0.000 5.263

Table 3.8 | Evidences for the true phylogeny
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The marginal likelihood (or evidence) data for model comparison performed in the
’twin’ pipeline is shown in Table 3.9. The best (that is, the one with the highest model
weight) candidate model assumes a JC nucleotide substitution model, an RLN clock and
a Yule tree model. Note that there is a mismatch between the actual process of how the
twin tree and twin alignment are generated, as the twin tree is generated by a BD process,
and the alignment is simulated using a JC nucleotide substitution model and a strict clock
model. The extinction rate in simulating the BD process (estimated from the true tree)
was, however, practically 0, so the BD process resembled a Yule process.

Site model Clock model Tree prior log(evidence) log(evidence error) Weight ESS
GTR RLN BD -6360.144 7.422 0.000 6.818
GTR RLN Yule -6347.778 5.416 0.000 7.618
GTR Strict BD -6353.583 6.444 0.000 4.684
GTR Strict Yule -6354.277 5.382 0.000 7.932
HKY RLN BD -6344.567 4.063 0.000 10.923
HKY RLN Yule -6349.193 5.376 0.000 6.004
HKY Strict BD -6347.963 5.011 0.000 9.448
HKY Strict Yule -6340.809 4.550 0.000 11.792
JC RLN BD -6328.629 3.504 0.127 7.067
JC RLN Yule -6340.856 4.437 0.000 5.751
JC Strict BD -6326.697 3.249 0.873 4.697
TN RLN BD -6361.914 6.433 0.000 10.174
TN RLN Yule -6341.072 4.565 0.000 9.167
TN Strict BD -6336.752 4.149 0.000 7.082
TN Strict Yule -6354.485 6.324 0.000 7.821

Table 3.9 | Evidences for twin phylogeny
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3.5.11. USING A DISTRIBUTION OF TREES

This subsection extends the main example, by using multiple (instead of one) trees. These
trees are produced by running a DD tree simulation with the same parameters as the
main example.

Figure 3.5 | Aggregate error distributions, similar to Fig. 3.3 for the main example, but now for a collection of 100
replicate trees. For each setting (true generative, true best candidate, twin generative and twin best candidate),
the resulting errors from each replicate pipeline have been merged into a single distribution. This took 2.7 days
(wall clock time) to compute.

The resulting error distributions are shown in Fig. 3.5. We present results for cases
where (1) the generative model has been used or (2) the model with highest evidence
has been selected for the inference. From the plots we can see that in both cases the two
distributions (true and twin) are mostly overlapping, but not everywhere. This suggests
that the inference models that have been used can to a reasonable extent capture in
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an accurate way the features of the diversity-dependent tree prior used to simulate the
original trees.

The code to reproduce Fig. 3.5 can be found at
https://github.com/richelbilderbeek/pirouette_example_28.

https://github.com/richelbilderbeek/pirouette_example_28
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3.5.12. THE EFFECT OF THE NUMBER OF TAXA

The main example uses 5 taxa. Here we show the same results as the main example, except
for a varying number of taxa. We did so, by setting the DD model’s carrying capacity to
the desired number of taxa.

Figure 3.6 | Aggregate error distributions for 100 replicates. Here each true tree has 12 taxa. This took 6.0 days
(wall clock time) to compute.



3

68 REFERENCES

Figure 3.7 | Aggregate error distributions for 100 replicates. Here each true tree has 24 taxa. This took 9.8 days
(wall clock time) to compute.
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Figure 3.8 | Aggregate error distributions for 65 replicates. Here each true tree has 32 taxa. This took 8.0 days
(wall clock time) to compute.
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Figure 3.9 | Aggregate error distributions for 5 replicates. Here each true tree has 40 taxa. This took 0.83 days
(wall clock time) to compute.
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Figure 3.10 | Difference between median true error and median twin error for different number of taxa.

We show in figures 3.5, 3.6, 3.7, 3.8 and 3.9 what are the errors obtained when starting
from phylogenies with, respectively, 5, 12, 24, 32 and 40 taxa. Again we can see that in
each case errors tend to be greater in the true distribution than in the twin distribution,
similar to the result of subsection 3.5.11. Collecting all the data together we can see that
errors tend to decrease as the number of taxa in the considered phylogenies increase (see
Fig. 3.10). The data point for 40 taxa not following the trend could be due to the limited
amount of simulated trees taken in consideration due to time constraints.

The code to reproduce these figures can be found at
https://github.com/richelbilderbeek/pirouette_example_28 (5 taxa,

main example), https://github.com/richelbilderbeek/pirouette_example_32
(12 taxa), https://github.com/richelbilderbeek/pirouette_example_33 (24
taxa), https://github.com/richelbilderbeek/pirouette_example_41 (32 taxa),
https://github.com/richelbilderbeek/pirouette_example_42 (40 taxa).

https://github.com/richelbilderbeek/pirouette_example_28
https://github.com/richelbilderbeek/pirouette_example_32
https://github.com/richelbilderbeek/pirouette_example_33
https://github.com/richelbilderbeek/pirouette_example_41
https://github.com/richelbilderbeek/pirouette_example_42
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3.5.13. THE EFFECT OF DNA SEQUENCE LENGTH

The main example uses a DNA alignment length of 1000 nucleotides. Here, we show the
same results as the main example, except for a varying DNA alignment sequence length.

Figure 3.11 | Aggregate error distributions for 100 replicates. Here each each alignment has a sequence length
of 500 nucleotides. This took 2.2 days (wall clock time) to compute.
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Figure 3.12 | Aggregate error distributions for 100 replicates. Here each each alignment has a sequence length
of 1000 nucleotides. This is a replicate of Fig. 3.5. We put it here to facilitate the comparison with the cases with
different number of nucleotides.
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Figure 3.13 | Aggregate error distributions for 100 replicates. Here each each alignment has a sequence length
of 2000 nucleotides. This took 4.4 days (wall clock time) to compute.
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Figure 3.14 | Difference between median true error and median twin error for different sequence lengths.

From figures 3.11, 3.12 and 3.13 we can observe that the discrepancy between the
true and twin error distributions tends to become smaller as the number of nucleotides
increase (see also Fig. 3.14). This occurred for both the generative and best candidate
cases. This follows the expectation that a prior becomes less important when more
information becomes available.

The code to reproduce these figures can be found at
https://github.com/richelbilderbeek/pirouette_example_19 (500 nu-

cleotides), https://github.com/richelbilderbeek/pirouette_example_28
(1000 nucleotides, main example), and https://github.com/richelbilderbeek/
pirouette_example_34 (2000 nucleotides).

https://github.com/richelbilderbeek/pirouette_example_19
https://github.com/richelbilderbeek/pirouette_example_28
https://github.com/richelbilderbeek/pirouette_example_34
https://github.com/richelbilderbeek/pirouette_example_34
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3.5.14. THE EFFECT OF ASSUMING A YULE TREE PRIOR ON A YULE TREE

The main example uses a tree generated by a non-standard tree model. Here, we show
the same results, with the only difference that the tree used is generated by simplest tree
model (the Yule model), which we also assume as the (correct) tree prior.

Figure 3.15 | Aggregate error distributions for 100 replicates. Here each true tree is generated by a Yule process.
For the inference we used a Yule tree prior. This took 2.9 days (wall clock time) to compute.

This example shows a parameterization at the correct level for the simplest case
possible.

As expected the twin and true distributions in Fig. 3.15 are extremely similar for both
the generative and the best candidate case.

The code to reproduce this figure can be found at
https://github.com/richelbilderbeek/pirouette_example_22.

https://github.com/richelbilderbeek/pirouette_example_22
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3.5.15. THE EFFECT OF ASSUMING A YULE TREE PRIOR ON A BD TREE

The main example uses a tree generated by a non-standard tree model. Here, we show the
same results, with the difference that the tree used is generated by a birth-death (BD) tree
model, where we assume it is generated by a Yule (or pure-birth) model. This example
thus shows the effect of underparameterization.

Figure 3.16 | Aggregate error distributions for 100 replicates. Here each true tree is generated by a BD process.
For the inference we used instead a Yule tree prior. This took 2.7 days (wall clock time) to compute.

Because the two models are very similar to each other (the BD model can be turned
into a Yule model just by setting the extinction parameter to zero [Nee et al. 1994]) the
median discrepancy is almost negligible. However, with respect to the previous case
(subsection 3.5.14), where a Yule tree prior was used, the distributions here exhibit a
greater difference.

