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Abstract—Decoding using the dual trellis is considered as
a potential technique to increase the throughput of soft-input
soft-output decoders for high coding rate convolutional codes.
However, the dual Log-MAP algorithm suffers from a high
decoding complexity. More specifically, the source of complexity
comes from the soft-output unit, which has to handle a high
number of extrinsic values in parallel. In this paper, we present
a new low-complexity sub-optimal decoding algorithm using the
dual trellis, namely the dual Max-Log-MAP algorithm, suited
for high coding rate convolutional codes. A complexity analysis
and simulation results are provided to compare the dual Max-
Log-MAP and the dual Log-MAP algorithms. Despite a minor
loss of about 0.2 dB in performance, the dual Max-Log-MAP
algorithm significantly reduces the decoder complexity and makes
it a first-choice algorithm for high-throughput high-rate decoding
of convolutional and turbo codes.

Index Terms—Convolutional codes, high coding rate, dual
trellis, high-throughput decoder, low-complexity decoder, turbo
codes

I. INTRODUCTION

Nowadays, as the bandwidth becomes scarcer, many com-
munication systems have to adopt error correction schemes
with high coding rates in order to limit the occupied band-
width. For convolutional codes, high coding rates r = k/n
(e.g. r > 1/2) are usually achieved by applying a puncturing
pattern to a low-rate mother code so as to reduce the amount of
transmitted bits [1]. When these codes are used as component
codes in a turbo code [2], a soft-intput soft-output (SISO)
algorithm is needed for iterative decoding. The symbol-by-
symbol maximum a posteriori (MAP) algorithm [3] or its sub-
optimal version in the logarithmic domain (Max-Log-MAP)
[4] are usually employed to compute the soft output as well
as the extrinsic information for the iterative process. However,
decoding a high-rate punctured convolutional code using the
MAP algorithm presents some drawbacks. First of all, what-
ever the coding rate, the decoder always employs the trellis
of the low-rate non-punctured mother code. Therefore, the
decoding throughput is limited by the decoding throughput of
the mother code. Furthermore, the acquisition stages required
to initialize the state metrics in the decoder become longer
when the rate increases, thus reducing the efficiency and the
throughput of the decoder [5].
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An alternative to decode a high-rate punctured convolutional
code involves using its dual code. As shown in [6], the
codewords of the dual code can be represented as sequences in
the trellis of the reciprocal dual convolutional code, referred to
as dual trellis in this paper. Then, a symbol-by-symbol MAP
algorithm can be employed on the dual trellis to compute
the a posteriori and extrinsic log-likelihood ratios (LLR).
We refer to this decoding algorithm and to its derivation
in the logarithmic domain as the dual MAP and dual Log-
MAP algorithms, respectively. For codes with rates r greater
than 1/2, it is expected that decoding on the trellis of the
rate-(n− k)/n dual code yields higher throughput and lower
decoding latency than decoding on the original trellis, since
the dual trellis is shorter than the original one. In [7], two
hardware implementations of a dual Log-MAP decoder and a
conventional radix-4 Max-Log-MAP decoder are reported and
compared in terms of throughput and circuit area, for the rate-
k/(k+1) constituent convolutional codes of the LTE standard
(k = 2, 4, 8, 16). As expected, the decoding throughput of
the dual Log-MAP decoder increases with the coding rate,
while the decoding throughput of the Max-Log-MAP decoder
remains unchanged. The price to pay for higher throughput
is a larger circuit area of the dual Log-MAP decoder for all
considered coding rates, since the dual Log-MAP algorithm
has to process a large number of systematic and extrinsic
information values in parallel. This area increase is currently
regarded as the main obstacle to the extensive implementation
of the dual Log-MAP algorithm.

In this paper, we propose a new decoding algorithm based
on the dual trellis, called dual Max-Log-MAP. Compared to
the dual Log-MAP algorithm, it exhibits a lower complexity
while keeping the high-throughput property. More specifically,
the number of look-up tables required in the soft output
unit (SOU) is significantly reduced, compared to the dual
Log-MAP algorithm. This reduction results in a decrease of
the decoder circuit area at the cost of a minor penalty in
performance compared to the dual Log-MAP algorithm.

