Artifact of “Contextual Dispatch for Function
Specialization” [OOPSLA’20]

Olivier Flickiger Guido Chari Jan Je¢men
Ming-Ho Yee Jakob Hain Jan Vitek

This is the artifact to accompany our OOPSLA 2020 submission on “Contextual
Dispatch for Function Specialization”.

The artifact consists of a virtual machine for the R language, called R, a suite
of benchmarks written in R, as well as an R script to interpret and plot the
results. The R VM is included in source format with build instruction, and it is
distributed as OCI images available through our container registry and attached
as images-502.tgz.

1 Getting Started

The following instructions were tested on Ubuntu Bionic.

The results in our paper are based on commit bc1933d. To fetch the appropriate
image and start an R build at that version, it suffices to run the following
command using your favorite OCI compliant container runtime, such as docker
or podman:

export CR=docker

export VS=bc1933dde2673bf830£4505bb2483cd1fdd282ab
export RG=registry.gitlab.com/rirvm/rir_mirror/splash20
$CR run -it $RG:$VS /opt/rir/build/release/bin/R

The image that you receive is based on the Dockerfile at the root of our repository.
It should have a SHA2-256 of

c7£92d3abc20e65£8e3f£50b3d8£0967a3c53017863ab9dad77bd447477698c9
which you can verify with:
$CR inspect --format='{{index .RepoDigests 0}}' $RG:$VS

To get a feeling for the contextual dispatching presented in this paper, you can
copy paste the following program into the R REPL:

https://github.com/reactorlabs/rir/tree/bc1933dde2673bf830f4505bb2483cd1fdd282ab
https://github.com/reactorlabs/rir/blob/bc1933dde2673bf830f4505bb2483cd1fdd282ab/Dockerfile

f <- function(a,b) at+b

Trigger ast to BC compilation
£(1,1); £(1,0

Inspect baseline version:
rir.disassemble(f)

Trigger specialization to integer
f(1L,1L); £(1L,1L); £(1L, 1L)

The function has now two versions. The second version is compiled
under a context (Assumptions) that includes SimpleIntO,SimpleInti,
indicating the first two arguments being scalar integers.
rir.disassemble(f)

The newest version of R can be run using:

$CR run -it registry.gitlab.com/rirvm/rir_mirror:master /opt/rir/build/release/bin/R

2 Contents of this Artifact

This section contains a detailed overview of all the parts contained in this artifact.
Readers mainly interested in reproducing the results from our paper are advised
to skip running commands in this section and instead focus on the instructions
in the later “Step-by-Step” section. All containers combined use less than 8 Gb
of disk space when extracted.

2.1 Containers

Next to the main container shown in the previous section, we also provide a
benchmarking container based on the former. This one additionally includes our
benchmark suite (for the published experiments at revision dc8ee38) and our
fork of the ReBench benchmark runner. To locally run the benchmarks for R,
you can therefore use the following command:

$CR run -it $RG/benchmark:$VS /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks \
/opt/rir/build/release "e:PIR-LLVM -S"

Running the whole suite on a beefy machine takes about 30 minutes, CTL-C
aborts. This command is expected to produce some warnings:

1. GNU/FASTR VM dir does not exist is a warning of our benchmark wrap-

per script Setup/run.sh, since this container only includes R.

https://github.com/reactorlabs/rir/blob/bc1933dde2673bf830f4505bb2483cd1fdd282ab/container/benchmark/Dockerfile
https://github.com/reactorlabs/RBenchmarking/tree/dc8ee38c771bf4a8c43fce6825cf614ae6b69153
https://github.com/reactorlabs/ReBench
https://github.com/smarr/ReBench

2. To fix Error: Process niceness can not be set the above command
has to be called with the —-privileged flag.

3. Warning: Low mean run time indicates that a benchmark iteration takes
less than 100ms. This happens in the microbenchmarks (which are not
central to the claims in the paper) and also in benchmarks, where the
first iterations (before warmup) are so slow, that we cannot increase the
workload, without the benchmarking taking an unduly amount of time to
run.

Please note that the immediate output from that command is the filtered and
averaged output of the ReBench benchmark driver. These numbers are not the
ones used in the paper. Instead we use the raw results exported to a file and
analyze them independently. The exact command for running these experiments,
the data export, analysis and visualization we refer to the later step-by-step
section.

This container has a SHA2-256 of
b164cb8f2f9da6428cf0695379a0361d87ebaaed4107436904da0dbfcb77f6£9

A third container called benchmark-baseline contains our benchmarking infras-
tructure, the version of GNU R and the version of FastR used for the paper.

To run the suite with GNU R or FastR, use:

$CR run -it $RG/benchmark-baseline /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks . \
/opt/rir/external/custom-r /opt/graal \
"e:GNU-R -S"

$CR run -it $RG/benchmark-baseline /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks . \
/opt/rir/external/custom-r /opt/graal \
"e:FASTR -S"

Again, we refer to the step-by-step instructions on how to export and use the
raw data.

