
Advanced Hardware Architectures for Turbo Code
Decoding Beyond 100 Gb/s

Stefan Weithoffer†, Oliver Griebel∗, Rami Klaimi†, Charbel Abdel Nour†, Norbert Wehn∗
∗Department of Electrical and Computer Engineering, Technische Universität Kaiserslautern

Email: ∗{griebel, wehn}@eit.uni-kl.de, †{stefan.weithoffer, rami.klaimi, charbel.abdelnour} @imt-atlantique.fr
†IMT Atlantique, Department of Electronics, Lab-STICC - UMR 6285

Abstract—In this paper, we present two new hardware archi-
tectures for Turbo Code decoding that combine functional, spatial
and iteration parallelism. Our first architecture is the first fully
pipelined iteration unrolled architecture that supports multiple
frame sizes. This frame flexibility is achieved by providing a set of
interleavers designed to achieve a hardware implementation with
a reduced routing overhead. The second architecture efficiently
utilizes the dynamics of the error rate distribution for different
decoding iterations and is comprised of two stages. First, a
fully pipelined iteration unrolled decoder stage applied for a
pre-determined number of iterations and a second stage with
an iterative afterburner-decoder activated only for frames not
successfully decoded by the first stage. We give post place & route
results for implementations of both architectures for a maximum
frame size of K = 128 and demonstrate a throughput of
102.4 Gb/s in 28 nm FDSOI technology. With an area efficiency of
6.19 and 7.15 Gb/s/mm2 our implementations clearly outperform
state of the art.

Keywords—Forward Error Correction, Turbo decoder, Fully
Parallel, High-throughput.

I. INTRODUCTION

The change towards our nowadays ”always-connected” so-
ciety has been founded on the evolution of mobile communi-
cation standards from 3G to 4G and now to the fifth generation
5G, while research is already looking ”Beyond 5G” [1].

For the third and fourth generation mobile communica-
tion standards, Turbo Codes [2] were used as codes for the
downlink channel, and although they will be replaced by Low
Density Parity Check (LDPC) [3] codes in the 5G standard,
they will continue to be part of 5G through the evolution of
4G.

In respect to the requirements of communication systems,
LDPC and Turbo Codes have different strengths. While LDPC
codes are well suited to achieve ultra high throughputs in the
range of hundreds of Gb/s [4], [5], Turbo Codes are superior
in terms of frame and rate flexibility in the medium throughput
range of several Gb/s. With respect to ultra high through-
put decoder architectures, however, flexibility is generally a
challenging design aspect. While rate flexibility comes by
design for Turbo Codes [6], the most advanced Turbo decoder
implementations with respect to information throughput either
have very limited or no flexibility at all with respect to frame
sizes [7], [8].

In this work, we demonstrate, that with a suitable set of
Almost Regular Permutation (ARP) interleavers [9], frame
flexibility can be achieved for fully pipelined iteration unrolled

decoders. Based on a set of interleavers for the frame sizes
K ∈ {32, 64, 128} we present a new decoder architecture,
which also features a spacial parallelism of 4 and highly
localized channel value pipelines.

The second challenge for highly parallel decoder architec-
tures is area consumption. Most advanced implementations
occupy area in the order of tens of mm2 [7], [8]. Therefore,
in this work, we combine spatial, functional and iteration
parallelism in order to increase the area efficiency. Inspired
by the approach from [10] for LDPC codes, we present an
afterburner-based decoding variant for fully pipelined Turbo
decoders to further increase the area efficiency: By using an
iterative decoder stage as an afterburner in our second archi-
tecture, we are able to reduce the number of fully pipelined
half iteration stages and consequently significantly decrease
the area complexity. In unrolled architectures area and power
consumption linearly depends on the iteration stages. Thus, the
afterburner approach is an efficient way to move from worst
case to typical number of iteration assumptions, thus reducing
area and power.

The rest of this paper is structured as follows: Section II first
gives an overview on the state-of-the-art in parallel architec-
tures for Turbo Decoding. In Section III, we introduce our set
of interleavers and present two new decoder architectures in
Section IV. Place & route results along with results of power
simulations and a comparison with state-of-the-art is given in
Section V and Section VI concludes the paper.

