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Abstract. We investigate the numerical solution of linear fractional Fredholm-Volterra integro-differential
equations (FVIDEs) by using of Bessel polynomials of the first kind and collocation points. This method
can be easily applied to many linear problems and is capable of reducing computational works. Numerical
examples are presented to illustrate the efficiency and accuracy of the proposed methods.
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1 Introduction

Many problems can be modeled by fractional integro-differential equations, which have different ap-
plications in various areas science and engineering such as thermal systems, turbulence, image processing,
fluid flow, mechanics, viscoelastic, and other areas of applications[2–6, 11, 21, 22]. Also, for solution of these
equations many analytical and numerical methods have been exited such as, Adomian decomposition method
(ADM)[5, 13], Spline collocation method[19], Bernoulli wavelet method[9], Chebyshev wavelets method[28],
Legendre wavelets method[8] and other methods who are interested to learn more about this topic could refer
to [1, 14, 16, 18, 23, 26]. Yuzbasi et al.[29], Yuzbasi and Sezer[32], Yuzbasi et al.[30] have worked on the Bessel
matrix and collocation methods for the numerical solutions of the neutral delay differential equations, the
pantograph equations and the Lane-Emden differential equations. Recently, Yazbasi in [31] used Bessel poly-
nomials and Bessel collocation method for solving high-order linear Fredholm-Volterra integro-differential
equations.

In this section we want to discuss on the numerical solution of integro-differential equations of fractional
order with initial conditions, let us consider the general form of FVIDEs:

p0(x)∗Dαy(x) +
k∑

j=0

pj(x)Dβjy(x) + pk+1(x)y(x)

= g(x) + λ1

∫ 1

0
k1(x, t)y(t)dt+ λ2

∫ x

0
k2(x, t)y(t)dt,

(1)

where, 0 ≤ x ≤ 1, n− 1 ≤ α ≤ n, n ∈ N, 0 < β1 < β2 < · · · < βk < α, under the mixed conditions

y(i)(0) = δi, i = 0, 1, · · · , n− 1, (2)
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where ∗Dα is Caputo fractional derivative and is a parameter describing the order of fractional derivative. Also,
y(x) is an unknown function, the known functions are pj(x), j = 0, 1, · · · , k + 1, g(x), k1(x, t), k2(x, t), λ1

and λ2 are real or complex constants. The paper is organized as follows: In Section 2, we express some
necessary basic definitions of Riemann-Liouville fractional integral and Caputo fractional derivative, then
describe properties of Bessel polynomial of first kind. In Section 3, we introduce the fundamental relations
and method of solution. Section 4 is devoted to an estimation of the error. In Section 5, we report results of
some problems which are solved by propose method. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Basic definitions

We give some basic definitions and properties of the fractional calculus theory, which are used further in
this paper.

Definition 1. The Riemann-Liouville fractional integral operator of order α > 0 is defined as [17, 20],

Iαy(x) =
1

Γ (α)

∫ x

0
(x− t)α−1y(t)dt, x ≥ 0,

I0y(x) = y(x),

where Γ (.) is Gamma function. It has the following properties

Iαxγ =
Γ (γ + 1)

Γ (γ + α+ 1)
, γ > −1.

Definition 2. The Caputo definition of fractional derivative operator is given by [25],

∗D
αy(x) = In−α

∗D
ny(x) =

1
Γ (n− α)

∫ x

0
(x− t)n−α−1y(n)(t)dt,

where n− 1 < α ≤ n, n ∈ N,x > 0. It has the following properties

∗D
αIαy(x) = y(x),

∗D
αIαy(x) = y(x)−

n−1∑
k=0

y(k)(0+)
xk

k!
, x > 0.

