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Abstract: Proficiency in number structures depends on a continuous development and blending of intricate 

combinations of different types of numbers and its related characteristics. The purpose of this paper is to unpack the 

mechanisms and underlying notions that elucidate the potential process of number construction and its inherent 

structures. By employing the concept of digital root, we show how juxtaposed assumptions can play in delineating 

generalized models of number structures bridging the abstract, the numerical, and the physical worlds. While there 

are numerous proposed ways of constructing Smith numbers, developing a generalized algorithm could help provide 

a unified approach to generating number structures with inherent commonalities.  

 

In this paper, we devise a sieve for all Smith numbers as well as other related numbers. The sieve works on the 
principle of digital roots of both Sd(N), the sum of the digits of a number N and that of  Sp(N), the sum of the digits 
of the extended prime divisors of N. Starting with Sp(N) =  Sp(p.q.r…), where p,q,r,…, are the prime divisors whose 
product yields N and whose digital root (n) equals to that of Sd(N) thus Sd(N) = n + 9x; x є N. The sieve works on 
finding the proper value of x that renders a Smith number N. In addition to the sieve, new related numbers could 
emerge. 
 

Keywords: Digital roots; Smith numbers; Vortex mathematics; Prime factorization; Hoax numbers. 

 
 

1. Introduction 

Nikola Tesla, the worldwide prominent electrical engineer and physicist famously remarked “If you only 

knew the magnificence of the 3,6, 9 then you have the key to the universe” (1919).  

 

Ancient beliefs that a divine element is present in numbers have been timeless. The inherent perception that 

to have power of numbers is to have control over how the world works is deeply embedded in the human mind. To 

describe things using numbers is an essential step toward knowing and building awareness of the prime reality we 

live in. Hence, a mastery of numbers has always been seen as a necessary means of insight into the human centers of 

imagination. 

 

Proficiency in number structures depends on a continuous development and blending of intricate 

combinations of different types of numbers and its related characteristics. Hence, a deep conceptual understanding 

of the definitions underlying the structures of different types of numbers is essential to facilitate systematic 

computation strategies and to establish possible relationships among the different rules. Smith numbers, hoax 

numbers, beast numbers (Wang, 1994) and numerous other related numbers illustrate the remarkable mechanisms 

that humans have created and appropriated to generate infinite abstract number structures. Such numbers although 

detached from counting concrete objects and uncommonly used, however, they are set and ready. As educators, we 

arguably perceive this insight as important as it is simple.  
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The purpose of this paper is to unpack the mechanisms and underlying notions that elucidate the potential 

process of number construction and its inherent structures. The ultimate goal is to shed some light on the role that 

juxtaposed assumptions can play in delineating generalized models of number structures bridging the abstract, the 

numerical, and the physical worlds. To illustrate our perspective, we employ the concept of digital root to explore 

numerical and functional underpinnings of what has been called “vortex-based mathematics” in relationship to 

electromagnetic fields. We further examine numbers generated through the employment of digital root mechanisms 

such as Smith numbers, and Hoax numbers and we propose “new” related numbers based on similar assumptions. 

The fundamental premise underlying our stance is to provide insight on the versatility, interdisciplinary and the wide 

scope of application of several mathematical concepts such as digital root.  

2. Digital Root 

By definition, the digital root(or repeated digital sum) of an integer N is a single-digit integer n, designated 

by ρ(N) = n, obtained by successive additions of the digits of N and of those of the outcomes (Hoffmann, 1998). In 

other words, if the sum of the digits of N, designated by Sd (N), is more than 9 then these digits are added again and 

again until a one-digit sum is obtained. In fact, this is similar to the old process of casting out nines from N. In 

modern terms, we use modular arithmetic with a modulo operator (mod) to denote: N≡ρ(N) ≡n (mod 9); n≠ 0. 

Example: 

N = 75,342,873, has S
d

(N) = 39, where 3 + 9 = 12 and 1 + 2 = 3; hence ρ(75,342,873) = 3 or 75,342,873 ≡ 3 (mod 

9). 

Thus, all integers in N fall into nine sets, called residual classes modulo 9, denoted as: 

,1 ,2 ,3 ,4 ,7,6,5 ,8 and 9  

The set E = { ,1 ,2 ,3 ,4 ,7,6,5 ,8 9 }forms under the multiplication operation in Abelian group. 

