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ABSTRACT

Turbo codes are a well-known code class used for example in the
LTE mobile communications standard. They provide built-in rate
flexibility and a low-complexity and fast encoding. However, the se-
rial nature of their decoding algorithm makes high-throughput hard-
ware implementations difficult. In this paper, we present recent find-
ings on the implementation of ultra-high throughput Turbo decoders.
We illustrate how functional parallelization at the iteration level can
achieve a throughput of several hundred Gb/s in 28 nm technology.
Our results show that, by spatially parallelizing the half-iteration
stages of fully pipelined iteration unrolled decoders into X-windows
of size 32, an area reduction of 40% can be achieved. We further
evaluate the area savings through further reduction of the X-window
size. Lastly, we show how the area complexity and the throughput
of the fully pipelined iteration unrolled architecture scale to larger
frame sizes. We consider the same target bit error rate performance
for all frame sizes and highlight the direct correlation to area con-
sumption.

Index Terms— Beyond 5G, Turbo Decoding, High-Throughput,
Hardware Architecture

1. INTRODUCTION

Wireless communication systems are a driving force of connecting
our world. Their evolution enables technologies like the Tactile In-
ternet [1] and the Internet of Things (IoT) [2] but comes with ever
increasing demands for higher throughputs, higher spectral efficien-
cies, lower latencies, a lower power consumption and a larger scala-
bility. First and second generation wireless communication systems
required a throughput of less than 1 Mb/s, UMTS already supported
a throughput of 2 Mbit/s and LTE-A up to Gb/s [3]. For the 5G stan-
dard, data rates greater than 10 Gb/s will be targeted and future use
cases, Beyond 5G (5G+), are expected to have even larger throughput
requirements. The Horizon 2020 project ”Enabling Practical Wire-
less Tb/s Communications with Next Generation Channel Coding”
(EPIC) aims at throughputs well beyond 100 Gb/s, towards Tb/s for
Forward Error Correction (FEC) utilizing soft informations [4]. In
particular, EPIC considers three widely used code families: Low-
Density Parity-Check (LDPC) codes, Polar codes and Turbo codes.

The above-mentioned throughput demands directly translate
into constraints at the level of the FEC, a mandatory building block
for reliable wireless transmissions. In the past, advancements in
silicon technologies and in decoder hardware architectures made it
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possible these increased requirements. For example, in 2016, state-
of-the-art Turbo decoder implementations allowed a throughput of
approximately 15 Gb/s at 100 MHz in 65 nm silicon technology [5].
However, when scaling to advanced technology nodes, the fre-
quency for hardware implementations of baseband signal processing
is constrained due to power and other design issues and, overall,
only a maximum frequency of 1 GHz can be achieved. With limited
frequency scaling, the throughput has to be scaled by employing
extreme levels of parallelism and using low complexity algorithms.
However, an extreme level of parallelism in the decoding of FEC
codes is often linked to a decrease in the achieved level of Bit Error
Rate (BER) performance:

• Decoding for a fixed number of iterations with a fully parallel
flooding schedule for Belief Propagation (BP) decoding of
LDPC codes has a lower BER performance than a partially
parallel layered decoding schedule [6],

• Adopting the low complexity Successive Cancellation (SC)
decoding for Polar codes leads to a significantly reduced BER
performance when compared to approaches employing list
decoding [7],

• Splitting the trellis of the component codes of Turbo codes
into smaller sub-trellises to process them in parallel leads to
a BER performance drop that must be mitigated through ad-
ditional calculations limiting the achievable degree of paral-
lelism [8].

In addition, these three widely used code families face differ-
ent challenges for the implementation of high-throughput decoders.
Indeed, LDPC codes are classically decoded using the inherently
parallel BP algorithm where complexity is dominated by iterative
message exchange. This results in a high degree of routing conges-
tion leading to an area overhead for hardware implementation [9].
Polar decoding is performed via exploration of the code tree struc-
ture using the SC algorithm. The latter can support multi-bit pro-
cessing where complexity is balanced between required computa-
tions and message exchanges [10, 11]. However in order to achieve
competitive BER performance, list decoding needs to be applied,
introducing additional memory management and control overhead
which significantly increases implementation complexity. Finally,
Maximum a Posteriori (MAP) decoding used for Turbo codes is in-
herently serial and the corresponding complexity is dominated by
computations and suffers from data dependencies in the state metric
recursion, impacting the achievable level of parallelism. In addition,
iterative processing required for decoding LDPC and Turbo codes
negatively impacts achievable throughput. Bridging the gap between
the performance metrics of current state-of-the-art decoders and the
requirements identified by the EPIC project can be achieved by fully
unrolling the (iterative) decoding onto a single pipeline [9, 11–13].