As we use only extant trees, it is reasonable that the method is slightly weaker in
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distinguishing between the Yule and BD models. It is unknown what the discriminatory
power would be when comparing trees with extinction events.

The code to reproduce this figure can be found at
https://github.com/richelbilderbeek/pirouette_example_26.

https://github.com/richelbilderbeek/pirouette_example_26
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3.5.16. THE EFFECT OF DIVERSITY-DEPENDENT TREES DIFFERING IN HOW

LIKELY THEY ARE UNDER THE DD PROCESS

Here we show the results of a pirouette run on a dataset of multiple DD trees that we
selected for having a low, median and high likelihood. In this way, we effectively selected
for trees that are rare, uncommon and common respectively.

Figure 3.17 | Aggregate error distributions for a distribution of trees, where the true trees are DD with low
likelihood.
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Figure 3.18 | Aggregate error distributions for a distribution of trees, where the true trees are DD with median
likelihood.
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Figure 3.19 | Aggregate error distributions for a distribution of trees, where the true trees are DD with high
likelihood.

Here the median errors are similar in the three settings and similar to ones relative to
the full dataset of 3.5.11. We can also notice that in the case of median likelihood, the twin
median error appears to be lower than the true mean error. This is usually a sign that the
number of replicates (in this case 10) is too low to allow us to draw precise conclusions
from this test. We did not explore further in this direction using more simulations because
computational times turned to be extremely high. The entire run took 120 hours in total.

The code to reproduce these figure can be found at
https://github.com/richelbilderbeek/pirouette_example_23
.

https://github.com/richelbilderbeek/pirouette_example_23
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3.5.17. THE EFFECT OF EQUAL OR EQUALIZED MUTATION RATE IN THE TWIN

ALIGNMENT

The main example uses a twin alignment that has the same number of substitutions (as
measured from the ancestral sequence) as the true alignment. Here, we show the same
results, with the difference that the twin alignment uses the same mutation rate, yet is not
guaranteed to have the same number of substitutions.

Figure 3.20 | Aggregate error distributions for 100 replicates. similar to Fig. 3.5, but here the number of
substitutions is not imposed to be the same between true and twin alignment. Instead, an equal mutation rate
is used. This took 3.3 days (wall clock time) to compute.

Comparing figures 3.20 and 3.5 we can see that the discrepancy between true and
twin distributions tend to increase. This is probably due to the fact that letting mutation
rates induces a difference in the amount of information contained in the alignments and
this is reflected in the error distributions.

The code to reproduce this figure can be found at
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https://github.com/richelbilderbeek/pirouette_example_18 and https:
//github.com/richelbilderbeek/pirouette_example_28.

https://github.com/richelbilderbeek/pirouette_example_18
https://github.com/richelbilderbeek/pirouette_example_28
https://github.com/richelbilderbeek/pirouette_example_28
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3.5.18. THE EFFECT OF MUTATION RATE

The main example uses a mutation rate such that all nucleotides, on average, mutate
once over the history going from the ancestral sequence at the crown to the alignments
at the tips. This value equals ‘1.0 / crown age‘. In this way, the alignment is expected to
contain the maximum amount of information.

Here, we show the same results for different mutation rates. The results for the
different mutation rates are shown in Figs. 3.21 (0.25 / crown age), 3.22 (0.50 / crown age),
3.23 (0.75 / crown age), 3.5 (1.00 / crown age), 3.24 (1.25 / crown age), 3.25 (1.50 / crown
age) and 3.26 (2.00 / crown age). Fig. 3.27 summarizes all the other figures showing on the
y-axis, for each value of the mutation rate, the difference between the median of the true
distribution and the median of the twin distribution. We can observe a general positive
trend as the mutation rate increase, even though the value for 1.5 / crown age suggests to
take this result with caution. It is possible, however, that a more regular trend could be
observed increasing the number of simulations.

The code to reproduce this figure can be found at
https://github.com/richelbilderbeek/pirouette_example_35 (0.25 / crown

age), https://github.com/richelbilderbeek/pirouette_example_36 (0.50 /
crown age), https://github.com/richelbilderbeek/pirouette_example_37 (0.75
/ crown age), https://github.com/richelbilderbeek/pirouette_example_28
(1.00 / crown age, example reported in 3.5.11, see Fig. 3.5), https://
github.com/richelbilderbeek/pirouette_example_38 (1.25 / crown age),
https://github.com/richelbilderbeek/pirouette_example_39 (1.50 / crown
age), https://github.com/richelbilderbeek/pirouette_example_40 (2.00 /
crown age),

https://github.com/richelbilderbeek/pirouette_example_35
https://github.com/richelbilderbeek/pirouette_example_36
https://github.com/richelbilderbeek/pirouette_example_37
https://github.com/richelbilderbeek/pirouette_example_28
https://github.com/richelbilderbeek/pirouette_example_38
https://github.com/richelbilderbeek/pirouette_example_38
https://github.com/richelbilderbeek/pirouette_example_39
https://github.com/richelbilderbeek/pirouette_example_40
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Figure 3.21 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 0.25 / crown age. This took 1.8 days (wall clock time) to compute.



3

86 REFERENCES

Figure 3.22 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 0.50 / crown age. This took 2.2 days (wall clock time) to compute.
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Figure 3.23 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 0.75 / crown age. This took 2.5 days (wall clock time) to compute.
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Figure 3.24 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 1.25 / crown age. This took 2.9 days (wall clock time) to compute.
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Figure 3.25 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 1.50 / crown age. This took 3.0 days (wall clock time) to compute.
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Figure 3.26 | Aggregate error distributions for 100 replicates, for the tree distribution presented in 3.5.11 but
with a per-nucleotide mutation rate of 2.0 / crown age. This is done for 100 replicates. This took 3.0 days (wall
clock time) to compute.
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Figure 3.27 | Difference between median true error and median twin error for different values of mutation rate.
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ABSTRACT

The field of phylogenetics uses heritable material such as DNA to determine the (shared) evo-
lutionary history of a set of species which are summarized in a phylogenetic tree. Bayesian
phylogenetic methods allow us to jointly infer probability distributions for the phylogenetic
tree and parameters of the various models underlying the methods. One of these models
is the diversification model, which mathematically describes the dynamics of speciation
addition and removal through time. In Bayesian analyses these are called the (species)
tree priors. Tree priors commonly assume that speciation events occur independently. The
Bayesian tools heavily rely on this assumption. However, under species pump dynamics,
this assumption is violated. By species pump dynamics we mean the (repeated) simulta-
neous formation of multiple species due to environment-driven isolation which results in
temporally aligned (or clustered) divergence times. Current Bayesian phylogenetic tools
do not contain such species pump diversification models as tree priors. This may not be a
problem if currently implemented tree priors are already capable of inferring a phylogenetic
tree to a satisfactory extent. Here we investigate the extent of the error made by one such
Bayesian phylogenetic tool (BEAST2) when inferring a phylogenetic tree generated by a
known species pump diversification model with a standard tree prior.

To this end we simulate our species pump model, which we call the multiple birth model
because it produces multiple simultaneous speciation events, under various parameter
settings, and evaluate the corresponding error produced during the inference process. We
compare this error with the error made when the generating model is the same as the tree
prior used in inference.

We show that the extent of the inference error does not notably increase with the number of
multiple birth events. Instead, the phylogenetic inference fails to converge more often under
these settings. This reduced convergence is profound and easily detectable, and caused by
unknown reasons.

These results show that using standard tree priors for biological systems following a species
pump model is warranted, as long as convergence can be attained. For settings that do not
converge, the addition of a new species tree prior to the current phylogenetic software may
resolve this.

Keywords: computational biology, evolution, phylogenetics, Bayesian analysis, tree
prior, pirouette, BEAST2, babette

4.1. INTRODUCTION

Modern computational techniques, such as BEAST (Bouckaert et al., 2014, Drummond &
Rambaut, 2007), RevBayes (Höhna et al., 2016) and MrBayes (Huelsenbeck & Ronquist,
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2001, Ronquist & Huelsenbeck, 2003), allow to infer phylogenetic trees from genetic
data such as DNA, RNA or proteins. They return posterior distributions of phylogenies
and estimated parameters by running a Bayesian analysis, given aligned sequence data
and a set of models. One of these models is the diversification model, for which a prior
distribution must be provided. Within the Bayesian framework this is called a tree prior;
it is a mathematical description of the probability distribution of possible branching
patterns before looking at the data. Together with the signal from the data, this tree
prior will determine the posterior distribution of phylogenies, i.e. after considering the
data. Other models include the nucleotide substitution model (i.e. a model of relative
transition rates between different nucleotides through time) and the clock model (a model
determining the absolute rate of changes for each lineage). For each of these models
choices must be made and prior distributions must be specified for their parameters.
BEAST2 gives the user the option to set up several possible phylogenetic priors (e.g.
substitution/clock/diversification models). However, currently available priors might be
not suitable to analyze some specific datasets. For this reason BEAST2 provides users
with the possibility to introduce new models and corresponding priors. Particularly, one
can specify the tree prior for a new model of diversification.