3. Applications of Digital Root: Vortex-Based Mathematics 

An interesting significance of digital root lies in its inherent potential to uncover symmetrical and cyclical 

properties of specific number groups such as figurate numbers and Fibonacci sequence using a combination of 

geometric and numerical depiction (Ghannam, 2012). A consideration of digital roots has prompted the basics for 

the development of what has been known as vortex-based mathematics (Rodin, 2010). The main premise of vortex-

based mathematics, is that unobserved or invisible energy can be mathematically modeled following oscillating 

paths between certain numbers. It is believed that such energy could be the driving force behind reality and the 

initial impulse form behind creation. The energy path is characterized by a coil motion following a logarithmic 

spiral of infinity that is non-decaying and eternal. To describe the path of this energy, proponents of vortex-based 

mathematics use what they call a “circle of life” or a “circle of enlightenment”, a seemingly mathematical 

decryption and a model for sound and harmonics. The underlying hypothesis is that since simple, base 10 single-

digit numbers follow specific patterns, these numbers depict a rhythmic and polarized motion creating the effects 

that make visible the phenomenon they represent. In the realm of vortex mathematics, unfolding all the patterns that 

underlie a combination of these numbers using the digital root functionality helps model a higher dimensional 

energy. In a clockwise direction, we simply denote the digits 1 through 9 on a circle as seen in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A cyclical depiction of the single-digit numbers. 
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On the circle, the numbers are connected using straight line vectors signifying doubling and taking the 

digital root of the resultant. For example, 2 is the doubling of 1 hence it is connected to 1, 4 is the doubling of 2, 8 is 

the doubling of 4, 16 is the doubling of 8 taking its digital root it becomes 1+6=7, hence 8 is connected to 7, 32 is 

the doubling of 16, whose digital root is 5, hence 7 is connected to 5 and finally, 64 is the doubling of 32, and its 

digital root is 1, closing the circle. We can continue indefinitely doubling and taking the digital roots of numbers 

around the same bounded ∞-shaped trajectory that is constantly an indefinitely in motion as the numbers increase. 

For example, if we take the number 22 whose digital root is 2+2= 4, then doubling 22 gives 44 whose digital root is 

4+4= 8. No matter what combination we take, there is no way to break this doubling sequence.    

 

Furthermore, the sequencing of the digits depicted in the circle shown in Fig. 1, comprises three major 

elements: the infinity symbol composed of a path connecting the digits (1248751); the pyramid denoted by a 

trajectory (396) and the primal point of unity denoted by 0. Predictably, underlying the process of doubling and 

taking the digital root of the results are patterns of single-digit numbers sequenced on the circle as per the three 

elements. The sequence also holds true and is valid using halving, the inverse of doubling (See Fig. 2). For example, 

half of 1 is 0.5 hence 1 is connected to 5, and half of 0.5 is 0.25 whose digital root is 7, and half of 0.25 is 0.125 with 

a digital root equals 8, half of 0.125 gives 0.0625 with a digital root of 4, half of 0.0625 is 0.03125 with a digital 

root equals 1, half of 0.03125 is 0.015625 whose digital root is 1, and half of 0.015625 is 0.0078125 which closes 

the circuit with a digital root equals 5. Similarly, starting with any number, say 221 whose digital root is 2+2+1=5, 

then half of 221 has a digital root equals 7 and so on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      (a)                                                                                       (b) 

 

 

Fig. 2 The sequential pattern depicted using two infinite series:  

a) number doubling and digital root; b) number halving and digital root. 

 

Hence doubling and halving using digital root arithmetic signifies trailing motions or spin continuum with 

inverted directions. The significance of this algorithmic sequencing is believed to explain how vibrations and motion 

occur (Rodin, 2010). As per the circle, the energy that signifies the source of motion, vibrations, and what keeps 

time moving forward is represented by the number 9.  