Fig. 1. Dominant types of parallelism for different turbo decoder
archetypes.

This paper highlights recent results obtained under the umbrella
of the EPIC project with a focus on Turbo decoder implementation.
The remainder of this paper is structured as follows: First, Section
2 recapitulates the concept of iteration unrolling in the context of
Turbo decoding. Then, Section 3 describes new results on fully
pipelined iteration unrolled decoding before Section 4 concludes the
paper.

2. THE STEP TO 100 GB/S VIA ITERATION UNROLLING

A Turbo decoder consists of two component decoders connected
through an interleaver and a de-interleaver. It applies an iterative
loop, exchanging extrinsic information Λe between its two compo-
nents, cooperatively improving the decoding result [14]. State-of-
the-art hardware architectures for turbo decoders decoding generally
devise one hardware instance alternatingly acting as component de-
coder 1 and component decoder 2. Moreover, they split the code
blocks into smaller sub-blocks and employ spatial and functional
parallelization to increase the throughput. Hardware architecture
archetypes can be categorized as follows according to the dominant
type of parallelization at the decoder level:

• Parallel MAP (PMAP): PMAP decoders spatially paral-
lelize the decoding of different parts of the code trellis on
multiple sub-decoder cores [15, 16]. However, for smaller
sub-blocks and at high code rates, mitigation measures for
avoiding BER performance loss are necessary and limit the
maximum degree of parallelization [8].

• Pipelined MAP (XMAP): The XMAP decoder, named
for its X-shaped pipeline structure, uses a functional par-
allelization approach where the state metric recursions of
the MAP algorithm are pipelined [17–20]. It suffers from
the same limitations as the PMAP architecture with respect
to parallelization. Thus, state-of-the-art implementations of
PMAP decoders achieve a throughput of 1-2 Gb/s [21–23],
and similarly 1-2 Gb/s have been demonstrated for XMAP
decoders [20, 24] in current technologies.

• Fully Parallel MAP (FPMAP): This decoder architecture
is the extreme case of the PMAP with a sub-block size re-
duced to 1 trellis stage in combination with a shuffled decod-
ing schedule [6, 25]. It has been shown to achieve a through-
put of 15 Gb/s, an order of magnitude more than previously
published PMAP implementations [5], but suffers from a re-
duced BER performance for high code rates [13].

In order to enable a throughput beyond 100 Gb/s for Turbo decoder
architectures, spatial or functional parallelization at the decoder level
alone will not be enough. However, Turbo codes allow the utilization
of functional level parallelism at the iteration level. Pipelining the
half-iterations and connecting them to a single pipeline leads to a
fourth architecture archetype:

• Fully Pipelined Iteration Unrolled (UXMAP): In this de-
coder architecture, complete frames are processed in parallel
while traversing through the decoder pipeline [13, 26]. This
allows for a very high throughput which is determined by
the frame size and the achievable clock frequency, since one
complete decoded frame is output per clock cycle, once the
pipeline is completely filled.

Figure 1 illustrates the different decoder archetypes with respect to
their position in the design space w.r.t. the dominant type of paral-
lelization. The PMAP and XMAP decoder architectures lie on the
spatial and functional parallism axes, while the FPMAP architec-
ture lies on a straight line parallel to the spatial parallelism axis, due
to the shuffled decoding schedule which can be seen as an iteration
parallelism of 2. The UXMAP, as presented in [13], lies in a plane
spanned by the functional and iteration parallelism axes. This leads
to a large area consumption for hardware implementations. In a pre-
vious work [13], the first turbo decoder achieving 100 Gb/s occupied
almost 24 mm2 for a frame size of K = 128.