2.2 Bessel polynomials of first kind

The m-th degree truncated Bessel polynomials of first kind are defined by [17],

Jm(x) =
[N−m

2
]∑

k=0

(−1)k

k!(k +m)!
(
x

2
)2k+m, 0 ≤ x <∞, m ∈ N, (3)

where N is chosen the positive integer so that N ≥ m and m = 0, 1, · · · , N. We can transform the Bessel
polynomials of first kind to in N-th degree Taylor basis functions. In matrix form as

J(x)−̃DX(x), (4)

where

J(x) = [J0(x), J1(x), · · · , JN (x)]T , X(x) =
[
1, x, x2, · · · , xN

]T
. (5)
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If N is odd

D =



1
0!0!20 0 −1

1!1!22 · · · (−1)
N−1

2

(N−1
2

)!(N−1
2

)!2N−1
0

0 1
0!1!21 0 · · · 0 (−1)

N−1
2

(N−1
2

)!(N+1
2

)!2N

0 0 1
0!2!22 · · · (−1)

N−3
2

(N−3
2

)!(N+1
2

)!2N−1
0

...
...

...
. . .

...
...

0 0 0 · · · 1
0!(N−1)!2N−1 0

0 0 0 · · · 0 1
0!N !2N


(N+1)×(N+1)

.

If N is even

D =



1
0!0!20 0 −1

1!1!22 · · · 0 (−1)
N
2

(N
2

)!(N
2

)!2N

0 1
0!1!21 0 · · · (−1)

N−2
2

(N−2
2

)!(N
2

)!2N−1
0

0 0 1
0!2!22 · · · 0 (−1)

N−2
2

(N−2
2

)!(N+2
2

)!2N

...
...

...
. . .

...
...

0 0 0 · · · 1
0!(N−1)!2N−1 0

0 0 0 · · · 0 1
0!N !2N


(N+1)×(N+1)

.

2.2.1 Function approximation

A function f ∈ L2[0, 1] may be expanded into Bessel functions as

f(x)−̃
N∑

n=0

cnJn(x) = CTJ(x), N ≥ n,

where

C =
(∫ 1

0
f(x)J(x)dx

)
Q−1, (6)

Q =
∫ 1

0
J(t)JT (t)dt '

∫ 1

0
DX(t)XT (t)DTdt = DHDT ,

and H the integration of dual operational matrix of Taylor polynomials so that

H =
∫ 1

0
X(t)XT (t)dt, H = [hij ] , i, j = 0, 1, · · · , N,

hij =
1

i+ j + 1
, i, j = 0, 1, · · · , N.

In this section we can approximate the kernel function by the truncated Maclaurin series and truncated
Bessel series [24], respectively

k(x, t) '
k∑

m=0

k∑
n=0

tkmnx
mtn,

k(x, t) '
k∑

m=0

k∑
n=0

bkmnJm(x)Jn(x),

(7)
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where

tkmn =
1

m!n!
∂m+nk(0, 0)
∂xm∂tn

, m, n = 0, 1, · · · , N.

We can write Eq. (7) to matrix form as

k(x, t) ' XT (x)ktX(t), kt = [tkmn], m, n = 0, 1, · · · , N, (8)

k(x, t) ' JT (x)kbJ(t), kb = [bkmn], m, n = 0, 1, · · · , N. (9)

By substituting Eq. (4) in Eq. (9) and putting equal to Eq. (8) we obtain:

kt = DTkbD, kb = (DT )−1kt(D)−1. (10)

2.3 Operational matrix of the fractional integration

The integration of the vector J(x) defined in (5) can be obtained as∫ x

0
J(t)dt 'LJ(x), (11)

where L is the (N + 1) × (N + 1) operational matrix for integration. Our purpose is to derive the hybrid
functions operational matrix of the fractional integration. For this purpose, we consider an N-set of block-
pulse function as

bi(x) =
{

1, i
N+1 ≤ x < i+1

N+1

0, otherwise
(12)

the functions bi(x) are disjoint and orthogonal. That is,

bi(x)bj(x) =
{

0, i , j,
bj(x), i = j,

(13)

from the orthogonality of property, it is possible to expand functions into their block-pulse series. Similarly,
Taylor function may be expanded into an N-set of block-pulse function as

X(x) = ρB(x), (14)

where B(x) = [b0(x), b1(x), · · · , bN (x)] and ρ is an (N + 1)× (N + 1) product operational matrix as

ρ =



1 1 1 · · · 1
1

2(N+1)
3

2(N+1)
5

2(N+1) · · · (N+1)2−N2

2(N+1)

1
3(N+1)2

7
3(N+1)2

19
3(N+1)2

· · · (N+1)3−N3

3(N+1)2

...
...