 

The second element in the vortex depiction is the pyramid comprising of the three digits, 3, 6 and 9 with 9 

being the apex of the pyramid and where 3 and 6 are never connected. Applying the mathematical functions of 

doubling and halving to 3 and 6, we see an oscillating pattern of motion illustrated by the infinite sequence 

3,6,3,6,3,6, etc. In this context, 3 and 6 are referred to as “magnetic” numbers symbolizing a polarized pulse 

oscillating between two poles. However, and as depicted by the vortex circle, 3 and 6 are not connected to each 

other but rather are connected to digit 9. The significance of 9 lies in the fact that irrespective what mathematical 

function we apply, like halving and doubling, the digital root of the resultant is always 9. As such, 9 is seen as 

having a polarizing effect on the numbers and signifying an invisible axis of symmetry, a spindle separating the 

numbers 1 through 8 (See Fig.3). Therefore, 9 is seen as forming the beginning and conclusion of every sequence 

with the number sequences on both sides of the 9 axis, with the exception of the number 9 itself, becoming mirror 

images of each other. 
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Fig. 3The polarizing effect of the digit 9 axis and the mirror images of number sequences 

 

Consequently, the fundamental principles of Vortex mathematics center around the existence of six 

numbers namely, 1, 2, 4, 5, 7, and 8that embody the world of physical creation, and underlie the most prevalent 

geometrical form of creation in nature: the hexagon. Employing the above depiction, we can perform all arithmetic 

operations, i.e., addition, subtraction, multiplication, and division simultaneously and the potential outcomes are 

seemingly enclosed on the same circle. It is worth mentioning that performing the division function on the numbers 

instigates the emergence of three different family number groups triangulated across number triplets: Family group 1 

encompasses numbers 1,4,7, family group 2 includes numbers 2, 5, 8 and family group 3 with numbers 3, 6, 9. Such 

groups are determined by the field represented by numbers 3 and 6. Thus, in a forward motion, 1 added to 3 gives 4, 

4 plus 3 equals 7, and 7 plus 3 equals 10 whose digital root is 1. Similarly, 2 plus 3 equals 5, 5 plus 3 equals 8, and 8 

plus 3 equals 11 whose digital root is 2. Excluding the 3, 6, 9 family group, the forward and backward motion 

represented by adding 3 and 6 results in the hexagonal trajectory (See Fig. 4).These number groups are repeated 

indefinitely by successive addition of number 3 and taking the digital root of the sum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Family number groups determined by adding 3 and 6 in a forward and backward motions. 
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The circle then represents a modeling of biological, physical, and chemical phenomena in the universe. Interestingly, 

in vortex mathematics the numbers are stationary as per the circle depiction however, the different mathematical 

functions are moving, designating different capabilities thus showing motions across space and time.  

 

4.Background:Smith Numbers 

 

The term “Smith” numbers was originally coined by Albert Wilansky (1982) who defined properties of the 

numbers and provided an explanation of the name, “The largest Smith number known is due to my brother-in-law H. 

Smith who is not a mathematician. It is his telephone number: 4937775!” (p. 21). In 1987, Wayne McDaniel showed 

that there were indeed infinitely many Smith numbers and proposed the first generalization of Smith numbers, the k-

Smith number.  

 

But what exactly are “Smith” numbers? To answer this question, we present some important definitions.   

 

Prime partition of an integer 

 

Broadly, any integer N can be expressed as a sum of smaller integers (with or without repetition), such as: 

6 = 1 + 2 + 3; 10 = 4 + 3 + 2 + 1; … 

It should be noted that N admits a finite set of partitions such as 

 6 = 6 

   = 5 + 1 

   = 4 + 2 = 4 + 1 + 1 

   = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 

 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 

= 1 + 1 + 1 + 1 + 1 + 1 

We can also represent the partitions using integer partition trees as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case the chosen partition of N consists of primes only, then it is called a prime partition of N. For example, 6 has 

two prime partitions: 6=2+2+2 and 6= 3+3(See highlighted classes below). 
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Similarly, N = 10 admits 5 prime partitions as represented in the integer partition tree below: 

10= 2+2+2+2+2=2+2+3+3=2+3+5=3+7=5+5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence N=10 admits the following prime partitions: (2,2,2,2,2); (2,2,3,3) ;(2,3,5); (3,7); and (5,5) 