Current phylogenetic tools such as BEAST2 assume that only a single speciation
event can occur at any given time. This assumption is consistent with many different
diversification models (e.g Maddison et al. 2007, Valente et al. 2015, Etienne et al. 2012,
Etienne et al. 2014). However, multiple speciation events can take place simultaneously
and repeatedly when populations are intermittently disconnected and connected, for
example due to climatic fluctuations. This has been called the species pump hypothesis
(Haffer, 1969) and has been invoked particularly in mountainous areas that underwent
glaciation (Muellner-Riehl et al., 2019). Our own interest in the species pump hypotheses
arose from its potential explanation of the radiation of cichlid fish in the African rift lakes
(Malawi, Tanganyika and Victoria), where water level drops created multiple smaller lakes
providing the opportunity for allopatric speciation in multiple species. (Verheyen et al.,
1996, Sturmbauer et al., 2001, Janzen et al., 2017).

One could study whether the species pump hypothesis is a viable explanation in em-
pirical ystems by comparing divergence times of sister taxa (Oaks et al., 2019). A more in-
clusive approach would involve using a model allowing multiple simultaneous speciation
events as a new species tree prior in phylogenetic reconstruction. However, introducing a
new tree prior may be computationally prohibitive (Bilderbeek et al., 2020), and may also
not be necessary, as current standard birth death (BD) tree priors might prove to be good
enough at inferring the correct tree. Here we use the R package pirouette (Bilderbeek
& Laudanno, 2019) to check whether this is the case by simulating phylogenies under a
species pump model, i.e. the multiple-birth-death model (MBD), with the mbd package
(Laudanno, 2018), then simulating sequence alignments for each of these trees and finally
inferring a phylogenetic tree using BEAST2 from these alignment. By comparing the
inferred phylogeny with the true (simulated) one, we measure the inference error made
by adopting a standard BD tree prior.
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4.2. METHODS

4.2.1. SIMULATION MODEL

The multiple-birth-death (MBD) model inherits the parameters λ and µ from the BD
model; they correspond, respectively, to the traditional per-species speciation and extinc-
tion rates. Additionally, the MBD model assumes that external events, occuring at rate
ν triggers a speciation initiation event in each lineage which leads to a full new species
with probability q . Whereas parameter λ can be interpreted as the rate of sympatric
speciation, ν is the rate of appearance of geographical barriers able to interrupt the gene
flow in the population, resulting in a possible allopatric speciation for each of the species.
Even though multiple speciation events can occur simultaneouly, it does not lead to
polytomies, because each species can only split once after a trigger event. This model can
be easily simulated with a Doob-Gillespie algorithm. A probability distribution for the
phylogeny under the MBD model can also be formulated using the integration approach
developed for diversity-dependent diversification models Etienne et al., 2012. While this
probability distribution could in principle be used as a tree prior in Bayesian phylogenetic
inference, it is computationally very demanding, particularly for large trees. With the
MBD model we generate simulated datasets for various parameter settings, using the
mbd_sim function from the mbd R package [Laudanno, 2018].

4.2.2. ESTIMATING THE INFERENCE ERROR

From each simulated ’true’ MBD tree, we measure the impact of ignoring the more
complex and non-standard MBD tree prior in Bayesian phylogenetic inference with the R
package pirouette [Bilderbeek & Laudanno, 2019].

pirouette starts from a ’true’ phylogeny (in our case: the simulated MBD tree), and
simulates a DNA sequence alignment on it using a known nucleotide substitution model
and a clock model. From each sequence alignment, a Bayesian inference is run with a
particular choice of tree prior and substitution and clock models. One can choose the
same substitution and clock models as used in generating the tree, or pick the ones that
fit the data best. For the tree prior we assume the BD model (as the effect of this choice
is our focus). We obtain a posterior distribution of jointly-estimated trees and model
parameter estimates. By comparing the true tree and the posterior trees, an inference
error distribution is generated. For this comparison we used the absolute nLTT statistic
by Janzen et al. 2015, which results in an error distribution with values ranging from
zero (when the inferred tree is identical to the true tree) to a maximum of one (trees are
completely different). Another advantage of using the nLTT statistic is that its behavior is
best explored in Bilderbeek et al. 2020.

We used the twinning option available in pirouette that allows to quantify the
impact of assuming a wrong tree prior in a Bayesian inference compared to a reference
background error that would arise even if the models used in inference were identical to
those used in generating the tree (i.e. the twin tree was generated with a BD model). If the
error distribution of the true tree matches the error distribution of the twin tree, the effect
of using an incorrect tree prior is negligible Bilderbeek et al. 2020.
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4.2.3. PARAMETER SETTINGS

We ran multiple pilot experiments with increasingly more replicates to arrive at our final
parameter settings. We devised a set of rules to make a verdict about the settings.

• quality: 95% of all individual runs should have an effective sample size (ESS) of at
least 200, as is recommended by Drummond & Bouckaert 2015.

• feasibility: 95% of all individual runs should finish within 10 days.

• reproducibility: the mean run-time of all finished runs should be less than 24 hours

• relevance 1: the percentage of taxa created by the MB process should be as high as
possible

• relevance 2: the percentage of taxa should be as high as possible

We searched through parameter space until these criteria were met. This resulted in
the simulation parameters in Table 4.1.

Parameter Values
λ (0.2)
µ (0, 0.15)
ν (0.0, 0.5, 1.0, 1.5
q (0.1, 0.15, 0.2)

crown age 8

Table 4.1 | Parameters used to simulate MBD trees. For each parameter setting 40 trees are simulated.

We generated alignments that are 1000 nucleotides in length, with a known root
sequence of four 250 mono-nucleotide blocks, generated using the simplest nucleotide
substitution model (Jukes Cantor, JC69) and clock model (strict), with a mutation rate of
0.5
tc

, where tc is the crown age. With this mutation rate, each nucleotide has a 50% chance
to mutate (both silently and non-silently) from the ancestral root sequence to any of the
contemporary species’ sequences at the tips.

For the Bayesian inference, we assumed a generative model of a site model that
follows a JC69 nucleotide substitution model, a strict clock model and a BD tree prior.
Additionally, we used a Most Recent Common Ancestor (MRCA) prior equal to the crown
age with a normal distribution of width σ= 0.01. We used a Markov Chain Monte Carlo
(MCMC) setup of 107 states with a sampling interval of once per 104 states. Of the resulting
103 states, we discarded a burn-in of 10%.

For each of the MBD parameter settings, we simulated 40 different trees that we
put through the same pirouette pipeline as described above. We aggregated the error
distributions of these 40 replicates.
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4.3. RESULTS

Of all runs 98% finished within 10 days. Of these runs, 88% had effective sample sizes
above the recommended value of 200, and most well above this (Fig. 4.1). Most runs had
less than 100 taxa, of which the median and mean both lie below 30 taxa (Fig. 4.2).

We find no clear difference between the error distributions for the true and twin trees,
regardless of whether there is extinction or not in the generating process (Fig. 4.3 and Fig.
4.4. We do observe that for generating values of νÉ 0.5, there is only one mode close to 0,
whereas for ν≥ 1.0, the error distributions become bimodal, with a second mode around
0.25. All simulated data can be downloaded from

https://richelbilderbeek.nl/razzo_project_20200204.zip.

Figure 4.1 | Frequency distribution of effective sample sizes of all experiments that finished within 10 days.
Each point represents one parameter setting.

https://richelbilderbeek.nl/razzo_project_20200204.zip
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Figure 4.2 | Frequency distribution of the number of taxa across all experiments.
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Figure 4.3 | The inference error distribution for a generating extinction rate of µ= 0.
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Figure 4.4 | The inference error distribution for a generating extinction rate of µ= 0.1.