The paper is organized as follows. Section II presents some
basic concepts on the construction of the dual trellis, describes
the dual MAP and dual Log-MAP decoding algorithms, and
provides some considerations on the hardware implementation
of the latter. Then, the main contribution of the paper, i.e.
the proposed dual Max-Log-MAP algorithm, is described in



Section III. A computational complexity analysis is presented
in Section IV as well as simulations results to assess the error
correction performance of the proposed algorithm. Finally,
Section V concludes the paper.

II. DECODING WITH THE DUAL TRELLIS

A. Dual Trellis Construction for High-Rate Punctured Convo-
lutional Codes

The construction of the dual trellis is the first step towards
decoding the dual code. The dual trellis construction procedure
is based solely on the generator matrix of the mother code and
on the puncturing pattern. Therefore, the dual trellis is known
to the decoder prior to the decoding process but, contrary to
the original code trellis, it is specific to a given coding rate
and puncturing pattern.

Given a punctured convolutional code with coding rate
r = k/n, there exists an associated dual code with coding
rate r⊥ = (n−k)/n, generated by the reciprocal parity-check
matrix H̃(D) [6]. Hence, the dual trellis can be obtained by
finding the matrix H̃(D). To this end, a method is described in
[8] for the specific case where the coding rate of the original
punctured code is r = k/(k+1). More recently, a generalized
method was proposed in [9], allowing the dual trellis to be
constructed for any coding rate r = k/n. The dual MAP
algorithm or its logarithmic version dual Log-MAP can then
be employed with the dual trellis to perform the decoding
process.

B. The Dual MAP Algorithm

In this section, we assume that a binary information frame
of size K is encoded by a rate-k/n punctured convolutional
code yielding codewords of size N = K × n/k, denoted
by c = [c1, . . . , cN ]. Each codeword is modulated using
a binary phase-shift keying (BPSK) modulation where the
output signal is “+1” if bit cj = 0 or “−1” if bit cj = 1.
The modulated signal is then transmitted over the additive
white Gaussian noise (AWGN) channel. At the receiver, let
y = [y1, . . . , yN ] denote the received signal. The channel
LLRs Lc = [Lc1, . . . , L

c
N ] are then expressed as:

Lcj = log
P{yj |cj = 0}
P{yj |cj = 1}

=
2

σ2
yj . (1)

where σ2 is the noise variance.
If the decoder of the convolutional code takes part in an

iterative process, then some a priori information has to be
taken into account in the overall decoding process. For a
conventional turbo code, the LLRs at the input of the decoder,
denoted by LI = [LI1, . . . , L

I
N ] are defined as follows:

LIj =

{
Lcj + Laj , if cj is an information (systematic) bit,
Lcj , if cj is a parity bit,

(2)
where Laj denotes the a priori LLR related to bit cj .

At the output of the decoder, the extrinsic LLRs, denoted
by Le = {Le1, . . . , LeN}, can be obtained using either the
original or dual trellis. In the latter case [6], [10], the input

LLRs are first converted into bit metrics through the following
hyperbolic tangent computation:

dj = tanh(LIj/2). (3)

Then, the MAP algorithm is carried out using the dual trellis,
performing the following steps: branch metric calculation,
forward recursion, backward recursion, and finally, extrinsic
information calculation.

Assuming a dual trellis constructed according to Section
II-A for a given punctured convolutional code with rate
r = k/n, we focus on section t of this trellis. The bit metrics
related to this trellis section are {dnt+1, . . . , dnt+n} ∈ Rn. We
denote by (st, st+1) a pair of states between time t and time
(t+ 1) having a transition in the trellis section. Furthermore,
let {bnt+1, . . . bnt+n} ∈ {0, 1}n be the hard decisions carried
by state transition (st, st+1). The dual MAP algorithm is
implemented as follows [6], [10]:
• Branch metric calculation γt

γt(st, st+1) =

nt+n∏
j=nt+1

(dj)
bj (4)

• Forward αt+1 and backward βt metric recursions
αt+1(st+1) =

∑
st

αt(st)γt(st, st+1)

βt(st) =
∑
st+1

βt+1(st+1)γt(st, st+1)
(5)

• The a posteriori likelihood ratio (LR) zj of each bit at
position j, where j = nt + i, i ∈ {1, . . . , n}, is then
calculated in the dual code domain as

zj =
q0
j

q1
j

=

∑
(st,st+1)|bj=0

αt(st)γt(st, st+1)βt+1(st+1)∑
(st,st+1)|bj=1

αt(st)γt(st, st+1)βt+1(st+1)
.