...
. . .

...
1

(N+1)N+1
2N+1−1

(N+1)N+1
3N+1−2N+1

(N+1)N+1 · · · (N+1)N+1−NN+1

(N+1)N+1


.

In [10], Kilicman and Al Zhour have given the block-pulse operational matrix of the fractional integration
as follows:

IαB(x) ' FαB(x), (15)

where
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Fα =
1

(N + 1)α
1

Γ (α+ 1)


1 ξ1 ξ2 · · · ξN−1

0 1 ξ1 · · · ξN−2

0 0 1 · · · ξN−3
...

...
...

. . .
...

0 0 0 · · · 1

 , (16)

with ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1. Next, we find the Bessel function operational matrix of the
fractional integration. Let

IαX(x) ' PαX(x), (17)

by using Eqs. (14) and (15), we have

IαX(x) ' IαρB(x) = ρIαB(x) ' ρFαB(x), (18)

from Eqs. (17) and (18), we get

PαX(x) = ρFαB(x), (19)

then, by substituting Eq. (14) in Eq. (19), we obtains

Pα = ρFαρ−1, (20)

where, ρ−1 is inverse of matrix ρ and obtain operational matrix of fractional integration for Taylor polynomials
Pα. Now, we get operational matrix of fractional integration for Bessel function by using Eqs. (4) and (17) as

IαJ(x) ' IαDX(x) = DIαX(x) = DPαX(x) = DPαD−1J(x), (21)

so we have

IαJ(x) ' ϕαJ(x), (22)

where ϕα = DPαD−1.

3 Fundamental relations

3.1 Differential part

To solve Eq. (1) with conditions in Eq. (2), we assume

∗D
αy(x) ' ATJ(x), (23)

by using the initial conditions in Eq. (2) and Eqs. (22), (23) and properties of Caputo derivative, we have

∗D
βjy(x) = Iα−βj ∗D

αy(x) ' Iα−βjATJ(x) = AT Iα−βjJ(x) ' ATϕα−βjJ(x),
j = 0, 1, · · · , k. (24)

where ϕα−βj , j = 0, 1, · · · , k, are operational matrix of fractional integration for Bessel function of α − βj

order and for ∗Dqy(x), q = 0, 1, · · · , n− 1, we have
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∗D
n−1y(x) = Iα−n+1

∗D
αy(x) + y(n−1)(0) = Iα−n+1ATJ(x) + δn−1

= AT Iα−n+1J(x) + δn−1E
TJ(x) = (ATϕα−n+1 + δn−1E

T )J(x)

= W T
1 J(x),

∗D
n−2y(x) = Iα−n+2

∗D
αy(x) + δn−1x+ y(n−2)(0) = Iα−n+2ATJ(x) + δn−1x+ δn−2

= ATϕα−n+2J(x) + δn−1C
TJ(x) + δn−2E

TJ(x)

= (ATϕα−n+2 + δn−1C
T + δn−2E

T )J(x)

= W T
2 J(x),

...

y(x) = (ATϕα + δn−1C
T (ϕ1)n−2 + δn−2C

T (ϕ1)n−3 + · · ·+ δ1C
T (ϕ1) + δ0E

T )J(x)

= W T
n J(x),

(25)

where E and C are obtained from Eq. (6). Now, by substituting Eqs. (24) and (25) in left part of Eq. (1), we
have

p0(x)∗Dαy(x) +
k∑

j=0

pj(x)∗Dβjy(x) + pk+1(x)y(x)

= p0(x)ATJ(x) +
k∑

j=0

pj(x)ATϕα−βjJ(x) + pk+1(x)W T
n J(x)

= (p0(x)AT +
k∑

j=0

pj(x)ATϕα−βj + pk+1(x)W T
n )J(x).