4

106 4. RAZZO

4.4. DISCUSSION

We expected to find a larger inference error when increasing the amount of co-occurring
speciation events. The reason is simple: the tree prior used assumes that speciation
events do not occur simultaneously. The higher the number of co-occurring speciation
events, the stronger the deviation from the species tree prior. However, we did not find
evidence for this prediction..

The first reason why this may be the case, is because of the noise generated by the runs
that did not converge. We think that the bimodality in the error distribution is caused by
the converging runs giving a low error, and runs with low ESSes giving higher errors. This
can be studied further by Filtering away the runs with a low ESS. However, this will only
remove the second mode, but will not explain the similarity of the two error distributions
for true and twin trees.

A second reason might be that our choice of MBD parameter settings resulted in
too few multiple-birth events. We chose low values of ν to prevent doing inference on
huge trees. For larger trees, one might perhaps find a difference in the error distributions.
However, we do remark the frequency of multiple-birth events was often larger than 50%.

The third reason why this we did not detect a difference in inference errors between
true and twin trees may be due to the choice of measuring our error. We used the nLTT
statistic, which may not be sensitive enough to what we consider to be different trees:
trees with aligned speciation events and trees where these are not aligned. It is, however,
not straightforward to define a metric that is more sensitive to this difference than nLTT.
One could perhaps try a shotgun approach by simply applying many commonly used
metrics, but we believe that this is unlikely to yield a different outcome. The nLTT statistic
at least picks up the sudden increase in number of lineages present in MBD true trees, but
not in BD twin trees, but this difference is apparently small relative to other stochastically
arising differences between true/twin and the inferred posterior distribution of trees.

The MBD model is a BD model that allows for speciation events taking place simulta-
neously, but has the same drawbacks as the BD model: the expected number of species
increases quickly with time (when net formation of species exceeds extinction) and the
model does not take into account that speciation takes time. The MBD model can, at least
in the simulations, easily be extended to have a diversity-dependent speciation rate (as in
the DDD model) and/or making speciation take time by adding an incipient species state
(as in the PBD model). The idea of this experiment, however, was to measure the impact
of species pump dynamics on phylogenetic inference that does not assume this, and the
comparison of a BD and MBD model seems therefore appropriate, particularly because
for diversity-dependent or protracted single-birth-death models there is no standard
species tree prior available which would have complicated our analyses. Furthermore, we
do not expect that addition of diversity-dependence or protracted speciation alters the
inference on whether speciation events take place simultaneously or not.

For our experiment, we used the default pirouette setup: when simulating a DNA
alignment, the simplest (JC69) nucleotide substitution model and the simplest (strict)
clock model are used. One could argue these models are overly simplistic and biologically
irrelevant. We argue that this actually improves the clarity of our results for two reasons.
The first reason is a practical one: because the computational load was lowered, we were
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able to perform more replicates. For a process with this high amount of stochasticity, we
think this is highly preferable. The second reason is that we think that this reduces the
noise of our results, without hurting the experiment: in our setup, it is essential to assume
the same site and clock model in inference as the one that is actually used in generating
the data.

When simulating our phylogenies, we used an MBD model with and without extinc-
tion. In the case in which extinction is present, picking the BD tree prior as the generative
tree prior seems justified: it is the best-fitting standard tree prior. For the MBD model
without extinction, we could have picked the Yule tree prior. We believe, however, that
this is of minor importance.

For the four MBD parameters λ, µ, ν and q , we investigated 1, 2, 4 and 3 different
values respectively. We chose to use only one value for λ, because the proportion of
multiple-birth events depends on the ratio between λ and a combination of ν and q .
The crown age we selected for our experiments was based on trial and error of pilot
experiments. Because the number of species in an MBD process is expected to increase
exponentially, increasing the crown age has a profound effect on the number of taxa, with
the consequence of having runs that took days to calculate. We decided to priortize the
number of replicates at the cost of a lower number of taxa.

Ideally, we would have liked all our ESSes to be above the recommended value of
200. We are aware ESSes can be increased easily by making the MCMC chain longer.
However, the bimodal distribution of ESSes is disadvantageous: to reduce the percentage
of ESS < 200 by fifty percent, we would have had to increase the MCMC chain lengths by
a factor of forty. We preferred to invest this run-time in doing more replicates.

This research measures the impact that the use of a non-MBD tree prior has on the
inference error in phylogenetic construction for species that are subject to species pump
dynamics. We found that the trees constructed with the standard BD species tree prior are
similar (as measured by nLTT) to the true tree. This may be considered to be good news,
as the implementation of an MBD species tree prior does not seem necessary. However,
our results also suggest that it will be difficult to determine the parameter of the MBD
process when one wants to fit the model to data of a system that is known to be subject to
species pump dynamics. One way to test this would be to try birth-death skyline species
tree priors and see if they pick up a signal of elevated speciation rates during co-occurring
speciation events. These models may be prone to overparametrization because they have
to assume a speciation rate for each interval in which the multiple speciation events
take place, whereas the MBD model provides a dynamic explanation for these elevated
speciation rates. But if they do pick up a signal, then it may still be worth implementing a
species tree prior for the MBD model in Bayesian phylogenetic reconstruction tools.
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5.1. SUMMARY

This thesis can be summarized in one sentence: we’ve developed the tools to measure the
error we make in phylogenetic inference and applied it on one non-standard speciation
model.

The reason we did this, is because of our incomplete knowledge of speciation. Speci-
ation generates biodiversity, which is important to us humans, through the ecosystem
services provided by a species-rich environment. Understanding the evolutionary history,
that is, knowing the phylogeny of multiple species, helps us understand the process of
speciation. Because we do not know which macroevolutionary patterns (that is, again,
a phylogeny) to expect exactly, we can only hope our estimated phylogenies are good
enough. The work in this thesis helps to assess if our hopes are justified.

Within this chapter, I will put the work in this thesis into perspective. I will first take a
look at the most basic thing produced, which is the software underlying the research, as
this is the easiest to describe objectively. From this rather plain foundation, I will move
on to the way the actual research is done and ending with the implications for the field of
biology.

5.1.1. SOFTWARE

A simple way to quantify the amount of work is to count the lines of code and compare
with related software. In figure 5.1 (and table 5.1) I show the number of (non-empty) lines
of code for the packages I developed, the packages I maintain, the packages I contributed
to, as well as BEAST2. BEAST2, which is the foundation of the work in this thesis, has
the most lines of code, above 110k. After that comes beautier (27k lines), phangorn
(18k), pirouette (17k), daisieme (14k), DAISIE (12k) and razzo (8k). beautier is an
R package that creates a BEAST2 input file, and is part of the babette package suite, as
described in chapter 2. phangorn is a general phylogenetics package of which I fixed
some bugs. pirouette is the package described in chapter 3. daisieme is part of a
project that did not reach full fruition yet (see below). DAISIE is an R package developed
in our group, with 42 citations on Google scholar. razzo is the package described in
chapter 4. Summing up the packages of which I wrote most of the code, results in 90k
lines of code. This number of lines is still less than BEAST2 (with 110k), except all written
in half the time. Also note that BEAST2 has 26 collaborators, of which 6 contributed more
than 1k lines of code.

Quality Judging code by the number lines of code is simple, but this is irrelevant to
estimate the quality of the software. Here I will highlight some indirect evidence of
software quality, for the software listed in figure 5.1. To start with, all software in figure
5.1 uses a continuous integration (CI) service, which is known to significantly increase
the number of bugs exposed (Vasilescu et al. 2015) and increases the speed at which new
features are added (Vasilescu et al. 2015). A CI service is automatically activated when
a developer puts a new version of his/her software online. The CI service will create a
virtual computer from scratch, build the software and run it. These virtual computers
can be of multiple operating systems. Where BEAST2 and DAISIE are tested on Linux
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Figure 5.1 | SLOCcount: number of (non-empty) source code lines per repository
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only, beautier, pirouette and my other R packages are tested to run under MacOS and
Windows as well, assuring users of the three major operating systems can actually run
these.

A simple metric to get an idea of code quality is the code coverage. Code coverage
correlates with code quality (Horgan et al. 1994, Del Frate et al. 1995). The code coverage
is the percentage of lines that is actually executed by tests. Writing tests is fundamental
for writing quality code. These tests are usually run by the CI, each time a developer
puts a new version online. Ideally all lines of code are tested. As can be seen in table
5.1, all babette packages have a 100% code coverage, compared to BEAST2, with an
unknown/undisclosed code coverage, phangorn with approximately 70%, followed by
DAISIE with approximately 60% 1.