(6)
• The resulting extrinsic information, denoted by uj , is then

uj = zj/dj , where j = nt+ i, i ∈ {1, . . . , n}. (7)

• Finally, the extrinsic information for the original code at
position j, denoted by Lej , is obtained as [6]

Lej = log
1 + uj
1− uj

. (8)

Just like the conventional MAP algorithm, the dual MAP
algorithm requires a large number of multiplications, divisions
and additions and is therefore too complex for practical
hardware implementations. Consequently, to make decoding
on the dual trellis feasible, the application of the dual MAP
algorithm in the logarithmic domain was investigated in [11].

C. The Dual Log-MAP Algorithm with Sign-Magnitude Rep-
resentation

As shown in (3), the input bit metric of the dual MAP de-
coder can be positive or negative. Therefore, to represent it in
the logarithmic domain, one can resort to the sign-magnitude



(SM) representation as in [11]. With this representation, a real
number x is represented as

x = (−1)Xs exp(−Xm) , [Xs;Xm], (9)

where Xs ∈ {0; 1} and Xm = − log(|x|) are the sign and the
magnitude of x, respectively. Then, the arithmetic operations
involved in the decoding algorithm can be expressed as
follows, using the SM representation:

• Sign-magnitude multiplication (SMM):

xy , [Xs ⊕ Ys;Xm + Ym]. (10)

• Sign-magnitude division (SMD):

x/y , [Xs ⊕ Ys;Xm − Ym]. (11)

• Sign-magnitude addition (SMA):

x+ y ,
[
Xs;Xm− log

(
1+(−1)Xs+Ys exp(Ym −Xm)

)]
,

if Ym > Xm,[
Ys;Ym− log

(
1 + (−1)Xs+Ys exp(Xm − Ym)

)]
,

otherwise.
(12)

With this representation, the multiplication and division
operators used by the dual MAP decoder are replaced by SMM
and SMD operators, mainly consisting in adders, in the dual
Log-MAP (dual LM) decoder. However, the SMA operator in
(12) requires the implementation of look-up tables (LUT) to
perform the two following functions:

f(∆) = log
(
1 + exp(−∆)

)
, (13)

g(∆) = log
(
1− exp(−∆)

)
, (14)

where ∆ is a positive real number. The hardware architecture
of the SMA is shown in Fig. 1. In the original trellis, only
function f(∆) is employed and can be replaced in practice
by a scaling factor in the Max-Log-MAP decoder [12]. Dif-
ferently, the bit metrics in the dual MAP algorithm can be
negative, thus requiring the use of function g(∆). Function
g(∆) is not bounded when ∆ goes to zero, therefore, it can
not be discarded or approximated as in the case of function
f(∆) in the Max-Log-MAP or Log-MAP decoder.
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Fig. 1. Hardware architecture of an SMA operator performing z = x+ y.

Finally, the extrinsic LLR in (8) can be expressed using the
SM representation as [7]:

Lej =

− log
(∣∣ tanh(Uj,m/2)

∣∣), if Uj,s = 0,

log
(∣∣ tanh(Uj,m/2)

∣∣), otherwise,
(15)

where Uj,s and Uj,m are the sign and the magnitude of uj ,
respectively.

D. Drawbacks of the Dual LM Algorithm for Hardware Im-
plementation

The required use of two LUTs to implement an SMA opera-
tor has a penalizing impact on the dual LM decoder implemen-
tation. In order to achieve the highest possible throughput, the
soft-output unit (SOU), in charge of computing the a posteriori
LRs, has to perform simultaneously the computation of (6)
for every information bit in a section of the dual trellis. The
corresponding architecture is shown in Fig. 2 for a radix-2
dual trellis with 4 states. Furthermore, the number of required
SMA operators employed increases with the number of states
and with the rate of the original convolutional code: if the
code has 2ν states and rate r = k/n, the number of SMA
operators required for the SOU of the dual LM decoder is
2k×(2ν−1). Since each SMA operator requires two LUTs, the
SOU consists of a total of 4k× (2ν −1) LUTs. Consequently,
the implementation of the dual LM decoder is only of interest
for very high coding rates: it was reported in [7] that, for a
rate-8/9 turbo code, the SOUs occupy more than 30 % the
circuit area of the turbo decoder.
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Fig. 2. Hardware architecture for the calculation of (6) for bit at position j.