(26)

3.2 Method of solution

At first, we substituting Eqs. (9) and (29) in integral part of Eq. (1) as∫ 1

0
k1(x, t)y(t)dt '

∫ 1

0
JT (x)k1

bJ(t)JT (t)Wndt = JT (x)k1
b (
∫ 1

0
J(t)JT (t)dt)Wn

= JT (x)k1
bQ1Wn = XT (x)DTk1

bQ1Wn,

(27)

∫ x

0
k2(x, t)y(t)dt '

∫ x

0
JT (x)k2

bJ(t)JT (t)Wndt = JT (x)k2
b (
∫ x

0
J(t)JT (t)dt)Wn

= XT (x)DTk2
bQ2(x)Wn = XT (x)DTk2

bDH2(x)DTWn

= XT (x)MH2(x)DTWn,

(28)

where M = DTk2
bD. Then, by substituting Eqs. (26), (27) and (28) in Eq. (1), we get

(p0(x)AT +
k∑

j=0

pj(x)ATϕα−βj + pk+1(x)W T
n )DX(x) =g(x) + λ1X

T (x)DTk1
bQ1Wn

+ λ2X
T (x)MH2(x)DTWn,

(29)

by using collocation points[17] defined by

xi =
i

N
, i = 0, 1, · · · , N.

We have
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(p0(xi)AT +
k∑

j=0

pj(xi)ATϕα−βj + pk+1(xi)W T
n )DX(xi) =g(xi) + λ1X

T (xi)DTk1
bQ1Wn

+ λ2X
T (xi)MH2(xi)DTWn,

(30)

where i = 0, 1, · · · , N . Finally, we have fundamental matrix equations as

(P0A
T +

k∑
j=0

PjA
Tϕα−βj + Pk+1W

T
n )DX = G+ λ1X

TDTk1
bQ1Wn + λ2XMHDWn, (31)

where i = 0, 1, · · · , N and

Pk =


pk(x0) 0 · · · 0

0 pk(x1) · · · 0
...

...
. . .

...
0 0 · · · pk(xN )

 , G =


g(x0)
g(x1)
...

g(xN )

 , X =


X(x0)
X(x1)
...

X(xN )

 ,

M̄ =


M 0 · · · 0
0 M · · · 0
...

...
. . . 0

0 0 · · · M

 , X̄ =


XT (x0) 0 · · · 0

0 XT (x1) · · · 0
...

...
. . .

...
0 0 · · · X(xN )

 , D̄ =


DT

DT

...
DT


and

H̄ =


H2(x0) 0 · · · 0

0 H2(x1) · · · 0
...

...
. . .

...
0 0 · · · H2(xN )

 .
We can obtainA from system of Eq. (31) and with substitutingA in Eq. (25), we get approximate solution

of Eq. (1).

4 Error estimation

In this section, we estimate error based on the residual function for the (FVIDEs) of fractional order. We
can define the residual function of the present method as

rN (x) = L[yN (x)]− g(x), (32)

where

L[yN (x)] =p0(x)∗DαyN (x) +
k∑

j=0

pj(x)DβjyN (x) + pk+1(x)yN (x)

− λ1

∫ 1

0
k1(x, t)yN (t)dt− λ2

∫ x

0
k2(x, t)yN (t)dt.

As regards, yN (x) is approximate solution of Eq. (1), we can define error function eN (x) as

eN (x) = y(x)− yN (x), (33)

where y(x) is the exact solution of the Eq. (1). From Eqs. (1), (32) and (33), we obtain

L[eN (x)] = L[y(x)]− L[yN (x)] = −rN (x),
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with the mixed conditions

e
(i)
N (0) = y(i)(0)− y

(i)
N (0) = 0.

so, error problem express by {
L[eN (x)] = −rN (x),
eN (0) = 0.