Another measure to improve code quality is peer review. Similar to academic manuscripts,
also code can be peer reviewed. For R code, rOpenSci is the non-profit organisation that
does so. Note that a prerequisite for a code review by rOpenSci is that code coverage
is 100%, therefore phangorn and DAISIE are not yet eligible. The five packages of the
babette package suite have been reviewed, where mcbette is under review. The full
process of the review of babette took approximately one year, as this is done in the free
time of both me and the reviewers. Mostly due to this, there has not been time yet to have
pirouette reviewed.

Relevance The relevance of software is another facet: one may write big pieces of
software of high quality, but if nobody uses it, the work is still irrelevant.

One way to estimate the relevance is to measure the number of CRAN downloads per
month. CRAN is a central repository for R packages, which keeps track of the number of
downloads. By this measure, as of March 9th 20202, phangorn is most relevant, with 15k
downloads per month, followed by beautier (975), tracerer (849) and DAISIE (736).
Because BEAST2 is not an R package, it is absent from this list.

Another way to estimate the relevance is to measure the number of stars given on
GitHub. GitHub is a website that hosts source code and that allows to develop software
collaboratively. Logged-in users (there are 40 million) can give a star to a project to
indicate his/her appreciation of the project. Going through the projects in 5.1, most stars
are given, as of March 9th 2020, to BEAST2, with 134, followed by phangorn with 110 and
babette with 20 stars. After beautier (6), tracerer (5), beastier (5) and mcbette (4),
pirouette, DAISIE and nLTT have 3 stars. For repositories with 3 or less stars, these stars
are given by the developers themselves and thus less relevant to indicate the relevance of
a project.

Community A time-consuming aspects of developing software is taking care of its users,
which includes the developer(s).

Users expect that R packages are easy to install. The R community has a centralized
website from which packages can be installed easily, called CRAN (short for ’Compre-
hensive R Archive Network’). Therefore, a developer aims to get his/her package on
CRAN. There are, however, many guidelines (see https://cran.r-project.org/web/

1I used the code coverage of the ’geodynamics’ branch, as ’master’ has 0 %

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
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Figure 5.2 | Minimal spanning tree of the dependencies of the R packages used in this thesis. Arrows go from a
package (at the tail), to the package it depends on (at the head). For example, ’beastier’ depends on ’beautier’.
The packages on CRAN are ’beautier’, ’tracerer’, ’beastier’, ’mauricer’ and ’babette’.

packages/policies.html) before a package gets accepted on CRAN. These guidelines
exist to guarantee a minimum level of quality.

The most important guideline when submitting an R package to CRAN, is that all its
dependencies are on CRAN. Figure 5.2 shows the dependencies of the R packages used in
this thesis, showing that three out of the five babette packages depend on the two others.
It would take one full year to get all packages on CRAN.

A consequence of taking care for the user, is that there should be a version of each
of the packages that always works, regardless of ongoing development. If a top-level
package, say razzo requires some different functionality of a bottom-level package such
as beautier, there can be a cascade of new versions: a change in beautier can cause a
change in any of the packages that depend on its. Due to this, beautier (as of 2020-03-10)
is at its fourth CRAN version.

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
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Users expect that the code they use has a certain quality, as they will depend on it.
There are multiple ways to verify code quality. A popular feature is the use of status badges:
dynamic images shown in the README of a project that signal a certain aspect of it, such
as build status and code coverage. Additionally, code should be open, so the style and
extent of tests can be verified. An example of a package that can improve in this regard
is the ape package (Paradis and Schliep 2018), which contains a class for a phylogeny. It
is possible to read the R code ape consists of from a CRAN submission. Except for that,
there is no way to verify the code quality and development process: code is added by
sending it per email, there is no website (such as GitHub) that tracks the development
of the code and the tests are unavailable (although they apparently exist, according to
personal communication with the maintainer of the package, Emmanuel Paradis).

Users also need documentation to learn to use a new package. One piece of documen-
tation is an academic paper describing the functionality of a package. Such a paper is
useful for getting the idea behind a package. User group meetings and tutorials (articles
and videos) are better for learning how to use a package. BEAST2 has a user group meeting
every half year, as well as dozens of tutorials (three of which I wrote). Specific to the R
programming language is the vignette, a kind of documentation that can run a package’s
code. Counting the vignettes, beautier has four, phangorn has two, pirouette has
six, daisieme has one (but well, it is unfinished), DAISIE has two and razzo has two.
The complete babette package suite has 22 vignettes. Additionally, for babette, and
pirouette there are nine video’s to be downloaded or to be streamed from YouTube.

Users also expect a community: a place where they can ask questions, submit bug re-
ports and contribute new code. GitHub has a checklist of seven recommended community
standards (see, for example, https://github.com/ropensci/babette/community):
having a one-line project description, having a README file, having a Code of Conduct,
having a document that describes how to contribute, having specified a software license,
as well as having template texts for Issues (among others, bug reports and feature request)
and pull request (which is a code contribution of any type). Of these seven standards,
BEAST2 has three, beautier all, phangorn has two, pirouette and daisieme have all,
DAISIE has two and razzo has six.

5.1.2. SCIENTIFIC METHOD

Now that we have an idea of the amount of practical work underlying this thesis, let’s take
a look at the scientific methods used.

Reproduction in practice Reproducibility is an essential ingredient of science (McNutt
2014). The inability to reproduce experiments resulted in the so-called ’reproducibility
crisis’, which still is ongoing (Schooler 2014).

There are multiple threats to deliver reproducible science (Munafò et al. 2017). The
two threats most relevant in the context of my research are HARKing and p-hacking (see
figure 5.3 for all threats). HARKing, short for ’Hypothesis After Results are Known’ is the
practice to write down a hypothesis after having done an experiment. p-value hacking is
the process of changing the analysis up until something significant is found.

The drawback of HARKing and p-hacking is that it leads to irreproducible science.

https://github.com/ropensci/babette/community
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Figure 5.3 | Threats to reproducible science, from Munafò et al. 2017

From HARKing, hypotheses that were not under investigation, suddenly get some cred-
ibility, obtained from a random/no effect. p-value hacking gives more credibility to an
experimental variable having an effect than warranted. It is estimated that 85% of the
publications in biomedical sciences is a waste of resources (Chalmers and Glasziou 2009)
(but note that this estimation is based on a logic reasoning, instead of empirical data),
although the situation has improved since Macleod et al. 2014.

Assuring reproduction in practice One way to protect one’s research from HARKing
and p-hacking is the use of preregistration. Preregistration is the act of publishing an
experiment’s hypothesis, methods and analysis, before the experiment is finished.

Reproduction in this thesis The work in this thesis adheres to many of the best prac-
tices for reproducible research (Munafò et al. 2017). All papers in this thesis are Open
Access. The razzo experiment was not pre-registered, as a lighter variant was used: code,
manuscript and communication went via GitHub. GitHub is a website that allows people
to collaborate. A feature of GitHub is that it keeps track of all changes. For razzo, the
hypotheses and methods were written before the first results, and it is possible to verify
this. Also the pilot runs of razzo can be found, as well as their results. By being completely
open, we protected ourselves against HARKing and p-hacking.

Open Science Where reproducible research is an important facet of the scientific method,
there is the Open Science movement that goes further: not only should there be openness
in the research conducted, also the scientific article, resulting data, and software should
be open. In that way, the scientific knowledge is accessible to all (among other, the tax
payer) and can be reproduced by all.

All the academic articles have been put on bioRxiv before publication. bioRxiv is a
pre-print server, meaning that it stores academic manuscripts before these appear in
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print. Although the manuscript may not have been peer-reviewed, it is allowed to upload
the version after peer-review, without the journal-specific layout. In that way, anyone can
download my academic articles. Additionally, the GitHub repository that hosts the article
is also accessible.

All the academic articles I published are Open Access. In this way, anyone can down-
load them without any paywall.

All the academic articles are created by free and open source software (’FOSS’). Which
means that anyone, regardless of operating system, can read these without any financial
cost.

All the experiments are performed with FOSS only. Which means that anyone, regard-
less of operating system, can reproduce these, without any financial cost.

5.1.3. BIOLOGY

Now that we have an idea of practical work and scientific methods underlying this thesis,
we can take a look what this thesis has contributed to increase our biological knowledge.