Considering an integer N ≥ 2 such that 

     N = p1 * p2 * … *pr 

 

where p1 , p2 , … ,pr  are the prime divisors of N (not necessarily distinct), and the sum of the digits of the prime 

divisor pi  is designated by Sd(pi)= 𝑛𝑟
𝑖=1 i  .Therefore, the prime partition of N denotes the set of primes pi whose sum 

equals N(Gupta & Luthera, 1955).Sp(N), the sum of the digits of the extended prime divisors is given by 

(n1, n2 ,… ,nr  ) 

 

As an example, consider N such that Sp(N) = 22. A prime partition of 22 is (2
3
, 3, 4, 7), where the prime 2 has three 

prime representatives, which are 2,11 or 101. In fact, Sd (2) = 2, has only three prime representatives as mentioned 

earlier. Although, it might be conjectured that a sequence of zeros between two ones such as: 101, 1001, 10001, 

100001, ... could qualify to be included in the partition class, however, 101 is the only prime number, the rest are all 

composite.  

Similarly, the number 4 represents all the primes pi whose S
d

(pi) = 4, thus 

pi є {13, 31, 103, 211, 1021,…}, 

and the number 7 represents all primes q i  whose S
d

(q i ) = 7 thus 

q i  є {7, 43, 61, 151, 223,…}. 
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In this very sense, we use the term “the prime partitions of an integer n = S
d

(N)”. According to this convention, 

another prime partition of 22 is given by (2, 5, 7, 8), which is equivalent to one of the following: 

(2, 5, 7, 8), (11, 5, 7, 53), (2, 23, 43, 71), (101, 41, 61, 107),…  

In fact, there are many such prime partitions whose sum of digits equals 22, with 

S
d

( p1) = 2,  S
d

( p2) = 5,  S
d

(p3) = 7,  S
d

( p4) = 8. 

5. Smith Numbers 

We consider a positive integer N a Smith number, if the sum of its digits S
d

(N) equals the sum of the digits 

of its extended prime divisors Sp(N); that is  

N is a Smith number  S
d

(N) = S
p

(N). 

Examples: 

 

The numbers below are Smith numbers since they satisfy the following: 

1) N = 6036 = 2.2.3.503; S
d

(N) = 6 +0+3 + 6 = 15;  S
p

(N) = 2+2+3+5+0+3=15. 

2) N = 9985 = 5.1997; S
d

(N) =9+9+8+5=31;S
p

(N) = 5+1+3+3+3+3+3+3+7=31. 

3) N = 4, 937, 775 = 3.5.5.65837; S
d

(N) =4+9+3+7+7+7+5=42;S
p

(N) = 3+5+5+6+5+8+3+7=42.  

Note that all prime composite numbers are trivial cases of Smith numbers, for example: 

p = 13; S
d

 (13) =  S
p

(13) = 4. 

6. The Proposed Sieve 

 

We create a sieve to help us establish a generalized mathematical model to generate Smith numbers. The main 

target of the sieve is to find all possible prime partitions of the number (n) whose products P yield a digital root 

equals ρ(n), consequently obtaining a generalized form of N. To illustrate, we consider the Smith number N whose  

Sd(N) = Sp(N) = n. Next, we build tables of all possible products of the various values of the prime factors of N; 

these products equal the sum of the digits of its extended prime divisors Sp(N) = ρ(n) + 9x, x Є N and Sd(N) = n. The 

major operation of the sieve is to pick out the numbers N among these products whose Sp(N) = n. Consequently, we 

prepare for lists of primes according to their sum of digits such as 

S
p

 (p) = 2 Є {2; 11; 101}  

S
p

 (p)= 4Є {13; 31; 103; 211;…} 

S
p

 (p)=  5  Є {5; 23; 41; 113; 131,…} 

Note that there are no primes of digital root = 3, 6, or 9 (Grant & Ghannam, 2019). 