This container has a SHA2-256 of
70£9db5ed083ce9fb91661e3d6e3175cd88531aefb931ee857¢c10£d602d42a57

2.2 Data Analysis

In the data subdirectory, you can find the following:

1. data/plot.R is the R script that produces the plots and outputs results.
2. data/data contains data files of the raw iteration times of the benchmark
runs featured in the paper.

https://github.com/reactorlabs/rir/blob/bc1933dde2673bf830f4505bb2483cd1fdd282ab/container/benchmark-baseline/Dockerfile

3. data/results.tex contains the results used in the paper, this corresponds
to the output of running plot.R and includes every performance number
in the paper text.

4. data/final contains the plots generated by plot.R.

The data files in data/data are the raw data files produced by ReBench in its
ad-hoc format. In our evaluation, benchmark runs are triggered through a gitlab
CI job and exported as build artifacts. The filenames correspond to job ids. For
instance the reported performance numbers in section 5.2 were produced by job
545921038.

2.3 Source Code

The R source code, including source dependencies is included in the src directory.
You can find instructions on how to build R at the end of this document.

The directory benchmark-suite contains all benchmarks.

2.4 Image Creation

R is continuously tested and benchmarked. Development of R happens in our
main repository. For testing and benchmarking the repository is mirrored and
for each commit a gitlab CI pipeline (see for example) is run. This pipeline does
the following things:

1. Build a container with R and publish it tagged with the commit SHA.

2. Build a derived benchmark container which additionally includes bench-
marking infrastructure.

3. Run all regression tests as well as the official GNU R test suite.

4. Run the benchmark suite on dedicated benchmark hardware and export
the results as build artifact.

Normally old containers are cleaned up automatically. To prevent that we copied
the containers for this artifact to a subhierarchy called splash20 in the registry.

Instructions to reproduce the images follows in the next section.

3 Reproduction Step-by-Step

This section is a step-by-step recipe to reproduce all the data and recreate the
analysis and results featured in the paper.

https://github.com/reactorlabs/rir/blob/bc1933dde2673bf830f4505bb2483cd1fdd282ab/.gitlab-ci.yml#L253
https://gitlab.com/rirvm/rir_mirror/-/jobs/545921038
https://github.com/reactorlabs/rir/
https://gitlab.com/rirvm/rir_mirror
https://gitlab.com/rirvm/rir_mirror/-/pipelines/144542439

3.1 Prerequisites

First ensure that the correct ENV variables are set.

export CR=docker # or podman, or 'sudo docker'
export VS=bc1933dde2673bf830£4505bb2483cd1fdd282ab
export RG=registry.gitlab.com/rirvm/rir_mirror/splash20

To recreate plots and data analysis it is useful to start with a fresh copy of this
artifact and a copy of the original data for comparison.

tar xzf 502.tgz
cd oopsla20-artifact-502
cp -r data data-bkp

The following instructions assume that container images are received from our
container registry. Alternatively they can be imported from the accompanying
archive using $CR load 502-images.tgz.

3.2 Re-Create Containers

If you wish to re-build the containers yourself, then they are based on the
Dockerfile at the root of our repository, and more Dockerfiles in the container
directory. These steps are optional, you can use our already built containers.
They take up to an hour, depending on the number of CPU cores available.

cd src

build main container with GNU R and R

$CR build -t $RG:$VS .

build container with benchmarking infra

cd container/benchmark

$CR build --build-arg CI_COMMIT_SHA=$VS -t $RG/benchmark:$VsS .
build container with GNU R and FastR

cd ../benchmark-baseline

$CR build -t $RG/benchmark-baseline .

cd ../..

3.3 Conformance

Our claim that R is passing GNU R regression tests is verified by:
$CR run -it $RG:$VS /opt/rir/build/release/bin/gnur-make-tests check-all

This command can take several hours to complete. The gnur-make-tests
script is a simple wrapper around calling make check-all in the GNU R source
directory, using R as the R command and also cleaning all left over files from
previous test executions.

https://github.com/reactorlabs/rir/blob/bc1933dde2673bf830f4505bb2483cd1fdd282ab/Dockerfile

3.4 Rerun Performance Measurements

The following instructions are to run our benchmark suite in all the configurations
featured in the paper. Note: to get consistent results these commands must
be run in an idle machine, with background jobs (e.g., cron) disabled. These
steps are optional, if you skip this subsection, then the later data analysis and
visualization reuses our experimental data.