’babette’ Because babette calls BEAST2, it is tempting to say that babette is just as
relevant to the field of biology as BEAST2. This claim would be false, as not all aspects of
BEAST2 are available within babette. The contribution of babette to the field of biology,
is that it leads to more reproducible research: where it takes multiple programs to create,
start and analyse a BEAST2 experiment, babette can do this from one R script.

’pirouette’ The contribution of pirouette to the field of biology, is that it gives a
thoroughly-tested framework to answer basic phylogenetic questions. The supplementary
materials of pirouette shows plenty of examples that can evolve into a full academic
paper when investigated more systematically.

Interestingly pirouette can also be used to investigate different models of how
an alignment is simulated from a phylogeny, even though pirouette was not originally
designed to do so. This was a fortunate example of the flexibility of pirouette and begs
the question what pirouette will be most used for in the future.

’razzo’ The contribution of razzo to the field of biology is the introduction of a new
tree model, and measuring the error we make in our phylogenetic inference when nature
follows a non-standard speciation model. This non-standard speciation model is the
multiple-birth death (MBD) tree model, which is the first tree model that allows multiple
speciation events to occur at exactly the same time. The predictions of razzo have always
been straightforward: the stronger a tree violates the assumptions of a standard tree prior,
the bigger the inference error made by that prior. What is unknown, is the extent to which
this happens.

There are some assumptions that razzo makes that can be discussed, which are the
assumptions of the MBD tree model and the assumptions made by the experimental
setup. Where the MBD model assumes speciation events can co-occur at exactly the
same time, one could easily argue that two speciation events at different locations cannot
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happen at exactly the same time. The elegance of the MBD model is in the low number of
parameters it needs to generate trees in which speciation can co-occur.

The biological relevance of this project hinges on multiple unknown facets. We did
not investigate how common the MBD model is in nature, instead the model is loosely
based on one example, which is the adaptive radiation in Lake Tanganyika. However, in
the cases that MBD has a good fit with the data, the razzo experiment can show us the
error we make in our phylogenetic inference. From this, we may either rest assured that
our inference is good enough, or that we really need to add MBD to the set of standard
models.

5.1.4. CANCELLED PROJECTS

During my thesis, I worked on some other projects that did not make it into this booklet.
I will discuss these here.

’raket’ raket is the ancestor of all chapters in this thesis. It would do the same thing as
razzo, but for a different non-standard speciation model. This non-standard speciation
model is called the Protracted Birth-Death model (PBD), in which speciation takes time:
after a speciation event, one of the two new species is not directly recognized as such. Up
until these are recognized, the number of species that are present (when looking back
from the future) is underestimated.

The raket experiment would have one extra step compared to the razzo experiment:
in the raket experiment, an incipient species tree would be simulated first, after which a
species tree would be created from it. The way to do so, is by picking incipient species to
represent a species.

One novel finding of the raket experiment, is that the sampling method to create
a species tree is in some cases counterintuitive. The sampling method selects which
incipient species will represent a (good) species. For example, one can select the incipient
species that speciated most recently to represent its species. One would expect that
sampling by this method would always result in a phylogeny that has the shortest branch
lengths. This assumption is false, however, if there is a certain type of paraphyly, as shown
in figure 5.4. As I was interested in obtaining phylogenies with the shortest branch lengths,
the sampling method to obtain these was added. A similar story holds for sampling
the oldest incipient species, which does not always result in a phylogeny with longest
branches. Dueo to this, from the three existing sampling methods, two new methods have
been added.

raket would be another illustration of the inference error we make if nature follows
a non-standard speciation model. The same remarks as razzo apply here as well: it is
unknown how well nature fits the PBD model. In the cases that nature fits the PBD model
well, then raket would have been able to show the extent of the inference error.

’daisieme’ daisieme (pronounce ’day-sham’, similar to the French ’deuxième’) is a
project based on DAISIE (Etienne et al. 2019). DAISIE is an island model, which allows to
estimate speciation, extinction and migration rates from one or more phylogenies. Island
models, such as DAISIE, typically assume that the species on the mainland are fixed.
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Figure 5.4 | Sampling of PBD trees. At the top-left is an incipient species trees, that shows four different incipient
species. Species ’S2-2-2’ and ’S2-2-3’ are two different species, yet not recognized as such. The red edges denote
a species still being an incipient species. The other four phylogenies are the result of four sampling methods.
The sampling methods is shown above each phylogeny, as well as the sum of the branch lengths.

daisieme would investigate this assumption, by simulating phylogenies that do have
mainland extinctions, estimating DAISIE parameters and comparing these parameters
and predictions based on these parameters (such as the number of species and the
number of colonizations) to the true parameter values and the true dynamics (of e.g.
number of species and number of colonizations).

One of the predictions of daisieme is that the immigration rate will be overestimated
when mainland extinction takes place, that is, species colonize an island earlier than
actually true. This prediction is caused by the estimated colonization time of species that
we do not know the actual colonization time of. For such a species, the colonization time
is estimated with help from (part of) the DNA sequences taken from all extant species.
For the island species of unknown immigration time, the closest mainland relative is
chosen. Of these two species, the time of their speciation event is estimated. This time is
used as the earliest time a colonization event could have taken place, which is the best
estimate possible given the amount of information available. In figure 5.5 this is depicted
as the vertical dashed line at the right. However, when the direct mainland ancestor has
gone extinct, the ancestor of the extinct mainland species will be compared to the island
species, resulting in an earlier estimated colonization time. In figure 5.5 this is depicted
as the vertical dashed line at the left. If colonization times are estimated to happen earlier,
migration rate should go up.

daisieme shows the extent of the inference error we make, for varying levels of
mainland extinction. We can assume that the inference error increases for increasing
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Figure 5.5 | daisieme example where we expect an overestimation in the migration rate. The top half shows the
phylogeny of the mainland, which has tree species: A, B and an unlabelled one. The cross at the end of the
yellow/mainland species A denotes its extinction. The vertical dashed red light directly left of it denotes the
colonization of species A of the island, resulting in the green/island species A. The green/insland species A*,
however, depicts the estimated colonization time, which is at the moment that mainland species A and B are
formed.
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Figure 5.6 | Preliminary daisieme result: the estimated migration rate (vertical axis) for different mainland
extinction rates (horizontal axis). Orange dots show the estimated mainland extinction rates in an ideal situation,
which is when all immigration times are known. Blue dots show the estimated mainland extinction rates when
the time of immigration needs to be estimated. The dotted lines show the result of a linear fit. The thick
horizontal orange line shows the actual migration rate.

levels of mainland extinction, but the extent of this error will remain unknown for now.
One preliminary result, however, is shown in figure 5.6. This result points in the

same way as the predictions, but a more thorough investigation is needed before drawing
conclusions.

5.1.5. REFLECTION

When looking back at my PhD trajectory, I see some things that I will do again, things that
I will avoid in the future, and some future work.

Things that I will do again It was inevitable that I would write exemplary software.
Writing such software takes years, if not decades, of learning. Already a dozen of years
before I started my PhD, I was reading the literature regarding software development. One
could argue that, would I have done a worse job, I would have published more academic
papers. I even agree on that! But for science as a whole, I think what I did is the superior
way to go, where the cost of the few (that is, me) benefits the many. For me, it always hurts
when some software developer does not care about his/her users, as I can easily envision
the frustration this will cause.

Following the best practices for reproducible science is something I learned during
my PhD trajectory and I will definitely continue (and improve) doing so. I think it was in
my second year as a PhD student, when I noticed the question ’Do I believe this?’ would
pop up after a scientific talk. The answer, usually, was a no. First I thought that HARKing
and p-hacking were even part of how science works and I did not want to become such a
-in my eyes: fake- scientist. A presentation by Simine Vazire about Open Science showed
me a way to conduct science in a way that would make me believe the result, among
others to write an academic manuscript before having done the experiment. Since then,



5.1. SUMMARY

5

129

I have taken that route. I am happy that if I ask myself ’Do I believe my own research
findings?’, that I can say yes.

Things that I will avoid Already early in my PhD work, the first ideas of raket/razzo
were taking shape. Back then, I suggested not to pursue this line of research, because
it would be clunky and inelegant. Clunky, because already one Bayesian phylogentic
analysis takes hours. Unelegant, because of the backbone is just a factorial design of
varying parameters. Nowadays, I still agree on this. I think, similar to other people in
phylogenetics, that I should have pursued more light-weight and elegant experiments.