(34)

We can solve error problem (34), by using the technique of Section 3. Thus, we obtain approximate error
as

eNM (x) =
M∑

m=0

emJm(x), (M > N).

where eNM (x) is approximate solution of the error problem (34). We can obtain an upper error bound for the
present method

|eNM (xi)| ≤ 10−dN , (0 ≤ xi ≤ 1),

where dN is positive integer. Consequently, the approximate solution is obtain

yNM (x) = yN (x) + eNM (x),

by means of the polynomials yN (x) and eNM (x). Also, by use of error function eN (x) = y(x)− yN (x), and
approximate error function eNM (x), we consider error of problem as

ENM (x) = eN (x)− eNM (x) = y(x)− yNM (x).

5 Numerical examples

We apply the present method in this section and solve some examples where given in the different papers.
In addition, we express absolute error function which are define as eN (x) = |y(x)− yN (x)| where y(x) is
the exact solution of Eq. (1) and yN (x) is the approximate of y(x). The computations associated with the
examples were performed using MATLAB.

Example 1. Let us first consider fractional linear differential equation[27]

∗D
αy(t) + y(t) = 0, 0 < α ≤ 2,

with conditions y(0) = 1 and y′(0) = 0. The exact solution of this problem when α = 1 is y(x) = exp(−x)
and when α = 2 is y(x) = cos(x). Numerical results forN = 8 are given in Tab. 1 and Fig. 1 show a behavior
of the numerical solution for N = 6. We see that, as approaches to 1 or 2, the numerical solution converges to
that of integer-order differential equation.

Example 2. Consider fractional linear differential equation [14]

∗D
1y(x) + ∗D

αy(x) + y(x) = 0, 0 ≤ α ≤ 1,

with condition y(0) = 1 and the exact solution to this example when α = 1 is y(x) = exp(−x
2 ). We solve this

problem for N = 8 and differentα = 0.25, 0.5, 0.75, 1. Numerical results with comparison to [14] are given
in Tab. 2.
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Fig. 1: Numerical and exact solution for N = 6

Table 1: Numerical results of Example 1

x Exact solution Present method N = 8 Exact solution
of α = 1 α = 1 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2 of α = 2

0 1 1.0010 1.0021 1.0014 1.0006 1.0002 0.9999 1
0.1 0.9048 0.9057 0.9444 0.9684 0.9825 0.9906 0.9940 0.9950
0.2 0.8187 0.8194 0.8757 0.9180 0.9476 0.9674 0.9791 0.9801
0.3 0.7808 0.7814 0.8042 0.8583 0.9010 0.9328 0.9544 0.9553
0.4 0.6703 0.6707 0.7328 0.7930 0.8455 0.8883 0.9203 0.9211
0.5 0.6065 0.6068 0.6632 0.7244 0.7832 0.8350 0.8769 0.8776
0.6 0.5488 0.5490 0.5963 0.6543 0.7157 0.7741 0.8248 0.8253
0.7 0.4966 0.4967 0.5326 0.8539 0.6443 0.7066 0.7648 0.7648
0.8 0.4493 0.4494 0.4725 0.5143 0.5703 0.6335 0.6967 0.6967
0.9 0.4066 0.4066 0.4162 0.4463 0.4949 0.5559 0.6217 0.6217
1 0.3679 0.3679 0.3636 0.3804 0.4189 0.4747 0.5406 0.5403

Table 2: Numerical results of Example 2

x α = 0.25 α = 0.5 α = 0.75 α = 1
Bessel Ref [14] Bessel Ref [14] Bessel Ref [14] Bessel Ref [14]