II. PARALLEL TURBO DECODER HARDWARE
ARCHITECTURES

In its basic structure, a Turbo decoder consists of two
component decoders, an interleaver Π and a de-interleaver
Π−1 connected in an iterative loop [2] as shown in Figure 1.
The two component decoders commonly employ the max-Log-
MAP algorithm and exchange extrinsic information Λe. Their
iterative processing continues until either a pre-determined
maximum number of iterations is reached or an early-stopping
criterion is fulfilled. One execution of a component decoder is
counted as one Half Iteration (HI), whereas each completed
loop is called a (full) Iteration (IT). Hardware architectures
for Turbo Decoding are commonly comprised of one (parallel)
decoder core, which alternately acts as component decoder 1
and component decoder 2.



Decoder 1

Π

Decoder 2

Π−1

λs

λp1

λp2

λs + Λe1

Λe2

Λ

ΛΠ−1

Figure 1: General Turbo Decoder structure.

In order to achieve a high throughput, state-of-the-art Turbo
Decoder hardware implementations employ either spatial par-
allelism as in the parallel MAP (PMAP, [11]–[14]) architec-
ture, or functional parallelism in the pipelined MAP (XMAP,
[15]–[17]) architecture. The code trellis is in both cases split
into smaller sub-trellises, which are then decoded either on
parallel sub-decoder cores (PMAP), or several sub-trellises in
parallel in a pipelined fashion (XMAP).

Figure 2 illustrates how different methods of parallel pro-
cessing are used in state-of-the-art Turbo Decoders. Imple-
mentations with moderate levels of parallelism employ only
one type of parallelisation and use either the PMAP or the
XMAP architecture. Moreover, it is well known that for these
architectures, the maximum degree of parallelism is limited,
since the resulting small sub-blocks lead to an error correction
performance loss [14], [17]. As a consequence, the maximum
throughput of PMAP/XMAP in today’s silicon technologies is
limited to less than 10 Gb/s [8].

Therefore, in order to achieve a throughput in the order of
10 − 100 Gb/s with a single decoder instance, fully parallel
architectures which also employ iteration parallelism, i.e. the
parallel processing of two or more HI, have to be considered.
Decoder architectures which use iteration parallelism are the
fully parallel MAP (FPMAP, [7]) and the fully pipelined
iteration unrolled XMAP (UXMAP, [8]) architectures.

PMAP XMAP FPMAP UXMAP

Iteration Parallelism

Spa
cia

l Para
lle

lis
m

Functional
Parallelism

2 4 8 16 32 64 128 256

2

4

6

8

2
4

8
16

32
64

128
256

512

4096
8192

[7]

[8]

[11]–[13]
[14]

[15]
[16]

[8]

This Work

Figure 2: Parallelism in Turbo Decoder hardware architectures.

A. Fully Parallel MAP

For the FPMAP architecture, the decoding is reformulated
to allow a splitting of the frame into sub-blocks of size 1,
which are processed on individual parallel processing ele-
ments, thereby fully exhausting spacial parallelism. The state
metric information for each step in the code trellis is directly
exchanged between neighbouring elements. In addition, the
FPMAP uses two groups of processing elements to calculate
the decoding result for a complete iteration, one group for
each component decoder. This shuffled decoding scheme [18]
is used to exchange extrinsic information between the two con-
currently running groups representing the component decoders
leading to an iteration parallelism of 2 in Figure 2. Due to the
extreme spacial parallelism, state metric information exchange
between trellis sections that are far apart needs several itera-
tion steps to propagate to the respective processing elements
leading to an increase in the number of required iterations
for a target error correcting performance level, especially for
high code rates [8]. Moreover, the fully parallel exchange of
extrinsic information poses a challenge for the implementation
of flexible decoders, since the support of different interleaver
patterns is often not possible [7]. To mitigate this issue, it was
proposed to use unequal window lengths in [19]. However, no
implementation results are given in [19].

B. Iteration Unrolled XMAP

Combining iteration parallelism with fully pipelined compo-
nent decoders leads to the fully pipelined Iteration Unrolled
XMAP (UXMAP) decoder architecture. In this hardware ar-
chitecture, the iterative loop is fully unrolled onto a decoder
pipeline in which complete frames are processed in parallel
as they are progressing through the pipeline. The individual
component decoder instances are called iteration stages and
implement a pipelined serial max-Log-MAP processing of
complete code blocks [8].