When developing a pipeline such as pirouette, there is a tension between (1) adding
a new feature, (2) publish. The basic and minimal pipeline is the setup without candidate
models and without twinning. Already this subset of the pipeline allows one to measure
the inference error we make in phylogenetic inference. The raket paper, that was pre-
registered two years ago, used only that part of the pipeline. Instead of investigating this
minimal pipeline and publish the findings, features were added instead. These features
are the use candidate models and the addition of a twin pipeline.

The first extra pirouette feature, which is the use of candidate models, has, in my
opinion, caused mostly harm to the progress in my PhD work, without adding enough
value. The main reason for this harm, is that the use of candidate models can only
run under Linux and Mac, due to a feature of BEAST2 that only works under those two
operating systems. Most desktop users, however, use the Windows operating system, so I
needed to take this into account. Due to this, I had to write code that I would never run
myself, a weird situation. Also, my co-author Giovanni Laudanno, who uses Windows,
had a hard time to contribute to the pirouette code.

The second extra pirouette feature, which is the use of a twin pipeline, was, in my
opinion, unwarranted to add before the publication of the minimal pipeline. There is
some benefit to use twinning, but I think it would have been superior to show this benefit
by reproducing an earlier pirouette publication with this new feature.

5.1.6. FUTURE WORK

My suggestions for future work are rather straightforward: (1) to measure the inference
error we make on standard speciation models, (2) to measure the inference error we make
on other non-standard speciation models, and (3) to make the MBD tree model part of
the set of standard models.

Apply ’pirouette’ on standard speciation models The goal of pirouette is the mea-
sure the inference error when a phylogeny is created by a non-standard tree model, but a
standard tree prior is used in the inference. There are, however, only a couple of studies
that investigate the inference error when using only standard tree models.

I think it would be useful to measure the inference error when using a standard tree
model, when also assuming that tree model in the inference. This will give the baseline
error, in a similar fashion as twinning does. This error would be the baseline error, in a
similar way that twinning allows one to measure this. From these baseline errors, I would
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enjoy to fit a mathematical model on these errors, to be able to obtain a prediction of this
error without running the time-consuming Bayesian inference.

A next fundamental step would be to measure the inference error when creating
phylogenies using a different standard tree model as is assumed in the inference. When
we know the error we make when nature follows a BD model, when assuming a Yule
model, this would give a sense of scale. It may even be that there is no reason to use BD
at all, because the inference error is too little to warrant using it! Whatever this error, I
would be curious to see how it compares to the errors found in razzo.

I understand why this has not been researched: it takes too long and there is little
glory in finding this out. With pirouette, however, it should at least be easy to setup
these experiments.

Apply ’pirouette’ on multiple novel speciation models The inference error that razzo
measures, is caused by the mismatch of using an MBD tree, yet assuming a BD tree model.
It is easy to do this for any non-standard tree model, such as PBD, but also a time or
diversity dependent tree model. Using different non-standard tree priors, gives us a better
idea of when we can and when we cannot use our standard tree priors.

Add MBD tree prior to BEAST2 In razzo, we measure the inference error we make,
when we generate and MBD tree and assume a BD tree model in our inference. What we
do not know is the inference error would we assume an MBD tree model in our inference.
Being able to use an MBD tree prior would give another baseline error: the inference
error when nature follows MBD and we correctly assume this. To do so, the MBD tree
prior must be added to BEAST2, babette should be able to use it, then a study similar to
razzo can be done.
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5.2. SUPPLEMENTARY MATERIALS

In these supplementary materials, I show the raw data referred to in the main text.

5.2.1. ALTMETRICS

• 60,000 GitHub commits, 1.1k repositories, 421 stars, 242 followers

• 133 YouTube videos, 68 subscribers, 11k views

• Supervised 2 MSc students

• Supervised 6 BSc students

• Supervised 7 interns from secondary schools

• Organised 172 social events

• Since Jan 2017, presented 20 times at TECE

• Publish 5 packages on CRAN

• Passed rOpenSci peer-review for 4 R packages

• Taught +220 evenings about programming
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name title sloccount cc ns ndm ndt
aureole R interface to the Encyclo-

pedia of Life
460 100 0

babette Control ’BEAST2’ 3378 100 20 452 1173
babette
examples

All babette examples 149

babetter Check babette 1816 0
beast2 BEAST2 111886 134
beastier Call ’BEAST2’ 4757 100 5 709 4579
beautier ’BEAUti’ from R 27030 100 6 975 7135
becosys Unified Interface To Phylo-

genetics Models Of Specia-
tion

3989 78 0

DAISIE Dynamical Assembly of Is-
lands by Speciation, Immi-
gration and Extinction

12314 0 3 736 18000

daisieme Island Diversification With
Mainland Extinction

13558 97 1

DDD Diversity-Dependent
Diversification

7151 24 1 1951 70000

mauricer Install ’BEAST2’ Packages 519 100 1 742 2202
mbd Multiple Birth Death Diver-

sification
5972 1

mcbette Model Comparison Using
’babette’

2074 100 4

nLTT Calculate the NLTT Statis-
tic

4658 99 3 702 23000

nodeSub Simulate Sequences 2055 53 1
PBD Protracted Birth-Death

Model of Diversification
3437 57 1 649 28000

peregrine Work With The Groninger
Peregrine Computer Clus-
ter

1699 98 2

phangorn Phylogenetic Reconstruc-
tion and Analysis

18453 69 110 15000 420000

pirouette Create a Bayesian Poste-
rior From a Phylogeny

16584 99 3

pirouette
examples

All pirouette examples 1596

raket What If Speciation Takes
Time?

2716 58 0

raztr Razzo Test Results 52 0
razzo The Error if Nature is MBD 7690 76 2
ribir ribir, basic phylogenetics

page
1053 95 0

tracerer Tracer from R 2671 100 5 849 5359

Table 5.1 | Repository features. name: the CRAN package name. title: the R package title, as taken from the
DESCRIPTION filesloccount: the number of (non-empty) lines of code.cc: code coverage, as a percentage, where
100 percent denotes that all code is covered by tests. ns: number of stars on GitHub. ndm: number of CRAN
downloads per monthndt: total number of CRAN downloads



SUMMARY

T HIS summary is written especially for non-biologists, so they can understand what
is discussed in this thesis.

Speciation There are plenty of (animal, plant, etc.) species on the world. In Earth’s early
days this was not yet the the case: it took hundreds of millions of years for the first species
to arise. In the many years that followed, billions of species have formed. The process
that creates new species, we call speciation.

Speciation in bacteria There are multiple ways that speciation can occur. For bacteria,
we state that two bacteria are of different species, if their DNA differs enough. Bacteria
multiply when the environment is suitable and with each cell division, the DNA of the
new bacteria changes slightly. Thus, when one starts with two identical bacteria, after
some time, one ends up with two different bacterial species.

Speciation in animals For animals it is harder to state when two animals are of two
different species. A commonly used definition is that two groups of animals are of different
species, when the offspring of individuals of the different groups is either absent or results
in infertile grandchildren.

There are multiple mechanisms that cause speciation in animals. One simple mecha-
nisms is the split of group in two groups by a change in the environment, as can be done
by a river or a mountain.

Phylogenies When we look at multiple species over a longer period of time (that is,
millions of years!), likely there will be speciation events. Some species will give rise to
more new species than others. We can display this process using a phylogenetic tree, as
shown in figure 5.7.

DNA One needs some form of information to base a phylogeny on, such as, for example,
the DNA sequence of the species within the phylogeny. All living beings have DNA, thanks
to which it is possible to put all species in one big phylogeny. Each time DNA is transferred
to a next generation, it changes a little bit. Due to this property, it is possible to base
a phylogeny on DNA sequences. Simply put: species that have a more similar DNA
sequence, are closer related.

Phylogenetic model There are multiple ways to construct a phylogeny from DNA se-
quences, because one can have different assumptions regarding how speciation occurs.
For example, one can assume that speciation events occur just as often all the time (on
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Figure 5.7 | A phylogeny that displays that human’s and gorilla’s are more related to one another, compared to
humans and dolphins. This phylogeny is not to scale.

average) in all species. Or one may assume that DNA of all species have the same mutation
rate. The collection of assumptions, we call a model. In this case, we call it a phylogenetic
model.