In what follows, we propose a new sub-optimal decoding
algorithm to mitigate the complexity issue of the dual LM
algorithm [7], [11]. This algorithm is referred to as the dual
Max-Log-MAP (dual MLM) algorithm in the rest of the paper.

III. PROPOSED SUB-OPTIMAL LOW-COMPLEXITY
DECODING ALGORITHM

A. Max-Log Approximation for the Extrinsic Information Cal-
culation

The complexity of the dual LM decoder can be lowered
by limiting the use of LUTs to compute (13) and (14). These
LUTs are mainly used to derive the soft outputs according to



(6) in the SOUs. Therefore, we consider approximating the
calculation in the logarithmic domain of q0

j and q1
j for each

bit at position j in the trellis section, where:

q0
j =

∑
(st,st+1)|bj=0

αt(st)γt(st, st+1)βt+1(st+1), (16)

q1
j =

∑
(st,st+1)|bj=1

αt(st)γt(st, st+1)βt+1(st+1). (17)

For the calculation of q0
j , if N branches have bit decision

equal to zero at position j, we denote by Sj = {1, . . . ,N} the
index set of those branches and by ws the metric of branch
s ∈ Sj corresponding to state transition (st, st+1):

ws = αt(st)γt(st, st+1)βt+1(st+1). (18)

Then, (16) can be rewritten as:

q0
j =

∑
s∈Sj

ws. (19)

The value of ws can be negative or positive and the corres-
ponding sign is not known a priori. Therefore, with the SM
representation, one cannot apply the max-log approximation

log
( N∑
i=1

exi
)
≈ max
i=1,...,N

{xi},

to the summation in (19). However, if we denote by S+
j and

S−j the index sets of branches having positive metrics and
negative metrics, respectively, (19) can be expressed as

q0
j =

( ∑
r∈S+

j

wr

)
+
( ∑
p∈S−

j

wp

)
. (20)

Since the elements in the two summations terms in (20) have
the same sign value, these summations can be expressed in
SM representation as∑

r∈S+
j

wr =
[
0;− log

( ∑
r∈S+

j

e−Wr,m
)]
, (21)

∑
p∈S−

j

wp =
[
1;− log

( ∑
r∈S−

j

e−Wp,m
)]
. (22)

where Wr,m and Wp,m are the magnitudes of wr and wp,
respectively. Then, based on the max-log approximation, (21)
and (22) can be approximated in the SM domain as∑
r∈S+

j

wr ≈
[
0;− max

r∈S+
j

(−Wr,m)
]

=
[
0; min
r∈S+

j

(Wr,m)
]
, (23)

∑
p∈S−

j

wp ≈
[
1;− max

p∈S−
j

(−Wp,m)
]

=
[
1; min
p∈S−

j

(Wp,m)
]
. (24)

Finally, replacing both terms in (20) by (23) and (24),
the SM representation of q0

j after the SMA operation can be
written:

Q0
j,s = Wlj ,s, (25)

Q0
j,m ≈Wlj ,m − log(1− e−∆j ), (26)

where lj = arg mini∈Sj{Wi,m} and ∆j =
|minr∈S+

j
{Wr,m} − minp∈S−

j
{Wp,m}|. We can observe

that the calculation of (26) involves only one LUT for
function g(∆j), regardless of the number of considered
branches. Consequently, through branch rearrangement, we
can significantly reduce the number of LUTs employed by
the dual MAP decoder.

However, another problem arises when implementing (26).
Intuitively, (26) can be computed by finding the minimum
metric in S+

j and the minimum metric in S−j . Then, ∆j and
Wlj ,s are the results of a subtraction and a sign detection,
respectively. However, the number of branches in S+

j and S−j
is not constant. It depends on the considered dual trellis section
and varies with each received frame. This variability requires
the hardware implementation to be able to handle all possible
sizes for S+

j and S−j , which comes at a cost in complexity.
However, this problem can be easily solved by resorting to a
recently proposed method, namely the local soft-output Viterbi
algorithm (local SOVA) [13], to compute Wlj ,s, Wlj ,m and ∆j

in (25) and (26).

B. The Local Soft-Output Viterbi Algorithm

The algorithm presented in this section is a variant of the
original one recently proposed in [13]. First, we present the
algorithm for the general case and, then, its application to the
computation of (26) is derived.