Since complete decoded code blocks are output in each
clock cycle, the UXMAP architecture guarantees a very high
throughput albeit at a considerable area cost: The area con-
sumption for pipelining the serial max-Log-MAP processing
of complete code blocks grows linearly with the frame size and
the number of iteration stages. Similar to the FPMAP, flexible
interleaving is challenging for UXMAP decoders, since it has
to be realized within the pipeline. Therefore, the only reported
UXMAP implementation only supported the single frame size
of K = 128 [8].

However with careful selection of a set of interleavers,
a frame flexible iteration unrolled decoder can be realized
with a tolerable amount of multiplexing between the different
iteration stages.

III. INTERLEAVING

To achieve frame flexibility, we consider sets of Almost Reg-
ular Permutation (ARP) interleavers [9]. It was shown in [20]
that this family of interleavers can provide the same inter-
leaving properties, guaranteeing minimum Hamming distance
values at least as high as most known algebraic interleaver



families. An ARP interleaver is defined by a permutation
period P , a shift vector S and a disorder degree Q. The
interleaving function, defining connections between the bits
of the frames at the input of the first and second decoders, is
then given by (1), where K denotes the frame size:

ΠARP(i) =
(
P · i + S(i mod Q)

)
mod K (1)

Since in the UXMAP decoder architecture complete frames are
processed in parallel, also the interleaving of complete frames
has to be done in parallel. To support different frame sizes
K ∈ {K0,K1, . . . ,Kn−1}, the goal therefore is to find sets
of n interleavers with the maximum number of overlapping
connections, i.e.

ΠK0
(i) = ΠK1

(i) = . . . = ΠKn−1
(i). (2)

For the addresses that fulfill (2), the hardware realization can
be reduced to a wired connection.

For the remaining addresses, satisfying additional con-
straints can also simplify the hardware implementation by
limiting the number of required multiplexers. Without loss
of generality, we limit our analysis to power-of-two frame
sizes, namely with K ∈ {32, 64, 128} bits. For supporting
two frame sizes Km and Kn where Km = 2Kn, limiting
the number of required multiplexers could simply be achieved
by applying twice the interleaver of the smaller Kn size.
Let us denote by ΠK2n the resulting interleaver. However,
applying ΠK2n comes at the price of a high communications
performance penalty since addresses lower (resp. larger) than
Kn are interleaved to addresses lower (resp. larger) than Kn.
Consequently, the error correction capability is not expected
to improve when increasing the frame size from Kn to Km

bits.
A compromise between hardware efficiency and commu-

nications performance can be achieved by directly designing
ΠKm

with the least possible number of different connections
with respect to ΠK2n and the lowest impact on performance.
We propose to do that by having the maximum number of con-
tinuous addresses in ΠK2n

that can be modified to apply their
corresponding connections in ΠKm

by the simple introduction
of the same address shift value sΠ. In other words, maximize
l, the number of continuous addresses i, i+ 1, i+ 2, . . . , i+ l
while designing the interleaving functions of Km and Kn such
that:

ΠKn
(i + sΠ) mod Km = ΠKm

(i). (3)

For the considered cases, we have sΠ = Kn. Satisfying (3)
for the largest possible number (l) of addresses reduces the
complexity for switching between the parallel processing of
multiple frames of size Kn and the processing of frames
of size Km. Figure 3 illustrates this on the example of
the set of ARP interleavers {Π32,Π64,Π128} with P = 9,
S = {3, 13, 27, 5} and Q = 4 which were also chosen with
the methods described in [6].

Interleaver connections are highlighted for all three inter-
leavers in reference to the next smaller frame size. Connections
only defined by Π128(i) are drawn in grey color, while

connections shared by Π64 and Π128 are drawn in red color.
Lastly, connections shared by Π32 and Π64 are highlighted in
blue color. Figure 3 shows a significant overlap between the
different interleavers contained in the selected set. As we will
show in Section IV-B, the proposed set of ARP interleavers
clearly outperforms the set of comparable interleavers from
the LTE standard in terms of implementation complexity.