Therefore, in a recent work, we propose to move away from the
”UXMAP-plane” that is shown in Figure 1 and use an approach that
combines all three methods of parallelization [27].
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Fig. 2. Architecture schematic of the spatially parallelized UXMAP.

3. ADVANCED ITERATION UNROLLED TURBO
DECODING

Combining the UXMAP architecture with spatial parellization by
splitting the half-iteration pipelines into smaller X-Windows of size
32 leads to a reduction of the area consumption by up to 40% for
the same frame size K = 128. Moreover, it enables frame size
flexibility to support K = 128, 64, 32 [27].

Figure 2 illustrates the proposed spatially parallelized UXMAP
architecture. It is composed of fully pipelined Half-Iteration Stages
(HI-Stages) consisting of several X-windows. Note, that in the fol-
lowing, X window size refers to the size of the sub-trellis which is
fed to each X-window. Therefore, the amount of computational units
per X-window is divided by log2(4) = 2 for radix-4. These are then
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Fig. 3. Area consumption after synthesis depending on the frame
size K and the X-window size.

composed of 2·X window size/2 radix-4 recursion units (for the for-
ward and backward state metric recursions), 2·X window size/2− 2
radix-4 branch metric units (due to recomputation of the branch met-
rics) and X window size/2 radix-4 LLR-units (for soft output com-
putation). In contrast to the architecture from [13], the FIFO con-
taining the channel values is included directly into the X-windows,
allowing for a more localized routing.

By reducing the X-window size, all pipelines for the channel
values, for the forward and backward state metrics as well as for the
extrinsic values are shortened. This reduces the pipeline latency but
also makes it possible to realize decoders with larger frame sizes.

3.1. Spatially Parallelizing the half-iterations of the UXMAP

Figure 3 shows new synthesis results for one half-iteration stage
of UXMAP decoders with different frame and X-window sizes in
28 nm FDSOI technology, targeting a frequency of 800 MHz. The
channel value quantization is set to 6 bits. For larger X-window
sizes, the pipeline stages contribute the most to the overall area con-
sumption. Indeed when reducing X window size from 128 to 64,
a sharp drop in area consumption is observed. While a noticeable
drop is still observed when moving to an X window size of 32, the
area savings for sizes 16 and 8 are significantly less pronounced. In
fact, similar to PMAP or XMAP decoders, the splitting of the code
trellis requires mitigation measures in order to avoid a decrease in
BER performance. Besides, to avoid an increase in pipeline latency,
Next Iteration Initialization (NII) [28] is used instead of perform-
ing Acquisition (ACQ) computations [20], since these would have
to be integrated into the overall pipeline. This however requires ad-
ditional pipelines for forwarding the NII values for the state met-
rics to the next iteration for each X-window, which counteracts the
area savings through overall shorter pipelines. In addition, reducing
X window size below 32 comes at a non-negligible penalty in BER
performance, especially for higher code rates.

Note that the results from Figure 3 do not include placement &
routing overhead and a full UXMAP pipeline must be composed of
several half-iteration stages. Still, the area saving of 40 % motivates
investigation of larger frame sizes.
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Fig. 4. BER performance for different frame sizes K with an X-
window size of 32.

3.2. Increasing the Frame Size

Figure 4 shows BER simulation results for frame sizes of K = 128,
256, and 512 bits for a X-window size of 32. The respective Al-
most Regular Permutation (ARP) interleaver parameters were ob-
tained through the methods described in [29, 30] and are listed in
Tables 1 and 2. To make the given results comparable to previous

K P Q S
128 49 4 [ 3, 113, 111, 93 ]
256 79 16 [ 8, 16, 39, 170, 74, 87, 122, 26, 168, 165, 24,

88, 245, 216, 232, 192]
512 61 16 [ 8, 50, 107, 192, 258, 289, 454, 360, 376, 7,

316, 494, 173, 434, 292, 398 ]

Table 1. ARP interleaver parameters.

Punct. Pattern Sys. [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Punct. Pattern P1 [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
Punct. Pattern P2 [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Table 2. Puncturing patterns for rate 8/9.

work, the decoder with frame size K = 128 and 4 full iterations
(128,4) applying a X-window size of 32 serves as a reference.