The local SOVA performs operations on 3-tuple entities,
called paths. A path P consists of a metric value denoted by
M , a sign value S, and a reliability value related to S, denoted
by R:

P = {M,S,R} ∈ R× {0, 1} × R+, (27)

where R is the set of real numbers and R+ is the set of positive
real numbers.

Given a set of N paths, each has a sign value which is
positive (S = 0) or negative (S = 1). Also, each path has a
pre-computed path metric M and its initial reliability value
R is set to +∞ or to the largest possible value achievable
with quantization. Then, the local SOVA proceeds as shown
in Algorithm 1. The outcome of the algorithm is the path with
the minimum metric value among all paths. The corresponding
sign and metric are provided as well as the associated relia-
bility value, which is the minimum metric among the set of
competing paths having a different sign value.

Algorithm 1 can be directly used to calculate (25) and (26).
The number of paths N to be considered is the cardinality
of set Sj . The metric of path p ∈ Sj is wp, which is written
[Wp,s,Wp,m] using the SM representation. The N paths are
initialized with:

Pp = {Mp, Sp, Rp} = {Wp,m,Wp,s,+∞}, p = 1 · · · N .
(28)



Algorithm 1 The local SOVA
1: Initialization: N paths {P1, . . . , PN };
2: Pi = {Mi, Si, Ri}, for i = 1, . . . ,N ;
3: L = log2(N ) as the number of layers;
4: for each layer l = 1, . . . ,L do
5: for each path p = 1, . . . , 2(L−l) do
6: a = arg minj∈{2p−1,2p}{Mj};
7: b = arg maxj∈{2p−1,2p}{Mj};
8: if Sa = Sb then
9: Rp = min(Ra, Rb);

10: else
11: Rp = min(Ra,Mb);
12: end if
13: Mp = Ma; Sp = Sa;
14: end for
15: end for
16: Output:
17: M1: minimum metric among all paths,
18: S1: sign value of the path with minimum metric,
19: R1: minimum metric among paths having sign value

different from S1.

After having run the local SOVA according to Algorithm 1,
the output path is {M1, S1, R1}. If lj = arg minp∈Sj{Wp,m},
and if we assume that lj ∈ S+

j , then we have:
M1 = Wlj ,m = min

r∈S+
j

{Wr,m}, (29)

S1 = Wlj ,s, (30)
R1 = min

p∈S−
j

{Wp,m}. (31)

If lj ∈ S−j , S+
j and S−j have to be swapped in (29) and (31).

The value of ∆j in (26) is then

∆j = | min
r∈S+

j

{Wr,m} − min
p∈S−

j

{Wp,m}| = |M1 −R1|. (32)

To summarize, the computation of q0
j using the local SOVA

results in: {
Q0
j,s = S1 (33)

Q0
j,m = M1 − log

(
1− e−|M1−R1|

)
(34)

In addition, as presented in [13], the practical implemen-
tation of the local SOVA can be carried out in a dichotomous
fashion using elementary operations, called Merge, that each
processes two paths and are organized in layers. In Algo-
rithm 1, two paths P2p−1 and P2p at layer l−1 are merged into
a resulting path Pp at layer l. The overall local SOVA decoder
can therefore be implemented as a tree structure composed of
elementary Merge operators. For example, the overall structure
of the local SOVA decoder to calculate (25) and (26) with
N = 4 paths is described in Fig. 3 in the form of a binary
tree with L = log2(N ) = 2 layers. A possible architecture for
the elementary Merge operator is described in Fig. 4.

Therefore, the local SOVA decoder makes it possible to use
a predefined hardware structure to compute the simplified soft
output of a dual LM decoder.
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Fig. 3. Proposed hardware architecture of a local SOVA decoder used to
compute (25) and (26) for N = 4.
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Fig. 4. Hardware architecture of a Merge operator that selects the minimum
metric with its corresponding sign and updates the reliability value.

C. The Dual Max-Log-MAP Algorithm

Based on the above results, we propose a new a low-
complexity algorithm, called dual Max-Log-MAP (dual
MLM), to decode high coding rates convolutional codes using
theit dual trellis.

The decoding procedure is described as follows. Note that
we skip the branch metric calculation since it is not different
from the dual LM algorithm.