To demonstrate this procedure, we consider N whose S
d

(N) = S
p

(N) = 13, and to find such Smith 

numbers N we start with ρ(13) = 4, then find all possible prime partitions of (13) whose products P yield a digital 

root 4 as shown in Table 1: 

 

Table 1 

Partition Sum Product (P) ρ(P) Result 

 

(2,11) 2 + 11 = 13 2x11 = 22 4 Correct 

(2,4,7) 2+4+7= 13 2x4x7=56 2 Incorrect 

(2,3,3,5) 2+3+3+5=13 2x3x3x5= 90 9 Incorrect 

(3,10) 3+10=13 3x10= 30 3 Incorrect 

(3,5,5) 3+5+5=13 3x5x5=75 3 Incorrect  

(5,8) 5+3+5=13 5x8=40 4 Correct 

 

Hence, the form N = p.q ; where S
p

(p) = 2 and S
p

(q) = 11 or S
p

(p) = 5 and S
p

(q) is 5 or 3; in both cases the 

sum is 13 and S
d

(N) = 4 + 9x ; with x=1. 

To show how the sieve works, we first build Tables for both of products as shown in Tables 2&3. 
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Table 2 

q 2.q 

 

11.q 101.q 

11 22 121 

 

1111 

29 58 

 

319 2929 

47 94 

 

517 4747 

83 166 

 

913 8383 

137 247 1507 13837 

 

173 346 

 

1903 17473 

191 382 

 

2101 19291 

 

227 454 

 

2497 22927 

263 526 

 

2893 26563 

281   562 

 

3091 28381 

317 634 

 

3487 32017 

353 706 3883 35653 

 

 

Table 3 

q 5.q 23.q 41.q 113.q 

 

8 

 

40 184 328 904 

17 85 

 

391 697 1921 

53 265 

 

1219 2173 5989 

71 

 

355 1633 2911 8023 

107 535 2461 4387 12091 

33 

 

1165 5359 9553 26329 

 

251 1255 5773 10291 28363 

  

Thus the sieve picks out the numbers (underlined in the Tables) whose S
d

(N) = 13 or x = 1 and discards the others. 

 

7.k-Smith Numbers 

We can further explore k-Smith numbers. By definition (Miller, Hereen, & Hornsby, 2002), a positive 

integer N is called a k-Smith number if  

S
p

(N) = k x S
d

(N) 
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Examples: 

1) N = 316 = 2
2
. 79;   S

d
(N) = 10; S

p
(N) = 20 = 2. S

d
(N). 

2) N = 26011 = 19.37
2
;   S

d
(N) = 10; S

p
(N) = 30 = 3. S

d
(N). 

3) N = 4,000,000,002 = 2.3.66,666,6667; S
d

(N) = 6; S
p

(N) = 60 = 10. S
d

(N). 

We note that the function of the k-sieve is similar to that of 1-Smith numbers. 

Let S
d

(N) =n then S
p

(N) = k.n, hence the procedure targets all possible prime partitions of (k.n) whose 

products have digital root of ρ (n). The next step involves building the tables of the products of these prime 

partitions for all the primes in the partitions. Ultimately, the sieve picks out the required k-Smith numbers. 

To illustrate, consider N whose S
d

(N) = 10 and we look for the 2-Smith number; S
p

(N) = 2 x 10 = 20. We 

find the possible prime partitions of 20, for instance (2
2
, 16) whose sum is 20 and product equals 64 of digital root ρ 

(64) = 1 which is the digital root of S
d

(N), thus we build the following table for: 

N = p
2
.q; S

p
(p) = 2; S

p
(q) = 16 

Table 4 

q   2
2
.q 11

2
.q 101

2
. q 

79  316  9,559             805,879 

 

97             388       11,737            989,497 

 

277  1,108 33,517        2,825,677 

 

1,663         6,652      201,223       16,964,263 

 

1,753          7,012 212,113 17,882,353 

 

3,931       15,724      

 

475,651   40,100,131 

 

The sieve picks out the numbers whose S
d

(N) = 10 (underlined, and discards the numbers) N whose S
d

(N) ≠ 10 

5. Hoax Numbers 

We consider another interesting number, the Hoax number. By definition (Tattersall, 2001), a positive 

integer N is called a Hoax number if 

S
p

(N) = S
q

(N) 

Where S
q

(N) is the sum of the digits of the distinct prime divisors of N. 

For example: 

N = 47,700 = 2
2
 .3

2
 .5

2
 .53; S

d
(N) = 18; S

q
(N) = 2 + 3 + 5+ 8 = 18, while S

p
(N) = 4 + 6 + 10 + 8 = 28; hence 

47,700 is a Hoax number. 