0

31

0

63

0

128

Π32

Π64

Π128

Figure 3: Overlap in the interleaver set {Π32,Π64,Π128} with
P = 9, S = {3, 13, 27, 5} and Q = 4.

Moreover, it has been shown in [6], that with a careful selec-
tion of puncturing patterns, LTE interleavers are outperformed
by this type of ARP interleavers in terms communications
performance, especially for high coding rates.

IV. PROPOSED ARCHTITECTURES

In this section, we present two new hardware architectures
for fully pipelined iteration unrolled Turbo Decoding based
on the interleaver set discussed in Section III. Note, that both
architectures use all three types of parallelism: Spatial, func-
tional and iteration parallelism (see also Figure 2). As depicted
in Figure 4, both architectures are composed of fully pipelined
Half-Iteration Stages (HI-Stages), which consist of a number
of parallel X-Elements, each with its own channel value FIFO.
This localized channel value storage allows a more localized
routing and a significantly lowered area footprint compared
to the architecture from [8], where each HI-Stage consists
of a monolithic X-Element and the channel value pipeline is
separate from the HI-Stages. Moreover, through the reduced
size of the individual X-Elements, the length of the FIFOs and
therefore overall area consumption is lowered.



C
ha

nn
el

V
al

ue
s

H
ar

d
D

ec
is

io
ns

C
on

fig
O

ut

C
on

fig
In

C
ha

nn
el

V
al

ue
s

Hard Decisions0Valid0 Valid1 Hard Decisions1

Π Π−1 Π

(a) FF-UXMAP (b) AB-UXMAP

Branch Metric Units
LLR Units

Backward Recursion Units
Forward Recursion Units

Interleaver MUXes
De-Interleaver MUXes

Config FIFOs
Afterburner Control

(De-)Interleaver
FIFOs

Figure 4: Architecture schematics for the new iteration unrolled architectures.

A. Frame Flexible UXMAP

Figure 4 (a) shows the Frame Flexible UXMAP (FF-
UXMAP) architecture. Based on the interleaver set presented
in Section III, it supports flexibility w.r.t. frame sizes K ∈
32, 64, 128. In addition, different combinations of smaller
frame sizes can be decoded in parallel allowing for a constant
throughput of 102.4 Gb/s for each combination, assuming a
completely filled pipeline. The supported configuration modes
are listed in Table I along with a complexity comparison with
LTE. Since LTE does not support a frame size of 32, the
comparison is done for two cases:

• 2 configurations: 128 and 64/64
• 4 configurations: 128, 64/64, 32/32/32/32 and 64/32/32

Thanks to the shared connections between the different inter-
leavers, only half of the 2 : 1 MUXes are needed compared to
the LTE case. The rest of the connections are identical between
the configurations 128 and 64/64 and can be realized by
direct wire-connections, which significantly lowers the routing
overhead compared to the LTE case where there is an overlap

Supported Configurations 2 configurations 4 configurations
LTE This Work LTE This Work

Wires 3328 113152 n/a 59904
2:1 MUXes 209664 99840 n/a 99840
3:1 MUXes / / n/a 53248

Table I: Complexity comparison of different interleaver sets.

for only two connections. Moreover, with additional 3 :
1 MUXes, two more configuration modes (32/32/32/32 and
64/32/32) can be supported while keeping the total amount
of multiplexers 25% lower than the LTE case. Note, that
the numbers are representing the amount of MUXes and the
amount of direct wire-connections for each (de-)interleaving
instance assuming a quantization of 6 bits for the channel
values and 7 bits for each extrinsic information to be (de-
)interleaved. A 2−bit FIFO buffer, shown in dark grey in

Figure 4, is used to control the (de-)interleaver MUXes (pink
and purple respectively) at the output of each HI-Stage.

B. UXMAP with Iterative Afterburner

The drawback of unrolled architectures is the static number
of iterations, i.e. pipeline stages, that have to be fixed at design
time. A worst case assumption on the iterations has to be made
to enable good communication performance also for lower
SNR regions. Serial architectures leverage stopping criterions
to exploit the dynamics in the channel and stop iterations as
early as possible.