For rate 1/3, the BER performance of the reference decoder is
met by the decoder with K = 256 bits at 3 decoding iterations,
while for K = 512 bits, 2.5 iterations give the same performance.
Decoding with the (512, 3) configuration improves performance by
0.5 dB at a BER of 10−6.

Similarly, for rate 8/9, decoding K = 256 bits with 3 iterations
gives identical performance as decoding with (128, 3). For frame
size K = 512 bits, 3 decoding iterations improve on the reference
result by about 0.3 dB at a BER 10−6, while decoding only with 2.5
iterations comes at a penalty of approximately 0.4 dB for the same
BER of 10−6.

3.3. Adding a Short Acquisition

As noted above, the splitting of the trellis into X-Windows impacts
the BER performance. This effect is more pronounced for larger
frame sizes since more positions in the trellis are weakened through
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Fig. 5. BER performance for different frame sizes K with an X-
window size of 32 with added ACQ before the first iteration.

the estimations of the initialization values at the X-window borders.
Decoding with more iterations or adding an ACQ calculation in ad-
dition to the NII for each window mitigates the BER performance
penalty. However, the former significantly increases the pipeline la-
tency and the latter is especially costly for UXMAP decoders with
larger frame sizes.

A compromise is to only add a very short ACQ calculation be-
fore the first iteration stage to supply it with initialization values
for the state metrics. Figure 5 shows the BER performance for
K = 128, 256 and 512 bits and an X-window size of 32 with an
ACQ of 2 trellis sections.

For rate 1/3, the coding gain when comparing (128, 4) and
(512, 3) increases to more than 0.6 dB at a BER 10−6, confirming
the larger impact of the splitting of the trellis on larger frame sizes.
The (256, 3) and (512, 2.5) configurations are now about 0.4 dB
better than (128, 4). This trend translates to the higher code rate of
8/9, where the (512, 3) configuration leads to a coding gain of ap-
proximately 0.5 dB whereas the performance of (512, 2.5) is now
almost matching the performance of (128, 4).

Moreover, an ACQ of only two trellis sections can be imple-
mented at negligible hardware overhead.

3.4. Estimates for Complete Decoders

Correlating the results from Figures 3, 4 and 5, allows to give good
qualitative estimates for complete decoders which are listed in Ta-
ble 3. The reference configuration of (128, 4) which uses 8 half-

Configuration Area Est. [mm2] Throughput
@ 800 MHz

Area Eff.
[Gb/s/mm2]

(128, 4) 12 102.4 8.5
(256, 3) 18 204.8 11.37
(512, 3) 36 409.6 11.37

(512, 2.5) 30 409.6 13,65

Table 3. Comparison of different decoder configurations.

iteration stages requires 12 mm2, whereas the (256, 3) configuration
is estimated to occupy an area of ≈ 18 mm2. Note that the through-
put for this configuration would be doubled resulting in a throughput
of over 200 Gb/s at a clock frequency of 800 Mhz. Moreover, mov-
ing from the (128, 4) to the (256, 3) or the (512, 3) configuration

results in an improved BER performance. The (512, 2.5) configura-
tion allows a throughput of 409 Gb/s at 30 mm2, making it almost
twice as area efficient as the (128, 4) configuration.

4. CONCLUSION

In this work, we explore different implementations of fully pipelined
iteration unrolled Turbo decoders, targeting ultra-high throughput
applications.

Extending our previous work from [27], we show the impact of
spatially parallelizing the X-windows of UXMAP decoders on the
area of one half-iteration stage. Going from an X-window size of
128 down to 32 is associated with an area reduction of 40%. Fur-
ther reduction through limiting the X-window size is minimal and
comes at a cost in the BER performance. Motivated by the area sav-
ing through the reduction of the X-window size, we demonstrate the
feasibility of reaching a throughput of up to 409 Gb/s for a frame size
K = 512 bits, by correlating area complexity and BER performance
of UXMAP decoders.

Moreover, we show that the required number of decoding itera-
tions, i.e. hardware instances of half-iteration stages, can be further
reduced by adding a very short ACQ ahead of the first iteration.

Our promising results show that UXMAP decoder hardware im-
plementations are the prime candidates for ultra-high throughput,
constituting a major milestone on the road towards Tb/s Turbo de-
coding.
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