Also the integer N = 2401 = 7
4
 admits S

d
(N) = 7 and S

q
(N) = 7, while S

p
(N) = 4 x 7 = 28, is a Hoax as well as a 

4-Smith number. Another example is N = 43,501 = 41.1061; S
d

(N) = 13 and  

S
p

(N) = S
q

(N) = 13; thus 43,501 is a Hoax number and a Smith number as well. 

 

It is important to note that all Smith numbers that have distinct (non-repeating) prime divisors are also Hoax 

numbers. The sieve devised for such Smith numbers can be applied for such Hoax numbers too. But in this case, 

since the prime divisors are repeated many times, we have to adjust the device or the procedure according to the 

digital root of S
d

(N). To illustrate, consider an integer N whose S
d

(N) = 10, one of its prime partitions has a 
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product P of digital root 2 : (2,8), the sum is 2 + 8 = 10 and the product 2 x 8 = 16 of digital root ρ(16) = 7, then we 

have to multiply 7 either by 2
n
 or 8

n
 to make the digital root ρ(7 x 2

n
) = 1 or ρ(7 x 8

n
) = 1; actually n = 2, for ρ(7 x 

2
2
) = ρ(28) = 11. Thus, we adjust the prime partition to be (2

3
,8) and N = p

3
.qwhere S

p
(p) = 2 and S

p
(q) = 8 is the 

required form for the sieve:  

 

q  17  53              

 

71           107  233   251  … 

2       

 

136  424  568          856          1,864  2,008 … 

11      22,627        70,543       94,501     142,417   310,123 334,081   … 

 

 

6. Newly Invented Numbers 

 

Morowah Numbers 

We create a number called Morowah number defined as follows: A positive integer N is a Morowah number if 

S
d

(N) = n
a
 and S

p
(N) = a

n
; a, n є N; a ≠n, 

Examples: 

1) N = 18 = 2.3.3;     S
d

(N) = 3
2
; S

p
(N) = 2

3
.  

2) N = 11,977 = 7.29.59;    S
d

(N) = 5
2
; S

p
(N) = 2

5
 

3) N = 26,978 = 2.7.41.47;    S
d

(N) = 2
5
; S

p
(N) = 5

2
 

4) N = 406,138,734 = 2.3
3
.17.499.887;  S

d
(N) = 6

2
; S

p
(N) =2

6
 

5) N = 998,299,990 = 2.5.3823.26113;   S
d

(N) = 2
6
; S

p
(N) = 6

2
 

6) N = 919,999,999,800 = 2
3
.3

2
.5

2
.7

2
.10,430,839; S

d
(N) = 3

4
; S

p
(N) = 4

3
 

7) N = 99,299,998,000 =2
4
.5

3
.7.79.89783;  S

d
(N) = 4

3
; S

p
(N) = 3

4
 

8) N = 9,491,899 x 10
12

 = 2
12

.5
12

.17.281.1987 S
d

(N) = 7
2
; S

p
(N) = 2

7
 

The case (a = n) is a trivial one such as : a = n = 2 →2
2
, a = n = 3→3

3
,… and the case a = 2, n = 4 → 24

 = 4
2
 = 16. 

The function of the sieve in such numbers is exactly the same as before but we have to find at first, all prime 

partitions of S
p

(N) = a
n
, which yields products of digits equal to the digital root of n

a
. 

For instance, S
d

(N) = 32, ρ(32) = 5, then S
p

(N) = 25 and next find all possible prime partitions of 25, such as 

(4,7,14) → S = 4 +7 + 14 = 25, P = 392 and ρ(392) = 5 = ρ(32). Thus for N = p.q.r, where S
p

(p) = 4; S
p

(q) = 7;  

S
p

(r) = 14; S
d

(N) = 5;14;23;32;41;…;5 + 9m;…, where m∈ N. Hence, our sieve will pick out S
d

(N) = 32, 

corresponding to m = 3 (underlined) in the following Table: 

 

Table 5 

 

r  13.7r 13.34r 13.61r … 31.7r  31.43r  31.61r … 

59  5,369  23,981 

  

 

46,787  … 12,803  78,647      111,569 … 

149  

 

13,559    83,291  118,157  …    32,333   

  