1) Forward or Backward Metric Recursion: As expressed
in (5), the metric recursion involves summations in the prob-
ability domain. The number of required additions depends
on the dual trellis structure. If a radix-2T dual trellis (2T

state transitions enter and leave each state) is considered, the
decoder needs (2T − 1) adders for each backward or forward
metric recursion. With the SM representation, two LUTs
are required for each SMA operator. Hence, a total number
of 2×(2T − 1) LUTs are necessary for a straightforward
implementation of each recursion.

However, thanks to the proposed SMA approximation and
using the the local SOVA for its implementation, the number
of LUTs needed to implement each recursion (5) using the
SM representation is decreased to one.

2) Dual Extrinsic and A Posteriori Information Calcula-
tion: The extrinsic information calculation for each bit in a
dual trellis section is given by (6). It involves the calculation
of q0

j and q1
j for each position j as expressed in (16) and (17),

respectively. The corresponding calculation has already been
dealt with in Sections III-A and III-B. Next, the a posteriori



information zj can be easily derived using an SMD operator
to compute (7).

3) Scaling Factors for the Extrinsic Information Conver-
sion: As a final step, the conversion of the extrinsic infor-
mation from the dual trellis domain to the original trellis do-
main (15) is necessary. However, due to the above-mentioned
approximations, the resulting extrinsic information values in
the dual trellis domain are found to be over-estimated, which
in turn produce under-estimated values in the original trellis
domain. Therefore, we employed scaling factors to mitigate
this over-estimation problem, a technique commonly used for
sub-optimal SISO decoding algorithms such as the Max-Log-
MAP [12] or SOVA [14] algorithms. Therefore, we employed
two scaling factors, denoted by φ1 and φ2, for the conversion
of the extrinsic information into the original trellis domain:

Lej =

−φ1 log
(∣∣ tanh(φ2

Uj,m

2 )
∣∣), if Uj,s = 1,

φ1 log
(∣∣ tanh(φ2

Uj,m

2 )
∣∣), otherwise.

(35)

In practice, we performed a computer search in an effort
to find the values of φ1 and φ2 providing the best error
correcting performance. These values are identical for all
decoding iterations.

4) Latency and Throughput: Given a punctured convolu-
tional code with a high coding rate of r = k/n, let K and N
denote the information size and its corresponding codeword
size, respectively. From the algorithmic perspective, the trellis
of the dual code has N−K trellis steps while the trellis of the
original code has K trellis steps. Therefore, if K > N −K
and if it takes one clock cycle to decode each trellis step,
the dual MLM decoder will have a lower latency than the
classical MLM decoder due to its lower number of trellis steps
to decode. In terms of throughput, the dual MLM can produce
k soft outputs per trellis section. Hence, in principal, the
throughput of the decoder with the dual MLM can potentially
be increased by a factor of k compared to the classical MLM
that produces one soft output per trellis step. Nevertheless,
the actual latency and throughput of a decoder depend on
the chosen architecture that might employ different levels
of parallelism techniques to the classical MLM or the dual
MLM decoder depending on the supported implementation
constraints such as are, throughput and latency.

IV. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

In order to illustrate the benefits of the proposed dual MLM
algorithm, we first perform an analysis of the complexity
savings due to the simplifications and then present simulations
results to assess its error correction performance.

First, a simplified complexity comparison, in terms of num-
ber of adders and LUTs required by the decoder, is carried out
between the dual LM and the proposed dual MLM algorithms,
for an 8-state (3 memory elements) convolutional code with
various coding rates k/(k+1). In this comparison, we exclude
the calculation of the branch metrics since it is the same
for both algorithms. As shown in Table I, despite a minor
increase in the number of adders, the dual MLM algorithm

uses significantly less LUTs than the dual ML algorithm.
More specifically, due to the max-log approximation, the use
of function f(∆) is no longer needed in (13) and the use
of function g(∆) is also limited, thanks to the local SOVA.
As the coding rate increases, the percentage of LUTs saved
in the dual MLM decoder also increases. For instance, with
coding rate 4/5, the total number of LUTs used in the dual
LM decoder is 144, compared to 24 LUTs in the dual MLM
decoder. When raising the coding rate up to 8/9, dual MLM
decoding requires only 32 LUTs compared to 256 for dual
LM decoding.