In [10] it was proposed to utilize a hybrid afterburner
approach to combine conventional min-sum decoding and
the more complex saturated min-sum (SMS) decoding for
LDPC codes. There, an advanced stopping criterion was used
to detect erroneous decoding by the min-sum decoder and
only activate the saturated min-sum decoder for the wrongly
decoded frames. This sequential application of two variants
min-sum decoding allowed for a SNR gain of up to 1.6 dB.

Instead of using multiple iterative decoder instances as in
[10], in our architecture multiple frames are decoded in par-
allel in a pipelined afterburner stage where they are processed
iteratively for a pre-determined number of HI after emerg-
ing from the UXMAP pipeline. The resulting UXMAP with
iterative afterburner (AB-UXMAP) architecture is illustrated
in Figure 4 (b), where, for more clarity, frame flexibility is
not considered. In contrast to [10], the iterative afterburner
stage is used here to minimize the number of needed HI-
Stages for a target error correcting performance. Since the
power consumption can be estimated to increase linearly with
the number of HI-stages, this afterburner approach not only
reduces significantly the area but also the power consumption.

To avoid a loss in error correcting performance, a reliable,
low complexity stopping criterion is employed in the After-
burner Control unit in Figure 4 (b) to decide, which frames are
sent to the afterburner stage for iterative decoding. A number



Reference, K=128, W=32, 8 HI
CRC-Afterburner, K=128, W=32, 5+9 HI
HDA-Afterburner, K=128, W=32, 6+8 HI

Figure 5: Comparison of the FER performance of different
AB-UXMAP variants.

of stopping criteria are known from literature [21]. Since the
hard decisions on the decoded frames are available in the
pipeline with no overhead, the Hard Decision Aided (HDA)
stopping criterion [21] and a Cyclic Redundancy Check (CRC)
based criterion are low complexity choices.

Figure 5 shows Frame Error Rate (FER) simulation results
of afterburner decoding with both criteria along with the
reference consisting of a constant number of 8 HIs for a
frame size of K = 128. For the afterburner decoding, the total
number of HIs (HI-stages + iterations in the afterburner) for
frames which go into the afterburner is set to 14. The amount
of frames being iteratively decoded in the afterburner at any
given time is limited to 32 which dictates the capacity of the
afterburner pipeline.

The HDA-based afterburner configuration matches the FER
performance of the reference for 6 pipelined HI and 8
”afterburner-HI” while the CRC based afterburner configura-
tion only needs 5 pipelined HI and in the high SNR region
even outperforms the reference by approximately 0.25 dB.

In order to avoid non-negligible rate loss due to the CRC
at frame sizes < 200 bits, our implementation discussed in
Section III uses the HDA criterion. Note, that for larger frame
sizes, CRC becomes viable again, since the additional area
savings due to lower number of initial pipelined HIs justify
the rate loss due to the CRC.

V. PLACE & ROUTE RESULTS

The hardware architectures presented in Section IV were
implemented in VHDL and placed & routed with Synopsis IC
Compiler for a 28 nm FD-SOI process under worst case PVT
(Process/Voltage/Temperature) constraints. For a fair compar-
ison with previous works, the same frame size and number
of iterations was used as in [8]. Table II lists the algorithmic
parameters of the case study implementations. The max-Log-
MAP algorithm with an Extrinsic Scaling Factor (ESF) of
0.75 and a radix-4 processing of the trellis [15] are used and

the inputs are quantized with 6 bits. Due to the splitting of the
decoding into sub-blocks, an initialization of the state metrics
at the sub-block borders becomes necessary, which here is
done via Next Iteration Initialization (NII, [22]).

FF-UXMAP AB-UXMAP
Frame Size K 128/64/32 128

Spacial Parallelism 4
Radix 4

Algorithm max-Log-MAP with ESF = 0.75
State Metric Initialization Next Iteration Initialization [22]

Input Quantization 6 bit
Termination Tailbiting

Stopping Criterion n/a HDA

Table II: Algorithmic properties for the implementations.

The post place & route results are shown in Table III
alongside published results for decoders with FPMAP, PMAP
and XMAP architectures. These report a throughput ranging
from 1 to tens of Gb/s. Since results from literature are
reported for different technology nodes, we provide a scaling
to 28 nm technology in the caption of Table III. For this, we
cap the frequency scaling to 1000 MHz, which is the expected
frequency cap necessary to preserve single cycle accesses to
SRAM. Note, that in Table III ”parallelism” refers to the
amount of bits decoded in parallel.