198,617 281,759 … 

167  15,197  93,353  

 

132,431        … 36,239    222,611  315,797 … 

239  21,749  133,601  189,587 … 51,863  318,587 451,949 … 
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257  23,387  

 

143,663  203,801 … 55,769 342,581  485,949 … 

293  26,663  163,787 

 

232,349 … 63,581  390,569 554,063 … 

347 

 

31,577  193,973 275,171 … 75,299 462,551  656,177 … 

383  34,853  214,097  303,719 … 83,111 

 

510,539  724,253 … 

419  38,129  234,221  332,267  … 90,923  558,527 792,329 … 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1,049  49,459 586,391 831,857 … 227,633  1,983,317 1,983,481  

 

… 

… … … … … … … … … 

 

7. Yara Numbers 

For any integer N, we define the number S
m

(N) as the mean of S
p

(N) and S
q

(N), i.e. 

S
m

(N) = 
2

1
[S

p
(N) + S

q
(N)] 

We create a Yara number, which we define as a positive integer N, whose sum of digits S
d

(N)equals its mean sum S

m
(N), i.e. 

N is a Yara number                  S
d

(N) = S
m

(N) 

It should be noted that S
p

(N) and S
q

(N) must be of the same parity. 

Examples: 

1) N = 37395 = 3
3
.5.277 

S
p

(N) = 30 

S
d

(N) = 27 S
m

(N) = 
2

1
 [30 + 24] = 27 =S

d
(N). 

S
q

(N) = 24 

 

2) N = 25,008,401 = 11
2
.41.71

2
 

 

S
p

(N) = 25 

S
d

(N) = 20               S
m

(N) = 20 =  S
d

(N). 

S
q

(N) = 15 

 

3) N = 27,552 = 2
5
.3.7.41 

 

S
p

(N) = 25 

S
d

(N) = 21            S
m

(N) = 21 =  S
d

(N). 

S
q

(N) = 17 
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To generate a Yara number, we follow certain patterns that distinguish these numbers from the preceding numbers. 

These patterns depend on the following characteristics: first, the difference Δ between S
p

(N) and S
q

(N)has to be 

even, i.e. 

Δ = S
p

(N) - S
q

(N) = 2,4,6,8,10,…. 

The second characteristic is that Yara numbers must have repeated prime divisors; for instance, the simplest form is 

N = p
a
.q, where S

p
(p) = 2,3,4,5,…, and where p is strictly prime. The prime q follows some pattern also. The 

exponent [a] depends on Δ; if Δ = 2, then a = 2 and S
p

(p) = 2. 

For example, if we take Δ = 2, then N = p
2
.q, where p = 2,11 or 101.Furthermore,S

p
(N) = 2 x 2 + Sp(q) and Sp(N) = 

2 + Sp(q) which means that S
m

(N) = 3 + S
p

(q). The pairs of numbers whose difference Δ = 2 are (4 + S
p

(q), 2 + S

p
(q)); thus S

p
(q) = 4 and 

N = 2
2
.13; 2

2
.31; 2

2
.103; …; 11

2
.13; 11

2
.31; 11

2
.103;…; 101

2
.13; 101

2
.31; 101

2
.103;…; 

Therefore, the function of the sieve is to extract the underlined numbers of these products as in Table 6: 

 

Table 6 

 

q 2
2
.q 11

2
.q 101

2
.q 

 

… 

13 52 

 

1,573 132,613 … 

31 124 

 

3,751 316,231 … 

103 412 

 

12,463 1,050,703 … 

211 

 

844 25,531 2,152,411 … 

1,201 

 

4,804 145,321 12,251,401 … 

2,011 

 

8,044 243,331 20,514,211 … 

3,001 12,004 363,121 30,613,201 

 

… 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

. 

. 

. 
 

 

Actually S
p

(q) = 4 +3.m; m = 0,1,2,3,… in the preceding demonstration. 

For m = 1 we have: 

S
p

(q) = 7 and S
p

(N) = 9, then S
m

(N) = S
d

(N) = 10. 

Table 7 

 

q

  

7 

  

43        61       151        223      241         313       331        421       601 … 

2
2
.q

  

28 172 244 604 892       964 1,252 1,324 1,684    2,404 … 

11
2
.q 847 5,203 7,381 18,271 26,983 29,161 37,873 40,051 50,941 72,721 …

.. 