0 1.0031 1 1.0039 1 1.0029 1 1.0003 1
0.1 0.9156 0.7515 0.9240 0.6621 0.9364 0.5669 0.9515 0.9512
0.2 0.8474 0.6057 0.8634 0.5436 0.8832 0.4939 0.9050 0.9048
0.3 0.7921 0.4993 0.8131 0.4638 0.8364 0.4434 0.8609 0.8607
0.4 0.7462 0.4178 0.7697 0.4040 0.7940 0.4038 0.8189 0.8187
0.5 0.7076 0.3537 0.7317 0.3569 0.7553 0.3708 0.7790 0.7788
0.6 0.6749 0.3023 0.6980 0.3185 0.7196 0.3426 0.7410 0.7408
0.7 0.6467 0.2607 0.6678 0.2865 0.6866 0.3179 0.7048 0.7046
0.8 0.6224 0.2265 0.6405 0.2594 0.6559 0.2960 0.6704 0.6703
0.9 0.6012 0.1981 0.6157 0.2363 0.6273 0.2764 0.6377 0.6376
1 0.5827 0.1745 0.5933 0.2162 0.6008 0.2587 0.6066 0.6065

Example 3. Consider fractional linear FIDEs[7]

∗D
2y(x) + ∗D

1
2 y(x) + y(x) =

9
4
− x

3
+

2
Γ (5

2)
x

3
2 + x2 +

∫ 1

0
(x− t)y(t)dt,

with conditions y(0) = y′(0) = 0 and the exact solution of this problem is y(x) = x2. Approximate solution
for different N are given in Tab. 3. Now, we obtain error estimation for N = 4, by means of method in Section
4:
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yN (x) =0.20285674× 10−4 + 0.32903073× 10−3x+ 1.000702464x2

− 0.11823220× 10−2x3 + 0.49913563× 10−3x4,

where

rN (x) = ∗D
2yN (x) + ∗D

1
2 yN (x) + yN (x)−

∫ 1

0
(x− t)yN (t)dt− 9

4
+
x

3
− 2
Γ (5

2)
x

3
2 − x2,

and

eN (x) = + 0.20285674× 10−4 + 0.32903073× 10−3x+ 0.000702464x2

− 0.11823220× 10−2x3 + 0.49913563× 10−3x4.

Now, we solve error problem ∗D
2eN (x) + ∗D

1
2 eN (x) + eN (x)−

∫ 1
0 (x− t)eN (t)dt = −rN (x),

e(0) = 0,
e′(0) = 0,

so, we get

eNM (x) =0.20114864× 10−6−0.23806780× 10−4x+ 0.77213813× 10−3x2

−0.11024941× 10−2x3+0.46671429× 10−3x4.

We can obtain an upper bound for the error due to the xi points and N = 4, so that

Table 3: Numerical results of Example 3

x N = 2 N = 4 N = 6
0 5.81× 10−4 2.04× 10−5 2.51× 10−6

0.1 9.12× 10−6 1.85× 10−5 6.45× 10−6

0.2 5.30× 10−4 6.49× 10−5 1.95× 10−5

0.3 1.00× 10−3 1.13× 10−4 3.28× 10−5

0.4 1.50× 10−3 1.60× 10−4 4.49× 10−5

0.5 2.00× 10−3 2.03× 10−4 5.55× 10−5

0.6 2.40× 10−3 2.39× 10−4 6.46× 10−5

0.7 2.70× 10−3 2.68× 10−4 7.22× 10−5

0.8 3.10× 10−3 2.91× 10−4 7.81× 10−5

0.9 3.40× 10−3 3.10× 10−4 8.23× 10−5

1 3.70× 10−3 3.28× 10−4 8.58× 10−5

Example 4. Consider fractional linear FIDEs [1]

∗D
1y(x) = g(x) +

∫ 1

0
x2t2(∗D

1
4 y(t))dt,

with condition y(0) = 0 and g(x) = 8x3 − 3
2x

1
2 − ( 48

6.25Γ (4.75) −
Γ (2.5)

4.25Γ (2.25))x
2. The exact solution of this

problem is y(x) = 2x4 − x
3
2 . Approximate solution and results of [1] for different N are given in Tab. 4.