A. Area and Throughput

To the best of our knowledge, no other reported implementa-
tions besides the previous work from [8] use a fully pipelined
decoder architecture. Consequently, none of the compared
implementations except [8] achieves a throughput of more than
16 Gb/s. Even when scaled to 28 nm technology, only [7]
is expected to achieve a throughput of around 40 Gb/s. The
presented architectures improve on previous work from [8] by
reducing the area consumption by 30% and 40% respectively
to 16.54 mm2 and 14.32 mm2. This, in turn increases the
area efficiency to 6.19 Gb/s/mm2 and 7.15 Gb/s/mm2, thereby
outperforming the most efficient reference implementation
from [14] by 37% and 59%, even when scaling its results
to 28 nm.

B. Layout

Layout pictures for our placed & routed designs are shown
in Figure 6. Note that they are at the same scale, showing
the correct relative sizes for both designs. The HI-Stages
and the Afterburner Control (red in Figure 6 (b)) are clearly
separated due to the hierarchical place & route process, but
also the individual X-Elements can be clearly identified for
both designs. Also note the iterative afterburner on the left in
Figure 6 (b), where the impact of the internal (de-)interleaving
is visible.

VI. CONCLUSION

In this work, we presented two new fully pipelined iteration
unrolled hardware architectures for Turbo Decoding along
with place & route results and power numbers for the respec-
tive case study implementations. Based on our investigations



This Work [8] [12] [14] [7] [16] [15]
Architecture FF-UXMAP AB-UXMAP UXMAP PMAP FPMAP XMAP

K 128/64/32 128 128 6144 6144 6144 6144 6144
Parallelism 128 128 64 32 6144 64 32

nIT 4 3 + 4 4 5.5 5.5 39 5.5 7

Technology 28 nm 28 nm 90 nm\ ] 65 nm† ‡ 65 nm† ‡ 45 nm ♣ ♠ 28 nm
Freq. [MHz] 800 800 625 (1000) 410 (1000) 100 (252) 600 (1000) 625

Throughput [Gb/s] 102.4 102.4 3.3 (5.29) 1.01 (2.47) 15.8 (39.86 ) 1.67 (3.2) 1.13
Area [mm2] 16.54 14.32 23.61 19.75 (2.44) 2.49 (0.55) 109 (24.09) 2.43 (1.04) 0.49

Area Eff. [Gb/s/mm2] 6.19 7.15 4.34 0.17 (2.17) 0.41 (4.49) 0.14 (1.65) 0.69 (2.68) 2.32

Table III: Comparison of implementation results for different turbo decoder architectures
Frequency scaling to 28 nm (Capped at 1000 MHz): \: 2.52; †: 1.95; ♣: 1.46; Area scaling to 28 nm: ]: 0.40; ‡:0.51; ♠: 0.69

Figure 6: Layout of (a) FF-UXMAP and (b) AB-UXMAP
decoders.

on interleaver sets, which can be implemented with a low
routing complexity, we presented a frame flexible architecture
supporting three different frame sizes and in total four dif-
ferent operating modes as well as the first iteration unrolled
architecture for Turbo Decoding with an iterative afterburner.
Both case study implementations achieve a throughput of
102.4 Gb/s and outstanding area efficiency numbers in 28 nm
technology outperforming other state-of-the-art Turbo Decoder
hardware architectures.

ACKNOWLEDGMENT

We gratefully acknowledge financial support by the EU
(project-ID: 760150-EPIC)

REFERENCES

[1] E. Dahlman, S. Parkvall, J. Peisa, and H. Tullberg. 5g evolution and
beyond. In 2019 IEEE 20th Int. Workshop on Sig. Proc. Adv. in Wireless
Commun. (SPAWC), pages 1–5, July 2019.

[2] C. Berrou and A. Glavieux. Near optimum error correcting coding and
decoding: turbo-codes. IEEE Trans. on Commun., 44(10):1261–1271,
Oct 1996.