 

If we consider Δ = 10, again the simplest form is N = p
a
.q ;  

Δ = [a. S
p

(p) + S
p

(q)] – [S
p

(p) + S
p

(q)] = [a – 1]. S
p

(p) = 10 
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This implies that a = [10 ÷  S
p

(p)] + 1 which means that S
p

(p) = 2 or 5. 

For S
p

(p) = 5, then a = [10 ÷ 5] + 1 = 3; hence N = p
3
.q, where  

S
m

(N) =  
2

1
 {[3.5 + S

p
(q) + 5 + S

p
(q)]} = 10 +S

p
(q). 

The least value of S
p

(q) is 4, which implies that  

S
p

(N) = 15 + 4 = 19, S
q

(N) = 5 + 4 = 9 and S
m

(N) = S
d

(N) = 14. 

The digital root of S
d

(N) = 5, hence the prime partition of S
p

(N) that yields a product of digital root of 5 is (5
3
,4) 

[5
3
 x 4 = 500]. The next value of S

p
(q) is 13 and the prime partition is  

(5
3
,13) [5

3
 x 13 = 1,625; ρ(1,625) = 5]. 

S
p

(N) = 15 + 13 = 28, S
q

(N) = 5 + 13 = 18 and S
m

(N) = S
d

(N) = 10 + 13 = 23. 

The sieve sweeps through the table of different products of N = p
3
.q as shown in Table 8. 

 

Table 8 

 

q 

 

5
3
.q 23

3
.q 41

3
.q … 

67 8,375 

 

815,189 4,617,707 … 

139 17,375 

 

1,691,213 9,580,019 … 

157 19,625 1,910,219 

 

10,820,597 … 

193 24,125 2,348,231 13,301,753 … 

 

229 28,625 2,786,243 

 

15,782,909 … 

283 35,375 

 

3,443,261 19,504,643 … 

337 42,125 

 

4,100,279 23,226,377 … 

373 46,625 4,538,291 25,707,533 … 

 

409 51,125 4,976,303 28,188,689 

 

… 

463 57,875 5,633,321 

 

31,910,423 … 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

Following the same procedure, we can establish infinite ways of developing other related numbers such as k-Hoax 

Numbers, k-Yara Numbers, etc. 

 

8. Closing Thoughts 

 

Going back deep into history, we find that originally number structures and sequences did not exist fully 

formed, but rather that it evolved stepwise from one numerical boundary to the next (Burton, 2007). Such 

"rudimentary" first stages explain a series of peculiarities inherent in what we call "mature" number structures. 

These early difficulties have been overcome by a deep analysis of the number structures and sequences. In the 

process of creating new and intelligible number structures, we establish basic laws governing both the number 

sequence and the written number symbols. The question of how these rules of succession are observed opens up a 
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wide range of possibilities that bear witness to the inventiveness of the human mind and the potential conceptual 

difficulties with number structures that could be encountered (Weibul, 2000). 

In this paper, we argue that as in the case of Smith numbers, Hoax numbers and other related numbers, the 

key to all such investigations lies in the meaning we attach to numbers from which we concoct other relationships 

and, consequently create new numbers. If we closely examine how our use of numbers has progressed, it is easy to 

discern that our sense of number structures transcends the symbolic representations that we create to manipulate and 

operate on numbers. We have employed numbers as attributes, as adjectives and we even document cultural 

histories using number systems. Looking back once more into history, we may recognize that highly perfected 

number structures may have been invented by more indigenous, non-Western cultures (Chahine & Naresh, 2013), 

although perhaps the West has made the greatest use of them and developed them to their highest state. As sources 

far from each other in space and time have come together for the development of number structures, it seems natural 

to claim that numbers are conceivably the manifestations of our thoughts and our system of concepts that help us 

understand and make sense of the sublime world we live in. If you accept the claim that human beings are born with 

an innate capacity to carry out simple arithmetic operations, then “mathematizing” ordinary ideas could bepart and 

parcel of what makes us human. As such, mathematical meaning is embedded in our daily experience and embodied 

in our mutual interaction with the world around us.  
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