3.4.1 Data for Section 5.2

This section allows you to create your own performance measurements for the
comparison between the R, GNU R and FastR VMs featured in section 5.2. Each
of these runs takes about 30 minutes.

mkdir -p results

Run test suite with R

$CR run --privileged \
--mount type=bind,source=$PWD/results,destination=/media \
-it $RG/benchmark:$VS /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks \
/opt/rir/build/release "e:PIR-LLVM -S -df /media/benchmarks.data"

Run test suite with GNU R

$CR run --privileged \
--mount type=bind,source=$PWD/results,destination=/media \
-it $RG/benchmark-baseline /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks . \
/opt/rir/external/custom-r /opt/graal \
"e:GNU-R -S -df /media/benchmarks-gnur.data"

Run test suite with FastR

$CR run --privileged \
--mount type=bind,source=$PWD/results,destination=/media \
-it $RG/benchmark-baseline /opt/rbenchmarking/Setup/run.sh \
/opt/rbenchmarking/rebench.conf /opt/rbenchmarking/Benchmarks . \
/opt/rir/external/custom-r /opt/graal \
"e:FASTR -S -df /media/benchmarks-fastr.data"

Override our results with your reproduced data

cp results/benchmarks.data data/data/545921038.data
cp results/benchmarks-gnur.data data/data/545921041.data
cp results/benchmarks-fastr.data data/data/545921042.data

3.4.2 Data for Section 5.3

This section allows you to record performance data for the comparison of spe-
cialization levels featured in section 5.3 and export the results into a directory
called results. Each of these runs takes about 30 minutes.

mkdir -p results

Run the suite for each level
for i in {0..63}; do
$CR run --privileged \

—--mount type=bind,source=$PWD/results,destination=/media \
-e PIR_GLOBAL_SPECIALIZATION_LEVEL=$i -it $RG/benchmark:$VS \
/opt/rbenchmarking/Setup/run.sh /opt/rbenchmarking/rebench.conf \
/opt/rbenchmarking/Benchmarks /opt/rir/build/release \
"e:PIR-LLVM -S -df /media/benchmarks-level-$i.data"

done

Override our results with your reproduced data:

cp results/benchmarks-level-0.data data/data/545897134.data
cp results/benchmarks-level-1.data data/data/545898616.data
cp results/benchmarks-level-2.data data/data/545900400.data
cp results/benchmarks-level-3.data data/data/545901871.data
cp results/benchmarks-level-4.data data/data/545903708.data
cp results/benchmarks-level-5.data data/data/545905509.data
cp results/benchmarks-level-6.data data/data/546438259.data

3.5 Plots and Numerical results

This section allows you to recreate all graphs and recompute all performance
numbers featured in the paper. If you recorded your own data in the previous
section the results will of course differ from the results in the paper. To have
meaningful numbers you need to run all the commands in one experiment in
an idle machine. If you do not overwrite any performance measurements in
data/data, then you are able to recreate the same graphs and results as featured
in the paper. Due to a bug discovered after the submission the horizontal order
of the individual measurements (small dots in the graphs) are different from the
submission.

The following command plots all graphs into data/final and records all numer-
ical results into data/results.tex using the performance data in data/data:

sudo apt-get install r-cran-ggplot2
must be run in the data directory!
cd data

Rscript plot.R > results.tex

compare results, numbers should be identical for unchanged data/data
and in the same ballpark for clean reruns

diff results.tex ../data-bkp/results.tex

visually compare plots in data/final...

4 Local Build

For completeness the src directory contains all the sources and external source
dependencies to build R.

As prerequisites to build R we also need to build GNU R, which has a number
of dependencies. Either install the required dependencies, by, e.g.:

apt-get install git libcurl4-openssl-dev texlive-latex-extra \
texlive-latex-base texlive-fonts-recommended texlive-fonts-extra \
texlive-latex-recommended texlive-font-utils dvipng cm-super bison \
ca-certificates-java java-common libbison-dev libcairo-script-interpreter2 \
libcairo2-dev 1libjbig-dev libmime-charset-perl libpangol.0-dev libpcsclitel \
libpixman-1-dev libsombok3 libtext-unidecode-perl libtiff5-dev 1libtiffxx5 \
libunicode-linebreak-perl libxcb-renderO-dev libxcb-shmO-dev \
libxml-libxml-perl libxml-namespacesupport-perl libxml-sax-base-perl \
libxml-sax-perl mpack openjdk-11-jre-headless texinfo g++ xdg-utils gfortran \
subversion make r-base-dev liblzma-dev sed binutils curl cmake rsync \
xorg-dev valgrind cppcheck xvfb xauth xfonts-base tk-dev ninja-build \
python-pip flex bison make automake libgfortran3

Or perform the build in our base container registry.gitlab.com/rirvm/rir_mirror/base
which is based on ubuntu:18.04 and has all those packages pre-installed.

The build itself is performed as follows:

cd src
cmake -DCMAKE_BUILD_TYPE=release
Builds patched GNU R and downloads correct binary LLVM release

cmake --build . -- setup

Update build scripts and builds R
cmake .

cmake --build .

Run R

bin/R

	Getting Started
	Contents of this Artifact
	Containers
	Data Analysis
	Source Code
	Image Creation

	Reproduction Step-by-Step
	Prerequisites
	Re-Create Containers
	Conformance
	Rerun Performance Measurements
	Data for Section 5.2
	Data for Section 5.3

	Plots and Numerical results

	Local Build