Constructing phylogenies There are computer programs that construct a phylogeny
from a phylogenetic model and DNA sequences. One of the most popular of such pro-
grams is called BEAST2. Because I would simulate many thousands of phylogenies, I
needed to be able to do so from scripts only (that is, without any mouse clicks). For
that reasons, I programmed babette, an R package with which one can call BEAST2. In
chapter 2, one can read more about babette.

Phylogenetic models Because one can pick many different assumption regarding spe-
ciation, the question which one is best arises quickly. And there are also multiple methods
to compare phylogenetic models (that is, to find out which one is ’best’). A drawback of
most methods is that the phylogenetic model needs to be understood well mathematically.
This means, that before one can measure how ’good’ a new phylogenetic model is, it
needs to be solved mathematically first.

Determine how good phylogenetic models are Giovanni, Rampal and I invented a way
to determine if it is important to solve a new phylogenetic model analytically. With our
new method, one only needs to simulate a lot of phylogenies using the novel method.
Usually, this is way easier than solving a model mathematically. This method was put in
an R package called pirouette. In chapter 3 one can read more about pirouette.

Testing a new speciation model After we invented a method to determine how impor-
tant it is to solve a phylogenetic model mathematically, we applied the method on a new
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phylogenetic model that has not yet been solved mathematically.
This new model is named the MBD (’Multiple-Birth Death’) model and was invented

by Giovanni. In this model, one assumes that speciation occurs in all species equally
often on average, except that sometimes a ’speciation wave’ occurs, in which multiple
species speciate at the same time. In chapter 4 one can read how we did this exactly.

We found out, that would nature follow the MBD model, we can make phylogenies
using simpler models that are just as good.

Conclusion This thesis shows that we can find out whether or not we should investigate
a novel phylogenetic model in-dept, so that scientists can better spend their time.

The nice thing about my research is that other scientists also profit from it: with
babette anyone can easily constrict phylogenies from DNA sequences. At the moment
of writing, there have been 3 scientific publications that use babette. Also pirouette
has become a strong R package, but without any citations yet.





SAMENVATTING

D EZE Nederlandse samenvatting is speciaal geschreven voor niet-biologen, zodat zij
een beter idee kunnen krijgen wat er in dit proefschrift besproken wordt.

Soortvorming Er zijn op de wereld veel verschillende (dier-, plant-, etc.) soorten. Hele-
maal in het begin van het ontstaan van de Aarde, was dit nog niet zo, want toen ontstonden
de eerste soorten. In de loop van de tijd zijn er veel soorten bijgekomen. Het proces dat
hiervoor zorgt, noemen we soortvorming.

Soortvorming in bacteriën Soortvorming kan op meerdere manieren gebeuren. In
bacterieën zeggen we dat twee bacteriën verschillend zijn, als hun DNA genoeg verschilt.
Bacteriën vermenigvuldigen zichzelf als de omstandigheden gunstig zijn en bij elke
celding vinden er veranderingen in het DNA plaats. Als je twee identieke bacteriën lang
genoeg laat delen, heb je dus na een tijd twee verschillende bacteriesoorten.

Soortvorming in (vooral) dieren Bij dieren is het moeilijker te zeggen wanneer twee
dieren verschillende soorten zijn. Een veelgebruikte definitie is dat twee groepen dieren
verschillende diersoorten zijn, als een kruising tussen de twee groepen geen of onvrucht-
bare kleinkinderen oplevert.

Er zijn meerdere mechanismen die ervoor zorgen dat soortvorming in dieren plaats-
vind. Een simpel mechanisme is dat een groep dieren een tweeën gesplits wordt door een
verandering in het landschap, zoals een rivier of bergketen.

Fylogenieën Als we kijken naar een verzameling soorten over langere tijd (denk aan
miljoenen jaren!), dan zal er waarschijnlijk soortvorming plaatsvinden. Sommige soorten
zullen meer nieuwe soorten dan anderen opleveren. We kunnen dit proces laten zien met
een fylogenetische boom, zoals bijvoorbeeld in figuur 5.8.

DNA Er is informatie nodig om een fylogenie te kunnen maken, bijvoorbeeld de DNA
volgorde van de soorten in de fylogenie. Alle levende wezens hebben DNA, waardoor
het mogelijk is alle soorten in een grote fylogenie te zetten. Elke keer dat DNA wordt
doorgegeven aan de volgende generatie, verandert de DNA volgorde een klein beetje. Deze
eigenschap maakt het mogelijk om een fylogenie te kunnen baseren op DNA volgordes.
Simpel gezegt: de soorten waarvan de DNA volgordes het meest op elkaar lijken, zijn
meer aan elkaar verwant.
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Figuur 5.8 | Een fylogenie die laat zien dat mensen en gorilla’s meer aan elkaar verwant zijn dan mensen en
dolfijnen. Deze fylogenie is niet op schaal.

Fylogenetisch model Er zijn meerdere manieren om een fylogenie te maken aan de
hand van DNA volgordes, omdat je verschillende aannames kunt hebben over hoe soort-
vorming plaatsvind. Je kunt bijvoorbeeld aannemen dat soortvorming gemiddeld altijd
even vaak optreedt. Of dat DNA in alle soorten altijd even snel verandert. De verzameling
van aannames noemen we een model, in dit geval noemen we dit een fylogenetisch
model.

Fylogenieën maken Er zijn computerprogramma’s die van een fylogenetisch model en
DNA volgorden een fylogenie kunnen maken. Eén van de populairste is het programma
BEAST2. Omdat ik veel fylogenieën zou gaan maken, was het voor mij belangrijk dat ik
dit met enkel code (dus zonder muisklikken) zou kunnen doen. Daarom heb ik babette
geprogrammeerd, een R package waarmee je BEAST2 kunt aanroepen. In hoofdstuk 2
kun je lezen over babette.

Fylogenetische modellen Omdat je veel aannames kunt maken over hoe soortvorming
plaatsvindt, is het de vraag welke de beste verzameling aannames is. En ook het vergelij-
ken van fylogenetische modellen (om uit te vinden welke ’de beste’ is) kan op meerdere
manieren. Een nadeel van de meeste manieren is dat het fylogenetische model wiskundig
goed onderzocht moet zijn. Dit betekent dat je eerst een nieuw fylogenetisch model
wiskundig moet oplossen, voor je kunt weten hoe goed dat model is.

Kijken hoe goed fylogenetische modellen zijn Ik, Giovani en Rampal hebben een ma-
nier bedacht om te kijken of het wel belangrijk is om een nieuw fylogenetisch model
wiskundig op te lossen. Met onze manier hoef je alleen maar een boel fylogenieën van het
nieuw model te simuleren. Dit is vaak veel gemakkelijker dan een model wiskundig op
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te lossen. Deze manier hebben we in een R package gestopt, die we pirouette hebben
genoemd. In hoofdstuk 3 kun je lezen over pirouette.

Een nieuw soortvormingsmodel testen Toen we een manier hadden om te kijken hoe
belangrijk het is om een fylogenetisch model wiskundig op te lossen, gingen we dit
gebruiken op een nieuw fylogenetisch model, dat nog niet wiskundig is opgelost.

Dit nieuwe model heet het MBD (’Multiple-Birth Death’) model en is bedacht door
Giovanni. Binnen dit model is de aanname dat soortvorming altijd voor alle soorten even
vaak voorkomt, maar dat er soms een ’geboortegolf’ optreedt, waarin er in meerdere
soorten tegelijk soortvorming optreedt.

In hoofdstukken 4 kun je lezen hoe we dit precies hebben gedaan. We kwamen
erachter dat zóu de natuur dit nieuwe en ingewikkeldere model volgen, je met bestaande
en simpelere modellen net zo goede fylogenieen kunt maken. Dus als je alleen maar goeie
fylogenieën wilt krijgen, is het niet nodig het MBD model op te lossen.

Conclusie Dit proefschrift leert ons dat we kunnen weten of we een nieuw fylogenetisch
model zouden moeten onderzoeken, waardoor wetenschappers nuttigere dingen kunnen
doen.

Het mooie aan mijn onderzoek is dat andere wetenschappers er zelf gemakkelijk
ook wat mee kunnen: met babette kan iedereen gemakkelijk fylogenieen maken uit
DNA sequenties. Op het moment van schrijven zijn er 3 wetenschappelijk artikelen
gepubliceerd die babette gebruiken. Ook pirouette is een sterk R package geworden,
maar er zijn nog geen publicaties die het gebruiken.
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