Example 5. Consider fractional linear VIDEs [12]

∗D
αy(x) = 1 + 2x− y(x) +

∫ x

0
x(1 + 2x)et(x−t)y(t)dt,

with condition y(0) = 1. The exact solution of this problem is y(x) = exp(x2) and approximate solution for
N = 12 are given in Tab. 5. The results in Tab. 5 show as α → 1 numerical results tend to exact solution of
α = 1.
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Table 4: Numerical results of Example 4

x Present method Ref [1]
N = 6 N = 9 N = 15 N = 15 N = 50

0 8.80× 10−4 6.10× 10−5 3.52× 10−6

0.1 1.50× 10−6 1.40× 10−5 6.87× 10−6

0.2 5.90× 10−4 2.60× 10−5 1.10× 10−5

0.3 8.21× 10−3 3.70× 10−4 1.12× 10−5

0.4 1.09× 10−3 4.80× 10−4 1.09× 10−5

0.5 1.43× 10−3 6.10× 10−4 1.65× 10−5 1.24× 10−1 2.00× 10−3

0.6 1.83× 10−3 7.50× 10−4 1.55× 10−5

0.7 2.26× 10−3 8.80× 10−4 1.11× 10−5

0.8 2.75× 10−3 1.01× 10−4 6.53× 10−5

0.9 3.30× 10−3 1.13× 10−4 2.11× 10−5

1 3.36× 10−3 1.30× 10−4 7.38× 10−5 7.24× 10−2 7.32× 10−3

Table 5: Numerical results of Example 5

x Present method N = 12 Ref [12] Exact solution
α = 0.25 α = 0.5 α = 0.75 α = 1 α = 0.25 α = 0.5 α = 0.75 α = 1

0.2 1.1511 1.1039 1.0654 1.0533 1.17030 1.11535 1.07139 1.04081
0.4 1.3495 1.2732 1.2030 1.1823 1.46437 1.35298 1.25464 1.17351
0.6 1.6123 1.5004 1.3992 1.4223 1.97637 1.76817 1.58370 1.43330
0.8 2.0191 1.8312 1.8759 1.8891 2.93641 2.51824 2.17645 1.89648
1 2.7664 2.3852 2.1039 1.9787 4.88142 3.95283 3.25252 1.71828

Example 6. Consider fractional linear VIDEs [24]

∗D
0.5y(x) = (cos(x)− sin(x))y(x) + g(x) +

∫ x

0
x sin(t)y(t)dt,

with condition y(0) = 0 and g(x) = 2
Γ (2.5)x

1.5 + 1
Γ (1.5)x

0.5 + x(2− 3 cos(x)− x sin(x) + x2 cos(x)). The
exact solution of this problem is y(x) = x2 + x and approximate solution for different N are given in Tab. 6.

Table 6: Numerical results of Example 6

x Present method Ref [24]
N = 5 N = 8 N = 10 (ADM)

0.1 2.8× 10−3 3.5× 10−3 3.0× 10−3 7.98× 10−4

0.2 7.5× 10−3 3.1× 10−3 1.8× 10−3 3.64× 10−3

0.3 6.1× 10−3 1.9× 10−3 1.3× 10−3 7.80× 10−3

0.4 3.9× 10−3 1.5× 10−3 9.5× 10−4 1.19× 10−2

0.5 2.8× 10−3 1.1× 10−3 7.1× 10−4 1.50× 10−2

0.6 2.6× 10−3 8.2× 10−4 5.3× 10−4 1.64× 10−2

0.7 2.1× 10−3 6.2× 10−4 3.9× 10−4 1.65× 10−2

0.8 8.4× 10−4 3.9× 10−4 2.6× 10−4 1.58× 10−2

0.9 5.5× 10−4 4.3× 10−4 3.0× 10−4 1.51× 10−2

1 6.3× 10−4 2.1× 10−4 1.5× 10−4 1.45× 10−2

6 Conclusion

In this paper we have given a scheme for the numerical solution of linear (FVIDEs) of fractional order
based on Bessel polynomials. The examples which have exact solutions have been used to show the efficiency
of results of method. Graphics and numerical results show that this method is extremely effective and practical
for this sort of approximate solutions of integro-differential equations.
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