TABLE I
COMPLEXITY COMPARISON BETWEEN THE DUAL LOG-MAP AND THE

DUAL MAX-LOG-MAP DECODERS FOR VARIOUS CODING RATES

Coding
rate

dual Log-MAP dual Max-Log-MAP

Adders
LUTs

Adders
LUTs

f(∆) g(∆) f(∆) g(∆)

4/5 168 72 72 184 0 24

8/9 288 128 128 320 0 32

16/17 528 240 240 592 0 48

Next, we conducted several numerical simulations to assess
and compare the performance of the dual LM and the dual-
MLM algorithms. For validation purposes, we also included
the performance of the Max-Log-MAP (MLM) decoder on the
original trellis as a reference.

In the simulations, information frames are encoded by the
turbo code consisting of two identical LTE constituent recur-
sive systematic convolutional (RSC) codes [15] with generator
matrix

GLTE(D) =
(

1 1+D+D3

1+D2+D3

)
. (36)

For the internal interleaver, we chose an almost regular per-
mutation (ARP) interleaver [16] defined by

π(i) =
(
Pi+ S

(
i mod Q

))
mod K, i = 1, . . . ,K. (37)

The parameters of the ARP interleaver are given in Table II.
Furthermore, puncturing was employed to achieve different
high coding rates, and the puncturing patterns of the parity bits
were jointly optimized with the ARP interleaver as described
in [17]. Table III shows the puncturing patterns used in the
simulations for the coding rates 4/5, 8/9 and 16/17 of the
constituent convolutional code.

TABLE II
ARP INTERLEAVER PARAMETERS

Q P
(
S(0), . . . , S(Q− 1)

)
16 383

(8, 80, 311, 394, 58, 55, 250, 298,
56, 197, 280, 40, 229, 40, 136, 192)

The encoded frames are modulated using a BPSK modu-
lation and are sent through an additive white Gaussian noise
(AWGN) channel. All three decoding algorithms use a fixed-
point representation of data. The influence of channel data
quantization on performance was observed to be similar for the
three decoders. The simulations were carried out with channel



TABLE III
PARITY PUNCTURING PATTERNS FOR VARIOUS CODING RATES

Turbo rate CC rate Parity puncturing pattern

2/3 4/5 1000

4/5 8/9 01000000

8/9 16/17 0100000000000000

values quantized on 6 bits. The number of iterations is set to
8 for all decoders. For the dual MLM decoder, the values of
the scaling factors (φ1, φ2) are (1.3, 0.75) for r = 2/3, and
(1.15, 0.75) for r = 4/5 and r = 8/9. The simulation results
are shown in Fig. 5 and Fig. 6 for information frame sizes
K = 400 bits and K = 992 bits, respectively. We can see that
the dual LM and the MLM algorithms yield similar error rate,
as expected. However, the dual MLM algorithm entails a loss
of about 0.2− 0.3 dB compared to the dual LM algorithm at
coding rate r = 2/3 but this loss reduces to 0.1 − 0.2 dB at
coding rates r = 4/5 and r = 8/9. Therefore, the dual MLM
algorithm can be regarded as a sub-optimal but low-complexity
decoding algorithm compared to the dual LM algorithm.
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Fig. 5. Performance comparison between the Max-Log-MAP, the dual Log-
MAP and the dual Max-Log-MAP algorithms with K = 400 bits.
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Fig. 6. Performance comparison between the Max-Log-MAP, the dual Log-
MAP and the dual Max-Log-MAP algorithms with K = 992 bits.

V. CONCLUSIONS

In this paper, we proposed a new soft-input soft-output
decoding algorithm using the dual trellis of high-rate punc-
tured convolutional codes, namely the dual Max-Log-MAP
algorithm. We showed that the state metric recursions and

the extrinsic information calculations can then be reformulated
using the max-log approximation and can be implemented with
the local SOVA architecture. A complexity analysis was con-
ducted, showing that the number of look-up tables employed
in the decoder can then be considerably reduced compared
to the dual Log-MAP algorithm. Also, based on numerical
simulations, we observed that dual Max-Log-MAP decoding
yields only a minor loss of about 0.2 dB in performance at
10−6 of bit error rate compared to dual Log-MAP decoding.
Therefore, it can be considered as a viable and practical low-
complexity sub-optimal decoding algorithm.

Moreover, as a decoding algorithm on the dual trellis,
when high coding rates are considered, the dual Max-Log-
MAP decoder inherits the high-throughput and low latency
properties from the dual Log-MAP decoder [7]. This makes it
a first-choice algorithm for high-throughput high-rate decoding
of convolutional and turbo codes. Future work will focus on
the hardware implementation of this algorithm.
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