[3] D. J. C. MacKay and R. M. Neal. Near shannon limit performance
of low density parity check codes. Electronics Letters, 33(6):457–458,
March 1997.

[4] P. Schläfer, N. Wehn, M. Alles, and T. Lehnigk-Emden. A new
dimension of parallelism in ultra high throughput ldpc decoding. In
IEEE Inter. Worksh. on Sig. Proc. (SiPS), pages 153–158, Oct 2013.

[5] A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and
A. Burg. A fully-unrolled ldpc decoder based on quantized message
passing. In IEEE Inter. Worksh. on Sig. Proc. (SiPS), pages 1–6, Oct
2015.

[6] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard. Protograph-
based interleavers for punctured turbo codes. IEEE Trans. on Commun.,
66(5):1833–1844, May 2018.

[7] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo. Vlsi implementation of fully parallel lte turbo decoders.
IEEE Access, 4:323–346, 2016.

[8] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou. 25
years of turbo codes: From mb/s to beyond 100 gb/s. In Int. Symp. on
Turbo codes and iter. proc. (ISTC), pages 1–6, Dec 2018.

[9] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel.
Designing good permutations for turbo codes: towards a single model.
In IEEE Int. Conf. on Commun. (ICC), volume 1, pages 341–345, June
2004.

[10] S. Scholl, P. Schläfer, and N. Wehn. Saturated min-sum decoding: An
“afterburner” for ldpc decoder hardware. In Design, Autom.and Test in
Eu. Conf. (DATE), pages 1219–1224, March 2016.

[11] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn. A 2.15gbit/s turbo code
decoder for lte advanced base station applications. In Int. Symp. on
Turbo codes and iter. proc. (ISTC), pages 21–25, Aug 2012.

[12] R. Shrestha and R. P. Paily. High-throughput turbo decoder with parallel
architecture for lte wireless communication standards. IEEE TCAS I:
Regular Papers, 61(9):2699–2710, Sep. 2014.

[13] Y. Sun and J.R. Cavallaro. Efficient hardware implementation of a
highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integration VLSI
Journal, 2010.

[14] C. Roth, S. Belfanti, C. Benkeser, and Q. Huang. Efficient parallel turbo-
decoding for high-throughput wireless systems. IEEE TCAS I: Regular
Papers, 61(6):1824–1835, June 2014.

[15] S. Weithoffer, F. Pohl, and N. Wehn. On the applicability of trellis
compression to turbo-code decoder hardware architectures. In Int. Symp.
on Turbo codes and iter. proc. (ISTC), pages 61–65, Sep. 2016.

[16] G. Wang, H. Shen, Y. Sun, J. R. Cavallaro, A. Vosoughi, and Y. Guo.
Parallel interleaver design for a high throughput hspa+/lte multi-standard
turbo decoder. IEEE TCAS I: Regular Papers, 61(5):1376–1389, May
2014.

[17] M. May, T. Ilnseher, N. Wehn, and W. Raab. A 150mbit/s 3gpp lte
turbo code decoder. In Design, Autom.and Test in Eu. Conf. (DATE),
pages 1420–1425, March 2010.

[18] Juntan Zhang and M. P. C. Fossorier. Shuffled iterative decoding. IEEE
Trans. on Commun., 53(2):209–213, Feb 2005.

[19] L. Xiang, M. F. Brejza, R. G. Maunder, B. M. Al-Hashimi, and
L. Hanzo. Arbitrarily parallel turbo decoding for ultra-reliable low
latency communication in 3gpp lte. IEEE Journ. on Selec. Areas in
Commun., 37(4):826–838, April 2019.

[20] R. Garzón Bohórquez, C. A. Nour, and C. Douillard. On the equivalence
of interleavers for turbo codes. IEEE Wireless Commun. Letters,
4(1):58–61, Feb 2015.

[21] R. Y. Shao, Shu Lin, and M. P. C. Fossorier. Two simple stopping criteria
for turbo decoding. IEEE Trans. on Commun., 47(8):1117–1120, Aug
1999.

[22] J. Dielissen and J. Huiskens. State Vector Reduction for Initialization
of Sliding Windows MAP. In Int. Symp. on Turbo codes and iter. proc.
(ISTC), pages 387–390, Brest, France, September 2000.




